1
|
Kozlov MV, Zverev V. Effects of industrial pollution and ambient air temperature on larval performance and population dynamics of Eriocrania leafminers (Lepidoptera). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174342. [PMID: 38960173 DOI: 10.1016/j.scitotenv.2024.174342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Pollution is an integral part of global environmental change, yet the combined and interactive effects of pollution and climate on terrestrial ecosystems remain inadequately understood. This study aims to explore whether pollution alters the impacts of ambient air temperature on the population dynamics of herbivorous insects. Between 1995 and 2005, we studied populations of two closely related moths, Eriocrania semipurpurella and E. sangii, at eight sites located 1 to 64 km from a large copper‑nickel smelter in Monchegorsk, Russia. We found that pollution and temperature influence the performance of Eriocrania larvae mining in the leaves of mountain birch, Betula pubescens var. pumila, through multiple pathways. This is evident from the unconsistent changes observed in larval and frass weight, mine area, and leaf size. We found increases in both leaf quality and larval weight with decreasing pollution levels at both spatial and temporal scales and attributed these to the impact of sulphur dioxide, rather than trace elements (nickel and copper). The quality of birch leaves increased with spring (May) temperatures, enabling Eriocrania larvae to achieve greater weight while consuming less biomass. During the larval growth period (early June to early July), Eriocrania larvae increased their consumption with rising temperatures, presumably to compensate for increased metabolic expenses. Contrary to our expectations, the per capita rate of population change did not correlate with larval weight and did not vary along the pollution gradient. Nevertheless, we detected interactive effects of pollution and climate on the rate of population change. This rate decreased with rising winter temperatures in slightly polluted and unpolluted sites but remained unchanged in heavily polluted sites. We conclude that pollution disrupts mechanisms regulating the natural population dynamics of Eriocrania moths.
Collapse
Affiliation(s)
- Mikhail V Kozlov
- Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | - Vitali Zverev
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
2
|
Szabla N, Maria Labecka A, Antoł A, Sobczyk Ł, Angilletta MJ, Czarnoleski M. Evolution and development of Drosophila melanogaster under different thermal conditions affected cell sizes and sensitivity to paralyzing hypoxia. JOURNAL OF INSECT PHYSIOLOGY 2024; 157:104671. [PMID: 38972633 DOI: 10.1016/j.jinsphys.2024.104671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Environmental gradients cause evolutionary and developmental changes in the cellular composition of organisms, but the physiological consequences of these effects are not well understood. Here, we studied experimental populations of Drosophila melanogaster that had evolved in one of three selective regimes: constant 16 °C, constant 25 °C, or intergenerational shifts between 16 °C and 25 °C. Genotypes from each population were reared at three developmental temperatures (16 °C, 20.5 °C, and 25 °C). As adults, we measured thorax length and cell sizes in the Malpighian tubules and wing epithelia of flies from each combination of evolutionary and developmental temperatures. We also exposed flies from these treatments to a short period of nearly complete oxygen deprivation to measure hypoxia tolerance. For genotypes from any selective regime, development at a higher temperature resulted in smaller flies with smaller cells, regardless of the tissue. At every developmental temperature, genotypes from the warm selective regime had smaller bodies and smaller wing cells but had larger tubule cells than did genotypes from the cold selective regime. Genotypes from the fluctuating selective regime were similar in size to those from the cold selective regime, but their cells of either tissue were the smallest among the three regimes. Evolutionary and developmental treatments interactively affected a fly's sensitivity to short-term paralyzing hypoxia. Genotypes from the cold selective regime were less sensitive to hypoxia after developing at a higher temperature. Genotypes from the other selective regimes were more sensitive to hypoxia after developing at a higher temperature. Our results show that thermal conditions can trigger evolutionary and developmental shifts in cell size, coupled with changes in body size and hypoxia tolerance. These patterns suggest links between the cellular composition of the body, levels of hypoxia within cells, and the energetic cost of tissue maintenance. However, the patterns can be only partially explained by existing theories about the role of cell size in tissue oxygenation and metabolic performance.
Collapse
Affiliation(s)
- Natalia Szabla
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Anna Maria Labecka
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Andrzej Antoł
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; MR Consulting Sp. z o.o. Środowiskowa sp.k., Szosa Chełmińska 177-181, 87-100 Toruń, Poland
| | - Łukasz Sobczyk
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | | - Marcin Czarnoleski
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
3
|
Cueva del Castillo R, Sanabria‐Urbán S, Mariño‐Pérez R, Song H. Annual temperature, body size, and sexual size dimorphism in the evolution of Pyrgomorphidae. Ecol Evol 2024; 14:e70188. [PMID: 39170049 PMCID: PMC11338691 DOI: 10.1002/ece3.70188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
In many animal species, larger body size is positively correlated with male mating success and female fecundity. However, in the case of insects, in high seasonality environments, natural selection favors a faster maturation that decreases the risk of pre-reproductive death. However, this advantageous adaptation comes at a tradeoff, resulting in a reduction in body size. Maturation time is influenced by environmental factors, such as temperature, season length, and food availability during the rains. The geographic variation in these parameters provides an opportunity to study their impact on the adaptive evolution of body size in Pyrgomorphidae grasshoppers. These grasshoppers exhibit remarkable variation in body size and wing development and can be found in diverse plant communities across Africa, Asia, Australia, and tropical America. In this study, we utilized a phylogenetic approach to examine the evolution of body size, considering climatic factors, and the influence of sexual selection on size differences between males and females. We found a positive correlation between mean annual temperature and sexual size dimorphism (SSD). Remarkably, species exhibiting a strong bias toward larger females were found to be adapted to regions with higher temperatures. In the Pyrgomorphidae family, an intermediate body size was identified as the ancestral trait. Additionally, winged male and female grasshoppers were observed to be larger than their wingless counterparts. Despite the potential conflicting pressures on body size in males and females, these grasshoppers adhere to Rench's Rule, suggesting that sexual selection on males' body size may explain the evolution of SSD.
Collapse
Affiliation(s)
- Raúl Cueva del Castillo
- Universidad Nacional Autónoma de México; Facultad de Estudios Superiores IztacalaTlalnepantlaMexico
| | - Salomón Sanabria‐Urbán
- Universidad Nacional Autónoma de México; Facultad de Estudios Superiores IztacalaTlalnepantlaMexico
| | | | - Hojun Song
- Texas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
4
|
Lyberger K, Farner JE, Couper L, Mordecai EA. Plasticity in mosquito size and thermal tolerance across a latitudinal climate gradient. J Anim Ecol 2024. [PMID: 39030760 DOI: 10.1111/1365-2656.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/12/2024] [Indexed: 07/22/2024]
Abstract
Variation in heat tolerance among populations can determine whether a species is able to cope with ongoing climate change. Such variation may be especially important for ectotherms whose body temperatures, and consequently, physiological processes, are regulated by external conditions. Additionally, differences in body size are often associated with latitudinal clines, thought to be driven by climate gradients. While studies have begun to explore variation in body size and heat tolerance within species, our understanding of these patterns across large spatial scales, particularly regarding the roles of plasticity and genetic differences, remains incomplete. Here, we examine body size, as measured by wing length, and thermal tolerance, as measured by the time to immobilisation at high temperatures ("thermal knockdown"), in populations of the mosquito Aedes sierrensis collected from across a large latitudinal climate gradient spanning 1300 km (34-44° N). We find that mosquitoes collected from lower latitudes and warmer climates were more tolerant of high temperatures than those collected from higher latitudes and colder climates. Moreover, body size increased with latitude and decreased with temperature, a pattern consistent with James' rule, which appears to be a result of plasticity rather than genetic variation. Our results suggest that warmer environments produce smaller and more thermally tolerant populations.
Collapse
Affiliation(s)
- Kelsey Lyberger
- Department of Biology, Stanford University, Stanford, California, USA
| | - Johannah E Farner
- Department of Biology, Stanford University, Stanford, California, USA
| | - Lisa Couper
- Department of Environmental Health Sciences, University of California Berkeley, Berkeley, California, USA
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, California, USA
| |
Collapse
|
5
|
Johansen JL, Mitchell MD, Vaughan GO, Ripley DM, Shiels HA, Burt JA. Impacts of ocean warming on fish size reductions on the world's hottest coral reefs. Nat Commun 2024; 15:5457. [PMID: 38951524 PMCID: PMC11217398 DOI: 10.1038/s41467-024-49459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
The impact of ocean warming on fish and fisheries is vigorously debated. Leading theories project limited adaptive capacity of tropical fishes and 14-39% size reductions by 2050 due to mass-scaling limitations of oxygen supply in larger individuals. Using the world's hottest coral reefs in the Persian/Arabian Gulf as a natural laboratory for ocean warming - where species have survived >35.0 °C summer temperatures for over 6000 years and are 14-40% smaller at maximum size compared to cooler locations - we identified two adaptive pathways that enhance survival at elevated temperatures across 10 metabolic and swimming performance metrics. Comparing Lutjanus ehrenbergii and Scolopsis ghanam from reefs both inside and outside the Persian/Arabian Gulf across temperatures of 27.0 °C, 31.5 °C and 35.5 °C, we reveal that these species show a lower-than-expected rise in basal metabolic demands and a right-shifted thermal window, which aids in maintaining oxygen supply and aerobic performance to 35.5 °C. Importantly, our findings challenge traditional oxygen-limitation theories, suggesting a mismatch in energy acquisition and demand as the primary driver of size reductions. Our data support a modified resource-acquisition theory to explain how ocean warming leads to species-specific size reductions and why smaller individuals are evolutionarily favored under elevated temperatures.
Collapse
Affiliation(s)
- Jacob L Johansen
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Honolulu, HI, USA.
- Marine Biology Laboratory, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Matthew D Mitchell
- Marine Biology Laboratory, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Grace O Vaughan
- Marine Biology Laboratory, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- BiOrbic, Bioeconomy SFI Research Centre, O'Brien Centre for Science, University College Dublin, Dublin, Ireland
| | - Daniel M Ripley
- Marine Biology Laboratory, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Holly A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - John A Burt
- Marine Biology Laboratory, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Mubadala ACCESS Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Martínez-De León G, Fahrni M, Thakur MP. Temperature-size responses during ontogeny are independent of progenitors' thermal environments. PeerJ 2024; 12:e17432. [PMID: 38799056 PMCID: PMC11127640 DOI: 10.7717/peerj.17432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Background Warming generally induces faster developmental and growth rates, resulting in smaller asymptotic sizes of adults in warmer environments (a pattern known as the temperature-size rule). However, whether temperature-size responses are affected across generations, especially when thermal environments differ from one generation to the next, is unclear. Here, we tested temperature-size responses at different ontogenetic stages and in two consecutive generations using two soil-living Collembola species from the family Isotomidae: Folsomia candida (asexual) and Proisotoma minuta (sexually reproducing). Methods We used individuals (progenitors; F0) from cultures maintained during several generations at 15 °C or 20 °C, and exposed their offspring in cohorts (F1) to various thermal environments (15 °C, 20 °C, 25 °C and 30 °C) during their ontogenetic development (from egg laying to first reproduction; i.e., maturity). We measured development and size traits in the cohorts (egg diameter and body length at maturity), as well as the egg diameters of their progeny (F2). We predicted that temperature-size responses would be predominantly determined by within-generation plasticity, given the quick responsiveness of growth and developmental rates to changing thermal environments. However, we also expected that mismatches in thermal environments across generations would constrain temperature-size responses in offspring, possibly due to transgenerational plasticity. Results We found that temperature-size responses were generally weak in the two Collembola species, both for within- and transgenerational plasticity. However, egg and juvenile development were especially responsive at higher temperatures and were slightly affected by transgenerational plasticity. Interestingly, plastic responses among traits varied non-consistently in both Collembola species, with some traits showing plastic responses in one species but not in the other and vice versa. Therefore, our results do not support the view that the mode of reproduction can be used to explain the degree of phenotypic plasticity at the species level, at least between the two Collembola species used in our study. Our findings provide evidence for a general reset of temperature-size responses at the start of each generation and highlight the importance of measuring multiple traits across ontogenetic stages to fully understand species' thermal responses.
