1
|
Zhang L, Schmid B, Bongers FJ, Li S, von Oheimb G, Ma K, Liu X. Strong nestedness and turnover effects on stand productivity in a long-term forest biodiversity experiment. THE NEW PHYTOLOGIST 2024. [PMID: 39439371 DOI: 10.1111/nph.20210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
Multispecies planting is an important approach to deliver ecosystem functions in afforestation projects. However, the importance of species richness vs specific species composition in this context remains unresolved. To estimate species or functional group richness and compositional change between two communities, we calculated nestedness, where one community contains a subset of the species of another, and turnover, where two communities differ in species composition but not in species richness. We evaluated the effects of species/functional group nestedness and turnover on stand productivity using 315 mixed plots from a pool of 40 tree species in a large forest biodiversity experiment in subtropical China. We found that the greater the differences in species or functional group nestedness and turnover, the greater the differences in stand productivity between plots. Additionally, the strong effects of both nestedness and turnover on stand productivity developed over the 11-yr observation period. Our results indicate that selection of specific tree species is as important as planting a large number of species to support the productivity function of forests. Furthermore, the selection of specific tree species should be based on functionality, because beneficial effects of functional group composition were stronger than those of species composition.
Collapse
Affiliation(s)
- Lan Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Bernhard Schmid
- Remote Sensing Laboratories, Department of Geography, University of Zurich, CH-8006, Zurich, Switzerland
| | - Franca J Bongers
- Centre for Crop Systems Analysis, Wageningen University, 6700 HB, Wageningen, the Netherlands
| | - Shan Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Goddert von Oheimb
- Institute of General Ecology and Environmental Protection, TUD Dresden University of Technology, 01737, Tharandt, Germany
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, 100049, Beijing, China
- Zhejiang Qianjiangyuan Forest Biodiversity National Observation and Research Station, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Xiaojuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, 100049, Beijing, China
- Zhejiang Qianjiangyuan Forest Biodiversity National Observation and Research Station, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
| |
Collapse
|
2
|
Guo JJ, Gong XW, Li XH, Zhang C, Duan CY, Lohbeck M, Sterck F, Hao GY. Coupled hydraulics and carbon economy underlie age-related growth decline and revitalisation of sand-fixing shrubs after crown removal. PLANT, CELL & ENVIRONMENT 2024; 47:2999-3014. [PMID: 38644635 DOI: 10.1111/pce.14923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024]
Abstract
Crown removal revitalises sand-fixing shrubs that show declining vigour with age in drought-prone environments; however, the underlying mechanisms are poorly understood. Here, we addressed this knowledge gap by comparing the growth performance, xylem hydraulics and plant carbon economy across different plant ages (10, 21 and 33 years) and treatments (control and crown removal) using a representative sand-fixing shrub (Caragana microphylla Lam.) in northern China. We found that growth decline with plant age was accompanied by simultaneous decreases in soil moisture, plant hydraulic efficiency and photosynthetic capacity, suggesting that these interconnected changes in plant water relations and carbon economy were responsible for this decline. Following crown removal, quick resprouting, involving remobilisation of root nonstructural carbohydrate reserves, contributed to the reconstruction of an efficient hydraulic system and improved plant carbon status, but this became less effective in older shrubs. These age-dependent effects of carbon economy and hydraulics on plant growth vigour provide a mechanistic explanation for the age-related decline and revitalisation of sand-fixing shrubs. This understanding is crucial for the development of suitable management strategies for shrub plantations constructed with species having the resprouting ability and contributes to the sustainability of ecological restoration projects in water-limited sandy lands.
Collapse
Affiliation(s)
- Jing-Jing Guo
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xue-Wei Gong
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xue-Hua Li
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Chi Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Chun-Yang Duan
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Madelon Lohbeck
- Forest Ecology and Management Group, Wageningen University & Research, AA Wageningen, the Netherlands
| | - Frank Sterck
- Forest Ecology and Management Group, Wageningen University & Research, AA Wageningen, the Netherlands
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
3
|
Chen S, Zhong K, Li Y, Bai C, Xue Z, Wu Y. Joint transcriptomic and metabolomic analysis provides new insights into drought resistance in watermelon ( Citrullus lanatus). FRONTIERS IN PLANT SCIENCE 2024; 15:1364631. [PMID: 38766468 PMCID: PMC11102048 DOI: 10.3389/fpls.2024.1364631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Introduction Watermelon is an annual vine of the family Cucurbitaceae. Watermelon plants produce a fruit that people love and have important nutritional and economic value. With global warming and deterioration of the ecological environment, abiotic stresses, including drought, have become important factors that impact the yield and quality of watermelon plants. Previous research on watermelon drought resistance has included analyzing homologous genes based on known drought-responsive genes and pathways in other species. Methods However, identifying key pathways and genes involved in watermelon drought resistance through high-throughput omics methods is particularly important. In this study, RNA-seq and metabolomic analysis were performed on watermelon plants at five time points (0 h, 1 h, 6 h, 12 h and 24 h) before and after drought stress. Results Transcriptomic analysis revealed 7829 differentially expressed genes (DEGs) at the five time points. The DEGs were grouped into five clusters using the k-means clustering algorithm. The functional category for each cluster was annotated based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database; different clusters were associated with different time points after stress. A total of 949 metabolites were divided into 10 categories, with lipids and lipid-like molecules accounting for the most metabolites. Differential expression analysis revealed 22 differentially regulated metabolites (DRMs) among the five time points. Through joint analysis of RNA-seq and metabolome data, the 6-h period was identified as the critical period for watermelon drought resistance, and the starch and sucrose metabolism, plant hormone signal transduction and photosynthesis pathways were identified as important regulatory pathways involved in watermelon drought resistance. In addition, 15 candidate genes associated with watermelon drought resistance were identified through joint RNA-seq and metabolome analysis combined with weighted correlation network analysis (WGCNA). Four of these genes encode transcription factors, including bHLH (Cla97C03G068160), MYB (Cla97C01G002440), HSP (Cla97C02G033390) and GRF (Cla97C02G042620), one key gene in the ABA pathway, SnRK2-4 (Cla97C10G186750), and the GP-2 gene (Cla97C05G105810), which is involved in the starch and sucrose metabolism pathway. Discussion In summary, our study provides a theoretical basis for elucidating the molecular mechanisms underlying drought resistance in watermelon plants and provides new genetic resources for the study of drought resistance in this crop.
