1
|
Kimura A. Cross-modal sensitivities to auditory and visual stimulations in the first-order somatosensory thalamic nucleus. Eur J Neurosci 2024; 60:5621-5657. [PMID: 39192569 DOI: 10.1111/ejn.16510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
The ventral posterolateral nucleus (VPL), being categorized as the first-order thalamic nucleus, is considered to be dedicated to uni-modal somatosensory processing. Cross-modal sensory interactions on thalamic reticular nucleus cells projecting to the VPL, on the other hand, suggest that VPL cells are subject to cross-modal sensory influences. To test this possibility, the effects of auditory or visual stimulation on VPL cell activities were examined in anaesthetized rats, using juxta-cellular recording and labelling techniques. Recordings were obtained from 70 VPL cells, including 65 cells responsive to cutaneous electrical stimulation of the hindpaw. Auditory or visual alone stimulation did not elicit cell activity except in three bi-modal cells and one auditory cell. Cross-modal alterations of somatosensory response by auditory and/or visual stimulation were recognized in 61 cells with regard to the response magnitude, latency (time and jitter) and/or burst spiking properties. Both early (onset) and late responses were either suppressed or facilitated, and de novo cell activity was also induced. Cross-modal alterations took place depending on the temporal interval between the preceding counterpart and somatosensory stimulations, the intensity and frequency of sound. Alterations were observed mostly at short intervals (< 200 ms) and up to 800 ms intervals. Sounds of higher intensities and lower frequencies were more effective for modulation. The susceptibility to cross-modal influences was related to cell location and/or morphology. These and previously reported similar findings in the auditory and visual thalamic nuclei suggest that cross-modal sensory interactions pervasively take place in the first-order sensory thalamic nuclei.
Collapse
Affiliation(s)
- Akihisa Kimura
- Department of Physiology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
2
|
Varela C, Moreira JVS, Kocaoglu B, Dura-Bernal S, Ahmad S. A mechanism for deviance detection and contextual routing in the thalamus: a review and theoretical proposal. Front Neurosci 2024; 18:1359180. [PMID: 38486972 PMCID: PMC10938916 DOI: 10.3389/fnins.2024.1359180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/15/2024] [Indexed: 03/17/2024] Open
Abstract
Predictive processing theories conceptualize neocortical feedback as conveying expectations and contextual attention signals derived from internal cortical models, playing an essential role in the perception and interpretation of sensory information. However, few predictive processing frameworks outline concrete mechanistic roles for the corticothalamic (CT) feedback from layer 6 (L6), despite the fact that the number of CT axons is an order of magnitude greater than that of feedforward thalamocortical (TC) axons. Here we review the functional architecture of CT circuits and propose a mechanism through which L6 could regulate thalamic firing modes (burst, tonic) to detect unexpected inputs. Using simulations in a model of a TC cell, we show how the CT feedback could support prediction-based input discrimination in TC cells by promoting burst firing. This type of CT control can enable the thalamic circuit to implement spatial and context selective attention mechanisms. The proposed mechanism generates specific experimentally testable hypotheses. We suggest that the L6 CT feedback allows the thalamus to detect deviance from predictions of internal cortical models, thereby supporting contextual attention and routing operations, a far more powerful role than traditionally assumed.
Collapse
Affiliation(s)
- Carmen Varela
- Psychology Department, Florida Atlantic University, Boca Raton, FL, United States
| | - Joao V. S. Moreira
- Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
| | - Basak Kocaoglu
- Center for Connected Autonomy and Artificial Intelligence, Florida Atlantic University, Boca Raton, FL, United States
| | - Salvador Dura-Bernal
- Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | | |
Collapse
|
3
|
Yazdanbakhsh A, Barbas H, Zikopoulos B. Sleep spindles in primates: Modeling the effects of distinct laminar thalamocortical connectivity in core, matrix, and reticular thalamic circuits. Netw Neurosci 2023; 7:743-768. [PMID: 37397882 PMCID: PMC10312265 DOI: 10.1162/netn_a_00311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 03/01/2023] [Indexed: 10/16/2023] Open
Abstract
Sleep spindles are associated with the beginning of deep sleep and memory consolidation and are disrupted in schizophrenia and autism. In primates, distinct core and matrix thalamocortical (TC) circuits regulate sleep spindle activity through communications that are filtered by the inhibitory thalamic reticular nucleus (TRN); however, little is known about typical TC network interactions and the mechanisms that are disrupted in brain disorders. We developed a primate-specific, circuit-based TC computational model with distinct core and matrix loops that can simulate sleep spindles. We implemented novel multilevel cortical and thalamic mixing, and included local thalamic inhibitory interneurons, and direct layer 5 projections of variable density to TRN and thalamus to investigate the functional consequences of different ratios of core and matrix node connectivity contribution to spindle dynamics. Our simulations showed that spindle power in primates can be modulated based on the level of cortical feedback, thalamic inhibition, and engagement of model core versus matrix, with the latter having a greater role in spindle dynamics. The study of the distinct spatial and temporal dynamics of core-, matrix-, and mix-generated sleep spindles establishes a framework to study disruption of TC circuit balance underlying deficits in sleep and attentional gating seen in autism and schizophrenia.