Collapse
Affiliation(s)
| | - Micha Fahrni
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Madhav P. Thakur
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Urca T, Levin E, Gefen E, Ribak G. Intraspecific scaling and early life history determine the cost of free-flight in a large beetle (Batocera rufomaculata). INSECT SCIENCE 2024; 31:524-532. [PMID: 37469199 DOI: 10.1111/1744-7917.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/11/2023] [Accepted: 06/07/2023] [Indexed: 07/21/2023]
Abstract
The scaling of the energetic cost of locomotion with body mass is well documented at the interspecific level. However, methodological restrictions limit our understanding of the scaling of flight metabolic rate (MR) in free-flying insects. This is particularly true at the intraspecific level, where variation in body mass and flight energetics may have direct consequences for the fitness of an individual. We applied a 13C stable isotope method to investigate the scaling of MR with body mass during free-flight in the beetle Batocera rufomaculata. This species exhibits large intraspecific variation in adult body mass as a consequence of the environmental conditions during larval growth. We show that the flight-MR scales with body mass to the power of 0.57, with smaller conspecifics possessing up to 2.3 fold higher mass-specific flight MR than larger ones. Whereas the scaling exponent of free-flight MR was found to be like that determined for tethered-flight, the energy expenditure during free-flight was more than 2.7 fold higher than for tethered-flight. The metabolic cost of flight should therefore be studied under free-flight conditions, a requirement now enabled by the 13C technique described herein for insect flight.
Collapse
Affiliation(s)
- Tomer Urca
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Eran Levin
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv, Israel
- Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv, Israel
| | - Eran Gefen
- Department of Biology, University of Haifa-Oranim, Kiryat Tivon, Israel
| | - Gal Ribak
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv, Israel
- Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv, Israel
| |
Collapse
|
8
|
Khaliq I, Rixen C, Zellweger F, Graham CH, Gossner MM, McFadden IR, Antão L, Brodersen J, Ghosh S, Pomati F, Seehausen O, Roth T, Sattler T, Supp SR, Riaz M, Zimmermann NE, Matthews B, Narwani A. Warming underpins community turnover in temperate freshwater and terrestrial communities. Nat Commun 2024; 15:1921. [PMID: 38429327 PMCID: PMC10907361 DOI: 10.1038/s41467-024-46282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
Rising temperatures are leading to increased prevalence of warm-affinity species in ecosystems, known as thermophilisation. However, factors influencing variation in thermophilisation rates among taxa and ecosystems, particularly freshwater communities with high diversity and high population decline, remain unclear. We analysed compositional change over time in 7123 freshwater and 6201 terrestrial, mostly temperate communities from multiple taxonomic groups. Overall, temperature change was positively linked to thermophilisation in both realms. Extirpated species had lower thermal affinities in terrestrial communities but higher affinities in freshwater communities compared to those persisting over time. Temperature change's impact on thermophilisation varied with community body size, thermal niche breadth, species richness and baseline temperature; these interactive effects were idiosyncratic in the direction and magnitude of their impacts on thermophilisation, both across realms and taxonomic groups. While our findings emphasise the challenges in predicting the consequences of temperature change across communities, conservation strategies should consider these variable responses when attempting to mitigate climate-induced biodiversity loss.
Collapse
Affiliation(s)
- Imran Khaliq
- Department of Aquatic Ecology, Eawag (Swiss Federal Institute of Aquatic Science and Technology) Überlandstrasse 133, 8600, Dübendorf, Switzerland.
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Flüelastrasse 11, 7260, Davos Dorf, Switzerland.
- Climate Change, Extremes and Natural Hazards in Alpine Regions Research Centre CERC, Flüelastrasse 11, 7260, Davos Dorf, Switzerland.
- Department of Zoology, Government (defunct) post-graduate college, Dera Ghazi Khan, 32200, Pakistan.
| | - Christian Rixen
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Flüelastrasse 11, 7260, Davos Dorf, Switzerland
- Climate Change, Extremes and Natural Hazards in Alpine Regions Research Centre CERC, Flüelastrasse 11, 7260, Davos Dorf, Switzerland
| | - Florian Zellweger
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Catherine H Graham
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Martin M Gossner
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, 8092, Zurich, Switzerland
| | - Ian R McFadden
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, 8092, Zurich, Switzerland
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE, Amsterdam, The Netherlands
- University of London, Queen Mary, London, UK
| | - Laura Antão
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014, Helsinki, Finland
| | - Jakob Brodersen
- Department of Fish Ecology and Evolution, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Seestrasse 79, 6047, Kastanienbaum, Switzerland
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Shyamolina Ghosh
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Flüelastrasse 11, 7260, Davos Dorf, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- Department of Fish Ecology and Evolution, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Seestrasse 79, 6047, Kastanienbaum, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Francesco Pomati
- Department of Aquatic Ecology, Eawag (Swiss Federal Institute of Aquatic Science and Technology) Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Seestrasse 79, 6047, Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Tobias Roth
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
- Hintermann & Weber AG Austrasse 2a, 4153, Reinach, Switzerland
| | - Thomas Sattler
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland
| | - Sarah R Supp
- Denison University, Data Analytics Program, Granville, OH, 43023, USA
| | - Maria Riaz
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, 63571, Gelnhausen, Germany
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Niklaus E Zimmermann
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, 8092, Zurich, Switzerland
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Seestrasse 79, 6047, Kastanienbaum, Switzerland
| | - Anita Narwani
- Department of Aquatic Ecology, Eawag (Swiss Federal Institute of Aquatic Science and Technology) Überlandstrasse 133, 8600, Dübendorf, Switzerland.
| |
Collapse
|
9
|
Penn JL, Deutsch C. Geographical and taxonomic patterns in aerobic traits of marine ectotherms. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220487. [PMID: 38186276 PMCID: PMC10772604 DOI: 10.1098/rstb.2022.0487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/24/2023] [Indexed: 01/09/2024] Open
Abstract
The metabolism and hypoxia tolerance of marine ectotherms play key roles in limiting species geographical ranges, but underlying traits have only been directly measured for a small fraction of biodiversity. Here we diagnose and analyse spatial and phylogenetic patterns in hypoxia tolerance and its temperature sensitivity at ecologically active metabolic rates, by combining a model of organismal oxygen (O2) balance with global climate and biogeographic data for approximately 25 000 animal species from 13 phyla. Large-scale spatial trait patterns reveal that active hypoxia tolerance is greater and less temperature sensitive among tropical species compared to polar ones, consistent with sparse experimental data. Species energetic demands for activity vary less with temperature than resting costs, an inference confirmed by available rate measurements. Across the tree of life, closely related species share similar hypoxia traits, indicating that evolutionary history shapes physiological tolerances to O2 and temperature. Trait frequencies are highly conserved across phyla, suggesting the breadth of global aerobic conditions selects for convergent trait diversity. Our results support aerobic limitation as a constraint on marine habitat distributions and their responses to climate change and highlight the under-sampling of aerobic traits among species living in the ocean's tropical and polar oxythermal extremes. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
- Justin L. Penn
- Department of Geosciences, Princeton University, Princeton 08544, NJ, USA
| | - Curtis Deutsch
- Department of Geosciences, Princeton University, Princeton 08544, NJ, USA
- High Meadows Environmental Institute, Princeton University, Princeton 08544, NJ, USA
| |
Collapse
|
10
|
Amer NR, Stoks R, Antoł A, Sniegula S. Microgeographic differentiation in thermal and antipredator responses and their carry-over effects across life stages in a damselfly. PLoS One 2024; 19:e0295707. [PMID: 38394143 PMCID: PMC10889876 DOI: 10.1371/journal.pone.0295707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/27/2023] [Indexed: 02/25/2024] Open
Abstract
Global warming and invasive species, separately or combined, can impose a large impact on the condition of native species. However, we know relatively little about how these two factors, individually and in combination, shape phenotypes in ectotherms across life stages and how this can differ between populations. We investigated the non-consumptive predator effects (NCEs) imposed by native (perch) and invasive (signal crayfish) predators experienced only during the egg stage or during both the egg and larval stages in combination with warming on adult life history traits of the damselfly Ischnura elegans. To explore microgeographic differentiation, we compared two nearby populations differing in thermal conditions and predator history. In the absence of predator cues, warming positively affected damselfly survival, possibly because the warmer temperature was closer to the optimal temperature. In the presence of predator cues, warming decreased survival, indicating a synergistic effect of these two variables on survival. In one population, predator cues from perch led to increased survival, especially under the current temperature, likely because of predator stress acclimation phenomena. While warming decreased, predator cues increased larval development time with a proportionally stronger effect of signal crayfish cues experienced during the egg stage, indicating a negative carry-over effect from egg to larva. Warming and predator cues increased mass at emergence, with the predator effect driven mainly by exposure to signal crayfish cues during the egg stage, indicating a positive carry-over effect from egg to adult. Notably, warming and predator effects were not consistent across the two studied populations, suggesting a phenotypic signal of adaptation at a microgeographic scale to thermal conditions and predator history. We also observed pronounced shifts during ontogeny from synergistic (egg and early larval stage) toward additive (late larval stage up to emergence) effects between warming and predator stress. The results point out that population- and life-stage-specific responses in life-history traits to NCEs are needed to predict fitness consequences of exposure to native and invasive predators and warming in prey at a microgeographic scale.
Collapse
Affiliation(s)
- Nermeen R. Amer
- Department of Biodiversity, Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Robby Stoks
- Department of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Andrzej Antoł
- Department of Biodiversity, Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| | - Szymon Sniegula
- Department of Biodiversity, Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
11
|
Palacino-Rodríguez F, Palacino DA, Penagos Arevalo A, Cordero-Rivera A. Demography and Behaviour of Teinopodagrion oscillans (Odonata: Megapodagrionidae) in a Protected Area of the Colombian Andean Region. INSECTS 2024; 15:125. [PMID: 38392544 PMCID: PMC10889271 DOI: 10.3390/insects15020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
The demography and behaviour of Teinopodagrion oscillans was studied in a protected area in the Andean region of Colombia. Adult damselflies were individually marked, and using their recapture histories, we estimated survival, longevity, sex ratio, and population size using Cormack-Jolly-Seber models. Other aspects of their behaviour were recorded. Survival, recapture, and lifespan (14.1 ± 0.59 days) were similar for both sexes and all age groups. Mature males were larger, and the distance from the water was similar for all individuals. The most supported model was the time-dependent model for survival and recapture. This suggests that weather variations affect the demography of this population in a significant way. Individuals exhibited high fidelity to their site perch, perching with open wings near water on a variety of perches. Mature males make short flights from the perch to intercept conspecific and interspecific males and to hunt prey. The tandem position was formed on macrophytes, and then the pair flew away. Oviposition lasted for 11.23 min on average, with the females ovipositing by abdomen submersion. Our results offer insights into the demographic characteristics and behaviour of this species, providing crucial information for the short- and long-term, from the demography of one species to the conservation of ecosystems of the Andean region.