Collapse
Affiliation(s)
- Sheng Chen
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Kaiqin Zhong
- Fuzhou Institute of Vegetable Science, Fuzhou, China
| | - Yongyu Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Changhui Bai
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Zhuzheng Xue
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yufen Wu
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
4
|
Kongjarat W, Han L, Aritsara ANA, Zhang SB, Zhao GJ, Zhang YJ, Maenpuen P, Li YM, Zou YK, Li MY, Li XN, Tao LB, Chen YJ. Hydraulic properties and drought response of a tropical bamboo ( Cephalostachyum pergracile). PLANT DIVERSITY 2024; 46:406-415. [PMID: 38798721 PMCID: PMC11119542 DOI: 10.1016/j.pld.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 05/29/2024]
Abstract
Bamboo plants are an essential component of tropical ecosystems, yet their vulnerability to climate extremes, such as drought, is poorly understood due to limited knowledge of their hydraulic properties. Cephalostachyum pergracile, a commonly used tropical bamboo species, exhibited a substantially higher mortality rate than other co-occurring bamboos during a severe drought event in 2019, but the underlying mechanisms remain unclear. This study investigated the leaf and stem hydraulic traits related to drought responses, including leaf-stem embolism resistance (P50leaf; P50stem) estimated using optical and X-ray microtomography methods, leaf pressure-volume and water-releasing curves. Additionally, we investigated the seasonal water potentials, native embolism level (PLC) and xylem water source using stable isotope. We found that C. pergracile exhibited strong resistance to embolism, showing low P50leaf, P50stem, and turgor loss point, despite its rapid leaf water loss. Interestingly, its leaves displayed greater resistance to embolism than its stem, suggesting a lack of effective hydraulic vulnerability segmentation (HVS) to protect the stem from excessive xylem tension. During the dry season, approximately 49% of the water was absorbed from the upper 20-cm-deep soil layer. Consequently, significant diurnal variation in leaf water potentials and an increase in midday PLC from 5.87 ± 2.33% in the wet season to 12.87 ± 4.09% in the dry season were observed. In summary, this study demonstrated that the rapid leaf water loss, high reliance on surface water, and a lack of effective HVS in C. pergracile accelerated water depletion and increased xylem embolism even in the typical dry season, which may explain its high mortality rate during extreme drought events in 2019.
Collapse
Affiliation(s)
- Wanwalee Kongjarat
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Han
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Amy Ny Aina Aritsara
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
- T-STAR Core Team, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
| | - Shu-Bin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
- T-STAR Core Team, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
| | - Gao-Juan Zhao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
- T-STAR Core Team, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, ME, USA
- Climate Change Institute, University of Maine, Orono, ME 04469, USA
| | - Phisamai Maenpuen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Mei Li
- School of Biological and Chemical Science, Pu’er University, Xueyuan Road, Yunnan 665000, China
| | - Yi-Ke Zou
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Yi Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
- Institute of Ecology and Geobotany, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Xue-Nan Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
- School of Ecology and Environment, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Lian-Bin Tao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
| | - Ya-Jun Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
- T-STAR Core Team, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
- Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan 653300, China
| |
Collapse
|
5
|
Sterck FJ, Song Y, Poorter L. Drought- and heat-induced mortality of conifer trees is explained by leaf and growth legacies. SCIENCE ADVANCES 2024; 10:eadl4800. [PMID: 38608026 PMCID: PMC11014445 DOI: 10.1126/sciadv.adl4800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/08/2024] [Indexed: 04/14/2024]
Abstract
An increased frequency and severity of droughts and heat waves have resulted in increased tree mortality and forest dieback across the world, but underlying mechanisms are poorly understood. We used a common garden experiment with 20 conifer tree species to quantify mortality after three consecutive hot, dry summers and tested whether mortality could be explained by putative underlying mechanisms, such as stem hydraulics and legacies affected by leaf life span and stem growth responses to previous droughts. Mortality varied from 0 to 79% across species and was not affected by hydraulic traits. Mortality increased with species' leaf life span probably because leaf damage caused crown dieback and contributed to carbon depletion and bark beetle damage. Mortality also increased with lower growth resilience, which may exacerbate the contribution of carbon depletion and bark beetle sensitivity to tree mortality. Our study highlights how ecological legacies at different time scales can explain tree mortality in response to hot, dry periods and climate change.
