1
|
Sun L, He Y, Cao M, Wang X, Zhou X, Yang J, Swenson NG. Tree phytochemical diversity and herbivory are higher in the tropics. Nat Ecol Evol 2024; 8:1426-1436. [PMID: 38937611 DOI: 10.1038/s41559-024-02444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
A long-standing but poorly tested hypothesis in plant ecology and evolution is that biotic interactions play a more important role in producing and maintaining species diversity in the tropics than in the temperate zone. A core prediction of this hypothesis is that tropical plants deploy a higher diversity of phytochemicals within and across communities because they experience more herbivore pressure than temperate plants. However, simultaneous comparisons of phytochemical diversity and herbivore pressure in plant communities from the tropical to the temperate zone are lacking. Here we provide clear support for this prediction by examining phytochemical diversity and herbivory in 60 tree communities ranging from species-rich tropical rainforests to species-poor subalpine forests. Using a community metabolomics approach, we show that phytochemical diversity is higher within and among tropical tree communities than within and among subtropical and subalpine communities, and that herbivore pressure and specialization are highest in the tropics. Furthermore, we show that the phytochemical similarity of trees has little phylogenetic signal, indicating rapid divergence between closely related species. In sum, we provide several lines of evidence from entire tree communities showing that biotic interactions probably play an increasingly important role in generating and maintaining tree diversity in the lower latitudes.
Collapse
Affiliation(s)
- Lu Sun
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Yunyun He
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy Sciences, Beijing, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Xuezhao Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy Sciences, Beijing, China
| | - Xiang Zhou
- School of Ethnic Medicine, Key Lab of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education of China, Yunnan Minzu University, Kunming, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China.
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
2
|
Ten Caten C, Dallas T. Latitudinal specificity of plant-avian frugivore interactions. J Anim Ecol 2024; 93:958-969. [PMID: 38826033 DOI: 10.1111/1365-2656.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/06/2024] [Indexed: 06/04/2024]
Abstract
Broad-scale assessments of plant-frugivore interactions indicate the existence of a latitudinal gradient in interaction specialization. The specificity (i.e. the similarity of the interacting partners) of plant-frugivore interactions could also change latitudinally given that differences in resource availability could favour species to become more or less specific in their interactions across latitudes. Species occurring in the tropics could be more taxonomically, phylogenetically and functionally specific in their interactions because of a wide range of resources that are constantly available in these regions that would allow these species to become more specialized in their resource usage. We used a data set on plant-avian frugivore interactions spanning a wide latitudinal range to examine these predictions, and we evaluated the relationship between latitude and taxonomic, phylogenetic and functional specificity of plant and frugivore interactions. These relationships were assessed using data on population interactions (population level), species means (species level) and community means (community level). We found that the specificity of plant-frugivore interactions is generally not different from null models. Although statistically significant relationships were often observed between latitude and the specificity of plant-frugivore interactions, the direction of these relationships was variable and they also were generally weak and had low explanatory power. These results were consistent across the three specificity measures and levels of organization, suggesting that there might be an interplay between different mechanisms driving the interactions between plants and frugivores across latitudes.
Collapse
Affiliation(s)
- Cleber Ten Caten
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Tad Dallas
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
3
|
Busi A, Martínez-Sánchez ET, Alvarez-Londoño J, Rivera-Páez FA, Ramírez-Chaves HE, Fontúrbel FE, Castaño-Villa GJ. Environmental and ecological factors affecting tick infestation in wild birds of the Americas. Parasitol Res 2024; 123:254. [PMID: 38922478 PMCID: PMC11208200 DOI: 10.1007/s00436-024-08246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
The Americas hold the greatest bird diversity worldwide. Likewise, ectoparasite diversity is remarkable, including ticks of the Argasidae and Ixodidae families - commonly associated with birds. Considering that ticks have potential health implications for humans, animals, and ecosystems, we conducted a systematic review to evaluate the effects of bioclimatic, geographic variables, and bird species richness on tick infestation on wild birds across the Americas. We identified 72 articles that met our inclusion criteria and provided data on tick prevalence in wild birds. Using Generalized Additive Models, we assessed the effect of environmental factors, such as habitat type, climatic conditions, bird species richness, and geographic location, on tick infestation. Our findings show that most bird infestation case studies involved immature ticks, such as larvae or nymphs, while adult ticks represented only 13% of case studies. We found birds infested by ticks of the genera Amblyomma (68%), Ixodes (22%), Haemaphysalis (5%), Dermacentor (1%), and Rhipicephalus (0.8%) in twelve countries across the Americas. Our findings revealed that temperature variation and bird species richness were negatively associated with tick infestation, which also varied with geographic location, increasing in mid-latitudes but declining in extreme latitudes. Our results highlight the importance of understanding how environmental and bird community factors influence tick infestation in wild birds across the Americas and the dynamics of tick-borne diseases and their impact on biodiversity.
Collapse
Affiliation(s)
- Ana Busi
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Grupo de Investigación en Ecosistemas Tropicales, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Doctorado en Ciencias-Agrarias, Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 64B No. 25-65, 170004, Manizales, Caldas, Colombia
| | - Estefani T Martínez-Sánchez
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Doctorado en Ciencias-Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| | - Johnathan Alvarez-Londoño
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Facultad de Ciencias Exactas y Naturales, Maestría en Ciencias Biológicas, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| | - Fredy A Rivera-Páez
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| | - Héctor E Ramírez-Chaves
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Centro de Museos, Museo de Historia Natural, Universidad de Caldas, Calle 58 No. 21-50, 170004, Manizales, Caldas, Colombia
| | - Francisco E Fontúrbel
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, 2373223, Valparaíso, Chile
| | - Gabriel J Castaño-Villa
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 64B No. 25-65, 170004, Manizales, Caldas, Colombia.
| |
Collapse
|
4
|
Liu M, Jiang P, Chase JM, Liu X. Global insect herbivory and its response to climate change. Curr Biol 2024; 34:2558-2569.e3. [PMID: 38776900 DOI: 10.1016/j.cub.2024.04.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/22/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Herbivorous insects consume a large proportion of the energy flow in terrestrial ecosystems and play a major role in the dynamics of plant populations and communities. However, high-resolution, quantitative predictions of the global patterns of insect herbivory and their potential underlying drivers remain elusive. Here, we compiled and analyzed a dataset consisting of 9,682 records of the severity of insect herbivory from across natural communities worldwide to quantify its global patterns and environmental determinants. Global mapping revealed strong spatial variation in insect herbivory at the global scale, showing that insect herbivory did not significantly vary with latitude for herbaceous plants but increased with latitude for woody plants. We found that the cation-exchange capacity in soil was a main predictor of levels of herbivory on herbaceous plants, while climate largely determined herbivory on woody plants. We next used well-established scenarios for future climate change to forecast how spatial patterns of insect herbivory may be expected to change with climate change across the world. We project that herbivore pressure will intensify on herbaceous plants worldwide but would likely only increase in certain biomes (e.g., northern coniferous forests) for woody plants. Our assessment provides quantitative evidence of how environmental conditions shape the spatial pattern of insect herbivory, which enables a more accurate prediction of the vulnerabilities of plant communities and ecosystem functions in the Anthropocene.
