1
|
Penalva-Tena A, Bedke J, Gaudin A, Barrios JP, Bertram EPL, Douglass AD. Oxytocin-mediated social preference and socially reinforced reward learning in the miniature fish Danionella cerebrum. Curr Biol 2025; 35:363-372.e3. [PMID: 39732054 DOI: 10.1016/j.cub.2024.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/15/2024] [Accepted: 11/18/2024] [Indexed: 12/30/2024]
Abstract
Integrative studies of diverse neuronal networks that govern social behavior are hindered by a lack of methods to record neural activity comprehensively across the entire brain. The recent development of the miniature fish Danionella cerebrum as a model organism offers one potential solution, as the small size and optical transparency of these animals make it possible to visualize circuit activity throughout the nervous system.1,2,3,4 Here, we establish the feasibility of using Danionella as a model for social behavior and socially reinforced learning by showing that adult fish exhibit strong affiliative tendencies and that social interactions can serve as the reinforcer in an appetitive conditioning paradigm. Fish exhibited an acute ability to identify conspecifics and distinguish them from closely related species, which was mediated by both visual and particularly olfactory cues. These behaviors were abolished by pharmacological and genetic interference with oxytocin signaling, demonstrating the conservation of key neural mechanisms observed in other vertebrates.5,6,7,8,9,10,11 Our work validates Danionella as a tool for understanding the social brain in general and its modulation by neuropeptide signaling in particular.
Collapse
Affiliation(s)
- Ariadne Penalva-Tena
- Department of Neurobiology, University of Utah, 20 S 2030 E, BPRB 490D, Salt Lake City, UT 84112, USA
| | - Jacob Bedke
- Department of Neurobiology, University of Utah, 20 S 2030 E, BPRB 490D, Salt Lake City, UT 84112, USA
| | - Adam Gaudin
- Department of Neurobiology, University of Utah, 20 S 2030 E, BPRB 490D, Salt Lake City, UT 84112, USA
| | - Joshua P Barrios
- Department of Neurobiology, University of Utah, 20 S 2030 E, BPRB 490D, Salt Lake City, UT 84112, USA
| | - Erin P L Bertram
- Department of Neurobiology, University of Utah, 20 S 2030 E, BPRB 490D, Salt Lake City, UT 84112, USA
| | - Adam D Douglass
- Department of Neurobiology, University of Utah, 20 S 2030 E, BPRB 490D, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Ruble S, Payne K, Kramer C, West L, Ness H, Erickson G, Scott A, Diehl MM. Social context modulates active avoidance: Contributions of the anterior cingulate cortex in male and female rats. Neurobiol Stress 2025; 34:100702. [PMID: 39737250 PMCID: PMC11683269 DOI: 10.1016/j.ynstr.2024.100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Actively avoiding danger is necessary for survival. Most research on active avoidance has focused on the behavioral and neurobiological processes when individuals learn to avoid alone, within a solitary context. Therefore, little is known about how social context affects active avoidance. Using a modified version of the platform-mediated avoidance task in rats, we investigated whether the presence of a social partner attenuates conditioned freezing and enhances avoidance compared to avoidance in a solitary context. Rats spent a similar amount of time avoiding during either context; however, rats trained in the social context exhibited greater freezing as well as lower rates of darting and food seeking compared to rats trained in the solitary context. In addition, we observed higher levels of avoidance in females compared to males in the solitary context, but this sex difference was not present in rats trained in the social context. To gain greater mechanistic insight, we optogenetically inactivated glutamatergic projection neurons in the anterior cingulate cortex (ACC) following avoidance training in either context. After avoidance was learned in a social context, photoinactivation of ACC reduced expression of avoidance during a test when the social partner was absent, but not when the partner was present. Our findings suggest a novel contribution of the ACC in avoidance that is learned with a social partner, which has translational implications for understanding ACC dysfunction in those suffering from trauma-related disorders.