Collapse
Affiliation(s)
- Frank J. Sterck
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, Netherlands
| | - Yanjun Song
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, Netherlands
- School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, WA 99164-4236, USA
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, Netherlands
| |
Collapse
|
6
|
Zhang SB, Song Y, Wen HD, Chen YJ. Leaf nitrogen and phosphorus resorption efficiencies are related to drought resistance across woody species in a Chinese savanna. TREE PHYSIOLOGY 2024; 44:tpad149. [PMID: 38102768 PMCID: PMC10849754 DOI: 10.1093/treephys/tpad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Leaf nutrient resorption and drought resistance are crucial for the growth and survival of plants. However, our understanding of the relationships between leaf nutrient resorption and plant drought resistance is still limited. In this study, we investigated the nitrogen and phosphorus resorption efficiencies (NRE and PRE), leaf structural traits, leaf osmotic potential at full hydration (Ψosm), xylem water potential at 50% loss of xylem-specific hydraulic conductivity (P50) and seasonal minimum water potential (Ψmin) for 18 shrub and tree species in a semiarid savanna ecosystem, in Southwest China. Our results showed that NRE and PRE exhibited trade-off against drought resistance traits (Ψosm and P50) across woody species. Moreover, this relationship was modulated by leaf structural investment. Species with low structural investment (e.g., leaf mass per area, leaf dry mass content and leaf construction cost [LCC]) tend to have high NRE and PRE, while those with high LCCs show high drought resistance, showing more negative Ψosm and P50.These results indicate that species with a lower leaf structural investment may have a greater need to recycle their nutrients, thus exhibiting higher nutrient resorption efficiencies, and vice versa. In conclusion, nutrient resorption efficiency may be a crucial adaptation strategy for coexisting plants in semiarid ecosystems, highlighting the importance of understanding the complex relationships between nutrient cycling and plant survival strategies.
Collapse
Affiliation(s)
- Shu-Bin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- T-STAR Core Team, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Yu Song
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education), Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Han-Dong Wen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- T-STAR Core Team, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan 653300, China
| | - Ya-Jun Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- T-STAR Core Team, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan 653300, China
| |
Collapse
|
7
|
Wei Y, Chen YJ, Siddiq Z, Zhang JL, Zhang SB, Jansen S, Cao KF. Hydraulic traits and photosynthesis are coordinated with trunk sapwood capacitance in tropical tree species. TREE PHYSIOLOGY 2023; 43:2109-2120. [PMID: 37672225 DOI: 10.1093/treephys/tpad107] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Water stored in trunk sapwood is vital for the canopy to maintain its physiological function under high transpiration demands. Little is known regarding the anatomical properties that contribute to the hydraulic capacitance of tree trunks and whether trunk capacitance is correlated with the hydraulic and gas exchange traits of canopy branches. We examined sapwood capacitance, xylem anatomical characteristics of tree trunks, embolism resistance, the minimal xylem water potential of canopy branches, leaf photosynthesis and stomatal conductance in 22 species from a tropical seasonal rainforest and savanna. The results showed that the mean trunk sapwood capacitance did not differ between the two biomes. Capacitance was closely related to the fiber lumen fraction and fiber wall reinforcement and not to the axial and ray parenchyma fractions. Additionally, it was positively correlated with the theoretical hydraulic conductivity of a trunk and the specific hydraulic conductivity of branches, and showed a trade-off with branch embolism resistance. Species with a high trunk sapwood capacitance maintained less negative canopy water potentials in the dry season, but higher leaf photosynthetic rates and stomatal conductance in the wet season. This study provides a functional link among trunk sapwood capacitance, xylem anatomy, canopy hydraulics and photosynthesis in tropical trees.
Collapse
Affiliation(s)
- Yang Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, NO. 100 Daxuedonglu, Nanning 530004, Guangxi, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, NO. 100 Daxuedonglu, Nanning 530004, Guangxi, China
| | - Ya-Jun Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang 653300, Yunnan, China
| | - Zafar Siddiq
- Department of Botany, Government College University, Katchery Road, Lahore 54000, Punjab, Pakistan
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Shu-Bin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Steven Jansen
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Baden-Wurttemberg, Germany
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, NO. 100 Daxuedonglu, Nanning 530004, Guangxi, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, NO. 100 Daxuedonglu, Nanning 530004, Guangxi, China
| |
Collapse
|
8
|
Liu Z, Ye L, Jiang J, Liu R, Xu Y, Jia G. Increased uptake of deep soil water promotes drought resistance in mixed forests. PLANT, CELL & ENVIRONMENT 2023; 46:3218-3228. [PMID: 37287350 DOI: 10.1111/pce.14642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
The intensity and frequency of droughts are projected to rise in recent years and adversely affect forests. Thus, information on plant water use and acclimation during and after droughts is crucial. This study used the stable isotope and thermal dissipation probes to detect the water-use adaptation of mixed forests to drought using a precipitation gradient control experiment in the field. The results showed that Platycladus orientalis and Quercus variabilis mainly absorbed stable water from deep soil layers during the drought (32.05% and 28.2%, respectively). The synergetic nocturnal sap flow in both species replenished the water loss, but P. orientalis experienced a greater decline in transpiration acclimation to drought. The transpiration of Q. variabilis remained high since it was mainly induced by radiation. After short-term exposure to drought, P. orientalis majorly obtained shallow soil water, confirming its sensitivity to shallow water. Contrarily, Q. variabilis mainly absorbed stable water from deep soil layers regardless of the soil water content. Therefore, these findings suggest that Q. variabilis cannot physiologically adjust to extreme drought events, possibly limiting their future distributions and altering the composition of boreal forests.