Collapse
Affiliation(s)
- Mu Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, 730000 Lanzhou, P.R. China
| | - Peixi Jiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, 730000 Lanzhou, P.R. China
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany; Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale) 06099, Germany
| | - Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, 730000 Lanzhou, P.R. China.
| |
Collapse
|
5
|
Zhang Y, Worthy SJ, Xu S, He Y, Wang X, Song X, Cao M, Yang J. Phytochemical diversity and their adaptations to abiotic and biotic pressures in fine roots across a climatic gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172051. [PMID: 38565347 DOI: 10.1016/j.scitotenv.2024.172051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Phytochemicals and their ecological significance are long ignored in trait-based ecology. Moreover, the adaptations of phytochemicals produced by fine roots to abiotic and biotic pressures are less understood. Here, we explored the fine roots metabolomes of 315 tree species and their rhizosphere microbiome in southwestern China spanning tropical, subtropical, and subalpine forest ecosystems, to explore phytochemical diversity and endemism patterns of various metabolic pathways and phytochemical-microorganism interactions. We found that subalpine species showed higher phytochemical diversity but lower interspecific variation than tropical species, which favors coping with high abiotic pressures. Tropical species harbored higher interspecific phytochemical variation and phytochemical endemism, which favors greater species coexistence and adaptation to complex biotic pressures. Moreover, there was evidence of widespread chemical niche partitioning of closely related species in all regions, and phytochemicals showed a weak phylogenetic signal, but were regulated by abiotic and biotic pressures. Our findings support the Latitudinal Biotic Interaction Hypothesis, i.e., the intensity of phytochemical-microorganism interactions decreases from tropical to subalpine regions, which promotes greater microbial community turnover and phytochemical niche partitioning of host plants in the tropics than in higher latitude forests. Our study reveals the convergent phytochemical diversity patterns of various pathways and their interactions with microorganism, thus promoting species coexistence.
Collapse
Affiliation(s)
- Yazhou Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Samantha J Worthy
- Department of Evolution and Ecology, University of California, Davis, CA, USA.
| | - Shijia Xu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China; School of Ethnic Medicine, Key Lab of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education of China, Yunnan Minzu University, Kunming 650504, Yunnan, China.
| | - Yunyun He
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Xuezhao Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Xiaoyang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| |
Collapse
|
6
|
Vázquez-González C, Castagneyrol B, Muiruri EW, Barbaro L, Abdala-Roberts L, Barsoum N, Fründ J, Glynn C, Jactel H, McShea WJ, Mereu S, Mooney KA, Morillas L, Nock CA, Paquette A, Parker JD, Parker WC, Roales J, Scherer-Lorenzen M, Schuldt A, Verheyen K, Weih M, Yang B, Koricheva J. Tree diversity enhances predation by birds but not by arthropods across climate gradients. Ecol Lett 2024; 27:e14427. [PMID: 38698677 DOI: 10.1111/ele.14427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top-down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation. We recorded bird and arthropod predation attempts on plasticine caterpillars in monocultures and tree species mixtures. Both tree species richness and temperature increased predation by birds but not by arthropods. Furthermore, the effects of tree species richness on predation were consistent across the studied climatic gradient. Our findings provide evidence that tree diversity strengthens top-down control of insect herbivores by birds, underscoring the need to implement conservation strategies that safeguard tree diversity to sustain ecosystem services provided by natural enemies in forests.
Collapse
Affiliation(s)
- Carla Vázquez-González
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, USA
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (MBG-CSIC), Pontevedra, España
| | | | - Evalyne W Muiruri
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Luc Barbaro
- Dynafor, INRAE-INPT, University of Toulouse, Castanet-Tolosan, France
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Nadia Barsoum
- Forest Research, Alice Holt Lodge, Farnham, Surrey, UK
| | - Jochen Fründ
- Biometry and Environmental System Analysis, University of Freiburg, Freiburg, Germany
- Animal Network Ecology, Department of Biology, Universität Hamburg, Hamburg, Germany
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| | - Carolyn Glynn
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hervé Jactel
- BIOGECO, University of Bordeaux, INRAE, Bordeaux, France
| | - William J McShea
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute 1500 Remount Road, Front Royal, Virginia, USA
| | - Simone Mereu
- Institute of BioEconomy, National Research Council of Italy, Sassari, Italy
| | - Kailen A Mooney
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, USA
| | - Lourdes Morillas
- Department of Plant Biology and Ecology, University of Sevilla, C/ Professor García González s/n, Sevilla, Spain
| | - Charles A Nock
- College of Natural and Applied Sciences, Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Alain Paquette
- Center for Forest Research, Université du Québec à Montréal, Montréal, Canada
| | - John D Parker
- Smithsonian Environmental Research Center, Front Royal, Maryland, USA
| | - William C Parker
- Ontario Ministry of Natural Resources and Forestry, Sault Ste. Marie, Ontario, Canada
| | - Javier Roales
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra, Seville, Spain
| | | | - Andreas Schuldt
- Forest Nature Conservation, University of Göttingen, Göttingen, Germany
| | - Kris Verheyen
- Forest & Nature Lab, Department of Environment, Ghent University, Melle-Gontrode, Belgium
| | - Martin Weih
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bo Yang
- Jiangxi Key Laboratory of Plant Resources and Biodiversity, Jingdezhen University, Jingdezhen, China
| | - Julia Koricheva
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| |
Collapse
|
7
|
Zvereva EL, Castagneyrol B, Kozlov MV. Does spatial variation in insect herbivory match variations in plant quality? A meta-analysis. Ecol Lett 2024; 27:e14440. [PMID: 38778587 DOI: 10.1111/ele.14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 03/27/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Variation in herbivore pressure has often been predicted from patterns in plant traits considered as antiherbivore defences. Here, we tested whether spatial variation in field insect herbivory is associated with the variation in plant quality by conducting a meta-analysis of 223 correlation coefficients between herbivory levels and the expression of selected plant traits. We found no overall correlation between herbivory and either concentrations of plant secondary metabolites or values of physical leaf traits. This result was due to both the large number of low correlations and the opposing directions of high correlations in individual studies. Field herbivory demonstrated a significant association only with nitrogen: herbivore pressure increased with an increase in nitrogen concentration in plant tissues. Thus, our meta-analysis does not support either theoretical prediction, i.e., that plants possess high antiherbivore defences in localities with high herbivore pressure or that herbivory is low in localities where plant defences are high. We conclude that information about putative plant defences is insufficient to predict plant losses to insects in field conditions and that the only bottom-up factor shaping spatial variation in insect herbivory is plant nutritive value. Our findings stress the need to improve a theory linking plant putative defences and herbivory.
Collapse
|
8
|
Ruiz-Moreno A, Emslie MJ, Connolly SR. High response diversity and conspecific density-dependence, not species interactions, drive dynamics of coral reef fish communities. Ecol Lett 2024; 27:e14424. [PMID: 38634183 DOI: 10.1111/ele.14424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
Species-to-species and species-to-environment interactions are key drivers of community dynamics. Disentangling these drivers in species-rich assemblages is challenging due to the high number of potentially interacting species (the 'curse of dimensionality'). We develop a process-based model that quantifies how intraspecific and interspecific interactions, and species' covarying responses to environmental fluctuations, jointly drive community dynamics. We fit the model to reef fish abundance time series from 41 reefs of Australia's Great Barrier Reef. We found that fluctuating relative abundances are driven by species' heterogenous responses to environmental fluctuations, whereas interspecific interactions are negligible. Species differences in long-term average abundances are driven by interspecific variation in the magnitudes of both conspecific density-dependence and density-independent growth rates. This study introduces a novel approach to overcoming the curse of dimensionality, which reveals highly individualistic dynamics in coral reef fish communities that imply a high level of niche structure.
Collapse
Affiliation(s)
- Alfonso Ruiz-Moreno
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Michael J Emslie
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Sean R Connolly
- Smithsonian Tropical Research Institute, Panama City, Panama
| |
Collapse
|
9
|
Pagenkopp Lohan KM, Gignoux-Wolfsohn SA, Ruiz GM. Biodiversity differentially impacts disease dynamics across marine and terrestrial habitats. Trends Parasitol 2024; 40:106-117. [PMID: 38212198 DOI: 10.1016/j.pt.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
The relationship between biodiversity and infectious disease, where increased biodiversity leads to decreased disease risk, originated from research in terrestrial disease systems and remains relatively underexplored in marine systems. Understanding the impacts of biodiversity on disease in marine versus terrestrial systems is key to continued marine ecosystem functioning, sustainable aquaculture, and restoration projects. We compare the biodiversity-disease relationship across terrestrial and marine systems, considering biodiversity at six levels: intraspecific host diversity, host microbiomes, interspecific host diversity, biotic vectors and reservoirs, parasite consumers, and parasites. We highlight gaps in knowledge regarding how these six levels of biodiversity impact diseases in marine systems and propose two model systems, the Perkinsus-oyster and Labyrinthula-seagrass systems, to address these gaps.