Collapse
Affiliation(s)
- Shannon Ruble
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Karissa Payne
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Cassandra Kramer
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Lexe West
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Halle Ness
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Greg Erickson
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Alyssa Scott
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Maria M. Diehl
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
3
|
Kim KH, Noh K, Lee J, Lee S, Lee SJ. NEGR1 Modulates Mouse Affective Discrimination by Regulating Adult Olfactory Neurogenesis. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100355. [PMID: 39170714 PMCID: PMC11338060 DOI: 10.1016/j.bpsgos.2024.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 08/23/2024] Open
Abstract
Background Affective recognition and sensory processing are impaired in people with autism. However, no mouse model of autism comanifesting these symptoms is available, thereby limiting the exploration of the relationship between affective recognition and sensory processing in autism and the molecular mechanisms involved. Methods With Negr1 -/- mice, we conducted the affective state discrimination test and an odor habituation/dishabituation test. Data were analyzed using the k-means clustering method. We also employed a whole-cell patch clamp and bromodeoxyuridine incorporation assay to investigate underlying mechanisms. Results When encountering mice exposed to restraint stress or chronic pain, wild-type mice discriminated between them by either approaching the stressed mouse or avoiding the painful mouse, whereas Negr1 -/- mice showed unbiased social interactions with them. Next, we demonstrated that both wild-type and Negr1 -/- mice used their olfaction for social interaction in the experimental context, but Negr1 -/- mice showed aberrant olfactory habituation and dishabituation against social odors. In electrophysiological studies, inhibitory inputs to the mitral cells in the olfactory bulb were increased in Negr1 -/- mice compared with wild-type mice, and subsequently their excitability was decreased. As a potential underlying mechanism, we found that adult neurogenesis in the subventricular zone was diminished in Negr1 -/- mice, which resulted in decreased integration of newly generated inhibitory neurons in the olfactory bulb. Conclusions NEGR1 contributes to mouse affective recognition, possibly by regulating olfactory neurogenesis and subsequent olfactory sensory processing. We propose a novel neurobiological mechanism of autism-related behaviors based on disrupted adult olfactory neurogenesis.
Collapse
Affiliation(s)
- Kwang Hwan Kim
- Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, Seoul, Republic of Korea
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Kyungchul Noh
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Jaesung Lee
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Soojin Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Sung Joong Lee
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Ruble S, Kramer C, West L, Payne K, Ness H, Erickson G, Scott A, Diehl MM. Active avoidance recruits the anterior cingulate cortex regardless of social context in male and female rats. RESEARCH SQUARE 2024:rs.3.rs-3750422. [PMID: 38260416 PMCID: PMC10802695 DOI: 10.21203/rs.3.rs-3750422/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Actively avoiding danger is necessary for survival. Most research has focused on the behavioral and neurobiological processes when individuals avoid danger alone, under solitary conditions. Therefore, little is known about how social context affects active avoidance. Using a modified version of the platform-mediated avoidance task in rats, we investigated whether the presence of a social partner attenuates conditioned freezing and enhances avoidance learning compared to avoidance learned under solitary conditions. Rats spent a similar percentage of time avoiding during the tone under both conditions; however, rats trained under social conditions exhibited greater freezing during the tone as well as lower rates of darting and food seeking compared to solitary rats. Under solitary conditions, we observed higher levels of avoidance in females compared to males, which was not present in rats trained under social conditions. To gain greater mechanistic insight, we optogenetically inactivated glutamatergic projection neurons in the anterior cingulate cortex (ACC) following avoidance training. Photoinactivation of ACC neurons reduced expression of avoidance under social conditions both in the presence and absence of the partner. Under solitary conditions, photoinactivation of ACC delayed avoidance in males but blocked avoidance in females. Our findings suggest that avoidance is mediated by the ACC, regardless of social context, and may be dysfunctional in those suffering from trauma-related disorders. Furthermore, sex differences in prefrontal circuits mediating active avoidance warrant further investigation, given that females experience a higher risk of developing anxiety disorders.
Collapse
Affiliation(s)
- Shannon Ruble
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506
| | - Cassandra Kramer
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506
| | - Lexe West
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506
| | - Karissa Payne
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506
| | - Halle Ness
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506
| | - Greg Erickson
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506
| | - Alyssa Scott
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506
| | - Maria M Diehl
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
5
|
Molas S, Freels TG, Zhao-Shea R, Lee T, Gimenez-Gomez P, Barbini M, Martin GE, Tapper AR. Dopamine control of social novelty preference is constrained by an interpeduncular-tegmentum circuit. Nat Commun 2024; 15:2891. [PMID: 38570514 PMCID: PMC10991551 DOI: 10.1038/s41467-024-47255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
Animals are inherently motivated to explore social novelty cues over familiar ones, resulting in a novelty preference (NP), although the behavioral and circuit bases underlying NP are unclear. Combining calcium and neurotransmitter sensors with fiber photometry and optogenetics in mice, we find that mesolimbic dopamine (DA) neurotransmission is strongly and predominantly activated by social novelty controlling bout length of interaction during NP, a response significantly reduced by familiarity. In contrast, interpeduncular nucleus (IPN) GABAergic neurons that project to the lateral dorsal tegmentum (LDTg) were inhibited by social novelty but activated during terminations with familiar social stimuli. Inhibition of this pathway during NP increased interaction and bout length with familiar social stimuli, while activation reduced interaction and bout length with novel social stimuli via decreasing DA neurotransmission. These data indicate interest towards novel social stimuli is encoded by mesolimbic DA which is dynamically regulated by an IPN→LDTg circuit to control NP.