Collapse
Affiliation(s)
- Ziqiang Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Center of Ecological Forestry Development of Jingning She Nationality Autonomous County, Lishui, China
| | - Limin Ye
- Center of Ecological Forestry Development of Jingning She Nationality Autonomous County, Lishui, China
| | - Jiang Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Rilin Liu
- Center of Ecological Forestry Development of Jingning She Nationality Autonomous County, Lishui, China
| | - Yuanke Xu
- Center of Ecological Forestry Development of Jingning She Nationality Autonomous County, Lishui, China
| | - Guodong Jia
- Key Laboratory of Soil and Water Conservation and Desertification Combating of Ministry of Education, Beijing Forestry University, Beijing, China
| |
Collapse
|
9
|
Martínez-Vilalta J, García-Valdés R, Jump A, Vilà-Cabrera A, Mencuccini M. Accounting for trait variability and coordination in predictions of drought-induced range shifts in woody plants. THE NEW PHYTOLOGIST 2023; 240:23-40. [PMID: 37501525 DOI: 10.1111/nph.19138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
Functional traits offer a promising avenue to improve predictions of species range shifts under climate change, which will entail warmer and often drier conditions. Although the conceptual foundation linking traits with plant performance and range shifts appears solid, the predictive ability of individual traits remains generally low. In this review, we address this apparent paradox, emphasizing examples of woody plants and traits associated with drought responses at the species' rear edge. Low predictive ability reflects the fact not only that range dynamics tend to be complex and multifactorial, as well as uncertainty in the identification of relevant traits and limited data availability, but also that trait effects are scale- and context-dependent. The latter results from the complex interactions among traits (e.g. compensatory effects) and between them and the environment (e.g. exposure), which ultimately determine persistence and colonization capacity. To confront this complexity, a more balanced coverage of the main functional dimensions involved (stress tolerance, resource use, regeneration and dispersal) is needed, and modelling approaches must be developed that explicitly account for: trait coordination in a hierarchical context; trait variability in space and time and its relationship with exposure; and the effect of biotic interactions in an ecological community context.
Collapse
Affiliation(s)
- Jordi Martínez-Vilalta
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Raúl García-Valdés
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Forest Science and Technology Centre of Catalonia (CTFC), E25280, Solsona, Spain
- Department of Biology, Geology, Physics and Inorganic Chemistry, School of Experimental Sciences and Technology, Rey Juan Carlos University, E28933, Móstoles, Madrid, Spain
| | - Alistair Jump
- Biological and Environmental Sciences, University of Stirling, FK9 4LA, Stirling, UK
| | - Albert Vilà-Cabrera
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Biological and Environmental Sciences, University of Stirling, FK9 4LA, Stirling, UK
| | - Maurizio Mencuccini
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, E08010, Barcelona, Spain
| |
Collapse
|
10
|
Keppel G, Sarnow U, Biffin E, Peters S, Fitzgerald D, Boutsalis E, Waycott M, Guerin GR. Population decline in a Pleistocene refugium: Stepwise, drought-related dieback of a South Australian eucalypt. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162697. [PMID: 36898535 DOI: 10.1016/j.scitotenv.2023.162697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Refugia can facilitate the persistence of species under long-term environmental change, but it is not clear if Pleistocene refugia will remain functional as anthropogenic climate change progresses. Dieback in populations restricted to refugia therefore raises concerns about their long-term persistence. Using repeat field surveys, we investigate dieback in an isolated population of Eucalyptus macrorhyncha during two droughts and discuss prospects for its continued persistence in a Pleistocene refugium. We first confirm that the Clare Valley in South Australia has constituted a long-term refugium for the species, with the population being genetically highly distinct from other conspecific populations. However, the population lost >40 % of individuals and biomass through the droughts, with mortality being just below 20 % after the Millennium Drought (2000-2009) and almost 25 % after the Big Dry (2017-2019). The best predictors of mortality differed after each drought. While north-facing aspect of a sampling location was significant positive predictor after both droughts, biomass density and slope were significant negative predictors only after the Millennium Drought, and distance to the north-west corner of the population, which intercepts hot, dry winds, was a significant positive predictor after the Big Dry only. This suggests that more marginal sites with low biomass and sites located on flat plateaus were more vulnerable initially, but that heat-stress was an important driver of dieback during the Big Dry. Therefore, the causative drivers of dieback may change during population decline. Regeneration occurred predominantly on southern and eastern aspects, which would receive the least solar radiation. While this refugial population is experiencing severe decline, some gullies with lower solar radiation appear to support relatively healthy, regenerating stands of red stringybark, providing hope for persistence in small pockets. Monitoring and managing these pockets during future droughts will be essential to ensure the persistence of this isolated and genetically unique population.
Collapse
Affiliation(s)
- Gunnar Keppel
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001 Adelaide, Australia; AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.
| | - Udo Sarnow
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001 Adelaide, Australia
| | - Ed Biffin
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Department for Environment and Water, Adelaide, Australia.
| | - Stefan Peters
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001 Adelaide, Australia.
| | - Donna Fitzgerald
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001 Adelaide, Australia.
| | - Evan Boutsalis
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001 Adelaide, Australia.
| | - Michelle Waycott
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Department for Environment and Water, Adelaide, Australia.
| | - Greg R Guerin
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
11
|
Yang D, Wang YSD, Wang Q, Ke Y, Zhang YB, Zhang SB, Zhang YJ, McDowell NG, Zhang JL. Physiological response and photosynthetic recovery to an extreme drought: Evidence from plants in a dry-hot valley savanna of Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161711. [PMID: 36682563 DOI: 10.1016/j.scitotenv.2023.161711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
The frequency of extreme drought events has been rising worldwide, but due to its unpredictability, how plants will respond remains poorly understood. Here, we aimed to characterize how the hydraulics and photosynthesis of savanna plants respond to extreme drought, and tested whether they can subsequently recover photosynthesis after drought. There was an extreme drought in 2019 in Southwest (SW) China. We investigated photosynthetic gas exchange, leaf-, stem-, and whole-shoot hydraulic conductance of 18 plant species with diverse leaf habits (deciduous, semi-deciduous and evergreen) and growth forms (tree and shrub) from a dry-hot valley savanna in SW China for three rainy seasons from 2019 to 2021. We also compared photosynthetic gas exchange to those of a regular year (2014). We found that leaf stomatal and hydraulic conductance and maximum photosynthetic rate were significantly lower during the drought in 2019 than in the wetter years. In 2019, all studied plants maintained stomatal conductance at their minimum level observed, which could be related to high vapor pressure deficits (VPD, >2 kPa). However, no significant difference in stem and shoot hydraulic conductance was detected across years. The reductions in leaf hydraulic conductance and stomatal regulation under extreme drought might help keep the stem hydraulic function. Stomatal conductance and photosynthesis after drought (2020 and 2021) showed comparable or even higher values compared to that of 2014, suggesting high recovery of photosynthetic gas exchange. In addition, the response of hydraulic and photosynthetic traits to extreme drought was convergent across leaf habits and growth forms. Our results will help better understand the physiological mechanism underlying the response of savanna ecosystems to climate change.