Collapse
Affiliation(s)
- Katrina M Pagenkopp Lohan
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD 21037, USA.
| | - Sarah A Gignoux-Wolfsohn
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD 21037, USA; Current address: Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Gregory M Ruiz
- Marine Invasions Research Laboratory, Smithsonian Environmental Research Center, Edgewater, MD 21037, USA
| |
Collapse
|
10
|
Zhao H, Xian X, Yang N, Guo J, Zhao L, Shi J, Liu WX. Risk assessment framework for pine wilt disease: Estimating the introduction pathways and multispecies interactions among the pine wood nematode, its insect vectors, and hosts in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167075. [PMID: 37714356 DOI: 10.1016/j.scitotenv.2023.167075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Pine wilt disease (PWD), caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus), a destructive, invasive forest pathogen, poses a serious threat to global pine forest ecosystems. The global invasion of PWN has been described based on three successive phases, introduction, establishment, and dispersal. Risk assessments of the three successive PWN invasion phases can assist in targeted management efforts. Here, we present a risk assessment framework to evaluate the introduction, establishment, and dispersal risks of PWD in China using network analysis, species distribution models, and niche concepts. We found that >88 % of PWN inspection records were from the United States, South Korea, Japan, Germany, and Mexico, and 94 % of interception records were primarily from the Jiangsu, Shanghai, Shandong, Tianjin, and Zhejiang ports. Based on the nearly current climate, the areas of PWN overlap with its host Pinus species were primarily distributed in southern, eastern, Yangtze River Basin, central, and northeastern China regions. Areas of PWN overlap with its insect vector Monochamus alternatus were primarily distributed in southern, eastern, Yangtze River Basin, central, and northeastern China regions, and those of PWN overlap with the insect vector Monochamus saltuarius were primarily distributed in eastern and northeastern China. The niche between PWN and the insect vector M. alternatus was the most similar (0.68), followed by that between PWN and the insect vector M. saltuarius (0.47). Climate change will increase the suitable probabilities of PWN and its two insect vectors occurring at high latitudes, further increasing their threat to hosts in northeastern China. This risk assessment framework for PWD could be influential in preventing the entry of the PWN and mitigating their establishment and dispersal risks in China. Our study provides substantial clues for developing a framework to improve the risk assessment and surveillance of biological invasions worldwide.
Collapse
Affiliation(s)
- Haoxiang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; The College of Forestry, Beijing Forestry University, Beijing 100193, China
| | - Xiaoqing Xian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nianwan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Jianyang Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lilin Zhao
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Juan Shi
- The College of Forestry, Beijing Forestry University, Beijing 100193, China.
| | - Wan-Xue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
11
|
Nash LN, Kratina P, Recalde FC, Jones JI, Izzo T, Romero GQ. Tropical and temperate differences in the trophic structure and aquatic prey use of riparian predators. Ecol Lett 2023; 26:2122-2134. [PMID: 37807844 DOI: 10.1111/ele.14322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
The influence of aquatic resource-inputs on terrestrial communities is poorly understood, particularly in the tropics. We used stable isotope analysis of carbon and nitrogen to trace aquatic prey use and quantify the impact on trophic structure in 240 riparian arthropod communities in tropical and temperate forests. Riparian predators consumed more aquatic prey and were more trophically diverse in the tropics than temperate regions, indicating tropical riparian communities are both more reliant on and impacted by aquatic resources than temperate communities. This suggests they are more vulnerable to disruption of aquatic-terrestrial linkages. Although aquatic resource use declined strongly with distance from water, we observed no correlated change in trophic structure, suggesting trophic flexibility to changing resource availability within riparian predator communities in both tropical and temperate regions. Our findings highlight the importance of aquatic resources for riparian communities, especially in the tropics, but suggest distance from water is less important than resource diversity in maintaining terrestrial trophic structure.
Collapse
Affiliation(s)
- Liam N Nash
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Pavel Kratina
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Fátima C Recalde
- Laboratory of Multitrophic Interactions and Biodiversity, Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - John Iwan Jones
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Thiago Izzo
- Laboratório de Ecologia de Comunidades, Departamento de Botânica e Ecologia, Universidade Federal do Mato Grosso, Mato Grosso, Brazil
| | - Gustavo Q Romero
- Laboratory of Multitrophic Interactions and Biodiversity, Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
12
|
Tang H, Zhu X, Zhong Y, Li Y, Luo W, Liu H, Descombes P, Gange AC, Chu C. Global latitudinal patterns in leaf herbivory are related to variation in climate, rather than phytochemicals or mycorrhizal types. Natl Sci Rev 2023; 10:nwad236. [PMID: 37954199 PMCID: PMC10632796 DOI: 10.1093/nsr/nwad236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/06/2023] [Indexed: 11/14/2023] Open
Affiliation(s)
- Hui Tang
- State Key Laboratory of Biocontrol, School of Ecology/School of Life Sciences, Sun Yat-sen University, China
| | - Xianhui Zhu
- State Key Laboratory of Biocontrol, School of Ecology/School of Life Sciences, Sun Yat-sen University, China
| | - Yonglin Zhong
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, China
| | - Yuanzhi Li
- State Key Laboratory of Biocontrol, School of Ecology/School of Life Sciences, Sun Yat-sen University, China
| | - Wenqi Luo
- State Key Laboratory of Biocontrol, School of Ecology/School of Life Sciences, Sun Yat-sen University, China
| | - Hanlun Liu
- State Key Laboratory of Biocontrol, School of Ecology/School of Life Sciences, Sun Yat-sen University, China
| | - Patrice Descombes
- Musée et Jardins botaniques cantonaux, Switzerland
- Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Alan C Gange
- Department of Biological Sciences, Royal Holloway University of London, UK
| | - Chengjin Chu
- State Key Laboratory of Biocontrol, School of Ecology/School of Life Sciences, Sun Yat-sen University, China
| |
Collapse
|
13
|
Moore NA, Morales-Castilla I, Hargreaves AL, Olalla-Tárraga MÁ, Villalobos F, Calosi P, Clusella-Trullas S, Rubalcaba JG, Algar AC, Martínez B, Rodríguez L, Gravel S, Bennett JM, Vega GC, Rahbek C, Araújo MB, Bernhardt JR, Sunday JM. Temperate species underfill their tropical thermal potentials on land. Nat Ecol Evol 2023; 7:1993-2003. [PMID: 37932384 PMCID: PMC10697837 DOI: 10.1038/s41559-023-02239-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/29/2023] [Indexed: 11/08/2023]
Abstract
Understanding how temperature determines the distribution of life is necessary to assess species' sensitivities to contemporary climate change. Here, we test the importance of temperature in limiting the geographic ranges of ectotherms by comparing the temperatures and areas that species occupy to the temperatures and areas species could potentially occupy on the basis of their physiological thermal tolerances. We find that marine species across all latitudes and terrestrial species from the tropics occupy temperatures that closely match their thermal tolerances. However, terrestrial species from temperate and polar latitudes are absent from warm, thermally tolerable areas that they could potentially occupy beyond their equatorward range limits, indicating that extreme temperature is often not the factor limiting their distributions at lower latitudes. This matches predictions from the hypothesis that adaptation to cold environments that facilitates survival in temperate and polar regions is associated with a performance trade-off that reduces species' abilities to contend in the tropics, possibly due to biotic exclusion. Our findings predict more direct responses to climate warming of marine ranges and cool range edges of terrestrial species.