Collapse
Affiliation(s)
- Fredy Palacino-Rodríguez
- Etology Section, Faculty of Sciences, Republic University, Montevideo 11200, Uruguay
- Research Group on Odonata and Other Arthropods in Colombia and the Neotropics (GINOCO), Sesquilé 251057, Colombia
| | - Diego Andres Palacino
- Research Group on Odonata and Other Arthropods in Colombia and the Neotropics (GINOCO), Sesquilé 251057, Colombia
| | - Andrea Penagos Arevalo
- Research Group on Odonata and Other Arthropods in Colombia and the Neotropics (GINOCO), Sesquilé 251057, Colombia
| | - Adolfo Cordero-Rivera
- ECOEVO Lab, E. E. Forestal, Campus Universitario A Xunqueira s/n, Universidade de Vigo, 36005 Pontevedra, Spain
| |
Collapse
|
12
|
Kindsvater HK, Juan‐Jordá M, Dulvy NK, Horswill C, Matthiopoulos J, Mangel M. Size-dependence of food intake and mortality interact with temperature and seasonality to drive diversity in fish life histories. Evol Appl 2024; 17:e13646. [PMID: 38333556 PMCID: PMC10848883 DOI: 10.1111/eva.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/06/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Abstract
Understanding how growth and reproduction will adapt to changing environmental conditions is a fundamental question in evolutionary ecology, but predicting the responses of specific taxa is challenging. Analyses of the physiological effects of climate change upon life history evolution rarely consider alternative hypothesized mechanisms, such as size-dependent foraging and the risk of predation, simultaneously shaping optimal growth patterns. To test for interactions between these mechanisms, we embedded a state-dependent energetic model in an ecosystem size-spectrum to ask whether prey availability (foraging) and risk of predation experienced by individual fish can explain observed diversity in life histories of fishes. We found that asymptotic growth emerged from size-based foraging and reproductive and mortality patterns in the context of ecosystem food web interactions. While more productive ecosystems led to larger body sizes, the effects of temperature on metabolic costs had only small effects on size. To validate our model, we ran it for abiotic scenarios corresponding to the ecological lifestyles of three tuna species, considering environments that included seasonal variation in temperature. We successfully predicted realistic patterns of growth, reproduction, and mortality of all three tuna species. We found that individuals grew larger when environmental conditions varied seasonally, and spawning was restricted to part of the year (corresponding to their migration from temperate to tropical waters). Growing larger was advantageous because foraging and spawning opportunities were seasonally constrained. This mechanism could explain the evolution of gigantism in temperate tunas. Our approach addresses variation in food availability and individual risk as well as metabolic processes and offers a promising approach to understand fish life-history responses to changing ocean conditions.
Collapse
Affiliation(s)
- Holly K. Kindsvater
- Department of Fish and Wildlife ConservationVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Maria‐José Juan‐Jordá
- Earth to Ocean Research Group, Department of Biological SciencesSimon Fraser UniversityBurnabyBritish ColumbiaCanada
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA)GipuzkoaSpain
- Instituto Español de Oceanografía (IEO‐CSIC), Centro Oceanográfico de MadridMadridSpain
| | - Nicholas K. Dulvy
- Earth to Ocean Research Group, Department of Biological SciencesSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Cat Horswill
- ZSL Institute of ZoologyLondonUK
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - Jason Matthiopoulos
- Institute of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Marc Mangel
- Theoretical Ecology Group, Department of BiologyUniversity of BergenBergenNorway
- Institute of Marine Sciences and Department of Applied Mathematics and StatisticsUniversity of CaliforniaSanta CruzCaliforniaUSA
| |
Collapse
|
13
|
Weisberg SJ, Pershing AJ, Grigoratou M, Mills KE, Fenwick IF, Frisk MG, McBride R, Lucey SM, Kemberling A, Beltz B, Nye JA. Merging trait-based ecology and regime shift theory to anticipate community responses to warming. GLOBAL CHANGE BIOLOGY 2024; 30:e17065. [PMID: 38273564 DOI: 10.1111/gcb.17065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/10/2023] [Accepted: 10/31/2023] [Indexed: 01/27/2024]
Abstract
Anthropogenic warming is altering species abundance, distribution, physiology, and more. How changes observed at the species level alter emergent community properties is an active and urgent area of research. Trait-based ecology and regime shift theory provide complementary ways to understand climate change impacts on communities, but these two bodies of work are only rarely integrated. Lack of integration handicaps our ability to understand community responses to warming, at a time when such understanding is critical. Therefore, we advocate for merging trait-based ecology with regime shift theory. We propose a general set of principles to guide this merger and apply these principles to research on marine communities in the rapidly warming North Atlantic. In our example, combining trait distribution and regime shift analyses at the community level yields greater insight than either alone. Looking forward, we identify a clear need for expanding quantitative approaches to collecting and merging trait-based and resilience metrics in order to advance our understanding of climate-driven community change.
Collapse
Affiliation(s)
- Sarah J Weisberg
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| | | | - Maria Grigoratou
- Mercator Ocean International, Toulouse, France
- Gulf of Maine Research Institute, Portland, Maine, USA
| | | | - Ileana F Fenwick
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael G Frisk
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Richard McBride
- National Oceanic and Atmospheric Administration, Northeast Fisheries Science Center, Woods Hole, Massachusetts, USA
| | - Sean M Lucey
- National Oceanic and Atmospheric Administration, Northeast Fisheries Science Center, Woods Hole, Massachusetts, USA
| | | | - Brandon Beltz
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Janet A Nye
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
14
|
Queiros Q, McKenzie DJ, Dutto G, Killen S, Saraux C, Schull Q. Fish shrinking, energy balance and climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167310. [PMID: 37742954 DOI: 10.1016/j.scitotenv.2023.167310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/01/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
A decline in size is increasingly recognised as a major response by ectothermic species to global warming. Mechanisms underlying this phenomenon are poorly understood but could include changes in energy balance of consumers, driven by declines in prey size coupled with increased energy demands due to warming. The sardine Sardina pilchardus is a prime example of animal shrinking, European populations of this planktivorous fish are undergoing profound decreases in body condition and adult size. This is apparently a bottom-up effect coincident with a shift towards increased reliance on smaller planktonic prey. We investigated the hypothesis that foraging on smaller prey would lead to increased rates of energy expenditure by sardines, and that such expenditures would be exacerbated by warming temperature. Using group respirometry we measured rates of energy expenditure indirectly, as oxygen uptake, by captive adult sardines offered food of two different sizes (0.2 or 1.2 mm items) when acclimated to two temperatures (16 °C or 21 °C). Energy expenditure during feeding on small items was tripled at 16 °C and doubled at 21 °C compared to large items, linked to a change in foraging mode between filter feeding on small or direct capture of large. This caused daily energy expenditure to increase by ~10 % at 16 °C and ~40 % at 21 °C on small items, compared to large items at 16 °C. These results support that declines in prey size coupled with warming could influence energy allocation towards life-history traits in wild populations. This bottom-up effect could partially explain the shrinking and declining condition of many small pelagic fish populations and may be contributing to the shrinking of other fish species throughout the marine food web. Understanding how declines in prey size can couple with warming to affect consumers is a crucial element of projecting the consequences for marine fauna of ongoing anthropogenic global change.
Collapse
Affiliation(s)
- Quentin Queiros
- MARBEC, Univ Montpellier, IFREMER, CNRS, IRD, Montpellier, Sète, Palavas-les-Flots, France; DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France.
| | - David J McKenzie
- MARBEC, Univ Montpellier, IFREMER, CNRS, IRD, Montpellier, Sète, Palavas-les-Flots, France
| | - Gilbert Dutto
- MARBEC, Univ Montpellier, IFREMER, CNRS, IRD, Montpellier, Sète, Palavas-les-Flots, France
| | - Shaun Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Claire Saraux
- IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Quentin Schull
- MARBEC, Univ Montpellier, IFREMER, CNRS, IRD, Montpellier, Sète, Palavas-les-Flots, France
| |
Collapse
|
15
|
Li Y, Wilson D, Grundel R, Campbell S, Knight J, Perry J, Hellmann JJ. Extinction risk modeling predicts range-wide differences of climate change impact on Karner blue butterfly (Lycaeides melissa samuelis). PLoS One 2023; 18:e0262382. [PMID: 37934780 PMCID: PMC10629659 DOI: 10.1371/journal.pone.0262382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
The Karner blue butterfly (Lycaeides melissa samuelis, or Kbb), a federally endangered species under the U.S. Endangered Species Act in decline due to habitat loss, can be further threatened by climate change. Evaluating how climate shapes the population trend of the Kbb can help in the development of adaptive management plans. Current demographic models for the Kbb incorporate in either a density-dependent or density-independent manner. We instead created mixed density-dependent and -independent (hereafter "endo-exogenous") models for Kbbs based on long-term count data of five isolated populations in the upper Midwest, United States during two flight periods (May to June and July to August) to understand how the growth rates were related to previous population densities and abiotic environmental conditions, including various macro- and micro-climatic variables. Our endo-exogenous extinction risk models showed that both density-dependent and -independent components were vital drivers of the historical population trends. However, climate change impacts were not always detrimental to Kbbs. Despite the decrease of population growth rate with higher overwinter temperatures and spring precipitations in the first generation, the growth rate increased with higher summer temperatures and precipitations in the second generation. We concluded that finer spatiotemporally scaled models could be more rewarding in guiding the decision-making process of Kbb restoration under climate change.
Collapse
Affiliation(s)
- Yudi Li
- Energy Graduate Group, University of California Davis, Davis, CA, United States of America
| | - David Wilson
- Minnesota Department of Natural Resources, Grand Rapids, MN, United States of America
| | - Ralph Grundel
- US Geological Survey, Lake Michigan Ecological Research Station, Chesterton, IN, United States of America
| | - Steven Campbell
- Albany Pine Bush Preserve Commission, Albany Pine Bush, NY, United States of America
| | - Joseph Knight
- Department of Forest Resources, University of Minnesota, St. Paul, MN, United States of America
| | - Jim Perry
- Department of Fisheries, Wildlife and Conservation Biology University of Minnesota, St. Paul, MN, United States of America
| | - Jessica J. Hellmann
- Conservation Sciences Graduate Program, University of Minnesota, St. Paul, MN, United States of America
| |
Collapse
|
16
|
Czarnoleski M, Szlachcic E, Privalova V, Maria Labecka A, Sikorska A, Sobczyk Ł, VandenBrooks J, Angilletta MJ. Oxygen and temperature affect cell sizes differently among tissues and between sexes of Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2023; 150:104559. [PMID: 37640139 DOI: 10.1016/j.jinsphys.2023.104559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Spatio-temporal gradients in thermal and oxygen conditions trigger evolutionary and developmental responses in ectotherms' body size and cell size, which are commonly interpreted as adaptive. However, the evidence for cell-size responses is fragmentary, as cell size is typically assessed in single tissues. In a laboratory experiment, we raised genotypes of Drosophila melanogaster at all combinations of two temperatures (16 °C or 25 °C) and two oxygen levels (10% or 22%) and measured body size and the sizes of cells in different tissues. For each sex, we measured epidermal cells in a wing and a leg and ommatidial cells of an eye. For males, we also measured epithelial cells of a Malpighian tubule and muscle cells of a flight muscle. On average, females emerged at a larger body size than did males, having larger cells in all tissues. Flies of either sex emerged at a smaller body size when raised under warm or hypoxic conditions. Development at 25 °C resulted in smaller cells in most tissues. Development under hypoxia resulted in smaller cells in some tissues, especially among females. Altogether, our results show thermal and oxygen conditions trigger shifts in adult size, coupled with the systemic orchestration of cell sizes throughout the body of a fly. The nature of these patterns supports a model in which an ectotherm adjusts its life-history traits and cellular composition to prevent severe hypoxia at the cellular level. However, our results revealed some inconsistencies linked to sex, cell type, and environmental parameters, which suggest caution in translating information obtained for single type of cells to the organism as a whole.