Collapse
Affiliation(s)
- Susanna Molas
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA.
- Institute for Behavioral Genetics, University of Colorado Boulder 1480 30th St, Boulder, 80303, CO, USA.
- Department of Psychology and Neuroscience, University of Colorado Boulder 1905 Colorado Ave, Boulder, 80309, CO, USA.
| | - Timothy G Freels
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA
| | - Rubing Zhao-Shea
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA
| | - Timothy Lee
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA
| | - Pablo Gimenez-Gomez
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA
| | - Melanie Barbini
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA
| | - Gilles E Martin
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA
| | - Andrew R Tapper
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA.
| |
Collapse
|
6
|
Franch M, Yellapantula S, Parajuli A, Kharas N, Wright A, Aazhang B, Dragoi V. Visuo-frontal interactions during social learning in freely moving macaques. Nature 2024; 627:174-181. [PMID: 38355804 PMCID: PMC10959748 DOI: 10.1038/s41586-024-07084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
Social interactions represent a ubiquitous aspect of our everyday life that we acquire by interpreting and responding to visual cues from conspecifics1. However, despite the general acceptance of this view, how visual information is used to guide the decision to cooperate is unknown. Here, we wirelessly recorded the spiking activity of populations of neurons in the visual and prefrontal cortex in conjunction with wireless recordings of oculomotor events while freely moving macaques engaged in social cooperation. As animals learned to cooperate, visual and executive areas refined the representation of social variables, such as the conspecific or reward, by distributing socially relevant information among neurons in each area. Decoding population activity showed that viewing social cues influences the decision to cooperate. Learning social events increased coordinated spiking between visual and prefrontal cortical neurons, which was associated with improved accuracy of neural populations to encode social cues and the decision to cooperate. These results indicate that the visual-frontal cortical network prioritizes relevant sensory information to facilitate learning social interactions while freely moving macaques interact in a naturalistic environment.
Collapse
Affiliation(s)
- Melissa Franch
- Deparment of Neurobiology and Anatomy, McGovern Medical School, University of Texas, Houston, TX, USA
| | - Sudha Yellapantula
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Arun Parajuli
- Deparment of Neurobiology and Anatomy, McGovern Medical School, University of Texas, Houston, TX, USA
| | - Natasha Kharas
- Deparment of Neurobiology and Anatomy, McGovern Medical School, University of Texas, Houston, TX, USA
| | - Anthony Wright
- Deparment of Neurobiology and Anatomy, McGovern Medical School, University of Texas, Houston, TX, USA
| | - Behnaam Aazhang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Valentin Dragoi
- Deparment of Neurobiology and Anatomy, McGovern Medical School, University of Texas, Houston, TX, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
- Neuroengineering Initiative, Rice University, Houston, TX, USA.
- Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
7
|
Papastrat KM, Lis CA, Caprioli D, Pickard H, Puche AC, Ramsey LA, Venniro M. Social odor choice buffers drug craving. Neuropsychopharmacology 2024; 49:731-739. [PMID: 38129664 PMCID: PMC10876954 DOI: 10.1038/s41386-023-01778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Social interactions are rewarding and protective against substance use disorders, but it is unclear which specific aspect of the complex sensory social experience drives these effects. Here, we investigated the role of olfactory sensory experience on social interaction, social preference over cocaine, and cocaine craving in rats. First, we conducted bulbectomy on both male and female rats to evaluate the necessity of olfactory system experience on the acquisition and maintenance of volitional social interaction. Next, we assessed the effect of bulbectomy on rats given a choice between social interaction and cocaine. Finally, we evaluated the influence of olfactory sensory experience by training rats on volitional partner-associated odors, assessing their preference for partner odors over cocaine to achieve voluntary abstinence and assessing its effect on the incubation of cocaine craving. Bulbectomy impaired operant social interaction without affecting food and cocaine self-administration. Rats with intact olfactory systems preferred social interaction over cocaine, while rats with impaired olfactory sense showed a preference for cocaine. Providing access to a partner odor in a choice procedure led to cocaine abstinence, preventing incubation of cocaine craving, in contrast to forced abstinence or non-contingent exposure to cocaine and partner odors. Our data suggests the olfactory sensory experience is necessary and sufficient for volitional social reward. Furthermore, the active preference for partner odors over cocaine buffers drug craving. Based on these findings, translational research should explore the use of social sensory-based treatments utilizing odor-focused foundations for individuals with substance use disorders.