Collapse
Affiliation(s)
- Nikki A Moore
- Department of Biology, McGill University, Montreal, Quebec, Canada.
| | - Ignacio Morales-Castilla
- Department of Life Sciences, Global Change Ecology and Evolution Group, Universidad de Alcalá; Alcalá de Henares, Madrid, Spain
| | | | - Miguel Ángel Olalla-Tárraga
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Spain
| | | | - Piero Calosi
- Marine Ecological and Evolutionary Physiology Laboratory, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - Susana Clusella-Trullas
- Department of Botany and Zoology and School for Climate Studies, Stellenbosch University, Stellenbosch, South Africa
| | - Juan G Rubalcaba
- Department of Biology, McGill University, Montreal, Quebec, Canada
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Adam C Algar
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Brezo Martínez
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Laura Rodríguez
- Department of Biology (Grupo en Biodiversidad y Conservación, IU-ECOAQUA), Marine Sciences Faculty, University of Las Palmas de Gran Canaria; Las Palmas de G.C., Canary Islands, Spain
| | - Sarah Gravel
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Joanne M Bennett
- Fenner School of Environment & Society, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Greta C Vega
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Carsten Rahbek
- Center for Global Mountain Biodiversity, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Institute of Ecology, Peking University, Beijing, China
- Danish Institute for Advanced Study, University of Southern Denmark, Odense M, Denmark
| | - Miguel B Araújo
- Department of Biogeography and Global Change, National Museum of Natural Sciences, CSIC, Madrid, Spain
- 'Rui Nabeiro' Biodiversity Chair, MED Institute, University of Évora, Évora, Portugal
| | - Joey R Bernhardt
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
14
|
Fan SY, Yang Q, Li SP, Fristoe TS, Cadotte MW, Essl F, Kreft H, Pergl J, Pyšek P, Weigelt P, Kartesz J, Nishino M, Wieringa JJ, van Kleunen M. A latitudinal gradient in Darwin's naturalization conundrum at the global scale for flowering plants. Nat Commun 2023; 14:6244. [PMID: 37828007 PMCID: PMC10570376 DOI: 10.1038/s41467-023-41607-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023] Open
Abstract
Darwin's naturalization conundrum describes two seemingly contradictory hypotheses regarding whether alien species closely or distantly related to native species should be more likely to naturalize in regional floras. Both expectations have accumulated empirical support, and whether such apparent inconsistency can be reconciled at the global scale is unclear. Here, using 219,520 native and 9,531 naturalized alien plant species across 487 globally distributed regions, we found a latitudinal gradient in Darwin's naturalization conundrum. Naturalized alien plant species are more closely related to native species at higher latitudes than they are at lower latitudes, indicating a greater influence of preadaptation in harsher climates. Human landscape modification resulted in even steeper latitudinal clines by selecting aliens distantly related to natives in warmer and drier regions. Our results demonstrate that joint consideration of climatic and anthropogenic conditions is critical to reconciling Darwin's naturalization conundrum.
Collapse
Affiliation(s)
- Shu-Ya Fan
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Qiang Yang
- Ecology, Department of Biology, University of Konstanz, Konstanz, 78464, Germany
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
| | - Shao-Peng Li
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.
| | - Trevor S Fristoe
- Ecology, Department of Biology, University of Konstanz, Konstanz, 78464, Germany
- Department of Biology, University of Puerto Rico - Río Piedras, San Juan, 00925, Puerto Rico
| | - Marc W Cadotte
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| | - Franz Essl
- Division of Bioinvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Vienna, 1030, Austria
| | - Holger Kreft
- Biodiversity, Macroecology & Biogeography, University of Göttingen, Göttingen, 37077, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, 37077, Germany
- Campus-Institut Data Science, Göttingen, 37077, Germany
| | - Jan Pergl
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, Průhonice, CZ-25243, Czech Republic
| | - Petr Pyšek
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, Průhonice, CZ-25243, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, CZ-12844, Czech Republic
| | - Patrick Weigelt
- Biodiversity, Macroecology & Biogeography, University of Göttingen, Göttingen, 37077, Germany
- Campus-Institut Data Science, Göttingen, 37077, Germany
| | - John Kartesz
- Biota of North America Program (BONAP), Chapel Hill, 27516, NC, USA
| | - Misako Nishino
- Biota of North America Program (BONAP), Chapel Hill, 27516, NC, USA
| | - Jan J Wieringa
- Naturalis Biodiversity Centre, Darwinweg 2, 2333 CR Leiden, Leiden, The Netherlands
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Konstanz, 78464, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| |
Collapse
|
15
|
Van de Vliert E, Conway LG, Van Lange PAM. Enriching Psychology by Zooming Out to General Mindsets and Practices in Natural Habitats. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2023; 18:1198-1216. [PMID: 36634361 DOI: 10.1177/17456916221141657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Psychology has been "zooming in" on individuals, dyads, and groups with a narrow lens to the exclusion of "zooming out," which involves placing the targeted phenomena within more distal layers of influential context. Here, we plea for a paradigm shift. Specifically, we showcase largely hidden scientific benefits of zooming out by discussing worldwide evidence on inhabitants' habitual adaptations to colder-than-temperate and hotter-than-temperate habitats. These exhibits reveal two different types of theories. Clement-climate perspectives emphasize that generic common properties of stresses from cold and hot temperatures elicit similar effects on personality traits and psychosocial functioning. Cold-versus-heat perspectives emphasize that specific unique properties of stresses from cold and hot habitats elicit different effects on phenomena, such as speech practices and intergroup discrimination. Both zooming-out perspectives are then integrated into a complementary framework that helps identify explanatory mechanisms and demonstrates the broader added value of embedding zooming-in approaches within zooming-out approaches. Indeed, zooming out enriches psychology.
Collapse
Affiliation(s)
| | | | - Paul A M Van Lange
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam
| |
Collapse
|
16
|
Alonso‐Crespo IM, Hernández‐Agüero JA. Shedding light on trophic interactions: A field experiment on the effect of human population between latitudes on herbivory and predation patterns. Ecol Evol 2023; 13:e10449. [PMID: 37664505 PMCID: PMC10468994 DOI: 10.1002/ece3.10449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
Interactions between species within an ecosystem (e.g. predation and herbivory) play a vital role in sustaining the ecosystem functionality, which includes aspects like pest control and nutrient cycling. Unfortunately, human activities are progressively disrupting these trophic relationships, thereby contributing to the ongoing biodiversity decline. Additionally, certain human activities like urbanization may further impact the intensity of these trophic interactions, which are already known to be influenced by latitudinal gradients. The aim of this study was to test the hypothesis of whether the impact of human population, used as a proxy for human pressure, differs between latitudes. To test it, we selected 18 study sites at two latitudes (i.e. ~53°N and ~50°N) with varying human population density (HPD). We used artificial caterpillars placed on European beech branches to assess bird predation and took standardized pictures of the leaves to estimate insect herbivory. Remote sensing techniques were used to estimate human pressure. We found that the intensity of bird predation varied in response to HPD, with opposite trends observed depending on the latitude. At our upper latitude, bird predation increased with HPD, while the opposite was observed at the lower latitude. Herbivory was not affected by urbanization and we found higher levels of herbivory in the lower compared to the higher latitude. At the lower latitude, certain species may experience a disadvantage attributed to the urban heat island effect due to their sensitivity to temperature fluctuations. Conversely, at the higher latitude, where minimum temperatures can be a limitation, certain species may benefit from milder winters. Overall, this study highlights the complex and dynamic nature of trophic relationships in the face of human-driven changes to ecosystems. It also emphasizes the importance of considering both human pressure and latitudinal gradients when assessing the ecological consequences of future climate change scenarios, especially in urban environments.
Collapse
Affiliation(s)
| | - Juan Antonio Hernández‐Agüero
- Senckenberg Gesellschaft für NaturforschungFrankfurt (am Main)Germany
- Department of Environmental GeographyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
17
|
Kozlov MV, Zverev V, Sandner TM, van Nieukerken EJ, Zvereva EL. Poleward increase in feeding efficiency of leafminer Stigmella lapponica (Lepidoptera: Nepticulidae) in a latitudinal gradient crossing a boreal forest zone. INSECT SCIENCE 2023; 30:857-866. [PMID: 36269128 DOI: 10.1111/1744-7917.13128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 06/15/2023]
Abstract
Damage to plant communities imposed by insect herbivores generally decreases from low to high latitudes. This decrease is routinely attributed to declines in herbivore abundance and/or diversity, whereas latitudinal changes in per capita food consumption remain virtually unknown. Here, we tested the hypothesis that the lifetime food consumption by a herbivore individual decreases from low to high latitudes due to a temperature-driven decrease in metabolic expenses. From 2016 to 2019, we explored latitudinal changes in multiple characteristics of linear (gallery) mines made by larvae of the pygmy moth, Stigmella lapponica, in leaves of downy birch, Betula pubescens. The mined leaves were larger than intact leaves at the southern end of our latitudinal gradient (at 60°N) but smaller than intact leaves at its northern end (at 69°N), suggesting that female oviposition preference changes with latitude. No latitudinal changes were observed in larval size, mine length or area, and in per capita food consumption, but the larval feeding efficiency (quantified as the ratio between larval size and mine size) increased with latitude. Consequently, S. lapponica larvae consumed less foliar biomass at higher latitudes than at lower latitudes to reach the same size. Based on space-for-time substitution, we suggest that climate warming will increase metabolic expenses of insect herbivores with uncertain consequences for plant-herbivore interactions.