Collapse
Affiliation(s)
- Arash Yazdanbakhsh
- Computational Neuroscience and Vision Lab, Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston, MA, USA
| | - Helen Barbas
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston, MA, USA
- Neural Systems Laboratory, Program in Human Physiology, Department of Health Sciences, College of Health and Rehabilitation Sciences (Sargent College), Boston University, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Basilis Zikopoulos
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston University, Boston, MA, USA
- Human Systems Neuroscience Laboratory, Program in Human Physiology, Department of Health Sciences, College of Health and Rehabilitation Sciences (Sargent College), Boston University, Boston, MA, USA
| |
Collapse
|
4
|
Whitt JL, Ewall G, Chakraborty D, Adegbesan A, Lee R, Kanold PO, Lee HK. Visual Deprivation Selectively Reduces Thalamic Reticular Nucleus-Mediated Inhibition of the Auditory Thalamus in Adults. J Neurosci 2022; 42:7921-7930. [PMID: 36261269 PMCID: PMC9617613 DOI: 10.1523/jneurosci.2032-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Sensory loss leads to widespread cross-modal plasticity across brain areas to allow the remaining senses to guide behavior. While multimodal sensory interactions are often attributed to higher-order sensory areas, cross-modal plasticity has been observed at the level of synaptic changes even across primary sensory cortices. In particular, vision loss leads to widespread circuit adaptation in the primary auditory cortex (A1) even in adults. Here we report using mice of both sexes in which cross-modal plasticity occurs even earlier in the sensory-processing pathway at the level of the thalamus in a modality-selective manner. A week of visual deprivation reduced inhibitory synaptic transmission from the thalamic reticular nucleus (TRN) to the primary auditory thalamus (MGBv) without changes to the primary visual thalamus (dLGN). The plasticity of TRN inhibition to MGBv was observed as a reduction in postsynaptic gain and short-term depression. There was no observable plasticity of the cortical feedback excitatory synaptic transmission from the primary visual cortex to dLGN or TRN and A1 to MGBv, which suggests that the visual deprivation-induced plasticity occurs predominantly at the level of thalamic inhibition. We provide evidence that visual deprivation-induced change in the short-term depression of TRN inhibition to MGBv involves endocannabinoid CB1 receptors. TRN inhibition is considered critical for sensory gating, selective attention, and multimodal performances; hence, its plasticity has implications for sensory processing. Our results suggest that selective disinhibition and altered short-term dynamics of TRN inhibition in the spared thalamic nucleus support cross-modal plasticity in the adult brain.SIGNIFICANCE STATEMENT Losing vision triggers adaptation of the brain to enhance the processing of the remaining senses, which can be observed as better auditory performance in blind subjects. We previously found that depriving vision of adult rodents produces widespread circuit reorganization in the primary auditory cortex and enhances auditory processing at a neural level. Here we report that visual deprivation-induced plasticity in adults occurs much earlier in the auditory pathway, at the level of thalamic inhibition. Sensory processing is largely gated at the level of the thalamus via strong cortical feedback inhibition mediated through the thalamic reticular nucleus (TRN). We found that TRN inhibition of the auditory thalamus is selectively reduced by visual deprivation, thus playing a role in adult cross-modal plasticity.
Collapse
Affiliation(s)
- Jessica L Whitt
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Gabrielle Ewall
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Darpan Chakraborty
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Ayorinde Adegbesan
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Rachel Lee
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Patrick O Kanold
- Department of Biomedical Engineering, Whiting School of Engineering and Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Hey-Kyoung Lee
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
5
|
Cross-Modal Interaction and Integration Through Stimulus-Specific Adaptation in the Thalamic Reticular Nucleus of Rats. Neurosci Bull 2022; 38:785-795. [PMID: 35212974 DOI: 10.1007/s12264-022-00827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022] Open
Abstract
Stimulus-specific adaptation (SSA), defined as a decrease in responses to a common stimulus that only partially generalizes to other rare stimuli, is a widespread phenomenon in the brain that is believed to be related to novelty detection. Although cross-modal sensory processing is also a widespread phenomenon, the interaction between the two phenomena is not well understood. In this study, the thalamic reticular nucleus (TRN), which is regarded as a hub of the attentional system that contains multi-modal neurons, was investigated. The results showed that SSA existed in an interactive oddball stimulation, which mimics stimulation changes from one modality to another. In the bimodal integration, SSA to bimodal stimulation was stronger than to visual stimulation alone but similar to auditory stimulation alone, which indicated a limited integrative effect. Collectively, the present results provide evidence for independent cross-modal processing in bimodal TRN neurons.