Collapse
Affiliation(s)
- Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Yang-Si-Ding Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Ke
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Bing Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA.
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA; School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.
| |
Collapse
|
12
|
Tonet V, Carins-Murphy M, Deans R, Brodribb TJ. Deadly acceleration in dehydration of Eucalyptus viminalis leaves coincides with high-order vein cavitation. PLANT PHYSIOLOGY 2023; 191:1648-1661. [PMID: 36690460 PMCID: PMC10022613 DOI: 10.1093/plphys/kiad016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 05/17/2023]
Abstract
Xylem cavitation during drought is proposed as a major driver of canopy collapse, but the mechanistic link between hydraulic failure and leaf damage in trees is still uncertain. Here, we used the tree species manna gum (Eucalyptus viminalis) to explore the connection between xylem dysfunction and lethal desiccation in leaves. Cavitation damage to leaf xylem could theoretically trigger lethal desiccation of tissues by severing water supply under scenarios such as runaway xylem cavitation, or the local failure of terminal parts of the leaf vein network. To investigate the role of xylem failure in leaf death, we compared the timing of damage to the photosynthetic machinery (Fv/Fm decline) with changes in plant hydration and xylem cavitation during imposed water stress. The water potential at which Fv/Fm was observed to decline corresponded to the water potential marking a transition from slow to very rapid tissue dehydration. Both events also occurred simultaneously with the initiation of cavitation in leaf high-order veins (HOV, veins from the third order above) and the analytically derived point of leaf runaway hydraulic failure. The close synchrony between xylem dysfunction and the photosynthetic damage strongly points to water supply disruption as the trigger for desiccation of leaves in this hardy evergreen tree. These results indicate that runaway cavitation, possibly triggered by HOV network failure, is the tipping agent determining the vulnerability of E. viminalis leaves to damage during drought and suggest that HOV cavitation and runaway hydraulic failure may play a general role in determining canopy damage in plants.
Collapse
Affiliation(s)
- Vanessa Tonet
- School of Biological Sciences, University of Tasmania, Sandy Bay, Tasmania 7001, Australia
| | - Madeline Carins-Murphy
- School of Biological Sciences, University of Tasmania, Sandy Bay, Tasmania 7001, Australia
| | - Ross Deans
- ARC Centre of Excellence in Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | | |
Collapse
|
13
|
Guan X, Wen Y, Zhang Y, Chen Z, Cao KF. Stem hydraulic conductivity and embolism resistance of Quercus species are associated with their climatic niche. TREE PHYSIOLOGY 2023; 43:234-247. [PMID: 36209451 DOI: 10.1093/treephys/tpac119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The hydraulic traits of a plant species may reflect its climate adaptations. Southwest China is considered as a biodiversity hotpot of the genus Quercus (oak). However, the hydraulic adaptations of Asian oaks to their climate niches remain unclear. Ten common garden-grown oak species with distinct natural distributions in eastern Asia were used to determine their stem xylem embolism resistance (water potential at 50% loss of hydraulic conductivity, P50), stem hydraulic efficiency (vessel anatomy and sapwood specific hydraulic conductivity (Ks)) and leaf anatomical traits. We also compiled four key functional traits: wood density, hydraulic-weighted vessel diameter, Ks and P50 data for 31 oak species from previous literature. We analyzed the relationship between hydraulic traits and climatic factors over the native ranges of 41 oak species. Our results revealed that the 10 Asian oak species, which are mainly distributed in humid subtropical habitats, possessed a stem xylem with low embolism resistance and moderate hydraulic efficiency. The deciduous and evergreen species of the 10 Asian oaks differed in the stem and leaf traits related to hydraulic efficiency. Ks differed significantly between the two phenological groups (deciduous and evergreens) in the 41-oak dataset. No significant difference in P50 between the two groups was found for the 10 Asian oaks or the 41-oak dataset. The oak species that can distribute in arid habitats possessed a stem xylem with high embolism resistance. Ks negatively related to the humidity of the native range of the 10 Asian oaks, but showed no trend when assessing the entire global oak dataset. Our study suggests that stem hydraulic conductivity and embolism resistance in Quercus species are shaped by their climate niche. Our findings assist predictions of oak drought resistance with future climate changes for oak forest management.
Collapse
Affiliation(s)
- Xinyi Guan
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi 530004, China
| | - Yin Wen
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi 530004, China
| | - Ya Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Zhao Chen
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi 530004, China
| | - Kun-Fang Cao
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
14
|
Zhang YJ, Hochberg U, Rockwell FE, Ponomarenko A, Chen YJ, Manandhar A, Graham AC, Holbrook NM. Xylem conduit deformation across vascular plants: an evolutionary spandrel or protective valve? THE NEW PHYTOLOGIST 2023; 237:1242-1255. [PMID: 36307967 DOI: 10.1111/nph.18584] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The hydraulic system of vascular plants and its integrity is essential for plant survival. To transport water under tension, the walls of xylem conduits must approximate rigid pipes. Against this expectation, conduit deformation has been reported in the leaves of a few species and hypothesized to function as a 'circuit breaker' against embolism. Experimental evidence is lacking, and its generality is unknown. We demonstrated the role of conduit deformation in protecting the upstream xylem from embolism through experiments on three species and surveyed a diverse selection of vascular plants for conduit deformation in leaves. Conduit deformation in minor veins occurred before embolism during slow dehydration. When leaves were exposed to transient increases in transpiration, conduit deformation was accompanied by large water potential differences from leaf to stem and minimal embolism in the upstream xylem. In the three species tested, collapsible vein endings provided clear protection of upstream xylem from embolism during transient increases in transpiration. We found conduit deformation in diverse vascular plants, including 11 eudicots, ginkgo, a cycad, a fern, a bamboo, and a grass species, but not in two bamboo and a palm species, demonstrating that the potential for 'circuit breaker' functionality may be widespread across vascular plants.