Collapse
Affiliation(s)
- Marcin Czarnoleski
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Ewa Szlachcic
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Valeriya Privalova
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Anna Maria Labecka
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Anna Sikorska
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Łukasz Sobczyk
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | | | | |
Collapse
|
17
|
Bazin S, Hemmer‐Brepson C, Logez M, Sentis A, Daufresne M. Distinct impacts of feeding frequency and warming on life history traits affect population fitness in vertebrate ectotherms. Ecol Evol 2023; 13:e10770. [PMID: 38020679 PMCID: PMC10667609 DOI: 10.1002/ece3.10770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023] Open
Abstract
Body size shifts in ectotherms are mostly attributed to the Temperature Size Rule (TSR) stating that warming speeds up initial growth rate but leads to smaller size when food does not limit growth. Investigating the links between temperature, growth, and life history traits is key to understand the adaptive value of TSR, which might be context dependent. In particular, global warming can affect food quantity or quality which is another major driver of growth, fecundity, and survival. However, we have limited information on how temperature and food jointly influence life history traits in vertebrate predators and how changes in different life history traits combine to influence fitness and population demography. We investigate (1) whether TSR is maintained under different food conditions, (2) if food exacerbates or dampens the effects of temperature on growth and life history traits and (3) if food influences the adaptive value of TSR. We combine experiments on the medaka with Integral Projection Models to scale from life history traits to fitness consequences. Our results confirm that warming triggers a higher initial growth rate and a lower adult size, reduces generation time and increases mean fitness. A lower level of food exacerbates the effects of warming on growth trajectories. Although lower feeding frequency increased survival and decreased fecundity, it did not influence the effects of warming on fish development rates, fecundity, and survival. In contrast, feeding frequency influenced the adaptive value of TSR, as, under intermittent feeding, generation time decreased faster with warming and the increase in growth rate with warming was weaker compared to continuously fed fish. These results are of importance in the context of global warming as resources are expected to change with increasing temperatures but, surprisingly, our results suggest that feeding frequency have a lower impact on fitness at high temperature.
Collapse
Affiliation(s)
- Simon Bazin
- INRAE, Univ. Savoie Mont Blanc, CARRTELThonon‐les‐BainsFrance
- INRAE, Aix Marseille Univ., RECOVERAix‐en‐ProvenceFrance
| | | | - Maxime Logez
- INRAE, Aix Marseille Univ., RECOVERAix‐en‐ProvenceFrance
- INRAE, RIVERLYVilleurbanne CedexFrance
| | - Arnaud Sentis
- INRAE, Aix Marseille Univ., RECOVERAix‐en‐ProvenceFrance
| | | |
Collapse
|
18
|
Pates S, Zamora S. Large euarthropod carapaces from a high latitude Cambrian (Drumian) deposit in Spain. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230935. [PMID: 37885986 PMCID: PMC10598445 DOI: 10.1098/rsos.230935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
Deposits preserving non-biomineralized tissues and animals provide an unrivalled opportunity to study the evolution and radiation of early animal life. Numerous sites of Cambrian age are known from North America (Laurentia) and South China (East Gondwana), which provide a high resolution picture of the fauna at low latitudes. By contrast, our knowledge of Cambrian animals from higher latitudes is relatively poor. This patchiness in our knowledge of animal life during the radiation of animals in the Cambrian period limits our ability to understand and detect palaeogeographic trends and does not provide a full appreciation of animal diversity at this time. Here we report a new middle Cambrian (Drumian) site preserving lightly sclerotized euarthropod carapaces, sponges and palaeoscolecids near the village of Mesones de Isuela in the Iberian Chains (Spain). We describe three bivalved euarthropod carapace morphs, two comparable to those described from the only other high latitude Drumian deposit, the Jince Formation (Czechia), and one distinct from previous discoveries. These new findings highlight the importance of high latitude Gondwana Konservat Lagerstatten for understanding the palaeogeographical aspect of the radiation of early animals and suggest that bivalved euarthropods at high latitudes were larger than those at lower latitudes during the Cambrian.
Collapse
Affiliation(s)
- Stephen Pates
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Samuel Zamora
- Instituto Geológico y Minero de España (IGME-CSIC), 50006, Zaragoza, Spain
- Grupo Aragosaurus-IUCA, Área de Paleontología, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
19
|
Deng Z, Zhang X, Wolinska J, Blair D, Hu W, Yin M. Climate has contributed to population diversification of Daphnia galeata across Eurasia. Mol Ecol 2023; 32:5110-5124. [PMID: 37548328 DOI: 10.1111/mec.17094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Climate is a fundamental abiotic factor that plays a key role in driving the evolution, distribution and population diversification of species. However, there have been few investigations of genomic signatures of adaptation to local climatic conditions in cladocerans. Here, we have provided the first high-quality chromosome-level genome assembly (~143 Mb, scaffold N50 12.6 Mb) of the waterflea, Daphnia galeata, and investigated genomic variation in 22 populations from Central Europe and Eastern China. Our ecological-niche models suggested that the historic distribution of D. galeata in Eurasia was significantly affected by Quaternary climate fluctuations. We detected pronounced genomic and morphometric divergences between European and Chinese D. galeata populations. Such divergences could be partly explained by genomic signatures of thermal adaptation to distinct climate regimes: a set of candidate single-nucleotide polymorphisms (SNPs) potentially associated with climate were detected. These SNPs were in genes significantly enriched in the Gene ontology terms "determination of adult lifespan" and "translation repressor activity", and especially, mthl5 and SOD1 involved in the IIS pathway, and EIF4EBP2 involved in the target of the rapamycin signalling pathway. Our study indicates that certain alleles might be associated with particular temperature regimes, playing a functional role in shaping the population structure of D. galeata at a large geographical scale. These results highlight the potential role of molecular variation in the response to climate variation, in the context of global climate change.
Collapse
Affiliation(s)
- Zhixiong Deng
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Xiuping Zhang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - David Blair
- College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, Australia
| | - Wei Hu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Mingbo Yin
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Jarčuška B, Krištín A, Kaňuch P. Body size traits in the flightless bush-cricket are plastic rather than locally adapted along an elevational gradient. Evol Ecol 2023. [DOI: 10.1007/s10682-023-10231-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
21
|
Bonacina L, Fasano F, Mezzanotte V, Fornaroli R. Effects of water temperature on freshwater macroinvertebrates: a systematic review. Biol Rev Camb Philos Soc 2023; 98:191-221. [PMID: 36173002 PMCID: PMC10088029 DOI: 10.1111/brv.12903] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 01/12/2023]
Abstract
Water temperature is one of the main abiotic factors affecting the structure and functioning of aquatic ecosystems and its alteration can have important effects on biological communities. Macroinvertebrates are excellent bio-indicators and have been used for decades to assess the status of aquatic ecosystems as a result of environmental stresses; however, their responses to temperature are poorly documented and have not been systematically evaluated. The aims of this review are: (i) to collate and summarize responses of freshwater macroinvertebrates to different temperature conditions, comparing the results of experimental and theoretical studies; (ii) to understand how the focus of research on the effects of temperature on macroinvertebrates has changed during the last 51 years; and (iii) to identify research gaps regarding temperature responses, ecosystem types, organism groups, spatiotemporal scales, and geographical regions to suggest possible research directions. We performed a comparative assessment of 223 publications that specifically consider freshwater macroinvertebrates and address the effects of temperature. Short-term studies performed in the laboratory and focusing on insects exposed to a range of temperatures dominated. Field studies were carried out mainly in Europe, at catchment scale and almost exclusively in rivers; they mainly investigated responses to water thermal regime at the community scale. The most frequent biological responses tested were growth rate, fecundity and the time and length of emergence, whereas ecological responses mainly involved composition, richness, and distribution. Thermal research on freshwater macroinvertebrates has undergone a shift since the 2000s when studies involving extended spatiotemporal scales and investigating the effects of global warming first appeared. In addition, recent studies have considered the effects of temperature at genetic and evolutionary scales. Our review revealed that the effects of temperature on macroinvertebrates are manifold with implications at different levels, from genes to communities. However, community-level physiological, phenological and fitness responses tested on individuals or populations should be studied in more detail given their macroecological effects are likely to be enhanced by climate warming. In addition, most field studies at regional scales have used air temperature as a proxy for water temperature; obtaining accurate water temperature data in future studies will be important to allow proper consideration of the spatial thermal heterogeneity of water bodies and any effects on macroinvertebrate distribution patterns. Finally, we found an uneven number of studies across different ecosystems and geographic areas, with lentic bodies and regions outside the West underrepresented. It will also be crucial to include macroinvertebrates of high-altitude and tropical areas in future work because these groups are most vulnerable to climate warming for multiple reasons. Further studies on temperature-macroinvertebrate relationships are needed to fill the current gaps and facilitate appropriate conservation strategies for freshwater ecosystems in an anthropogenic-driven era.
Collapse
Affiliation(s)
- Luca Bonacina
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Federica Fasano
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Valeria Mezzanotte
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Riccardo Fornaroli
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| |
Collapse
|
22
|
Larger insects in a colder environment? Elevational and seasonal intraspecific differences in tropical moth sizes on Mount Cameroon. JOURNAL OF TROPICAL ECOLOGY 2023. [DOI: 10.1017/s0266467422000463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Bergmann’s Rule describes an increase in the body size of endothermic animals with decreasing environmental temperatures. However, in ectothermic insects including moths, some of the few existing studies investigating size patterns along temperature gradients do not follow the Bergmann’s Cline. Intraspecific differences in moth sizes along spatiotemporal temperature gradients are unknown from the Palaeotropics, hindering general conclusions and understanding of the mechanism responsible. We measured intraspecific forewing size differences in 28 Afrotropical moth species sampled in 3 seasons along an elevational gradient on Mount Cameroon, West/Central Africa. Size increased significantly with elevation in 14 species but decreased significantly in 5 species. Additionally, we found significant inter-seasonal size differences in 21 species. Most of these variable species had longer forewings in the transition from the wet to dry season, which had caterpillars developing during the coldest part of the year. We conclude that environmental temperature affects the size of many Afrotropical moths, predominantly following prevailingly following Bergmann’s Cline. Nevertheless, the sizes of one-third of the species demonstrated a significant interaction between elevation and season. The responsible mechanisms can thus be assumed to be more complex than a simple response to ambient temperature.
Collapse
|
23
|
Teder T, Taits K, Kaasik A, Tammaru T. Limited sex differences in plastic responses suggest evolutionary conservatism of thermal reaction norms: A meta-analysis in insects. Evol Lett 2022; 6:394-411. [PMID: 36579171 PMCID: PMC9783480 DOI: 10.1002/evl3.299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/09/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Temperature has a profound effect on the growth and development of ectothermic animals. However, the extent to which ecologically driven selection pressures can adjust thermal plastic responses in growth schedules is not well understood. Comparing temperature-induced plastic responses between sexes provides a promising but underexploited approach to evaluating the evolvability of thermal reaction norms: males and females share largely the same genes and immature environments but typically experience different ecological selection pressures. We proceed from the idea that substantial sex differences in plastic responses could be interpreted as resulting from sex-specific life-history optimization, whereas similarity among the sexes should rather be seen as evidence of an essential role of physiological constraints. In this study, we performed a meta-analysis of sex-specific thermal responses in insect development times, using data on 161 species with comprehensive phylogenetic and ecological coverage. As a reference for judging the magnitude of sex specificity in thermal plasticity, we compared the magnitude of sex differences in plastic responses to temperature with those in response to diet. We show that sex-specific responses of development times to temperature variation are broadly similar. We also found no strong evidence for sex specificity in thermal responses to depend on the magnitude or direction of sex differences in development time. Sex differences in temperature-induced plastic responses were systematically less pronounced than sex differences in responses induced by variations in larval diet. Our results point to the existence of substantial constraints on the evolvability of thermal reaction norms in insects as the most likely explanation. If confirmed, the low evolvability of thermal response is an essential aspect to consider in predicting evolutionary responses to climate warming.