Collapse
|
6
|
Sebastianelli G, Abagnale C, Casillo F, Cioffi E, Parisi V, Di Lorenzo C, Serrao M, Porcaro C, Schoenen J, Coppola G. Bimodal sensory integration in migraine: A study of the effect of visual stimulation on somatosensory evoked cortical responses. Cephalalgia 2022; 42:654-662. [PMID: 35166155 DOI: 10.1177/03331024221075073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Merging of sensory information is a crucial process for adapting the behaviour to the environment in all species. It is not known if this multisensory integration might be dysfunctioning interictally in migraine without aura, where sensory stimuli of various modalities are processed abnormally when delivered separately. To investigate this question, we compared the effects of a concomitant visual stimulation on conventional low-frequency somatosensory evoked potentials and embedded high-frequency oscillations between migraine patients and healthy volunteers. METHODS We recorded somatosensory evoked potentials in 19 healthy volunteers and in 19 interictal migraine without aura patients before, during, and 5 min after (T2) simultaneous synchronous pattern-reversal visual stimulation. At each time point, we measured amplitude and habituation of the N20-P25 low-frequency-somatosensory evoked potentials component and maximal peak-to-peak amplitude of early and late bursts of high-frequency oscillations. RESULTS In healthy volunteers, the bimodal stimulation significantly reduced low-frequency-somatosensory evoked potentials habituation and tended to reduce early high-frequency oscillations that reflect thalamocortical activity. By contrast, in migraine without aura patients, bimodal stimulation significantly increased low-frequency-somatosensory evoked potentials habituation and early high-frequency oscillations. At T2, all visual stimulation-induced changes of somatosensory processing had vanished. CONCLUSION These results suggest a malfunctioning multisensory integration process, which could be favoured by an abnormal excitability level of thalamo-cortical loops.
Collapse
Affiliation(s)
- Gabriele Sebastianelli
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | - Chiara Abagnale
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | - Francesco Casillo
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | - Ettore Cioffi
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | | | - Cherubino Di Lorenzo
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | - Mariano Serrao
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | - Camillo Porcaro
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.,Institute of Cognitive Sciences and Technologies (ISTC) - National Research Council (CNR), Rome, Italy.,Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Jean Schoenen
- Headache Research Unit, University Department of Neurology CHR, Citadelle Hospital. University of Liège, Liège, Belgium
| | - Gianluca Coppola
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| |
Collapse
|
7
|
Kimura A. Sound Intensity-dependent Multiple Tonotopic Organizations and Complex Sub-threshold Alterations of Auditory Response Across Sound Frequencies in the Thalamic Reticular Nucleus. Neuroscience 2021; 475:10-51. [PMID: 34481912 DOI: 10.1016/j.neuroscience.2021.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022]
Abstract
The thalamic reticular nucleus (TRN), a cluster of GABAergic cells, modulates sensory attention and perception through its inhibitory projections to thalamic nuclei. Cortical and thalamic topographic projections to the auditory TRN are thought to compose tonotopic organizations for modulation of thalamic auditory processing. The present study determined tonotopies in the TRN and examined interactions between probe and masker sounds to obtain insights into temporal processing associated with tonotopies. Experiments were performed on anesthetized rats, using juxta-cellular recording and labeling techniques. Following determination of tonotopies, effects of sub-threshold masker sound stimuli on onset and late responses evoked by a probe sound were examined. The main findings are as follows. Tonotopic organizations were recognized in cell location and axonal projection. Tonotopic gradients and their clarities were diverse, depending on sound intensity, response type and the tiers of the TRN. Robust alterations in response magnitude, latency and/or burst spiking took place following masker sounds in either a broad or narrow range of frequencies that were close or far away from the probe sound frequency. The majority of alterations were suppression recognizable up to 600 ms in the interval between masker and probe sounds, and directions of alteration differed depending on the interval. Finally, masker sound effects were associated with tonotopic organizations. These findings suggest that the auditory TRN is comprised of sound intensity-dependent multiple tonotopic organizations, which could configure temporal interactions of auditory information across sound frequencies and impose complex but spatiotemporally structured influences on thalamic auditory processing.
Collapse
Affiliation(s)
- Akihisa Kimura
- Department of Physiology, Wakayama Medical University, Wakayama Kimiidera 811-1, 641-8509, Japan.
| |
Collapse
|
8
|
Abstract
Initial evaluation structures (IESs) currently proposed as the earliest detectors of affective stimuli (e.g., amygdala, orbitofrontal cortex, or insula) are high-order structures (a) whose response latency cannot account for the first visual cortex emotion-related response (~80 ms), and (b) lack the necessary infrastructure to locally analyze the visual features that define emotional stimuli. Several thalamic structures accomplish both criteria. The lateral geniculate nucleus (LGN), a first-order thalamic nucleus that actively processes visual information, with the complement of the thalamic reticular nucleus (TRN) are proposed as core IESs. This LGN–TRN tandem could be supported by the pulvinar, a second-order thalamic structure, and by other extrathalamic nuclei. The visual thalamus, scarcely explored in affective neurosciences, seems crucial in early emotional evaluation.