Collapse
Affiliation(s)
- Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Climate Change Institute, University of Maine, Orono, ME, 04469, USA
| | - Uri Hochberg
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- ARO Volcani Center, Institute of Soil, Water and Environmental Sciences, Rishon Lezion, 7505101, Israel
| | - Fulton E Rockwell
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Alexandre Ponomarenko
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Ya-Jun Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Anju Manandhar
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Adam C Graham
- Center for Nanoscale Systems, Harvard University, Cambridge, MA, 02138, USA
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
15
|
Xu GQ, Chen TQ, Liu SS, Ma J, Li Y. Within-crown plasticity of hydraulic properties influence branch dieback patterns of two woody plants under experimental drought conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158802. [PMID: 36115397 DOI: 10.1016/j.scitotenv.2022.158802] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
In recent year, widespread declines of Populus bolleana Lauche trees (P. bolleana, which dieback from the top down) and Haloxylon ammodendron shrubs (H. ammodendron, which dieback starting from their outer canopy) have occurred. To investigate how both intra-canopy hydraulic changes and plasticity in hydraulic properties create differences in vulnerability between these two species, we conducted a drought simulation field experiment. We analyzed branch hydraulic vulnerability, leaf water potential (Ψ), photosynthesis (A), stomatal conductance (gs), non-structural carbohydrate (NSCs) contents and morphological traits of the plants as the plants underwent a partial canopy dieback. Our results showed that: (1) the hydraulic architecture was very different between the two life forms; (2) H. ammodendron exhibited a drought tolerance response with weak stomatal control, and thus a sharp decline in Ψ while P. bolleana showed a drought avoidance response with tighter stomatal control that maintained a relatively stable Ψ; (3) the Ψ of H. ammodendron showed relative consistent symptoms of drought stress with increasing plant stature, but the Ψ of P. bolleana showed greater drought stress in higher portions of the crown; (4) prolonged drought caused P. bolleana to consume and H. ammodendron to accumulate NSCs in the branches of their upper canopy. Thus, the prolonged drought caused the shoots of the upper canopy of P. bolleana to experience greater vulnerability leading to dieback of the upper branches first, while all the twigs of the outer canopy of H. ammodendron experienced nearly identical degrees of vulnerability, and thus dieback occurred uniformly. Our results indicate that intra-canopy hydraulic change and their plasticity under drought was the main cause of the observed canopy dieback patterns in both species. However, more work is needed to further establish that hydraulic limitation as a function of plant stature was the sole mechanism for causing the divergent canopy dieback patterns.
Collapse
Affiliation(s)
- Gui-Qing Xu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tu-Qiang Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shen-Si Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ma
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China
| | - Yan Li
- State Key Lab of Subtropical Siviculture, Zhejiang A&F University, 666Wusu Street, Lin-An, Hangzhou 311300, China
| |
Collapse
|
16
|
Chen Z, Li S, Wan X, Liu S. Strategies of tree species to adapt to drought from leaf stomatal regulation and stem embolism resistance to root properties. FRONTIERS IN PLANT SCIENCE 2022; 13:926535. [PMID: 36237513 PMCID: PMC9552884 DOI: 10.3389/fpls.2022.926535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Considerable evidences highlight the occurrence of increasing widespread tree mortality as a result of global climate change-associated droughts. However, knowledge about the mechanisms underlying divergent strategies of various tree species to adapt to drought has remained remarkably insufficient. Leaf stomatal regulation and embolism resistance of stem xylem serves as two important strategies for tree species to prevent hydraulic failure and carbon starvation, as comprising interconnected physiological mechanisms underlying drought-induced tree mortality. Hence, the physiological and anatomical determinants of leaf stomatal regulation and stems xylem embolism resistance are evaluated and discussed. In addition, root properties related to drought tolerance are also reviewed. Species with greater investment in leaves and stems tend to maintain stomatal opening and resist stem embolism under drought conditions. The coordination between stomatal regulation and stem embolism resistance are summarized and discussed. Previous studies showed that hydraulic safety margin (HSM, the difference between minimum water potential and that causing xylem dysfunction) is a significant predictor of tree species mortality under drought conditions. Compared with HSM, stomatal safety margin (the difference between water potential at stomatal closure and that causing xylem dysfunction) more directly merge stomatal regulation strategies with xylem hydraulic strategies, illustrating a comprehensive framework to characterize plant response to drought. A combination of plant traits reflecting species' response and adaptation to drought should be established in the future, and we propose four specific urgent issues as future research priorities.