Collapse
Affiliation(s)
- Tiit Teder
- Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEE‐50409Estonia
- Department of Ecology, Faculty of Environmental SciencesCzech University of Life Sciences PraguePrague165 21Czech Republic
| | - Kristiina Taits
- Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEE‐50409Estonia
| | - Ants Kaasik
- Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEE‐50409Estonia
| | - Toomas Tammaru
- Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEE‐50409Estonia
| |
Collapse
|
24
|
Wehner A, Hein N, Beckers N, Dobbert S, Pape R, Löffler J. Early snow melt and diverging thermal constraints control body size in arctic–alpine spiders. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
To predict species’ responses to a rapidly changing environment, it is necessary to detect current clines of life-history traits and understand their drivers. We studied body size variation, a key trait in evolutionary biology, of two arctic–alpine lycosid spiders and underlying mechanisms controlling this variation. We used long time-series data of body size of spiders sampled in Norway, augmented with museum data. Individuals of both species sampled in areas and years with longer snow-free periods grew larger than individuals in areas and years with shorter snow-free periods. Interestingly, temperatures below 0 °C led to a larger body size in Pardosa palustris, while temperatures above 0 °C led to a larger body size in Pardosa hyperborea. We assume that P. palustris, as the generally larger species, is less sensitive to environmental variability and low temperatures, because it can retain more energy compared with a smaller species and, therefore, can invest more resources in its offspring. With rising temperatures, both species might profit from a higher resource availability. In a rapidly changing arctic–alpine environment, alterations in the life-history traits and adaptation strategies of spiders are expected, which, regarding body size, seem to be highly influenced by early snowmelt and diverging thermal constraints.
Collapse
Affiliation(s)
- Alessa Wehner
- University of Bonn, Department of Geography , Bonn , Germany
| | - Nils Hein
- Leibniz Institute for the Analysis of Biodiversity Change (LIB) , Museum Koenig, Bonn , Germany
| | - Niklas Beckers
- University of Bonn, Department of Geography , Bonn , Germany
| | - Svenja Dobbert
- University of Bonn, Department of Geography , Bonn , Germany
| | - Roland Pape
- University of South-Eastern Norway, Department of Natural Sciences and Environmental Health , Bø , Norway
| | - Jörg Löffler
- University of Bonn, Department of Geography , Bonn , Germany
| |
Collapse
|
25
|
Harvey JA, Tougeron K, Gols R, Heinen R, Abarca M, Abram PK, Basset Y, Berg M, Boggs C, Brodeur J, Cardoso P, de Boer JG, De Snoo GR, Deacon C, Dell JE, Desneux N, Dillon ME, Duffy GA, Dyer LA, Ellers J, Espíndola A, Fordyce J, Forister ML, Fukushima C, Gage MJG, García‐Robledo C, Gely C, Gobbi M, Hallmann C, Hance T, Harte J, Hochkirch A, Hof C, Hoffmann AA, Kingsolver JG, Lamarre GPA, Laurance WF, Lavandero B, Leather SR, Lehmann P, Le Lann C, López‐Uribe MM, Ma C, Ma G, Moiroux J, Monticelli L, Nice C, Ode PJ, Pincebourde S, Ripple WJ, Rowe M, Samways MJ, Sentis A, Shah AA, Stork N, Terblanche JS, Thakur MP, Thomas MB, Tylianakis JM, Van Baaren J, Van de Pol M, Van der Putten WH, Van Dyck H, Verberk WCEP, Wagner DL, Weisser WW, Wetzel WC, Woods HA, Wyckhuys KAG, Chown SL. Scientists' warning on climate change and insects. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeffrey A. Harvey
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Kévin Tougeron
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
- EDYSAN, UMR 7058, Université de Picardie Jules Verne, CNRS Amiens France
| | - Rieta Gols
- Laboratory of Entomology Wageningen University Wageningen The Netherlands
| | - Robin Heinen
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - Mariana Abarca
- Department of Biological Sciences Smith College Northampton Massachusetts USA
| | - Paul K. Abram
- Agriculture and Agri‐Food Canada, Agassiz Research and Development Centre Agassiz British Columbia Canada
| | - Yves Basset
- Smithsonian Tropical Research Institute Panama City Republic of Panama
- Department of Ecology Institute of Entomology, Czech Academy of Sciences Ceske Budejovice Czech Republic
| | - Matty Berg
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
- Groningen Institute of Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Carol Boggs
- School of the Earth, Ocean and Environment and Department of Biological Sciences University of South Carolina Columbia South Carolina USA
- Rocky Mountain Biological Laboratory Gothic Colorado USA
| | - Jacques Brodeur
- Institut de recherche en biologie végétale, Département de sciences biologiques Université de Montréal Montréal Québec Canada
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus University of Helsinki Helsinki Finland
| | - Jetske G. de Boer
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Geert R. De Snoo
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Charl Deacon
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Jane E. Dell
- Geosciences and Natural Resources Department Western Carolina University Cullowhee North Carolina USA
| | | | - Michael E. Dillon
- Department of Zoology and Physiology and Program in Ecology University of Wyoming Laramie Wyoming USA
| | - Grant A. Duffy
- School of Biological Sciences Monash University Melbourne Victoria Australia
- Department of Marine Science University of Otago Dunedin New Zealand
| | - Lee A. Dyer
- University of Nevada Reno – Ecology, Evolution and Conservation Biology Reno Nevada USA
| | - Jacintha Ellers
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Anahí Espíndola
- Department of Entomology University of Maryland College Park Maryland USA
| | - James Fordyce
- Department of Ecology and Evolutionary Biology University of Tennessee, Knoxville Knoxville Tennessee USA
| | - Matthew L. Forister
- University of Nevada Reno – Ecology, Evolution and Conservation Biology Reno Nevada USA
| | - Caroline Fukushima
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus University of Helsinki Helsinki Finland
| | | | | | - Claire Gely
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering James Cook University Cairns Queensland Australia
| | - Mauro Gobbi
- MUSE‐Science Museum, Research and Museum Collections Office Climate and Ecology Unit Trento Italy
| | - Caspar Hallmann
- Radboud Institute for Biological and Environmental Sciences Radboud University Nijmegen The Netherlands
| | - Thierry Hance
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
| | - John Harte
- Energy and Resources Group University of California Berkeley California USA
| | - Axel Hochkirch
- Department of Biogeography Trier University Trier Germany
- IUCN SSC Invertebrate Conservation Committee
| | - Christian Hof
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - Ary A. Hoffmann
- Bio21 Institute, School of BioSciences University of Melbourne Melbourne Victoria Australia
| | - Joel G. Kingsolver
- Department of Biology University of North Carolina Chapel Hill North Carolina USA
| | - Greg P. A. Lamarre
- Smithsonian Tropical Research Institute Panama City Republic of Panama
- Department of Ecology Institute of Entomology, Czech Academy of Sciences Ceske Budejovice Czech Republic
| | - William F. Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering James Cook University Cairns Queensland Australia
| | - Blas Lavandero
- Laboratorio de Control Biológico Universidad de Talca Talca Chile
| | - Simon R. Leather
- Center for Integrated Pest Management Harper Adams University Newport UK
| | - Philipp Lehmann
- Department of Zoology Stockholm University Stockholm Sweden
- Zoological Institute and Museum University of Greifswald Greifswald Germany
| | - Cécile Le Lann
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] ‐ UMR 6553 Rennes France
| | | | - Chun‐Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing China
| | - Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing China
| | | | | | - Chris Nice
- Department of Biology Texas State University San Marcos Texas USA
| | - Paul J. Ode
- Department of Agricultural Biology Colorado State University Fort Collins Colorado USA
- Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
| | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS Université de Tours Tours France
| | - William J. Ripple
- Department of Forest Ecosystems and Society Oregon State University Oregon USA
| | - Melissah Rowe
- Netherlands Institute of Ecology (NIOO‐KNAW) Department of Animal Ecology Wageningen The Netherlands
| | - Michael J. Samways
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Arnaud Sentis
- INRAE, Aix‐Marseille University, UMR RECOVER Aix‐en‐Provence France
| | - Alisha A. Shah
- W.K. Kellogg Biological Station, Department of Integrative Biology Michigan State University East Lansing Michigan USA
| | - Nigel Stork
- Centre for Planetary Health and Food Security, School of Environment and Science Griffith University Nathan Queensland Australia
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Madhav P. Thakur
- Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Matthew B. Thomas
- York Environmental Sustainability Institute and Department of Biology University of York York UK
| | - Jason M. Tylianakis
- Bioprotection Aotearoa, School of Biological Sciences University of Canterbury Christchurch New Zealand
| | - Joan Van Baaren
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] ‐ UMR 6553 Rennes France
| | - Martijn Van de Pol
- Netherlands Institute of Ecology (NIOO‐KNAW) Department of Animal Ecology Wageningen The Netherlands
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Wim H. Van der Putten
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Hans Van Dyck
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
| | | | - David L. Wagner
- Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut USA
| | - Wolfgang W. Weisser
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - William C. Wetzel
- Department of Entomology, Department of Integrative Biology, and Ecology, Evolution, and Behavior Program Michigan State University East Lansing Michigan USA
| | - H. Arthur Woods
- Division of Biological Sciences University of Montana Missoula Montana USA
| | - Kris A. G. Wyckhuys
- Chrysalis Consulting Hanoi Vietnam
- China Academy of Agricultural Sciences Beijing China
| | - Steven L. Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences Monash University Melbourne Victoria Australia
| |
Collapse
|
26
|
Audzijonyte A, Jakubavičiūtė E, Lindmark M, Richards SA. Mechanistic Temperature-Size Rule Explanation Should Reconcile Physiological and Mortality Responses to Temperature. THE BIOLOGICAL BULLETIN 2022; 243:220-238. [PMID: 36548974 DOI: 10.1086/722027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractThe temperature-size rule is one of the universal rules in ecology and states that ectotherms in warmer waters will grow faster as juveniles, mature at smaller sizes and younger ages, and reach smaller maximum body sizes. Many models have unsuccessfully attempted to reproduce temperature-size rule-consistent life histories by using two-term (anabolism and catabolism) Pütter-type growth models, such as the von Bertalanffy. Here, we present a physiologically structured individual growth model, which incorporates an energy budget and optimizes energy allocation to growth, reproduction, and reserves. Growth, maturation, and reproductive output emerge as a result of life-history optimization to specific physiological rates and mortality conditions. To assess which processes can lead to temperature-size rule-type life histories, we simulate 42 scenarios that differ in temperature and body size dependencies of intake, metabolism, and mortality rates. Results show that the temperature-size rule can emerge in two ways. The first way requires both intake and metabolism to increase with temperature, but the temperature-body size interaction of the two rates must lead to relatively faster intake increase in small individuals and relatively larger metabolism increase in large ones. The second way requires only higher temperature-driven natural mortality and faster intake rates in early life (no change in metabolic rates is needed). This selects for faster life histories with earlier maturation and increased reproductive output. Our model provides a novel mechanistic and evolutionary framework for identifying the conditions necessary for the temperature-size rule. It shows that the temperature-size rule is likely to reflect both physiological changes and life-history optimization and that use of von Bertalanffy-type models, which do not include reproduction processes, can hinder our ability to understand and predict ectotherm responses to climate change.
Collapse
|
27
|
Verberk WCEP, Sandker JF, van de Pol ILE, Urbina MA, Wilson RW, McKenzie DJ, Leiva FP. Body mass and cell size shape the tolerance of fishes to low oxygen in a temperature-dependent manner. GLOBAL CHANGE BIOLOGY 2022; 28:5695-5707. [PMID: 35876025 PMCID: PMC9542040 DOI: 10.1111/gcb.16319] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/11/2022] [Accepted: 05/22/2022] [Indexed: 05/04/2023]
Abstract
Aerobic metabolism generates 15-20 times more energy (ATP) than anaerobic metabolism, which is crucial in maintaining energy budgets in animals, fueling metabolism, activity, growth and reproduction. For ectothermic water-breathers such as fishes, low dissolved oxygen may limit oxygen uptake and hence aerobic metabolism. Here, we assess, within a phylogenetic context, how abiotic and biotic drivers explain the variation in hypoxia tolerance observed in fishes. To do so, we assembled a database of hypoxia tolerance, measured as critical oxygen tensions (Pcrit ) for 195 fish species. Overall, we found that hypoxia tolerance has a clear phylogenetic signal and is further modulated by temperature, body mass, cell size, salinity and metabolic rate. Marine fishes were more susceptible to hypoxia than freshwater fishes. This pattern is consistent with greater fluctuations in oxygen and temperature in freshwater habitats. Fishes with higher oxygen requirements (e.g. a high metabolic rate relative to body mass) also were more susceptible to hypoxia. We also found evidence that hypoxia and warming can act synergistically, as hypoxia tolerance was generally lower in warmer waters. However, we found significant interactions between temperature and the body and cell size of a fish. Constraints in oxygen uptake related to cellular surface area to volume ratios and effects of viscosity on the thickness of the boundary layers enveloping the gills could explain these thermal dependencies. The lower hypoxia tolerance in warmer waters was particularly pronounced for fishes with larger bodies and larger cell sizes. Previous studies have found a wide diversity in the direction and strength of relationships between Pcrit and body mass. By including interactions with temperature, our study may help resolve these divergent findings, explaining the size dependency of hypoxia tolerance in fish.