Collapse
Affiliation(s)
- Kimberly M Papastrat
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cody A Lis
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniele Caprioli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Hanna Pickard
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Philosophy & Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD, USA
| | - Adam C Puche
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Marco Venniro
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Reinhardt PR, Theis CDC, Juckel G, Freund N. Rodent models for mood disorders - understanding molecular changes by investigating social behavior. Biol Chem 2023; 404:939-950. [PMID: 37632729 DOI: 10.1515/hsz-2023-0190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
Mood disorders, including depressive and bipolar disorders, are the group of psychiatric disorders with the highest prevalence and disease burden. However, their pathophysiology remains poorly understood. Animal models are an extremely useful tool for the investigation of molecular mechanisms underlying these disorders. For psychiatric symptom assessment in animals, a meaningful behavioral phenotype is needed. Social behaviors constitute naturally occurring complex behaviors in rodents and can therefore serve as such a phenotype, contributing to insights into disorder related molecular changes. In this narrative review, we give a fundamental overview of social behaviors in laboratory rodents, as well as their underlying neuronal mechanisms and their assessment. Relevant behavioral and molecular changes in models for mood disorders are presented and an outlook on promising future directions is given.
Collapse
Affiliation(s)
- Patrick R Reinhardt
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany
- International Graduate School of Neuroscience, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Candy D C Theis
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany
| | - Georg Juckel
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany
| | - Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany
| |
Collapse
|
9
|
Jabarin R, Netser S, Wagner S. Beyond the three-chamber test: toward a multimodal and objective assessment of social behavior in rodents. Mol Autism 2022; 13:41. [PMID: 36284353 PMCID: PMC9598038 DOI: 10.1186/s13229-022-00521-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/06/2022] [Indexed: 12/31/2022] Open
Abstract
MAIN: In recent years, substantial advances in social neuroscience have been realized, including the generation of numerous rodent models of autism spectrum disorder. Still, it can be argued that those methods currently being used to analyze animal social behavior create a bottleneck that significantly slows down progress in this field. Indeed, the bulk of research still relies on a small number of simple behavioral paradigms, the results of which are assessed without considering behavioral dynamics. Moreover, only few variables are examined in each paradigm, thus overlooking a significant portion of the complexity that characterizes social interaction between two conspecifics, subsequently hindering our understanding of the neural mechanisms governing different aspects of social behavior. We further demonstrate these constraints by discussing the most commonly used paradigm for assessing rodent social behavior, the three-chamber test. We also point to the fact that although emotions greatly influence human social behavior, we lack reliable means for assessing the emotional state of animals during social tasks. As such, we also discuss current evidence supporting the existence of pro-social emotions and emotional cognition in animal models. We further suggest that adequate social behavior analysis requires a novel multimodal approach that employs automated and simultaneous measurements of multiple behavioral and physiological variables at high temporal resolution in socially interacting animals. We accordingly describe several computerized systems and computational tools for acquiring and analyzing such measurements. Finally, we address several behavioral and physiological variables that can be used to assess socio-emotional states in animal models and thus elucidate intricacies of social behavior so as to attain deeper insight into the brain mechanisms that mediate such behaviors. CONCLUSIONS: In summary, we suggest that combining automated multimodal measurements with machine-learning algorithms will help define socio-emotional states and determine their dynamics during various types of social tasks, thus enabling a more thorough understanding of the complexity of social behavior.