Collapse
Affiliation(s)
- Luis Carretié
- Facultad de Psicología, Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
9
|
Ewall G, Parkins S, Lin A, Jaoui Y, Lee HK. Cortical and Subcortical Circuits for Cross-Modal Plasticity Induced by Loss of Vision. Front Neural Circuits 2021; 15:665009. [PMID: 34113240 PMCID: PMC8185208 DOI: 10.3389/fncir.2021.665009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
Cortical areas are highly interconnected both via cortical and subcortical pathways, and primary sensory cortices are not isolated from this general structure. In primary sensory cortical areas, these pre-existing functional connections serve to provide contextual information for sensory processing and can mediate adaptation when a sensory modality is lost. Cross-modal plasticity in broad terms refers to widespread plasticity across the brain in response to losing a sensory modality, and largely involves two distinct changes: cross-modal recruitment and compensatory plasticity. The former involves recruitment of the deprived sensory area, which includes the deprived primary sensory cortex, for processing the remaining senses. Compensatory plasticity refers to plasticity in the remaining sensory areas, including the spared primary sensory cortices, to enhance the processing of its own sensory inputs. Here, we will summarize potential cellular plasticity mechanisms involved in cross-modal recruitment and compensatory plasticity, and review cortical and subcortical circuits to the primary sensory cortices which can mediate cross-modal plasticity upon loss of vision.
Collapse
Affiliation(s)
- Gabrielle Ewall
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Samuel Parkins
- Cell, Molecular, Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States
| | - Amy Lin
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Yanis Jaoui
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Hey-Kyoung Lee
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Cell, Molecular, Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
10
|
Fricker B, Heckman E, Cunningham PC, Wang H, Haas JS. Activity-dependent long-term potentiation of electrical synapses in the mammalian thalamus. J Neurophysiol 2020; 125:476-488. [PMID: 33146066 DOI: 10.1152/jn.00471.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Activity-dependent changes of synapse strength have been extensively characterized at chemical synapses, but the relationship between physiological forms of activity and strength at electrical synapses remains poorly characterized and understood. For mammalian electrical synapses comprising hexamers of connexin36, physiological forms of neuronal activity in coupled pairs have thus far only been linked to long-term depression; activity that results in strengthening of electrical synapses has not yet been identified. Here, we performed dual whole-cell current-clamp recordings in acute slices of P11-P15 Sprague-Dawley rats of electrically coupled neurons of the thalamic reticular nucleus (TRN), a central brain area that regulates cortical input from and attention to the sensory surround. Using TTA-A2 to limit bursting, we show that tonic spiking in one neuron of a pair results in long-term potentiation of electrical synapses. We use experiments and computational modeling to show that the magnitude of plasticity expressed alters the functionality of the synapse. Potentiation is expressed asymmetrically, indicating that regulation of connectivity depends on the direction of use. Furthermore, calcium pharmacology and imaging indicate that potentiation depends on calcium flux. We thus propose a calcium-based activity rule for bidirectional plasticity of electrical synapse strength. Because electrical synapses dominate intra-TRN connectivity, these synapses and their activity-dependent modifications are key dynamic regulators of thalamic attention circuitry. More broadly, we speculate that bidirectional modifications of electrical synapses may be a widespread and powerful principle for ongoing, dynamic reorganization of neuronal circuitry across the brain.NEW & NOTEWORTHY This work reveals a physiologically relevant form of activity pairing in coupled neurons that results in long-term potentiation of mammalian electrical synapses. These findings, in combination with previous work, allow the authors to propose a bidirectional calcium-based rule for plasticity of electrical synapses, similar to those demonstrated for chemical synapses. These new insights inform the field on how electrical synapse plasticity may modify the neural circuits that incorporate them.
Collapse
Affiliation(s)
- Brandon Fricker
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | - Emily Heckman
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | | | - Huaixing Wang
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | - Julie S Haas
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| |
Collapse
|
11
|
Kimura A. Cross-modal modulation of cell activity by sound in first-order visual thalamic nucleus. J Comp Neurol 2020; 528:1917-1941. [PMID: 31983057 DOI: 10.1002/cne.24865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/19/2019] [Accepted: 01/16/2020] [Indexed: 12/16/2022]
Abstract
Cross-modal auditory influence on cell activity in the primary visual cortex emerging at short latencies raises the possibility that the first-order visual thalamic nucleus, which is considered dedicated to unimodal visual processing, could contribute to cross-modal sensory processing, as has been indicated in the auditory and somatosensory systems. To test this hypothesis, the effects of sound stimulation on visual cell activity in the dorsal lateral geniculate nucleus were examined in anesthetized rats, using juxta-cellular recording and labeling techniques. Visual responses evoked by light (white LED) were modulated by sound (noise burst) given simultaneously or 50-400 ms after the light, even though sound stimuli alone did not evoke cell activity. Alterations of visual response were observed in 71% of cells (57/80) with regard to response magnitude, latency, and/or burst spiking. Suppression predominated in response magnitude modulation, but de novo responses were also induced by combined stimulation. Sound affected not only onset responses but also late responses. Late responses were modulated by sound given before or after onset responses. Further, visual responses evoked by the second light stimulation of a double flash with a 150-700 ms interval were also modulated by sound given together with the first light stimulation. In morphological analysis of labeled cells projection cells comparable to X-, Y-, and W-like cells and interneurons were all susceptible to auditory influence. These findings suggest that the first-order visual thalamic nucleus incorporates auditory influence into parallel and complex thalamic visual processing for cross-modal modulation of visual attention and perception.