Collapse
Affiliation(s)
- Wilco C. E. P. Verberk
- Department of Animal Ecology and PhysiologyRadboud Institute for Biological and Environmental SciencesRadboud University NijmegenNijmegenThe Netherlands
| | - Jeroen F. Sandker
- Department of Animal Ecology and PhysiologyRadboud Institute for Biological and Environmental SciencesRadboud University NijmegenNijmegenThe Netherlands
| | - Iris L. E. van de Pol
- Department of Animal Ecology and PhysiologyRadboud Institute for Biological and Environmental SciencesRadboud University NijmegenNijmegenThe Netherlands
| | - Mauricio A. Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
- Instituto Milenio de Oceanografía (IMO)Universidad de ConcepciónConcepciónChile
| | | | - David J. McKenzie
- MARBEC, University of Montpellier, CNRS, IFREMER, IRDMontpellierFrance
| | - Félix P. Leiva
- Department of Animal Ecology and PhysiologyRadboud Institute for Biological and Environmental SciencesRadboud University NijmegenNijmegenThe Netherlands
| |
Collapse
|
28
|
Woods HA, Moran AL, Atkinson D, Audzijonyte A, Berenbrink M, Borges FO, Burnett KG, Burnett LE, Coates CJ, Collin R, Costa-Paiva EM, Duncan MI, Ern R, Laetz EMJ, Levin LA, Lindmark M, Lucey NM, McCormick LR, Pierson JJ, Rosa R, Roman MR, Sampaio E, Schulte PM, Sperling EA, Walczyńska A, Verberk WCEP. Integrative Approaches to Understanding Organismal Responses to Aquatic Deoxygenation. THE BIOLOGICAL BULLETIN 2022; 243:85-103. [PMID: 36548975 DOI: 10.1086/722899] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractOxygen bioavailability is declining in aquatic systems worldwide as a result of climate change and other anthropogenic stressors. For aquatic organisms, the consequences are poorly known but are likely to reflect both direct effects of declining oxygen bioavailability and interactions between oxygen and other stressors, including two-warming and acidification-that have received substantial attention in recent decades and that typically accompany oxygen changes. Drawing on the collected papers in this symposium volume ("An Oxygen Perspective on Climate Change"), we outline the causes and consequences of declining oxygen bioavailability. First, we discuss the scope of natural and predicted anthropogenic changes in aquatic oxygen levels. Although modern organisms are the result of long evolutionary histories during which they were exposed to natural oxygen regimes, anthropogenic change is now exposing them to more extreme conditions and novel combinations of low oxygen with other stressors. Second, we identify behavioral and physiological mechanisms that underlie the interactive effects of oxygen with other stressors, and we assess the range of potential organismal responses to oxygen limitation that occur across levels of biological organization and over multiple timescales. We argue that metabolism and energetics provide a powerful and unifying framework for understanding organism-oxygen interactions. Third, we conclude by outlining a set of approaches for maximizing the effectiveness of future work, including focusing on long-term experiments using biologically realistic variation in experimental factors and taking truly cross-disciplinary and integrative approaches to understanding and predicting future effects.
Collapse
|
29
|
Maher IM, Shelomi M. Increasing Body Sizes in Anomala expansa expansa (Coleoptera: Scarabaeidae) Populations in Response to Rising Temperatures Over Time. ENVIRONMENTAL ENTOMOLOGY 2022; 51:798-805. [PMID: 35641116 DOI: 10.1093/ee/nvac032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 06/15/2023]
Abstract
Many insects have been studied over wide geographical areas to determine whether they follow Bergmann's Rule, which predicts that animal clades or populations should have smaller body sizes in warmer climates. While this ecogeographic rule is well supported in mammals and birds, insect latitudinal sizes can show Bergmann, converse Bergmann, or no size clines at all. Museum collections are typical sources of data for insect clines, and long-term collections should reflect rising global temperatures and shifting climates, possibly producing temporal size clines along with any geographical clines. We hypothesize that insects with Bergmann clines geographically will show Bergmann-like clines temporally as well, and that the converse and inverse of this rule are also true. By looking at museum samples going back a century, we tested whether Anomala expansa expansa (Bates, 1866), a species of Scarabaeidae beetle common in lowland Taiwan, was experiencing long-term changes in body size in response to rising temperatures. We found that overall, the size of these beetles increased over time. Within Taipei populations, this increase was correlated with rising average yearly temperatures. The impact of this pest species' rising size with time will need to be monitored, and temporal size clines in other pests need to be investigated.
Collapse
Affiliation(s)
- Ian M Maher
- College of Science, Oregon State University, Corvallis, OR, USA
| | - Matan Shelomi
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
30
|
Wrozyna C, Mischke S, Hoehle M, Gross M, Piller WE. Large-Scale Geographic Size Variability of Cyprideis torosa (Ostracoda) and Its Taxonomic and Ecologic Implications. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.857499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Body-size variability results from a variety of extrinsic and intrinsic factors (environmental and biological influences) underpinned by phylogeny. In ostracodes it is assumed that body size is predominantly controlled by ecological conditions, but investigations have mostly focused on local or regional study areas. In this study, we investigate the geographical size variability (length, height, and width) of Holocene and Recent valves of the salinity-tolerant ostracode species Cyprideis torosa within a large geographical area (31°–51° latitude, and 12°–96° longitude). It is shown that distant local size clusters of Cyprideis torosa are framed within two large-scale geographical patterns. One pattern describes the separation of two different size classes (i.e., morphotypes) at around ∼42° N. The co-occurrence of both size morphotypes in the same habitats excludes an environmental control on the distribution of the morphotypes but rather could point to the existence of two differentiated lineages. Generally, correlations between valve size and environmental parameters (salinity, geographical positions) strongly depend on the taxonomic resolution. While latitude explains the overall size variability of C. torosa sensu lato (i.e., undifferentiated for morphotypes), salinity-size correlations are restricted to the morphotype scale. Another large-scale pattern represents a continuous increase in valve size of C. torosa with latitude according to the macroecological pattern referred as Bergmann trend. Existing explanations for Bergmann trends insufficiently clarify the size cline of C. torosa which might be because these models are restricted to intraspecific levels. The observed size-latitude relationship of C. torosa may, therefore, result from interspecific divergence (i.e., size ordered spatially may result from interspecific divergence sorting) while environmental influence is of minor importance. Our results imply that geographical body-size patterns of ostracodes are not straightforward and are probably not caused by universal mechanisms. Consideration of phylogenetic relationships of ostracodes is therefore necessary before attempting to identify the role of environmental controls on body size variability.
Collapse
|
31
|
Rahman T, Candolin U. Linking animal behavior to ecosystem change in disturbed environments. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.893453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental disturbances often cause individuals to change their behavior. The behavioral responses can induce a chain of reactions through the network of species interactions, via consumptive and trait mediated connections. Given that species interactions define ecosystem structure and functioning, changes to these interactions often have ecological repercussions. Here, we explore the transmission of behavioral responses through the network of species interactions, and how the responses influence ecological conditions. We describe the underlying mechanisms and the ultimate impact that the behavioral responses can have on ecosystem structure and functioning, including biodiversity and ecosystems stability and services. We explain why behavioral responses of some species have a larger impact than that of others on ecosystems, and why research should focus on these species and their interactions. With the work, we synthesize existing theory and empirical evidence to provide a conceptual framework that links behavior responses to altered species interactions, community dynamics, and ecosystem processes. Considering that species interactions link biodiversity to ecosystem functioning, a deeper understanding of behavioral responses and their causes and consequences can improve our knowledge of the mechanisms and pathways through which human activities alter ecosystems. This knowledge can improve our ability to predict the effects of ongoing disturbances on communities and ecosystems and decide on the interventions needed to mitigate negative effects.
Collapse
|
32
|
Deutsch C, Penn JL, Verberk WCEP, Inomura K, Endress MG, Payne JL. Impact of warming on aquatic body sizes explained by metabolic scaling from microbes to macrofauna. Proc Natl Acad Sci U S A 2022; 119:e2201345119. [PMID: 35787059 PMCID: PMC9282389 DOI: 10.1073/pnas.2201345119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Rising temperatures are associated with reduced body size in many marine species, but the biological cause and generality of the phenomenon is debated. We derive a predictive model for body size responses to temperature and oxygen (O2) changes based on thermal and geometric constraints on organismal O2 supply and demand across the size spectrum. The model reproduces three key aspects of the observed patterns of intergenerational size reductions measured in laboratory warming experiments of diverse aquatic ectotherms (i.e., the "temperature-size rule" [TSR]). First, the interspecific mean and variability of the TSR is predicted from species' temperature sensitivities of hypoxia tolerance, whose nonlinearity with temperature also explains the second TSR pattern-its amplification as temperatures rise. Third, as body size increases across the tree of life, the impact of growth on O2 demand declines while its benefit to O2 supply rises, decreasing the size dependence of hypoxia tolerance and requiring larger animals to contract by a larger fraction to compensate for a thermally driven rise in metabolism. Together our results support O2 limitation as the mechanism underlying the TSR, and they provide a physiological basis for projecting ectotherm body size responses to climate change from microbes to macrofauna. For small species unable to rapidly migrate or evolve greater hypoxia tolerance, ocean warming and O2 loss in this century are projected to induce >20% reductions in body mass. Size reductions at higher trophic levels could be even stronger and more variable, compounding the direct impact of human harvesting on size-structured ocean food webs.
Collapse
Affiliation(s)
- Curtis Deutsch
- School of Oceanography, University of Washington, Seattle, WA 98105
- Department of Geosciences, Princeton University, Princeton, NJ 08540
- High Meadows Environmental Institute, Princeton University, Princeton, NJ 08540
| | - Justin L. Penn
- School of Oceanography, University of Washington, Seattle, WA 98105
- Department of Geosciences, Princeton University, Princeton, NJ 08540
| | - Wilco C. E. P. Verberk
- Department of Animal Ecology and Physiology, Radboud University, Nijmegen, 6500 GL Nijmegen,The Netherlands
| | - Keisuke Inomura
- School of Oceanography, University of Washington, Seattle, WA 98105
- Department of Marine Science, University of Rhode Island, Narragansett, RI 02882
| | | | - Jonathan L. Payne
- Department of Geological Sciences, Stanford University, Stanford, CA 94305
| |
Collapse
|
33
|
de Eyto E, Kelly S, Rogan G, French A, Cooney J, Murphy M, Nixon P, Hughes P, Sweeney D, McGinnity P, Dillane M, Poole R. Decadal Trends in the Migration Phenology of Diadromous Fishes Native to the Burrishoole Catchment, Ireland. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.915854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Migration is an important ecological trait that allows animals to exploit resources in different habitats, obtaining extra energy for growth and reproduction. The phenology (or timing) of migration is a highly heritable trait, but is also controlled by environmental factors. Numerous studies have reported the advancement of species life-events with climate change, but the rate and significance of such advancement is likely to be species specific, spatially variable and dependent on interactions with population and ecosystem changes. This is particularly true for diadromous fishes which are sentinels of change in both freshwater and marine domains, and are subject to considerable multiple stressors including overfishing and habitat degradation. Here, we describe trends in the migration phenology of three native Irish migratory fishes over half a century, Atlantic salmon (Salmo salar), brown trout (Salmo trutta) and European eel (Anguilla anguilla). The trends were derived from daily counts of 745,263 fish moving upstream and downstream through the fish traps of the Burrishoole catchment, an internationally important monitoring infrastructure allowing a full census of migrating fish. We found that the start of the seaward migration of eel has advanced by one month since 1970. The commencement of the salmon smolt migration has advanced by one week, although the rest of the migration, and the entirety of the trout smolt run has remained stable. The beginning of the upstream migration of trout to freshwater has advanced by 20 days, while the end of the run is more than one month later than in the 1970’s. The greatest phenological shift has been in the upstream migration of adult salmon, with at least half of migrating fish returning between one and two months earlier from the marine environment compared to the 1970’s. The earlier return of these salmon is coincident with reduced marine survival and decreasing body size, indicating considerable oceanic challenges for this species. Our results demonstrate that the impacts of climate change on the phenology of diadromous fish are context-dependent and may interact with other factors. The mobilization of long-term datasets are crucial to parse the ecological impacts of climate change from other anthropogenic stresses.