Collapse
Affiliation(s)
- Renad Jabarin
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
10
|
Lenschow C, Mendes ARP, Lima SQ. Hearing, touching, and multisensory integration during mate choice. Front Neural Circuits 2022; 16:943888. [PMID: 36247731 PMCID: PMC9559228 DOI: 10.3389/fncir.2022.943888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/28/2022] [Indexed: 12/27/2022] Open
Abstract
Mate choice is a potent generator of diversity and a fundamental pillar for sexual selection and evolution. Mate choice is a multistage affair, where complex sensory information and elaborate actions are used to identify, scrutinize, and evaluate potential mating partners. While widely accepted that communication during mate assessment relies on multimodal cues, most studies investigating the mechanisms controlling this fundamental behavior have restricted their focus to the dominant sensory modality used by the species under examination, such as vision in humans and smell in rodents. However, despite their undeniable importance for the initial recognition, attraction, and approach towards a potential mate, other modalities gain relevance as the interaction progresses, amongst which are touch and audition. In this review, we will: (1) focus on recent findings of how touch and audition can contribute to the evaluation and choice of mating partners, and (2) outline our current knowledge regarding the neuronal circuits processing touch and audition (amongst others) in the context of mate choice and ask (3) how these neural circuits are connected to areas that have been studied in the light of multisensory integration.
Collapse
Affiliation(s)
- Constanze Lenschow
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Ana Rita P Mendes
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Susana Q Lima
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| |
Collapse
|
11
|
de la Zerda SH, Netser S, Magalnik H, Briller M, Marzan D, Glatt S, Abergel Y, Wagner S. Social recognition in laboratory mice requires integration of behaviorally-induced somatosensory, auditory and olfactory cues. Psychoneuroendocrinology 2022; 143:105859. [PMID: 35816892 DOI: 10.1016/j.psyneuen.2022.105859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
Abstract
In humans, discrimination between individuals, also termed social recognition, can rely on a single sensory modality, such as vision. By analogy, social recognition in rodents is thought to be based upon olfaction. Here, we hypothesized that social recognition in rodents relies upon integration of olfactory, auditory and somatosensory cues, hence requiring active behavior of social stimuli. Using distinct social recognition tests, we demonstrated that adult male mice do not exhibit recognition of familiar stimuli or learn the identity of novel stimuli that are inactive due to anesthesia. We further revealed that impairing the olfactory, somatosensory or auditory systems prevents behavioral recognition of familiar stimuli. Finally, we found that familiar and novel stimuli generate distinct movement patterns during social discrimination and that subjects react differentially to the movement of these stimuli. Thus, unlike what occurs in humans, social recognition in mice relies on integration of information from several sensory modalities.
Collapse
Affiliation(s)
- Shani Haskal de la Zerda
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Shai Netser
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Hen Magalnik
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Mayan Briller
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Dan Marzan
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Sigal Glatt
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Yasmin Abergel
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel.
| |
Collapse
|
12
|
Leonardis EJ, Breston L, Lucero-Moore R, Sena L, Kohli R, Schuster L, Barton-Gluzman L, Quinn LK, Wiles J, Chiba AA. Interactive neurorobotics: Behavioral and neural dynamics of agent interactions. Front Psychol 2022; 13:897603. [PMID: 36059768 PMCID: PMC9431369 DOI: 10.3389/fpsyg.2022.897603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Interactive neurorobotics is a subfield which characterizes brain responses evoked during interaction with a robot, and their relationship with the behavioral responses. Gathering rich neural and behavioral data from humans or animals responding to agents can act as a scaffold for the design process of future social robots. This research seeks to study how organisms respond to artificial agents in contrast to biological or inanimate ones. This experiment uses the novel affordances of the robotic platforms to investigate complex dynamics during minimally structured interactions that would be difficult to capture with classical experimental setups. We then propose a general framework for such experiments that emphasizes naturalistic interactions combined with multimodal observations and complementary analysis pipelines that are necessary to render a holistic picture of the data for the purpose of informing robotic design principles. Finally, we demonstrate this approach with an exemplar rat-robot social interaction task which included simultaneous multi-agent tracking and neural recordings.