Collapse
Affiliation(s)
- Akihisa Kimura
- Department of Physiology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
12
|
Brown JW, Taheri A, Kenyon RV, Berger-Wolf TY, Llano DA. Signal Propagation via Open-Loop Intrathalamic Architectures: A Computational Model. eNeuro 2020; 7:ENEURO.0441-19.2020. [PMID: 32005750 PMCID: PMC7053175 DOI: 10.1523/eneuro.0441-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 01/06/2023] Open
Abstract
Propagation of signals across the cerebral cortex is a core component of many cognitive processes and is generally thought to be mediated by direct intracortical connectivity. The thalamus, by contrast, is considered to be devoid of internal connections and organized as a collection of parallel inputs to the cortex. Here, we provide evidence that "open-loop" intrathalamic pathways involving the thalamic reticular nucleus (TRN) can support propagation of oscillatory activity across the cortex. Recent studies support the existence of open-loop thalamo-reticulo-thalamic (TC-TRN-TC) synaptic motifs in addition to traditional closed-loop architectures. We hypothesized that open-loop structural modules, when connected in series, might underlie thalamic and, therefore cortical, signal propagation. Using a supercomputing platform to simulate thousands of permutations of a thalamocortical network based on physiological data collected in mice, rats, ferrets, and cats and in which select synapses were allowed to vary both by class and individually, we evaluated the relative capacities of closed-loop and open-loop TC-TRN-TC synaptic configurations to support both propagation and oscillation. We observed that (1) signal propagation was best supported in networks possessing strong open-loop TC-TRN-TC connectivity; (2) intrareticular synapses were neither primary substrates of propagation nor oscillation; and (3) heterogeneous synaptic networks supported more robust propagation of oscillation than their homogeneous counterparts. These findings suggest that open-loop, heterogeneous intrathalamic architectures might complement direct intracortical connectivity to facilitate cortical signal propagation.
Collapse
Affiliation(s)
- Jeffrey W Brown
- College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Aynaz Taheri
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607
| | - Robert V Kenyon
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607
| | - Tanya Y Berger-Wolf
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607
| | - Daniel A Llano
- College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
13
|
Takata N. Thalamic reticular nucleus in the thalamocortical loop. Neurosci Res 2019; 156:32-40. [PMID: 31812650 DOI: 10.1016/j.neures.2019.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/23/2019] [Accepted: 11/16/2019] [Indexed: 11/19/2022]
Abstract
Dynamic binding of different brain areas is critical for various cognitive functions. The thalamic reticular nucleus (TRN) is a GABAergic nucleus that constrains information flow through thalamocortical loop by providing inhibitory innervation to the thalamus. In this review, I summarize anatomical and single-cell-level physiological studies of the rodent TRN. Diversity and heterogeneity of TRN neurons in terms of axonal innervation, molecular expression, and physiological characteristics are described. I also outline thalamocortical and cortico-cortical connections with emphasis on interaction with the TRN. In summary, it is proposed that functional connectivity among brain regions are modulated with gating of transthalamic information flow by the TRN.
Collapse
Affiliation(s)
- Norio Takata
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
| |
Collapse
|
14
|
Gribkova ED, Ibrahim BA, Llano DA. A novel mutual information estimator to measure spike train correlations in a model thalamocortical network. J Neurophysiol 2018; 120:2730-2744. [PMID: 30183459 PMCID: PMC6337027 DOI: 10.1152/jn.00012.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 01/28/2023] Open
Abstract
The impact of thalamic state on information transmission to the cortex remains poorly understood. This limitation exists due to the rich dynamics displayed by thalamocortical networks and because of inadequate tools to characterize those dynamics. Here, we introduce a novel estimator of mutual information and use it to determine the impact of a computational model of thalamic state on information transmission. Using several criteria, this novel estimator, which uses an adaptive partition, is shown to be superior to other mutual information estimators with uniform partitions when used to analyze simulated spike train data with different mean spike rates, as well as electrophysiological data from simultaneously recorded neurons. When applied to a thalamocortical model, the estimator revealed that thalamocortical cell T-type calcium current conductance influences mutual information between the input and output from this network. In particular, a T-type calcium current conductance of ~40 nS appears to produce maximal mutual information between the input to this network (conceptualized as afferent input to the thalamocortical cell) and the output of the network at the level of a layer 4 cortical neuron. Furthermore, at particular combinations of inputs to thalamocortical and thalamic reticular nucleus cells, thalamic cell bursting correlated strongly with recovery of mutual information between thalamic afferents and layer 4 neurons. These studies suggest that the novel mutual information estimator has advantages over previous estimators and that thalamic reticular nucleus activity can enhance mutual information between thalamic afferents and thalamorecipient cells in the cortex. NEW & NOTEWORTHY In this study, a novel mutual information estimator was developed to analyze information flow in a model thalamocortical network. Our findings suggest that this estimator is a suitable tool for signal transmission analysis, particularly in neural circuits with disparate firing rates, and that the thalamic reticular nucleus can potentiate ascending sensory signals, while thalamic recipient cells in the cortex can recover mutual information in ascending sensory signals that is lost due to thalamic bursting.