Collapse
|
34
|
Kępińska-Pacelik J, Biel W. Insects in Pet Food Industry-Hope or Threat? Animals (Basel) 2022; 12:1515. [PMID: 35739851 PMCID: PMC9219536 DOI: 10.3390/ani12121515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Due to the increasing global population, the world cannot currently support the well-known techniques of food production due to their harmful effects on land use, water consumption, and greenhouse gas emissions. The key answer is a solution based on the use of edible insects. They have always been present in the diet of animals. They are characterized by a very good nutritional value (e.g., high protein content and contents of essential amino acids and fatty acids, including lauric acid), and products with them receive positive results in palatability tests. Despite the existing literature data on the benefits of the use of insects as a protein source, their acceptance by consumers and animal caregivers remains problematic. In spite of the many advantages of using insects in pet food, it is necessary to analyze the risk of adverse food reactions, including allergic reactions that may be caused by insect consumption. Other hazards relate to the contamination of insects. For example, they can be contaminated with anthropogenic factors during breeding, packaging, cooking, or feeding. These contaminants include the presence of bacteria, mold fungi, mycotoxins, and heavy metals. However, insects can be used in the pet food industry. This is supported by the evolutionary adaptation of their wild ancestors to the eating of insects in the natural environment. The chemical composition of insects also corresponds to the nutritional requirements of dogs. It should be borne in mind that diets containing insect and their effects on animals require careful analysis. The aim of this article is to discuss the nutritional value of insects and their possible applications in the nutrition of companion animals, especially dogs.
Collapse
Affiliation(s)
| | - Wioletta Biel
- Department of Monogastric Animal Sciences, Division of Animal Nutrition and Food, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| |
Collapse
|
35
|
Ecological Responses of Nannophya koreana (Odonata: Libellulidae) to Temperature: Following Converse Bergmann’s Rule. BIOLOGY 2022; 11:biology11060830. [PMID: 35741351 PMCID: PMC9219932 DOI: 10.3390/biology11060830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Bergmann’s rule explains the phenomenon where populations and species of larger sizes are found at higher latitudes and colder environments, whereas populations and species of smaller size are found at lower latitudes and in warmer regions. In insects, adult sizes tend to be smaller in warmer environments than at cooler temperatures and higher latitudes; the response is called the temperature–size rule. Nannophya koreana is an endangered species in Korea and represents a flagship species for wetland conservation. We found that the body size of the larvae was smaller in a cold-water-temperature region than in a warm-water-temperature area, which is contrary to the rules mentioned above. The two regions were geographically close to each other, with no differences in air temperature and precipitation. We identified the reasons for the difference in water temperature between the two regions and established the relationship between temperature and body size in N. koreana. In addition, we analyzed how N. koreana compensated for low water temperature to maintain its life cycle, which is known as univoltine. Abstract Ecological rules such as Bergmann’s rule and the temperature–size rule state that body-size decline is a universal response to warm temperatures in both homeotherms and poikilotherms. In the present study, we investigated the biological responses of Nannophya koreana, an endangered dragonfly species in Korea, by comparing body size in two habitats with large differences in water temperature, Mungyong-si (MG, terraced paddy fields) and Muui-do (MU, a mountainous wetland). To conserve the dragonfly populations, the collected larvae were photographed and released, and their head widths and body lengths were measured. There was no difference in the annual mean air temperature and precipitation between the two sites; however, the annual mean water temperature was substantially lower in MU than in MG. There was little difference in larval head width between the two sites; however, body length in the MU population was smaller than that in the MG population. Larval growth rate per 100-degree-days was 0.75 mm for MG and 1.16 for MU. The relationship between temperature and body size of N. koreana larvae showed opposite trends to Bergmann’s rule and the temperature–size rule. Since the larval growth period during a year in MU was shorter than that in MG, the MU population potentially exhibits a higher growth rate as a mechanism of compensating for the low water temperature. Our study established the relationship between temperature and body size of N. koreana in two wetlands that had an obvious difference in water temperature despite being geographically close. The results highlight the importance of considering detailed factors such as habitat type when studying the temperature–size responses of organisms.
Collapse
|
36
|
Merwin AC, Hilliard J, Larsen A, Lasken AG, Johnson I. Oh, the places you will grow: Intraspecific latitudinal clines in butterfly size suggest a phylogenetic signal. Ecol Evol 2022; 12:e8913. [PMID: 35600686 PMCID: PMC9120895 DOI: 10.1002/ece3.8913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022] Open
Abstract
Within an animal species, the body sizes of individuals at higher latitudes are often different from individuals at lower latitudes. For homeothermic species that maintain a relatively constant body temperature, such as mammals and birds, individuals at higher latitudes tend to be larger. For ectothermic species, such as insects, that do not retain their own body heat and which often do not maintain a relatively constant body temperature, patterns of body size with latitude are highly variable. This has led some authors to contend that patterns in even closely related species cannot be expected to be similar. Indeed, to our knowledge, no studies of invertebrates have found that more closely related species have more similar relationships between body size and latitude. Further, no studies have investigated the potential influence of diet quality on interspecific differences in these clines. We measured wing lengths of specimens (N = 1753) in eight lycaenid butterfly species and one species of the sister family, Riodinidae to determine if more closely related species have similar latitudinal trends. We also estimated the mean nitrogen content of caterpillars’ hosts to investigate whether this often‐limiting nutrient influences the strength and direction of latitudinal clines in body size. We found that four species are significantly smaller at higher latitudes, an additional species is marginally smaller at higher latitudes (p < .06), and four species had no significant relationship with latitude. We also found a strong phylogenetic signal for latitudinal clines in body size among our species, which indicates that some closely related species may have similar clines. However, the strength and direction of these clines did not depend on the estimated nitrogen content of caterpillars’ hosts. Our results indicate that mean nitrogen content of hosts may not be an important driver in latitudinal clines but that phylogenetic relationships among species should be accounted for when exploring other potential drivers of body‐size clines in invertebrate species.
Collapse
Affiliation(s)
- Andrew C. Merwin
- Department of Biology and Geology Baldwin Wallace University Berea Ohio USA
| | - Justin Hilliard
- Department of Biology and Geology Baldwin Wallace University Berea Ohio USA
| | - Ashley Larsen
- Department of Biology and Geology Baldwin Wallace University Berea Ohio USA
| | | | - Icesstrená Johnson
- Department of Biology and Geology Baldwin Wallace University Berea Ohio USA
| |
Collapse
|
37
|
Walczyńska A, Serra M. Body size variability across habitats in the Brachionus plicatilis cryptic species complex. Sci Rep 2022; 12:6912. [PMID: 35484290 PMCID: PMC9051053 DOI: 10.1038/s41598-022-10638-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/06/2022] [Indexed: 11/09/2022] Open
Abstract
The body size response to temperature is one of the most recognizable but still poorly understood ecological phenomena. Other covarying environmental factors are frequently invoked as either affecting the strength of that response or even driving this pattern. We tested the body size response in five species representing the Brachionus plicatilis cryptic species complex, inhabiting 10 brackish ponds with different environmental characteristics. Principal Component Analysis selected salinity and oxygen concentration as the most important factors, while temperature and pH were less influential in explaining variation of limnological parameters. Path analysis showed a positive interclonal effect of pH on body size. At the interspecific level, the size response was species- and factor-dependent. Under the lack of a natural thermo-oxygenic relationship, the negative response of size to temperature, expected according to 'size-to-temperature response' rules, disappeared, but a positive response of size to oxygen, expected according to predictions selecting oxygen as a factor actually driving these rules, remained. Our results confirm the crucial role of oxygen in determining the size-to-temperature patterns observed in the field.
Collapse
Affiliation(s)
- Aleksandra Walczyńska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Manuel Serra
- Institute Cavanilles for Biodiversity and Evolutionary Biology, University of Valencia, A.O. 2085, 46071, Valencia, Spain
| |
Collapse
|
38
|
Variation in abundance and life-history traits of two congeneric Arctic wolf spider species, Pardosa hyperborea and Pardosa furcifera, along local environmental gradients. Polar Biol 2022. [DOI: 10.1007/s00300-022-03041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Wilson RJ, Siqueira AF, Brooks SJ, Price BW, Simon LM, Walt SJ, Fenberg PB. Applying computer vision to digitised natural history collections for climate change research: Temperature‐size responses in British butterflies. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rebecca J. Wilson
- School of Ocean and Earth Sciences University of Southampton Southampton UK
- Department of Life Sciences Natural History Museum London UK
| | | | | | | | - Lea M. Simon
- School of Ocean and Earth Sciences University of Southampton Southampton UK
| | - Stéfan J. Walt
- Berkeley Institute for Data Science University of California Berkeley CA USA
| | - Phillip B. Fenberg
- School of Ocean and Earth Sciences University of Southampton Southampton UK
- Department of Life Sciences Natural History Museum London UK
| |
Collapse
|
40
|
Lindmark M, Ohlberger J, Gårdmark A. Optimum growth temperature declines with body size within fish species. GLOBAL CHANGE BIOLOGY 2022; 28:2259-2271. [PMID: 35060649 DOI: 10.1111/gcb.16067] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/18/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
According to the temperature-size rule, warming of aquatic ecosystems is generally predicted to increase individual growth rates but reduce asymptotic body sizes of ectotherms. However, we lack a comprehensive understanding of how growth and key processes affecting it, such as consumption and metabolism, depend on both temperature and body mass within species. This limits our ability to inform growth models, link experimental data to observed growth patterns, and advance mechanistic food web models. To examine the combined effects of body size and temperature on individual growth, as well as the link between maximum consumption, metabolism, and body growth, we conducted a systematic review and compiled experimental data on fishes from 52 studies that combined body mass and temperature treatments. By fitting hierarchical models accounting for variation between species, we estimated how maximum consumption and metabolic rate scale jointly with temperature and body mass within species. We found that whole-organism maximum consumption increases more slowly with body mass than metabolism, and is unimodal over the full temperature range, which leads to the prediction that optimum growth temperatures decline with body size. Using an independent dataset, we confirmed this negative relationship between optimum growth temperature and body size. Small individuals of a given population may, therefore, exhibit increased growth with initial warming, whereas larger conspecifics could be the first to experience negative impacts of warming on growth. These findings help advance mechanistic models of individual growth and food web dynamics and improve our understanding of how climate warming affects the growth and size structure of aquatic ectotherms.