Collapse
Affiliation(s)
| | - Vitali Zverev
- Department of Biology, University of Turku, Turku, Finland
| | - Tobias M Sandner
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | | | | |
Collapse
|
18
|
Ivers NA, Jha S. Biogeography, climate, and land use create a mosaic of parasite risk in native bumble bees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161545. [PMID: 36649773 DOI: 10.1016/j.scitotenv.2023.161545] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Host-parasite interactions are crucial to the regulation of host population growth, as they often impact both long-term population stability and ecological functioning. Animal hosts navigate a number of environmental conditions, including local climate, anthropogenic land use, and varying degrees of spatial isolation, all of which can mediate parasitism exposure. Despite this, we know little about the potential for these environmental conditions to impact pathogen prevalence at biogeographic scales, especially for key ecosystem service-providing animals. Bees are essential pollination providers that may be particularly sensitive to biogeography, climate, and land-use as these factors are known to limit bee dispersal and contribute to underlying population genetic variation, which may also impact host-parasite interactions. Importantly, many native bumble bee species have recently shown geographic range contractions, reduced genetic diversity, and increased parasitism rates, highlighting the potential importance of interacting and synergistic stressors. In this study, we incorporate spatially explicit environmental, biogeographic, and land-use data in combination with genetically derived host population data to conduct a large-scale epidemiological assessment of the drivers of pathogen prevalence across >1000 km for a keystone western US pollinator, the bumble bee Bombus vosnesenskii. We found high rates of infection from Crithidia bombi and C. expoekii, which show strong spatial autocorrelation and which were more prevalent in northern latitudes. We also show that land use barriers best explained differences in parasite prevalence and parasite community composition, while precipitation, elevation, and B. vosnesenskii nesting density were important drivers of parasite prevalence. Overall, our results demonstrate that human land use can impact critical host-parasite interactions for native bees at massive spatial scales. Further, our work indicates that disease-related survey and conservation measures should take into account the independent and interacting influences of climate, biogeography, land use, and local population dynamics.
Collapse
Affiliation(s)
- Nicholas A Ivers
- University of Texas at Austin, Dept. Integrative Biology, United States of America.
| | - Shalene Jha
- University of Texas at Austin, Dept. Integrative Biology, United States of America
| |
Collapse
|
19
|
Components influencing parasitism by Dadaytrema oxycephala (Digenea: Cladorchiidae) in Neotropical fish. Parasitol Res 2023; 122:1221-1228. [PMID: 36930288 DOI: 10.1007/s00436-023-07822-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
The components that mold the structure of parasitic fauna are used as objects of study in an attempt to find patterns in their distribution. It is known that phylogeny (represented by specificity), host ecological traits (for example, feeding habits, position of the water column, reproductive strategies, body size, and age), and the environment affect the distribution and occurrence of parasites. In tropical regions, digeneans show high diversity, and the species Dadaytrema oxycephala is known to parasitize a wide range of host species. In this context, the objective of the present study is to analyze the components that affect the occurrence of D. oxycephala in Neotropical fish. We used data from the literature that contained the abundance of this parasite, as well as the geographic location and host species, and evaluated the influence of ecological traits, specificity, and latitude on parasite abundance, using a generalized linear mixed model (GLMM). The abundance of D. oxycephala can be explained by trophic level and position in the water column and latitude. However, coevolutionary processes are also extremely important, and the distribution of this parasite was not equal, showing high abundance for the genus Piaractus, which are the preferred hosts, even if the parasite is considered generalist. In short, host ecological traits are the important components in the distribution and occurrence of D. oxycephala, as well as the latitude.
Collapse
|
20
|
Wenda C, Nakamura A, Ashton LA. Season and herbivore defence trait mediate tri-trophic interactions in tropical rainforest. J Anim Ecol 2023; 92:466-476. [PMID: 36479696 DOI: 10.1111/1365-2656.13865] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022]
Abstract
Bottom-up effects from host plants and top-down effects from predators on herbivore abundance and distribution vary with physical environment, plant chemistry, predator and herbivore trait and diversity. Tri-trophic interactions in tropical ecosystems may follow different patterns from temperate ecosystems due to differences in above abiotic and biotic conditions. We sampled leaf-chewing larvae of Lepidoptera (caterpillars) from a dominant host tree species in a seasonal rainforest in Southwest China. We reared out parasitoids and grouped herbivores based on their diet preferences, feeding habits and defence mechanisms. We compared caterpillar abundance with leaf numbers ('bottom-up' effects) and parasitoid abundance ('top-down' effects) between different seasons and herbivore traits. We found bottom-up effects were stronger than top-down effects. Both bottom-up and top-down effects were stronger in the dry season than in the wet season, which were driven by polyphagous rare species and host plant phenology. Contrary to our predictions, herbivore traits did not influence differences in the bottom-up or top-down effects except for stronger top-down effects for shelter-builders. Our study shows season is the main predictor of the bottom-up and top-down effects in the tropics and highlights the complexity of these interactions.
Collapse
Affiliation(s)
- Cheng Wenda
- School of Ecology, Sun Yat-Sen University, Shenzhen, China.,State Key Laboratory of Biological Control, Sun Yat-sen University, Guangzhou, China
| | - Akihiro Nakamura
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Louise A Ashton
- Ecology and Biodiversity Area, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
21
|
Gálvez Á, Peres-Neto PR, Castillo-Escrivà A, Bonilla F, Camacho A, García-Roger EM, Iepure S, Miralles-Lorenzo J, Monrós JS, Olmo C, Picazo A, Rojo C, Rueda J, Sahuquillo M, Sasa M, Segura M, Armengol X, Mesquita-Joanes F. Inconsistent response of taxonomic groups to space and environment in mediterranean and tropical pond metacommunities. Ecology 2023; 104:e3835. [PMID: 36199222 PMCID: PMC10078490 DOI: 10.1002/ecy.3835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023]
Abstract
The metacommunity concept provides a theoretical framework that aims at explaining organism distributions by a combination of environmental filtering, dispersal, and drift. However, few works have attempted a multitaxon approach and even fewer have compared two distant biogeographical regions using the same methodology. We tested the expectation that temperate (mediterranean-climate) pond metacommunities would be more influenced by environmental and spatial processes than tropical ones, because of stronger environmental gradients and a greater isolation of waterbodies. However, the pattern should be different among groups of organisms depending on their dispersal abilities. We surveyed 30 tropical and 32 mediterranean temporary ponds from Costa Rica and Spain, respectively, and obtained data on 49 environmental variables. We characterized the biological communities of bacteria and archaea (from the water column and the sediments), phytoplankton, zooplankton, benthic invertebrates, amphibians and birds, and estimated the relative role of space and environment on metacommunity organization for each group and region, by means of variation partitioning using generalized additive models. Purely environmental effects were important in both tropical and mediterranean ponds, but stronger in the latter, probably due to their larger limnological heterogeneity. Spatially correlated environment and pure spatial effects were greater in the tropics, related to higher climatic heterogeneity and dispersal processes (e.g., restriction, surplus) acting at different scales. The variability between taxonomic groups in the contribution of spatial and environmental factors to metacommunity variation was very wide, but higher in active, compared with passive, dispersers. Higher environmental effects were observed in mediterranean passive dispersers, and higher spatial effects in tropical passive dispersers. The unexplained variation was larger in the tropical setting, suggesting a higher role for stochastic processes, unmeasured environmental factors, or biotic interactions in the tropics, although this difference affected some actively dispersing groups (insects and birds) more than passive dispersers. These results, despite our limitations in comparing only two regions, provide support, for a wide variety of aquatic organisms, for the classic view of stronger abiotic niche constraints in temperate areas compared with the tropics. The heterogeneous response of taxonomic groups between regions also points to a stronger influence of regional context than organism adaptations on metacommunity organization.