Collapse
Affiliation(s)
- Ekaterina D Gribkova
- Neuroscience Program, University of Illinois at Urbana-Champaign , Urbana, Illinois
- Beckman Institute for Advanced Science and Technology , Urbana, Illinois
| | - Baher A Ibrahim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign , Urbana, Illinois
- Beckman Institute for Advanced Science and Technology , Urbana, Illinois
| | - Daniel A Llano
- Neuroscience Program, University of Illinois at Urbana-Champaign , Urbana, Illinois
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign , Urbana, Illinois
- Beckman Institute for Advanced Science and Technology , Urbana, Illinois
| |
Collapse
|
15
|
Crabtree JW. Functional Diversity of Thalamic Reticular Subnetworks. Front Syst Neurosci 2018; 12:41. [PMID: 30405364 PMCID: PMC6200870 DOI: 10.3389/fnsys.2018.00041] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/23/2018] [Indexed: 11/13/2022] Open
Abstract
The activity of the GABAergic neurons of the thalamic reticular nucleus (TRN) has long been known to play important roles in modulating the flow of information through the thalamus and in generating changes in thalamic activity during transitions from wakefulness to sleep. Recently, technological advances have considerably expanded our understanding of the functional organization of TRN. These have identified an impressive array of functionally distinct subnetworks in TRN that participate in sensory, motor, and/or cognitive processes through their different functional connections with thalamic projection neurons. Accordingly, "first order" projection neurons receive "driver" inputs from subcortical sources and are usually connected to a densely distributed TRN subnetwork composed of multiple elongated neural clusters that are topographically organized and incorporate spatially corresponding electrically connected neurons-first order projection neurons are also connected to TRN subnetworks exhibiting different state-dependent activity profiles. "Higher order" projection neurons receive driver inputs from cortical layer 5 and are mainly connected to a densely distributed TRN subnetwork composed of multiple broad neural clusters that are non-topographically organized and incorporate spatially corresponding electrically connected neurons. And projection neurons receiving "driver-like" inputs from the superior colliculus or basal ganglia are connected to TRN subnetworks composed of either elongated or broad neural clusters. Furthermore, TRN subnetworks that mediate interactions among neurons within groups of thalamic nuclei are connected to all three types of thalamic projection neurons. In addition, several TRN subnetworks mediate various bottom-up, top-down, and internuclear attentional processes: some bottom-up and top-down attentional mechanisms are specifically related to first order projection neurons whereas internuclear attentional mechanisms engage all three types of projection neurons. The TRN subnetworks formed by elongated and broad neural clusters may act as templates to guide the operations of the TRN subnetworks related to attentional processes. In this review article, the evidence revealing the functional TRN subnetworks will be evaluated and will be discussed in relation to the functions of the various sensory and motor thalamic nuclei with which these subnetworks are connected.
Collapse
Affiliation(s)
- John W Crabtree
- School of Physiology, Pharmacology, and Neuroscience, Medical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
16
|
Sokhadze G, Campbell PW, Guido W. Postnatal development of cholinergic input to the thalamic reticular nucleus of the mouse. Eur J Neurosci 2018; 49:978-989. [PMID: 29761601 DOI: 10.1111/ejn.13942] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/22/2018] [Accepted: 04/02/2018] [Indexed: 01/10/2023]
Abstract
The thalamic reticular nucleus (TRN), a shell-like structure comprised of GABAergic neurons, gates signal transmission between thalamus and cortex. While TRN is innervated by axon collaterals of thalamocortical and corticothalamic neurons, other ascending projections modulate activity during different behavioral states such as attention, arousal, and sleep-wake cycles. One of the largest arise from cholinergic neurons of the basal forebrain and brainstem. Despite its integral role, little is known about how or when cholinergic innervation and synapse formation occurs. We utilized genetically modified mice, which selectively express fluorescent protein and/or channelrhodopsin-2 in cholinergic neurons, to visualize and stimulate cholinergic afferents in the developing TRN. Cholinergic innervation of TRN follows a ventral-to-dorsal progression, with nonvisual sensory sectors receiving input during week 1, and the visual sector during week 2. By week 3, the density of cholinergic fibers increases throughout TRN and forms a reticular profile. Functional patterns of connectivity between cholinergic fibers and TRN neurons progress in a similar manner, with weak excitatory nicotinic responses appearing in nonvisual sectors near the end of week 1. By week 2, excitatory responses become more prevalent and arise in the visual sector. Between weeks 3-4, inhibitory muscarinic responses emerge, and responses become biphasic, exhibiting a fast excitatory, and a long-lasting inhibitory component. Overall, the development of cholinergic projections in TRN follows a similar plan as the rest of sensory thalamus, with innervation of nonvisual structures preceding visual ones, and well after the establishment of circuits conveying sensory information from the periphery to the cortex.