Collapse
Affiliation(s)
- Eric J. Leonardis
- Department of Cognitive Science, University of California, San Diego, San Diego, CA, United States
| | - Leo Breston
- Department of Cognitive Science, University of California, San Diego, San Diego, CA, United States
- Program in Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Rhiannon Lucero-Moore
- Department of Cognitive Science, University of California, San Diego, San Diego, CA, United States
| | - Leigh Sena
- Department of Cognitive Science, University of California, San Diego, San Diego, CA, United States
| | - Raunit Kohli
- Department of Cognitive Science, University of California, San Diego, San Diego, CA, United States
| | - Luisa Schuster
- Center for Neural Science, New York University, New York, NY, United States
| | - Lacha Barton-Gluzman
- Department of Cognitive Science, University of California, San Diego, San Diego, CA, United States
| | - Laleh K. Quinn
- Department of Cognitive Science, University of California, San Diego, San Diego, CA, United States
| | - Janet Wiles
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Andrea A. Chiba
- Department of Cognitive Science, University of California, San Diego, San Diego, CA, United States
- Program in Neurosciences, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
13
|
Hoglen NEG, Manoli DS. Cupid's quiver: Integrating sensory cues in rodent mating systems. Front Neural Circuits 2022; 16:944895. [PMID: 35958042 PMCID: PMC9358210 DOI: 10.3389/fncir.2022.944895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022] Open
Abstract
In many animal species, males and females exploit different mating strategies, display sex-typical behaviors, and use distinct systems to recognize ethologically relevant cues. Mate selection thus requires mutual recognition across diverse social interactions based on distinct sensory signals. These sex differences in courtship and mating behaviors correspond to differences in sensory systems and downstream neural substrates engaged to recognize and respond to courtship signals. In many rodents, males tend to rely heavily on volatile olfactory and pheromone cues, while females appear to be guided more by a combination of these chemosensory signals with acoustic cues in the form of ultrasonic vocalizations. The mechanisms by which chemical and acoustic cues are integrated to control behavior are understudied in mating but are known to be important in the control of maternal behaviors. Socially monogamous species constitute a behaviorally distinct group of rodents. In these species, anatomic differences between males and females outside the nervous system are less prominent than in species with non-monogamous mating systems, and both sexes engage in more symmetric social behaviors and form attachments. Nevertheless, despite the apparent similarities in behaviors displayed by monogamous males and females, the circuitry supporting social, mating, and attachment behaviors in these species is increasingly thought to differ between the sexes. Sex differences in sensory modalities most important for mate recognition in across species are of particular interest and present a wealth of questions yet to be answered. Here, we discuss how distinct sensory cues may be integrated to drive social and attachment behaviors in rodents, and the differing roles of specific sensory systems in eliciting displays of behavior by females or males.
Collapse
Affiliation(s)
- Nerissa E G Hoglen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, United States
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA, United States
| | - Devanand S Manoli
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, United States
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
14
|
Potrebić M, Pavković Ž, Puškaš N, Pešić V. The Influence of Social Isolation on Social Orientation, Sociability, Social Novelty Preference, and Hippocampal Parvalbumin-Expressing Interneurons in Peripubertal Rats - Understanding the Importance of Meeting Social Needs in Adolescence. Front Behav Neurosci 2022; 16:872628. [PMID: 35592640 PMCID: PMC9113078 DOI: 10.3389/fnbeh.2022.872628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The fulfillment of belonging needs underlies a variety of behaviors. In order to understand how social needs unmet during maturation shape everyday life, we examined social motivation and cognition in peripubertal rats, as a rodent model of adolescence, subjected to social isolation (SI) during early and early-to-mid adolescence. The behavioral correlates of social orientation (social space preference), sociability (preference for social over non-social novelty), and social novelty preference (SNP) were examined in group-housed (GH) and single-housed (SH) rats in a 3-chamber test. The response to social odors was examined to gain insights into the developmental role of social odors in motivated social behavior. Differentiation between appetitive (number of visits/approaches) and consummatory (exploratory time) aspects of motivated social behavior was done to determine which facet of social motivation characterizes maturation when social needs are met and which aspect dominates when social needs are unsatisfied. The SI-sensitive parvalbumin-expressing interneurons (PVI) in the hippocampus were examined using immunohistochemistry. The main findings are the following: (1) in GH rats, the preference for social space is not evident regardless of animals' age, while sociability becomes apparent in mid-adolescence strictly through consummatory behavior, along with complete SNP (appetitive, consummatory); (2) SH promotes staying in a social chamber/space regardless of animals' age and produces an appetitive preference for it only in early-adolescent animals; (3) SH promotes sociability (appetitive, consummatory) regardless of the animals' age and prevents the SNP; (4) the preference for a social odor is displayed in all the groups through consummatory behavior, while appetitive behavior is evident only in SH rats; (5) the response to social odors does not commensurate directly to the response to conspecifics; (6) SH does not influence PVI in the hippocampus, except in the case of early-adolescence when a transient decrease in the dentate gyrus is observed. These results accentuate the developmental complexity of social motivation and cognition, and the power of SI in adolescence to infringe social maturation at different functional levels, promoting appetitive behavior toward peers overall but harming the interest for social novelty. The findings emphasize the importance of the fulfillment of basic social needs in the navigation through the social world.