Collapse
Affiliation(s)
- Zhicheng Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Shan Li
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Xianchong Wan
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
17
|
Zhang SB, Wen GJ, Qu YY, Yang LY, Song Y. Trade-offs between xylem hydraulic efficiency and mechanical strength in Chinese evergreen and deciduous savanna species. TREE PHYSIOLOGY 2022; 42:1337-1349. [PMID: 35157087 PMCID: PMC9272745 DOI: 10.1093/treephys/tpac017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Evergreen and deciduous species coexist in tropical dry forests and savannas, but differ in physiological mechanisms and life-history strategies. Hydraulic conductivity and mechanical support are two major functions of the xylems of woody plant species related to plant growth and survival. In this study, we measured sapwood-specific hydraulic conductivity (Ks), leaf-specific hydraulic conductivity (KL), modulus of rupture (MOR) and elasticity (MOE), xylem anatomical traits and fiber contents in the xylems of 20 woody species with contrasting leaf phenology (evergreen vs deciduous) in a Chinese savanna. Our results showed that deciduous species had significantly higher Ks and KL but lower MOR and MOE than evergreen species. Evergreen species experienced more negative seasonal minimum water potential (Pmin) than deciduous species during the dry season. Furthermore, we found trade-offs between xylem hydraulic efficiency and mechanical strength across species and within the evergreen and deciduous groups, and these trade-offs were modulated by structural and chemical traits. Both Ks and KL were significantly related to hydraulic weighted vessel diameter (Dh) across all species and within the deciduous group. Both MOR and MOE were significantly related to wood density, neutral detergent fiber and acid detergent fiber across species and within evergreen and deciduous groups. Our findings demonstrated that Chinese evergreen and deciduous savanna species diverged in xylem hydraulic and mechanical functions, reflecting conservative and acquisitive life-history strategies for evergreen and deciduous species, respectively. This study provides new information with which to understand the hydraulic and biomechanical properties and ecological strategies of savanna species in long-term dry-hot environments.
Collapse
Affiliation(s)
| | - Guo-Jing Wen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan 653300, China
| | - Ya-Ya Qu
- School of Forestry, Southwest Forestry University, No. 300, Bailongshi, Panlong District, Kunming, Yunnan 650224, China
| | - Lin-Yi Yang
- School of Forestry, Southwest Forestry University, No. 300, Bailongshi, Panlong District, Kunming, Yunnan 650224, China
| | - Yu Song
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| |
Collapse
|
18
|
Han H, Xi B, Wang Y, Feng J, Li X, Tissue DT. Lack of phenotypic plasticity in leaf hydraulics for 10 woody species common to urban forests of North China. TREE PHYSIOLOGY 2022; 42:1203-1215. [PMID: 35038332 DOI: 10.1093/treephys/tpac003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The survival and performance of urban forests are increasingly challenged by urban drought, consequently compromising the sustainability and functionality of urban vegetation. Plant-water relations largely determine species drought tolerance, yet little is known about the hydraulics of urban forest species. Here, we report the leaf hydraulic and carbon traits that govern plant growth and drought resistance, including vulnerability to embolism, hydraulic conductivity and leaf gas exchange characteristics, as well as morphological traits that are potentially linked with these physiological attributes, with the aim of guiding species selection and management in urban forests. Plant materials were collected from mature shrubs and trees on our university campus in Beijing, representing 10 woody species common to urban forests in north China. We found that the leaf embolism resistance, represented by the water potential inducing 50% loss of hydraulic conductivity (P50), as well as the hydraulic safety margin (HSM) defined by P50 and the water potential threshold at the inception of embolism (P12), varied remarkably across species, but was unrelated to growth form. Likewise, stem and leaf-specific hydraulic conductivity (Kstem and kl) was also highly species-specific. Leaf P50 was positively correlated with hydraulic conductivity. However, neither P50 nor hydraulic conductivity was correlated with leaf gas exchange traits, including maximum photosynthetic rate (Amax) and stomatal conductance (gs). Plant morphological and physiological traits were not related, except for specific leaf area, which showed a negative relationship with HSM. Traits influencing plant-water transport were primarily correlated with the mean annual precipitation of species climatic niche. Overall, current common woody species in urban forest environments differed widely in their drought resistance and did not have the capacity to modify these characteristics in response to a changing climate. Species morphology provides limited information regarding physiological drought resistance. Thus, screening urban forest species based on plant physiology is essential to sustain the ecological services of urban forests.
Collapse
Affiliation(s)
- Hang Han
- College of Life and Environmental Science, Minzu University of China, 27 Zhongguancun South Avenue, Haidian District, Beijing 100081, People's Republic of China
| | - Benye Xi
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, People's Republic of China
| | - Ye Wang
- Beijing Academy of Forestry and Pomology Sciences, 12 A Rui Wang Fen, Fragrance Hills, Haidian District, Beijing 100093, People's Republic of China
| | - Jinchao Feng
- College of Life and Environmental Science, Minzu University of China, 27 Zhongguancun South Avenue, Haidian District, Beijing 100081, People's Republic of China
| | - Ximeng Li
- College of Life and Environmental Science, Minzu University of China, 27 Zhongguancun South Avenue, Haidian District, Beijing 100081, People's Republic of China
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- Global Centre for Land-based Innovation, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| |
Collapse
|
19
|
Shen JX, Zhang YJ, Maenpuen P, Zhang SB, Zhang L, Yang L, Tao LB, Yan PY, Zhang ZM, Li SQ, Yuan X, Kongjarat W, Kaewkamol S, Tinprabat P, Chen YJ. Response of four evergreen savanna shrubs to an incidence of extreme drought: high embolism resistance, branch shedding and maintenance of nonstructural carbohydrates. TREE PHYSIOLOGY 2022; 42:740-753. [PMID: 35020937 DOI: 10.1093/treephys/tpab150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/20/2021] [Indexed: 06/14/2023]
Abstract
Extreme drought events are becoming frequent globally, resulting in widespread plant mortality and forest dieback. Although savanna vegetation cover ~20% of the earth's land area, their responses to extreme drought have been less studied than that of forests. Herein, we quantified branch dieback, individual mortality and the associated physiological responses of four evergreen shrubs (Tarenna depauperate Hutch., Maytenus esquirolii (H. Lév.) C.Y. Cheng, Murraya exotica L., Jasminum nudiflorum Lindl.) in a savanna ecosystem in Southwest China to an incidence of extreme drought during 2019 and 2020. We found that 80-100% of the individuals of these species exhibited branch dieback, whereas individual mortality was only found in T. depauperate (4.5%). All species showed high resistance to stem embolism (P50, water potential at 50% loss of hydraulic conductivity ranged from -5.62 to -8.6 MPa), whereas the stem minimum water potentials reached -7.6 to ca -10.0 MPa during the drought. The low water potential caused high native embolism levels (percentage loss of hydraulic conductivity (PLC) 23-65%) in terminal branches, and the remaining stems maintained 15-35% PLC at the end of the drought. Large within-individual variations in stem vulnerability to embolism were detected, and shedding of vulnerable branches could be a mechanism for shrubs to reduce water and carbon consumption. Overall, the content of total nonstructural carbohydrates (NSC) and their components in the stem were generally comparable to or higher than those in the rainy season in three of the four species. Because the leaves were turgor-less for most time during the drought, high NSC levels during the drought could be due to recycling of NSC from dead branches or translocation from roots. Our results suggest high tolerance of savanna shrub species to extreme drought, which could be facilitated by high embolism resistance in some stems and shedding of vulnerable branches to maintain individual water and carbon balance.