Collapse
Affiliation(s)
- Guela Sokhadze
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Peter W Campbell
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
17
|
Towards building a more complex view of the lateral geniculate nucleus: Recent advances in understanding its role. Prog Neurobiol 2017. [DOI: 10.1016/j.pneurobio.2017.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Kimura A. Robust interactions between the effects of auditory and cutaneous electrical stimulations on cell activities in the thalamic reticular nucleus. Brain Res 2017; 1661:49-66. [DOI: 10.1016/j.brainres.2017.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/01/2017] [Accepted: 02/07/2017] [Indexed: 12/27/2022]
|
19
|
Aoki R, Kato R, Fujita S, Shimada J, Koshikawa N, Kobayashi M. Phase-dependent activity of neurons in the rostral part of the thalamic reticular nucleus with saccharin intake in a cue-guided lever-manipulation task. Brain Res 2017; 1658:42-50. [DOI: 10.1016/j.brainres.2017.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/14/2016] [Accepted: 01/09/2017] [Indexed: 12/01/2022]
|
20
|
Bragg EM, Fairless EA, Liu S, Briggs F. Morphology of visual sector thalamic reticular neurons in the macaque monkey suggests retinotopically specialized, parallel stream-mixed input to the lateral geniculate nucleus. J Comp Neurol 2016; 525:1273-1290. [PMID: 27778378 DOI: 10.1002/cne.24134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/12/2016] [Accepted: 10/16/2016] [Indexed: 12/20/2022]
Abstract
The thalamic reticular nucleus (TRN) is a unique brain structure at the interface between the thalamus and the cortex. Because the TRN receives bottom-up sensory input and top-down cortical input, it could serve as an integration hub for sensory and cognitive signals. Functional evidence supports broad roles for the TRN in arousal, attention, and sensory selection. How specific circuits connecting the TRN with sensory thalamic structures implement these functions is not known. The structural organization and function of the TRN is particularly interesting in the context of highly organized sensory systems, such as the primate visual system, where neurons in the retina and dorsal lateral geniculate nucleus of the thalamus (dLGN) are morphologically and physiologically distinct and also specialized for processing particular features of the visual environment. To gain insight into the functional relationship between the visual sector of the TRN and the dLGN, we reconstructed a large number of TRN neurons that were retrogradely labeled following injections of rabies virus expressing enhanced green fluorescent protein (EGFP) into the dLGN. An independent cluster analysis, based on 10 morphological metrics measured for each reconstructed neuron, revealed three clusters of TRN neurons that differed in cell body shape and size, dendritic arborization patterns, and medial-lateral position within the TRN. TRN dendritic and axonal morphologies are inconsistent with visual stream-specific projections to the dLGN. Instead, TRN neuronal organization could facilitate transmission of global arousal and/or cognitive signals to the dLGN with retinotopic precision that preserves specialized processing of foveal versus peripheral visual information. J. Comp. Neurol. 525:1273-1290, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elise M Bragg
- Physiology & Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | | | | | - Farran Briggs
- Physiology & Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| |
Collapse
|
21
|
Halassa MM, Acsády L. Thalamic Inhibition: Diverse Sources, Diverse Scales. Trends Neurosci 2016; 39:680-693. [PMID: 27589879 DOI: 10.1016/j.tins.2016.08.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/31/2016] [Accepted: 08/02/2016] [Indexed: 12/11/2022]
Abstract
The thalamus is the major source of cortical inputs shaping sensation, action, and cognition. Thalamic circuits are targeted by two major inhibitory systems: the thalamic reticular nucleus (TRN) and extrathalamic inhibitory (ETI) inputs. A unifying framework of how these systems operate is currently lacking. Here, we propose that TRN circuits are specialized to exert thalamic control at different spatiotemporal scales. Local inhibition of thalamic spike rates prevails during attentional selection, whereas global inhibition more likely prevails during sleep. In contrast, the ETI (arising from basal ganglia, zona incerta (ZI), anterior pretectum, and pontine reticular formation) provides temporally precise and focal inhibition, impacting spike timing. Together, these inhibitory systems allow graded control of thalamic output, enabling thalamocortical operations to dynamically match ongoing behavioral demands.