Collapse
Affiliation(s)
- Milica Potrebić
- Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Željko Pavković
- Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nela Puškaš
- Institute of Histology and Embryology “Aleksandar Đ. Kostić”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vesna Pešić
- Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
15
|
Kopachev N, Netser S, Wagner S. Sex-dependent features of social behavior differ between distinct laboratory mouse strains and their mixed offspring. iScience 2022; 25:103735. [PMID: 35098101 PMCID: PMC8783130 DOI: 10.1016/j.isci.2022.103735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/25/2021] [Accepted: 12/31/2021] [Indexed: 11/26/2022] Open
Abstract
The survival of individuals of gregarious species depends on their social interactions. In humans, atypical social behavior is a hallmark of several psychopathological conditions, many of which have sex-specific manifestations. Various laboratory mouse strains are used to reveal the mechanisms mediating typical and atypical social behavior in mammals. Here, we used three social discrimination tests to characterize social behavior in males and females of three widely used laboratory mouse strains (C57BL/6J, BALB/c, and ICR). We found marked sex- and strain-specific differences in the behavior exhibited by subjects, in a test-dependent manner. Interestingly, some characteristics were strain-dependent, while others were sex-dependent. We then crossbred C57BL/6J and BALB/c mice and found that offspring of such crossbreeding exhibit social behavior which differs from both parental strains and depends on the specific combination of parental strains. Thus, social behavior of laboratory mice is sex- and strain-specific and depends on both genetic and environmental factors. Social investigation behavior of laboratory mice is highly strain- and sex-specific Some behavioral aspects are either strain- or sex-specific, but not both Mixed offspring of distinct strains behave differently from both parental strains The behavior of mixed offspring depends on the specific combination of parents
Collapse
|
16
|
Reward and aversion encoding in the lateral habenula for innate and learned behaviours. Transl Psychiatry 2022; 12:3. [PMID: 35013094 PMCID: PMC8748902 DOI: 10.1038/s41398-021-01774-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022] Open
Abstract
Throughout life, individuals experience a vast array of positive and aversive events that trigger adaptive behavioural responses. These events are often unpredicted and engage actions that are likely anchored on innate behavioural programs expressed by each individual member of virtually all animal species. In a second step, environmental cues, that are initially neutral, acquire value through the association with external sensory stimuli, and become instrumental to predict upcoming positive or negative events. This process ultimately prompts learned goal-directed actions allowing the pursuit of rewarding experience or the avoidance of a danger. Both innate and learned behavioural programs are evolutionarily conserved and fundamental for survival. Among the brain structures participating in the encoding of positive/negative stimuli and contributing to innate and learned behaviours is the epithalamic lateral habenula (LHb). The LHb provides top-down control of monoaminergic systems, responds to unexpected appetitive/aversive stimuli as well as external cues that predict the upcoming rewards or punishments. Accordingly, the LHb controls a number of behaviours that are innate (originating from unpredicted stimuli), and learned (stemming from predictive cues). In this review, we will discuss the progresses that rodent's experimental work made in identifying how LHb activity governs these vital processes, and we will provide a view on how these findings integrate within a complex circuit connectivity.
Collapse
|
17
|
Tzanoulinou S, Musardo S, Contestabile A, Bariselli S, Casarotto G, Magrinelli E, Jiang YH, Jabaudon D, Bellone C. Inhibition of Trpv4 rescues circuit and social deficits unmasked by acute inflammatory response in a Shank3 mouse model of Autism. Mol Psychiatry 2022; 27:2080-2094. [PMID: 35022531 PMCID: PMC9126815 DOI: 10.1038/s41380-021-01427-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Mutations in the SHANK3 gene have been recognized as a genetic risk factor for Autism Spectrum Disorder (ASD), a neurodevelopmental disease characterized by social deficits and repetitive behaviors. While heterozygous SHANK3 mutations are usually the types of mutations associated with idiopathic autism in patients, heterozygous deletion of Shank3 gene in mice does not commonly induce ASD-related behavioral deficit. Here, we used in-vivo and ex-vivo approaches to demonstrate that region-specific neonatal downregulation of Shank3 in the Nucleus Accumbens promotes D1R-medium spiny neurons (D1R-MSNs) hyperexcitability and upregulates Transient Receptor Potential Vanilloid 4 (Trpv4) to impair social behavior. Interestingly, genetically vulnerable Shank3+/- mice, when challenged with Lipopolysaccharide to induce an acute inflammatory response, showed similar circuit and behavioral alterations that were rescued by acute Trpv4 inhibition. Altogether our data demonstrate shared molecular and circuit mechanisms between ASD-relevant genetic alterations and environmental insults, which ultimately lead to sociability dysfunctions.