Collapse
Affiliation(s)
- Ángel Gálvez
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of València, Paterna, Spain
| | | | - Andreu Castillo-Escrivà
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of València, Paterna, Spain
| | - Fabián Bonilla
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of València, Paterna, Spain
| | - Eduardo M García-Roger
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of València, Paterna, Spain
| | - Sanda Iepure
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of València, Paterna, Spain.,Emil Racovitza Institute of Speleology, Cluj Napoca, Romania
| | - Javier Miralles-Lorenzo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of València, Paterna, Spain
| | - Juan S Monrós
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of València, Paterna, Spain
| | - Carla Olmo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of València, Paterna, Spain
| | - Antonio Picazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of València, Paterna, Spain
| | - Carmen Rojo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of València, Paterna, Spain
| | - Juan Rueda
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of València, Paterna, Spain
| | - María Sahuquillo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of València, Paterna, Spain.,Subdirecció General del Medi Natural, Generalitat Valenciana, València, Spain
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.,Museo de Zoología, Centro de Investigación en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Mati Segura
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of València, Paterna, Spain
| | - Xavier Armengol
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of València, Paterna, Spain
| | - Francesc Mesquita-Joanes
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of València, Paterna, Spain
| |
Collapse
|
22
|
Henry LP, Ayroles JF. Drosophila melanogaster microbiome is shaped by strict filtering and neutrality along a latitudinal cline. Mol Ecol 2022; 31:5861-5871. [PMID: 36094780 PMCID: PMC9643648 DOI: 10.1111/mec.16692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 01/13/2023]
Abstract
Microbiomes affect many aspects of host biology, but the eco-evolutionary forces that shape their diversity in natural populations remain poorly understood. Geographical gradients, such as latitudinal clines, generate predictable patterns in biodiversity at macroecological scales, but whether these macroscale processes apply to host-microbiome interactions is an open question. To address this question, we sampled the microbiomes of 13 natural populations of Drosophila melanogaster along a latitudinal cline in the eastern United States. The microbiomes were surprisingly consistent across the cline, as latitude did not predict either alpha or beta diversity. Only a narrow taxonomic range of bacteria were present in all microbiomes, indicating that strict taxonomic filtering by the host and neutral ecological dynamics are the primary factors shaping the fly microbiome. Our findings reveal the complexity of eco-evolutionary interactions shaping microbial variation in D. melanogaster and highlight the need for additional sampling of the microbiomes in natural populations along environmental gradients.
Collapse
Affiliation(s)
- Lucas P Henry
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Julien F Ayroles
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
23
|
Kozlov MV, Zverev V, Zvereva EL. Elevational changes in insect herbivory on woody plants in six mountain ranges of temperate Eurasia: Sources of variation. Ecol Evol 2022; 12:e9468. [PMID: 36349250 PMCID: PMC9636509 DOI: 10.1002/ece3.9468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/05/2022] [Accepted: 10/16/2022] [Indexed: 11/08/2022] Open
Abstract
Current theory predicts that the intensity of biotic interactions, particularly herbivory, decreases with increasing latitude and elevation. However, recent studies have revealed substantial variation in both the latitudinal and elevational patterns of herbivory. This variation is often attributed to differences in study design and the type of data collected by different researchers. Here, we used a similar sampling protocol along elevational gradients in six mountain ranges, located at different latitudes within temperate Eurasia, to uncover the sources of variation in elevational patterns in insect herbivory on woody plant leaves. We discovered a considerable variation in elevational patterns among different mountain ranges; nevertheless, herbivory generally decreased with increasing elevation at both the community-wide and individual plant species levels. This decrease was mostly due to openly living defoliators, whereas no significant association was detected between herbivory and elevation among insects living within plant tissues (i.e., miners and gallers). The elevational decrease in herbivory was significant for deciduous plants but not for evergreen plants, and for tall plants but not for low-stature plants. The community-wide herbivory increased with increases in both specific leaf area and leaf size. The strength of the negative correlation between herbivory and elevation increased from lower to higher latitudes. We conclude that despite the predicted overall decrease with elevation, elevational gradients in herbivory demonstrate considerable variation, and this variation is mostly associated with herbivore feeding habits, some plant traits, and latitude of the mountain range.
Collapse
Affiliation(s)
| | - Vitali Zverev
- Department of BiologyUniversity of TurkuTurkuFinland
| | | |
Collapse
|
24
|
Zvereva EL, Kozlov MV. Meta-analysis of elevational changes in the intensity of trophic interactions: Similarities and dissimilarities with latitudinal patterns. Ecol Lett 2022; 25:2076-2087. [PMID: 35950788 PMCID: PMC9545790 DOI: 10.1111/ele.14090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022]
Abstract
The premise that the intensity of biotic interactions decreases with increasing latitudes and elevations is broadly accepted; however, whether these geographical patterns can be explained within a common theoretical framework remains unclear. Our goal was to identify the general pattern of elevational changes in trophic interactions and to explore the sources of variation among the outcomes of individual studies. Meta-analysis of 226 effect sizes calculated from 134 publications demonstrated a significant but interaction-specific decrease in the intensity of herbivory, carnivory and parasitism with increasing elevation. Nevertheless, this decrease was not significant at high latitudes and for interactions involving endothermic organisms, for herbivore outbreaks or for herbivores living within plant tissues. Herbivory similarly declined with increases in latitude and elevation, whereas carnivory showed a fivefold stronger decrease with elevation than with latitude and parasitism increased with latitude but decreased with elevation. Thus, although these gradients share a general pattern and several sources of variation in trophic interaction intensity, we discovered important dissimilarities, indicating that elevational and latitudinal changes in these interactions are partly driven by different factors. We conclude that the scope of the latitudinal biotic interaction hypothesis cannot be extended to incorporate elevational gradients.
Collapse
|
25
|
Wu W, Wang X, Zhao T, Zhang W, Fang S, Xu Y, Zhang K. Tropical-temperate comparisons in insect seed predation vary between study levels and years. Ecol Evol 2022; 12:e9256. [PMID: 36188509 PMCID: PMC9484303 DOI: 10.1002/ece3.9256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
The biotic interaction hypothesis, which states the species interaction becomes stronger in the tropics, is deeply rooted in classic ecological literature and widely accepted to contribute to the latitudinal gradients of biodiversity. Tests in latitudinal insect-plant interaction have emphasized leaf-eating insects on a single or a few plant species rather than within an entire community and mixed accumulating evidence, leaving the biotic interaction hypothesis disputed. We aimed to test the hypothesis by quantifying insect seed predation in a pair of tropical and temperate forest communities with similar elevations. We applied a consistent study design to sample predispersal seeds with systematically set seed traps in 2019-2020 and examined internally feeding insects. The intensity of seed predation was measured and further applied to tropical versus temperate comparison at two levels (cross-species and community-wide). Our results showed every latitudinal pattern associated with different study levels and years, that is, negative (greater granivory in the tropics in community-wide comparison in 2020), positive (less granivory in the tropics in community-wide and cross-species comparison in 2019), and missing (similar level of granivory in the tropics in cross-species comparisons in 2020). The cross-species level analyses ignore differences among species in seed production and weaken or even lose the latitudinal trend detected by community-wide comparisons. The between-year discrepancy in tropical-temperate comparisons relates to the highly variable annual seed composition in the temperate forest due to mast seeding of dominant species. Our study highlights that long-term community-level researches across biomes are essential to assess the latitudinal biotic interaction hypothesis.