Collapse
Affiliation(s)
- Jing-Xian Shen
- Institute of Ecology and Geobotany, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650091, China
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan 6663300, China
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Phisamai Maenpuen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Shu-Bin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
| | - Lan Zhang
- School of Geography and Ecotoursim, Southwest Forestry University, Panlong District, Kunming, Yunnan 650224, China
| | - Lin Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Lian-Bin Tao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Peng-Yun Yan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Zhi-Ming Zhang
- Institute of Ecology and Geobotany, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Shu-Qiong Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xia Yuan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Wanwalee Kongjarat
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Sasiwimol Kaewkamol
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Pimnara Tinprabat
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Ya-Jun Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan 6663300, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Yunnan 666303, China
| |
Collapse
|
20
|
Li X, Xi B, Wu X, Choat B, Feng J, Jiang M, Tissue D. Unlocking Drought-Induced Tree Mortality: Physiological Mechanisms to Modeling. FRONTIERS IN PLANT SCIENCE 2022; 13:835921. [PMID: 35444681 PMCID: PMC9015645 DOI: 10.3389/fpls.2022.835921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Drought-related tree mortality has become a major concern worldwide due to its pronounced negative impacts on the functioning and sustainability of forest ecosystems. However, our ability to identify the species that are most vulnerable to drought, and to pinpoint the spatial and temporal patterns of mortality events, is still limited. Model is useful tools to capture the dynamics of vegetation at spatiotemporal scales, yet contemporary land surface models (LSMs) are often incapable of predicting the response of vegetation to environmental perturbations with sufficient accuracy, especially under stressful conditions such as drought. Significant progress has been made regarding the physiological mechanisms underpinning plant drought response in the past decade, and plant hydraulic dysfunction has emerged as a key determinant for tree death due to water shortage. The identification of pivotal physiological events and relevant plant traits may facilitate forecasting tree mortality through a mechanistic approach, with improved precision. In this review, we (1) summarize current understanding of physiological mechanisms leading to tree death, (2) describe the functionality of key hydraulic traits that are involved in the process of hydraulic dysfunction, and (3) outline their roles in improving the representation of hydraulic function in LSMs. We urge potential future research on detailed hydraulic processes under drought, pinpointing corresponding functional traits, as well as understanding traits variation across and within species, for a better representation of drought-induced tree mortality in models.
Collapse
Affiliation(s)
- Ximeng Li
- College of Life and Environmental Science, Minzu University of China, Beijing, China
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Benye Xi
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing, China
| | - Xiuchen Wu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Jinchao Feng
- College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Mingkai Jiang
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - David Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- Global Centre for Land-based Innovation, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
21
|
Okamoto A, Koyama K, Bhusal N. Diurnal Change of the Photosynthetic Light-Response Curve of Buckbean ( Menyanthes trifoliata), an Emergent Aquatic Plant. PLANTS (BASEL, SWITZERLAND) 2022; 11:174. [PMID: 35050061 PMCID: PMC8779618 DOI: 10.3390/plants11020174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/02/2022]
Abstract
Understanding plant physiological responses to high temperature is an important concern pertaining to climate change. However, compared with terrestrial plants, information about aquatic plants remains limited. Since the degree of midday depression of photosynthesis under high temperature depends on soil water conditions, it is expected that emergent aquatic plants, for which soil water conditions are always saturated, will show different patterns compared with terrestrial plants. We investigated the diurnal course of the photosynthetic light-response curve and incident light intensity for a freshwater emergent plant, buckbean (Menyanthes trifoliata L.; Menyanthaceae) in a cool temperate region. The effect of midday depression was observed only on a very hot day, but not on a moderately hot day, in summer. The diurnal course of photosynthetic light-response curves on this hot day showed that latent morning reduction of photosynthetic capacity started at dawn, preceding the apparent depression around the midday, in agreement with results reported in terrestrial plants. We concluded that (1) midday depression of emergent plants occurs when the stress intensity exceeds the species' tolerance, and (2) measurements of not only photosynthetic rate under field conditions but also diurnal course of photosynthetic light-response curve are necessary to quantify the effect of midday depression.
Collapse
Affiliation(s)
- Azumi Okamoto
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inadacho, Obihiro 080-8555, Japan
| | - Kohei Koyama
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inadacho, Obihiro 080-8555, Japan
| | - Narayan Bhusal
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Korea;
| |
Collapse
|