Collapse
Affiliation(s)
- Max Lindmark
- Department of Aquatic Resources, Institute of Coastal Research, Swedish University of Agricultural Sciences, Öregrund, Sweden
| | - Jan Ohlberger
- School of Aquatic and Fishery Sciences (SAFS), University of Washington, Seattle, Washington, USA
| | - Anna Gårdmark
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Öregrund, Sweden
| |
Collapse
|
41
|
Wootton HF, Morrongiello JR, Schmitt T, Audzijonyte A. Smaller adult fish size in warmer water is not explained by elevated metabolism. Ecol Lett 2022; 25:1177-1188. [PMID: 35266600 PMCID: PMC9545254 DOI: 10.1111/ele.13989] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
Fish and other ectotherms living in warmer waters often grow faster as juveniles, mature earlier, but become smaller adults. Known as the temperature‐size rule (TSR), this pattern is commonly attributed to higher metabolism in warmer waters, leaving fewer resources for growth. An alternative explanation focuses on growth and reproduction trade‐offs across temperatures. We tested these hypotheses by measuring growth, maturation, metabolism and reproductive allocation from zebrafish populations kept at 26 and 30°C across six generations. Zebrafish growth and maturation followed TSR expectations but were not explained by baseline metabolic rate, which converged between temperature treatments after a few generations. Rather, we found that females at 30°C allocated more to reproduction, especially when maturing at the smallest sizes. We show that elevated temperatures do not necessarily increase baseline metabolism if sufficient acclimation is allowed and call for an urgent revision of modelling assumptions used to predict population and ecosystem responses to warming.
Collapse
Affiliation(s)
- Henry F Wootton
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - John R Morrongiello
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas Schmitt
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Asta Audzijonyte
- IMAS, University of Tasmania, Hobart, Tasmania, Australia.,Centre for Marine Socioecology, Hobart, Tasmania, Australia
| |
Collapse
|
42
|
Tscholl T, Nachman G, Spangl B, Walzer A. Heat waves affect prey and predators differently via developmental plasticity: who may benefit most from global warming? PEST MANAGEMENT SCIENCE 2022; 78:1099-1108. [PMID: 34786827 DOI: 10.1002/ps.6722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Climate warming is considered to affect the characteristics of heat waves by increasing their duration, frequency and intensity, which can have dramatic consequences for ectothermic arthropods. However, arthropods may respond to heat waves via plastic modifications, which could differently affect a predator and its prey. We examined this assumption using prominent counterparts in biological control, the predatory mite Phytoseiulus persimilis and its prey, the spider mite Tetranychus urticae. Individuals of both species were separately exposed to mild and extreme heat waves during their juvenile development. RESULTS Both species developed faster during extreme heat waves, but the proportional increase of the developmental rates was higher in the prey. Independent of sex, P. persimilis reached smaller size at maturity under extreme heat waves, whereas the body size modifications were sex-dependent in T. urticae: males became smaller, but females were able to maintain their size. CONCLUSIONS An accelerated development may result in the reduction of the exposure time of susceptible juvenile stages to heat waves and prey stages to predators. Plastic size adjustments caused a shift in the female predator-prey body size ratio in favor of the prey, which may lead to higher heat resistance and reduced predation risk for prey females under extreme heat waves. In conclusion, our findings indicate that species-specific shifts in age and size at maturity may result in lower suppression efficacy of the predator P. persimilis against its prey T. urticae with severe consequences for biological control of spider mites, if global warming continues.
Collapse
Affiliation(s)
- Thomas Tscholl
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Gösta Nachman
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Bernhard Spangl
- Department of Landscape, Spatial and Infrastructure Sciences, Institute of Statistics, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Andreas Walzer
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
43
|
Influence of photoperiod on thermal responses in body size, growth and development in Lycaena phlaeas (Lepidoptera: Lycaenidae). CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100034. [PMID: 36003275 PMCID: PMC9387441 DOI: 10.1016/j.cris.2022.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/22/2022]
|
44
|
van de Pol ILE, Hermaniuk A, Verberk WCEP. Interacting Effects of Cell Size and Temperature on Gene Expression, Growth, Development and Swimming Performance in Larval Zebrafish. Front Physiol 2021; 12:738804. [PMID: 34950046 PMCID: PMC8691434 DOI: 10.3389/fphys.2021.738804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Cell size may be important in understanding the thermal biology of ectotherms, as the regulation and consequences of cell size appear to be temperature dependent. Using a recently developed model system of triploid zebrafish (which have around 1.5-fold larger cells than their diploid counterparts) we examine the effects of cell size on gene expression, growth, development and swimming performance in zebrafish larvae at different temperatures. Both temperature and ploidy affected the expression of genes related to metabolic processes (citrate synthase and lactate dehydrogenase), growth and swimming performance. Temperature also increased development rate, but there was no effect of ploidy level. We did find interactive effects between ploidy and temperature for gene expression, body size and swimming performance, confirming that the consequences of cell size are temperature dependent. Triploids with larger cells performed best at cool conditions, while diploids performed better at warmer conditions. These results suggest different selection pressures on ectotherms and their cell size in cold and warm habitats.
Collapse
Affiliation(s)
- Iris Louise Eleonora van de Pol
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, Netherlands
| | - Adam Hermaniuk
- Department of Evolutionary and Physiological Ecology, Faculty of Biology, University of Białystok, Białystok, Poland
| | | |
Collapse
|
45
|
Quantitative mismatch between empirical temperature-size rule slopes and predictions based on oxygen limitation. Sci Rep 2021; 11:23594. [PMID: 34880310 PMCID: PMC8654919 DOI: 10.1038/s41598-021-03051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/24/2021] [Indexed: 11/08/2022] Open
Abstract
In ectotherms, adult body size commonly declines with increasing environmental temperature, a pattern known as the temperature-size rule. One influential hypothesis explaining this observation is that the challenge of obtaining sufficient oxygen to support metabolism becomes greater with increasing body size, and more so at high temperatures. Yet, previous models based on this hypothesis do not account for phenotypic plasticity in the physiology of organisms that counteracts oxygen limitation at high temperature. Here, we model the predicted strength of the temperature-size response using estimates of how both the oxygen supply and demand is affected by temperature when allowing for phenotypic plasticity in the aquatic ectotherm Daphnia magna. Our predictions remain highly inconsistent with empirical temperature-size responses, with the prior being close to one order of magnitude stronger than the latter. These results fail to provide quantitative support for the hypothesis that oxygen limitation drives temperature-size clines in aquatic ectotherms. Future studies into the role of oxygen limitation should address how the strength of the temperature-size response may be shaped by evolution under fluctuating temperature regimes. Finally, our results caution against applying deterministic models based on the oxygen limitation hypothesis when predicting future changes in ectotherm size distributions under climate change.
Collapse
|
46
|
Viel N, Mielec C, Pétillon J, Høye TT. Multiple reproductive events in female wolf spiders Pardosa hyperborea and Pardosa furcifera in the Low-Arctic: one clutch can hide another. Polar Biol 2021. [DOI: 10.1007/s00300-021-02963-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Woods HA, Moran AL. Reconsidering the Oxygen-Temperature Hypothesis of Polar Gigantism: Successes, Failures, and Nuance. Integr Comp Biol 2021; 60:1438-1453. [PMID: 32573680 DOI: 10.1093/icb/icaa088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
"Polar gigantism" describes a biogeographic pattern in which many ectotherms in polar seas are larger than their warmer-water relatives. Although many mechanisms have been proposed, one idea-the oxygen-temperature hypothesis-has received significant attention because it emerges from basic biophysical principles and is appealingly straightforward and testable. Low temperatures depress metabolic demand for oxygen more than supply of oxygen from the environment to the organism. This creates a greater ratio of oxygen supply to demand, releasing polar organisms from oxygen-based constraints on body size. Here we review evidence for and against the oxygen-temperature hypothesis. Some data suggest that larger-bodied taxa live closer to an oxygen limit, or that rising temperatures can challenge oxygen delivery systems; other data provide no evidence for interactions between body size, temperature, and oxygen sufficiency. We propose that these findings can be partially reconciled by recognizing that the oxygen-temperature hypothesis focuses primarily on passive movement of oxygen, implicitly ignoring other important processes including ventilation of respiratory surfaces or internal transport of oxygen by distribution systems. Thus, the hypothesis may apply most meaningfully to organisms with poorly developed physiological systems (eggs, embryos, egg masses, juveniles, or adults without mechanisms for ventilating internal or external surfaces). Finally, most tests of the oxygen-temperature hypothesis have involved short-term experiments. Many organisms can mount effective responses to physiological challenges over short time periods; however, the energetic cost of doing so may have impacts that appear only in the longer term. We therefore advocate a renewed focus on long-term studies of oxygen-temperature interactions.
Collapse
Affiliation(s)
- H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Amy L Moran
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
48
|
Suzuki Y, Toh L. Constraints and Opportunities for the Evolution of Metamorphic Organisms in a Changing Climate. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.734031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We argue that developmental hormones facilitate the evolution of novel phenotypic innovations and timing of life history events by genetic accommodation. Within an individual’s life cycle, metamorphic hormones respond readily to environmental conditions and alter adult phenotypes. Across generations, the many effects of hormones can bias and at times constrain the evolution of traits during metamorphosis; yet, hormonal systems can overcome constraints through shifts in timing of, and acquisition of tissue specific responses to, endocrine regulation. Because of these actions of hormones, metamorphic hormones can shape the evolution of metamorphic organisms. We present a model called a developmental goblet, which provides a visual representation of how metamorphic organisms might evolve. In addition, because developmental hormones often respond to environmental changes, we discuss how endocrine regulation of postembryonic development may impact how organisms evolve in response to climate change. Thus, we propose that developmental hormones may provide a mechanistic link between climate change and organismal adaptation.
Collapse
|
49
|
Memtombi Chanu C, Gupta S, Gupta A. Seasonal variations in the life cycle and morphology of Anisops breddini (Hemiptera: Notonectidae). INVERTEBR REPROD DEV 2021. [DOI: 10.1080/07924259.2021.1961884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Susmita Gupta
- Department of Ecology and Environmental Science, Assam University, Silchar, India
| | - Abhik Gupta
- Department of Ecology and Environmental Science, Assam University, Silchar, India
| |
Collapse
|
50
|
Urca T, Ribak G. The relationship between body size and flight power output in the mango stem borer (Batocera rufomaculata). JOURNAL OF INSECT PHYSIOLOGY 2021; 133:104290. [PMID: 34352283 DOI: 10.1016/j.jinsphys.2021.104290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Adult body size in insects can be influenced by environmental conditions during larval growth. The effect of such intraspecific variation in body mass on flight performance is poorly understood. In Batocera rufomaculata, a large tree boring beetle, adults emerging from larvae that developed in a dying host tree, and therefore, under nutrient-deprived diet conditions, are smaller but have an elevated long-distance flight capability compared to larger conspecifics that developed in viable host trees. The improved endurance for long-distance flight in the smaller individuals appears to contradict the interspecific trend in flying animals of a decrease in Cost of Transport (CoT) with increased body mass. To explore the relationship between intraspecific variation in body size and power expended during steady forward flight, we flew these beetles tethered in a wind tunnel and compared the flapping kinematics and power output of individuals varying in body mass (1-7 gr). Concurrently, we measured the forces the insects applied on the tether allowing us to evaluate the tethering effects and correct for them. From the flapping kinematics we estimated the mechanical power expended using a quasi-steady blade-element model. We found that muscle mass-specific power did not differ between small and large individuals flying at the same wind (flight) speed in the tunnel. Consequently, the CoT of B. rufomaculata does not vary with body mass. Such invariance of mass-specific power with body mass may aid the dispersal of smaller individuals from deteriorating host trees to new ones.
Collapse
Affiliation(s)
- Tomer Urca
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Israel
| | - Gal Ribak
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Israel; The Steinhardt Museum of Natural History, Israel National Centre for Biodiversity Studies, Tel Aviv 6997801, Israel.
| |
Collapse
|