Collapse
Affiliation(s)
- Wenlan Wu
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Xiaoxue Wang
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Tao Zhao
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Wenfu Zhang
- Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
| | - Shuai Fang
- Institute of Applied EcologyChinese Academy of SciencesShenyangChina
| | - Yu Xu
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Kai Zhang
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| |
Collapse
|
26
|
Jones DG, Kobelt J, Ross JM, Powell THQ, Prior KM. Latitudinal gradient in species diversity provides high niche opportunities for a range-expanding phytophagous insect. J Anim Ecol 2022; 91:2037-2049. [PMID: 35945806 DOI: 10.1111/1365-2656.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
When species undergo poleward range expansions in response to anthropogenic change, they likely encounter less diverse communities in new locations. If low diversity communities provide weak biotic interactions, such as reduced competition or predation, range-expanding species may experience high niche opportunities. Here, we investigated if oak gall wasp communities follow a latitudinal diversity gradient (LDG) and if lower diversity communities provide weaker interactions at the poles for a range-expanding community member, Neuroterus saltatorius. We performed systematic surveys of gall wasps on a dominant oak, Quercus garryana, throughout most of its range, from northern California to Vancouver Island, British Columbia. On 540 trees at 18 sites, we identified 23 oak gall wasp morphotypes in three guilds (leaf detachable, leaf integral, and stem galls). We performed regressions between oak gall wasp diversity, latitude, and other abiotic (e.g. temperature) and habitat (e.g. oak patch size) factors to reveal if gall wasp communities followed an LDG. To uncover patterns in local interactions, we first performed partial correlations of gall wasp morphotype occurrences on trees within regions). We then performed regressions between abundances of co-occurring gall wasps on trees to reveal if interactions are putatively competitive or antagonistic. Q. garryana-gall wasp communities followed an LDG, with lower diversity at higher latitudes, particularly with a loss of detachable leaf gall morphotypes. Detachable leaf gall wasps, including the range-expanding species, co-occurred most on trees, with weak co-occurrences on trees in the northern expanded region. Abundances of N. saltatorius and detachable and integral leaf galls co-occurring on trees were negatively related, suggesting antagonistic interactions. Overall, we found that LDGs create communities with weaker associations at the poles that might facilitate ecological release in a range-expanding community member. Given the ubiquity of LDGs in nature, poleward range-expanding species are likely moving into low diversity communities. Yet, understanding if latitudinal diversity pattern provides weak biotic interactions for range-expanding species is not well explored. Our large-scale study documenting diversity in a related community of phytophagous insects that co-occur on a host plant reveals that LDGs create high niche opportunities for a range-expanding community member. Biogeographical patterns in diversity and species interactions are likely important mechanisms contributing to altered biotic interactions under range-expansions.
Collapse
Affiliation(s)
- Dylan G Jones
- Department of Biological Sciences, Binghamton University SUNY, Binghamton, NY, USA
| | - Julia Kobelt
- Department of Biological Sciences, Binghamton University SUNY, Binghamton, NY, USA
| | - Jenna M Ross
- Department of Biological Sciences, Binghamton University SUNY, Binghamton, NY, USA
| | - Thomas H Q Powell
- Department of Biological Sciences, Binghamton University SUNY, Binghamton, NY, USA
| | - Kirsten M Prior
- Department of Biological Sciences, Binghamton University SUNY, Binghamton, NY, USA
| |
Collapse
|
27
|
Gray HL, Farias JR, Venzon M, Torres JB, Souza LM, Aita RC, Andow DA. Predation on sentinel prey increases with increasing latitude in Brassica-dominated agroecosystems. Ecol Evol 2022; 12:e9086. [PMID: 35845383 PMCID: PMC9272068 DOI: 10.1002/ece3.9086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 12/03/2022] Open
Abstract
In natural ecosystems, arthropod predation on herbivore prey is higher at lower latitudes, mirroring the latitudinal diversity gradient observed across many taxa. This pattern has not been systematically examined in human-dominated ecosystems, where frequent disturbances can shift the identity and abundance of local predators, altering predation rates from those observed in natural ecosystems. We investigated how latitude, biogeographical, and local ecological factors influenced arthropod predation in Brassica oleracea-dominated agroecosystems in 55 plots spread among 5 sites in the United States and 4 sites in Brazil, spanning at least 15° latitude in each country. In both the United States and Brazil, arthropod predator attacks on sentinel model caterpillar prey were highest at the highest latitude studied and declined at lower latitudes. The rate of increased arthropod attacks per degree latitude was higher in the United States and the overall gradient was shifted poleward as compared to Brazil. PiecewiseSEM analysis revealed that aridity mediates the effect of latitude on arthropod predation and largely explains the differences in the intensity of the latitudinal gradient between study countries. Neither predator richness, predator density, nor predator resource availability predicted variation in predator attack rates. Only greater non-crop plant density drove greater predation rates, though this effect was weaker than the effect of aridity. We conclude that climatic factors rather than ecological community structure shape latitudinal arthropod predation patterns and that high levels of aridity in agroecosystems may dampen the ability of arthropod predators to provide herbivore control services as compared to natural ecosystems.
Collapse
Affiliation(s)
- Hannah L. Gray
- Department of EntomologyUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Juliano R. Farias
- Universidade Regional Integrada do Alto Uruguai e das MissõesSanto ÂngeloBrazil
| | - Madelaine Venzon
- Empresa de Pesquisa Agropecuária de Minas Gerais ‐ EPAMIGViçosaBrazil
| | - Jorge Braz Torres
- Departamento de Agronomia‐EntomologiaUniversidade Federal Rural de PernambucoRecifeBrazil
| | | | - Rafael Carlesso Aita
- Department of EntomologyUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - David A. Andow
- Department of EntomologyUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| |
Collapse
|
28
|
Anderson JT. Genetic trade-offs and unexpected life history traits shape local adaptation in Trifolium repens. Mol Ecol 2022; 31:3739-3741. [PMID: 35598168 DOI: 10.1111/mec.16544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, USA
| |
Collapse
|
29
|
Pugh BE, Field R. Biodiversity: The role of interaction diversity. Curr Biol 2022; 32:R423-R426. [DOI: 10.1016/j.cub.2022.03.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Gross CP, Duffy JE, Hovel KA, Kardish MR, Reynolds PL, Boström C, Boyer KE, Cusson M, Eklöf J, Engelen AH, Eriksson BK, Fodrie FJ, Griffin JN, Hereu CM, Hori M, Hughes AR, Ivanov MV, Jorgensen P, Kruschel C, Lee KS, Lefcheck J, McGlathery K, Moksnes PO, Nakaoka M, O'Connor MI, O'Connor NE, Olsen JL, Orth RJ, Peterson BJ, Reiss H, Rossi F, Ruesink J, Sotka EE, Thormar J, Tomas F, Unsworth R, Voigt EP, Whalen MA, Ziegler SL, Stachowicz JJ. The biogeography of community assembly: latitude and predation drive variation in community trait distribution in a guild of epifaunal crustaceans. Proc Biol Sci 2022; 289:20211762. [PMID: 35193403 PMCID: PMC8864368 DOI: 10.1098/rspb.2021.1762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/14/2022] [Indexed: 01/15/2023] Open
Abstract
While considerable evidence exists of biogeographic patterns in the intensity of species interactions, the influence of these patterns on variation in community structure is less clear. Studying how the distributions of traits in communities vary along global gradients can inform how variation in interactions and other factors contribute to the process of community assembly. Using a model selection approach on measures of trait dispersion in crustaceans associated with eelgrass (Zostera marina) spanning 30° of latitude in two oceans, we found that dispersion strongly increased with increasing predation and decreasing latitude. Ocean and epiphyte load appeared as secondary predictors; Pacific communities were more overdispersed while Atlantic communities were more clustered, and increasing epiphytes were associated with increased clustering. By examining how species interactions and environmental filters influence community structure across biogeographic regions, we demonstrate how both latitudinal variation in species interactions and historical contingency shape these responses. Community trait distributions have implications for ecosystem stability and functioning, and integrating large-scale observations of environmental filters, species interactions and traits can help us predict how communities may respond to environmental change.