Collapse
Affiliation(s)
- Michael M Halassa
- New York University Neuroscience Institute and the Departments of Psychiatry, Neuroscience and Physiology, New York University Langone Medical Center, New York, 10016, USA; Center for Neural Science, New York University, New York, 10016, USA.
| | - László Acsády
- Laboratory of Thalamus Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 1083 Hungary.
| |
Collapse
|
22
|
Willis AM, Slater BJ, Gribkova ED, Llano DA. Open-loop organization of thalamic reticular nucleus and dorsal thalamus: a computational model. J Neurophysiol 2015; 114:2353-67. [PMID: 26289472 PMCID: PMC4620136 DOI: 10.1152/jn.00926.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 08/17/2015] [Indexed: 12/18/2022] Open
Abstract
The thalamic reticular nucleus (TRN) is a shell of GABAergic neurons that surrounds the dorsal thalamus. Previous work has shown that TRN neurons send GABAergic projections to thalamocortical (TC) cells to form reciprocal, closed-loop circuits. This has led to the hypothesis that the TRN is responsible for oscillatory phenomena, such as sleep spindles and absence seizures. However, there is emerging evidence that open-loop circuits are also found between TRN and TC cells. The implications of open-loop configurations are not yet known, particularly when they include time-dependent nonlinearities in TC cells such as low-threshold bursting. We hypothesized that low-threshold bursting in an open-loop circuit could be a mechanism by which the TRN could paradoxically enhance TC activation, and that enhancement would depend on the relative timing of TRN vs. TC cell stimulation. To test this, we modeled small circuits containing TC neurons, TRN neurons, and layer 4 thalamorecipient cells in both open- and closed-loop configurations. We found that open-loop TRN stimulation, rather than universally depressing TC activation, increased cortical output across a broad parameter space, modified the filter properties of TC neurons, and altered the mutual information between input and output in a frequency-dependent and T-type calcium channel-dependent manner. Therefore, an open-loop model of TRN-TC interactions, rather than suppressing transmission through the thalamus, creates a tunable filter whose properties may be modified by outside influences onto the TRN. These simulations make experimentally testable predictions about the potential role for the TRN for flexible enhancement of cortical activation.
Collapse
Affiliation(s)
- Adam M Willis
- Department of Neurology, San Antonio Military Medical Center, Fort Sam Houston, Texas; Department of Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Bernard J Slater
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Ekaterina D Gribkova
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois; and
| | - Daniel A Llano
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois; and Beckman Institute for Advanced Science and Technology, Urbana, Illinois
| |
Collapse
|
23
|
Kimura A, Imbe H. Anatomically structured burst spiking of thalamic reticular nucleus cells: implications for distinct modulations of sensory processing in lemniscal and non-lemniscal thalamocortical loop circuitries. Eur J Neurosci 2015; 41:1276-93. [DOI: 10.1111/ejn.12874] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/11/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Akihisa Kimura
- Department of Physiology; Wakayama Medical University; Wakayama Kimiidera 811-1 641-8509 Wakayama Japan
| | - Hiroki Imbe
- Department of Physiology; Wakayama Medical University; Wakayama Kimiidera 811-1 641-8509 Wakayama Japan
| |
Collapse
|
24
|
Patru MC, Reser DH. A New Perspective on Delusional States - Evidence for Claustrum Involvement. Front Psychiatry 2015; 6:158. [PMID: 26617532 PMCID: PMC4639708 DOI: 10.3389/fpsyt.2015.00158] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/26/2015] [Indexed: 12/21/2022] Open
Abstract
Delusions are a hallmark positive symptom of schizophrenia, although they are also associated with a wide variety of other psychiatric and neurological disorders. The heterogeneity of clinical presentation and underlying disease, along with a lack of experimental animal models, make delusions exceptionally difficult to study in isolation, either in schizophrenia or other diseases. To date, no detailed studies have focused specifically on the neural mechanisms of delusion, although some studies have reported characteristic activation of specific brain areas or networks associated with them. Here, we present a novel hypothesis and extant supporting evidence implicating the claustrum, a relatively poorly understood forebrain nucleus, as a potential common center for delusional states.
Collapse
Affiliation(s)
- Maria Cristina Patru
- Department of Psychiatry, Hôpitaux Universitaires de Genève , Geneve , Switzerland
| | - David H Reser
- Department of Physiology, Monash University , Melbourne , Australia
| |
Collapse
|
25
|
Acsády L. A search for the searchlight - crossmodal interactions in the reticular thalamic nucleus (Commentary on Kimura). Eur J Neurosci 2014; 39:1403-4. [PMID: 24798969 DOI: 10.1111/ejn.12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- László Acsády
- Laboratory of Thalamus Research, Institute of Experimental Medicine, 1083, Szigony u 43, Budapest, Hungary
| |
Collapse
|