Collapse
Affiliation(s)
- Stamatina Tzanoulinou
- grid.8591.50000 0001 2322 4988Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland ,grid.9851.50000 0001 2165 4204Present Address: Department of Biomedical Sciences (DSB), FBM, University of Lausanne, Lausanne, Switzerland
| | - Stefano Musardo
- grid.8591.50000 0001 2322 4988Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| | - Alessandro Contestabile
- grid.8591.50000 0001 2322 4988Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| | - Sebastiano Bariselli
- grid.8591.50000 0001 2322 4988Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| | - Giulia Casarotto
- grid.8591.50000 0001 2322 4988Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| | - Elia Magrinelli
- grid.8591.50000 0001 2322 4988Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| | - Yong-hui Jiang
- grid.47100.320000000419368710Department of Genetics, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Denis Jabaudon
- grid.8591.50000 0001 2322 4988Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| | - Camilla Bellone
- Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
18
|
Neural Alterations in Interpersonal Distance (IPD) Cognition and Its Correlation with IPD Behavior: A Systematic Review. Brain Sci 2021; 11:brainsci11081015. [PMID: 34439634 PMCID: PMC8394299 DOI: 10.3390/brainsci11081015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Background. Interpersonal distance (IPD) plays a critical role in a human being’s social life, especially during interpersonal interaction, and IPD is non-verbal social information and not only provides silent cues but also provides a secure space for personal relationships. IPD has been a research field of neural studies from the recent decade, researches had provided behavior and neural correlates of IPD. Objectives. This review aims to summarize the experimental paradigms of IPD-neural research, to reveal the neural activity processes associated with it, and to explore the correlation between IPD-neural activity and IPD-behavior. Methods. We conducted a standardized systematic review procedure, including the formal search method be adopted to seek out any type of studies related to IPD and brain, then devised them into categories to make a systematic review. Results. 17 articles met the inclusion criteria of the review, 5 event-related potential (ERP) studies measured the amplitude and latencies of ERPs, and 12 functional magnetic resonance imaging (fMRI) studies provided the neural activation during IPD tasks. In addition, the passive IPD experimental paradigm is the main experimental paradigm for exploring neural activity in IPD cognition, with the parietal lobe, motor areas, prefrontal lobe, and amygdala being the main brain areas involved. Functional connections between the identified brain regions were found and have a moderate correlation with IPD behavior. Conclusions. This review provides the neural activity of the IPD interaction process. However, the insufficient ecological validity of IPD tasks and ignore the initiative of people in IPD interaction. Therefore, there is a large research space on this topic. The work of the current systematic review contributed to linking the external performance and inner neural activities of IPD.
Collapse
|
19
|
Contestabile A, Casarotto G, Girard B, Tzanoulinou S, Bellone C. Deconstructing the contribution of sensory cues in social approach. Eur J Neurosci 2021; 53:3199-3211. [PMID: 33751673 PMCID: PMC8251867 DOI: 10.1111/ejn.15179] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/12/2021] [Accepted: 03/03/2021] [Indexed: 01/23/2023]
Abstract
Social interaction is a complex and highly conserved behavior that safeguards survival and reproductive success. Although considerable progress has been made regarding our understanding of same-sex conspecific and non-aggressive interactions, questions regarding the precise contribution of sensory cues in social approach and their specific neurobiological correlates remain open. Here, by designing a series of experiments with diverse social and object stimuli manipulations in custom-made enclosures, we first sought to deconstruct key elements of social preference as assessed by the three-chamber task. Our results highlight the importance of social olfactory cues in approach behavior. Subsequently, we interrogated whether a social odor would activate dopaminergic neurons of the Ventral Tegmental Area in the same way as a juvenile conspecific would. Employing in vivo recordings in freely behaving mice, we observed an increase of the firing only during the transition toward the juvenile mouse and not during the transition toward the object impregnated with social odor, suggesting that these two experiences are distinct and can be differentiated at the neuronal level. Moreover, using a four-choice task, we further showed that mice prefer to explore complex social stimuli compared to isolated sensory cues. Our findings offer insights toward understanding how different sensory modalities contribute to the neurobiological basis of social behavior which can be essential when studying social deficits observed in autism-, depression-, anxiety-, or schizophrenia-related mouse models.
Collapse
Affiliation(s)
| | - Giulia Casarotto
- Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| | - Benoit Girard
- Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| | - Stamatina Tzanoulinou
- Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| | - Camilla Bellone
- Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| |
Collapse
|