Collapse
Affiliation(s)
- Collin P. Gross
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| | - J. Emmett Duffy
- Tennenbaum Marine Observatories Network, MarineGEO, Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Kevin A. Hovel
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Melissa R. Kardish
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| | - Pamela L. Reynolds
- DataLab: Data Science and Informatics, University of California, Davis, CA, USA
| | - Christoffer Boström
- Department of Environmental and Marine Biology, Åbo Akademi University, Åbo, Finland
| | - Katharyn E. Boyer
- Estuary & Ocean Science Center and Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Mathieu Cusson
- Sciences fondamentales and Québec Océan, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Johan Eklöf
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
| | | | | | - F. Joel Fodrie
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, USA
| | | | - Clara M. Hereu
- Universidad Autónoma de Baja California, Mexicali, Baja CA, Mexico
| | - Masakazu Hori
- Fisheries Research and Education Agency, Hatsukaichi, Hiroshima, Japan
| | - A. Randall Hughes
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA, USA
| | - Mikhail V. Ivanov
- Department of Ichthyology and Hydrobiology, St Petersburg State University, St Petersburg, Russia
| | - Pablo Jorgensen
- Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Universidad Nacional de Tierra del Fuego, Ushuaia, Tierra del Fuego, Antártida e Islas del Atlántico Sur, Argentina
| | | | - Kun-Seop Lee
- Department of Biological Sciences, Pusan National University, Busan, South Korea
| | - Jonathan Lefcheck
- DataLab: Data Science and Informatics, University of California, Davis, CA, USA
| | - Karen McGlathery
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Per-Olav Moksnes
- Department of Marine Sciences, University of Gothenburg, Goteborg, Sweden
| | | | - Mary I. O'Connor
- Biodiversity Research Centre and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nessa E. O'Connor
- School of Natural Sciences, Trinity College Dublin, Dublin, Republic of Ireland
| | | | - Robert J. Orth
- Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA, USA
| | - Bradley J. Peterson
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | | | - Francesca Rossi
- Centre National de la Récherche Scientifique, ECOSEAS Laboratory, Université de Cote d'Azur, Nice, France
| | - Jennifer Ruesink
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Erik E. Sotka
- Grice Marine Laboratory, College of Charleston, Charleston, SC, USA
| | | | - Fiona Tomas
- IMEDEAS (CSIC), Esporles, Islas Baleares, Spain
| | | | - Erin P. Voigt
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Matthew A. Whalen
- Hakai Institute, Campbell River, British Columbia, Canada
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | - John J. Stachowicz
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| |
Collapse
|
31
|
Phosphorus Limitation of Trees Influences Forest Soil Fungal Diversity in China. FORESTS 2022. [DOI: 10.3390/f13020223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fungal-biogeography studies have shown global patterns of biotic interactions on microbial biogeography. However, the mechanisms underlying these patterns remain relatively unexplored. To determine the dominant factors affecting forest soil fungal diversity in China, soil and leaves from 33 mountain forest reserves were sampled, and their properties were measured. We tested three hypotheses and established the most realistic one for China. The results showed that the soil fungal diversity (Shannon index) varied unimodally with latitude. The relative abundance of ectomycorrhizae was significantly positively correlated with the leaf nitrogen/phosphorus. The effects of soil available phosphorus and pH on fungal diversity depended on the ectomycorrhizal fungi, and the fungal diversity shifted by 93% due to available phosphorus, potassium, and pH. Therefore, we concluded that latitudinal changes in temperature and the variations in interactions between different fungal guilds (ectomycorrhizal, saprotrophic, and plant pathogenic fungi) did not have a major influence. Forest soil fungal diversity was affected by soil pH, available phosphorus, and potassium, which are driven by the phosphorus limitation of trees.
Collapse
|
32
|
Changes in Biomass and Diversity of Soil Macrofauna along a Climatic Gradient in European Boreal Forests. INSECTS 2022; 13:insects13010094. [PMID: 35055937 PMCID: PMC8779977 DOI: 10.3390/insects13010094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary We used a 1000 km long latitudinal gradient in north-western Russia to study the potential impacts of a changing climate on soil invertebrates visible by a naked eye (insects, spiders, earthworms etc.). We extracted these animals from soil, weighed them and identified them to the species level. We found that the diversity of soil invertebrates decreased towards the north, whereas the latitudinal pattern in biomass depended on the animal’s feeding habit. The biomass of species feeding on live plant roots and fungal mycelia decreased towards the north, whereas the biomass of species feeding on dead plant tissues and live invertebrates showed no significant latitudinal changes. The discovery of this variation in latitudinal biomass patterns suggests that soil invertebrates from different feeding guilds may respond differently to climate change. As a result, the biomass ratio between consumers and their food resources (e.g., herbivores and plants, predators and prey) may change. We poorly understood how this change will affect the future structure and functions of boreal forest ecosystems. Abstract Latitudinal gradients allow insights into the factors that shape ecosystem structure and delimit ecosystem processes, particularly climate. We asked whether the biomass and diversity of soil macrofauna in boreal forests change systematically along a latitudinal gradient spanning from 60° N to 69° N. Invertebrates (3697 individuals) were extracted from 400 soil samples (20 × 20 cm, 30 cm depth) collected at ten sites in 2015–2016 and then weighed and identified. We discovered 265 species living in soil and on the soil surface; their average density was 0.486 g d·w·m−2. The species-level diversity decreased from low to high latitudes. The biomass of soil macrofauna showed no latitudinal changes in early summer but decreased towards the north in late summer. This variation among study sites was associated with the decrease in mean annual temperature by ca 5 °C and with variation in fine root biomass. The biomass of herbivores and fungivores decreased towards the north, whereas the biomass of detritivores and predators showed no significant latitudinal changes. This variation in latitudinal biomass patterns among the soil macrofauna feeding guilds suggests that these guilds may respond differently to climate change, with poorly understood consequences for ecosystem structure and functions.
Collapse
|
33
|
Zvereva EL, Zverev V, Kozlov MV. Insect herbivory increases from forest to alpine tundra in Arctic mountains. Ecol Evol 2022; 12:e8537. [PMID: 35127040 PMCID: PMC8796911 DOI: 10.1002/ece3.8537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/22/2021] [Accepted: 12/22/2021] [Indexed: 11/07/2022] Open
Abstract
Current theory holds that the intensity of biotic interactions decreases with increases in latitude and elevation; however, empirical data demonstrate great variation in the direction, strength, and shape of elevational changes in herbivory. The latitudinal position of mountains may be one important source of this variation, but the acute shortage of data from polar mountains hampers exploration of latitude effects on elevational changes in herbivory. Here, we reduce this knowledge gap by exploring six elevation gradients located in three Arctic mountain ranges to test the prediction that a decrease in herbivory occurs with increasing elevation from forest to alpine tundra. Across the 10 most abundant evergreen and deciduous woody plant species, relative losses of foliage to insect herbivores were 2.2-fold greater at the highest elevations (alpine tundra) than in mid-elevation birch woodlands or low-elevation coniferous forests. Plant quality for herbivores (quantified by specific leaf area) significantly decreased with elevation across all studied species, indicating that bottom-up factors were unlikely to shape the observed pattern in herbivory. An experiment with open-top chambers established at different elevations showed that even a slight increase in ambient temperature enhances herbivory in Arctic mountains. Therefore, we suggest that the discovered increase in herbivory with elevation is explained by higher temperatures at the soil surface in open habitats above the tree line compared with forests at lower elevations. This explanation is supported by the significant difference in elevational changes in herbivory between low and tall plants: herbivory on low shrubs increased fourfold from forest to alpine sites, while herbivory on trees and tall shrubs did not change with elevation. We suggest that an increase in herbivory with an increase in elevation is typical for high-latitude mountains, where inverse temperature gradients, especially at the soil surface, are common. Verification of this hypothesis requires further studies of elevational patterns in herbivory at high latitudes.
Collapse
Affiliation(s)
| | - Vitali Zverev
- Department of BiologyUniversity of TurkuTurkuFinland
| | | |
Collapse
|