1
|
Yang C, Liu G, Chen X, Le W. Cerebellum in Alzheimer's disease and other neurodegenerative diseases: an emerging research frontier. MedComm (Beijing) 2024; 5:e638. [PMID: 39006764 PMCID: PMC11245631 DOI: 10.1002/mco2.638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
The cerebellum is crucial for both motor and nonmotor functions. Alzheimer's disease (AD), alongside other dementias such as vascular dementia (VaD), Lewy body dementia (DLB), and frontotemporal dementia (FTD), as well as other neurodegenerative diseases (NDs) like Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and spinocerebellar ataxias (SCA), are characterized by specific and non-specific neurodegenerations in central nervous system. Previously, the cerebellum's significance in these conditions was underestimated. However, advancing research has elevated its profile as a critical node in disease pathology. We comprehensively review the existing evidence to elucidate the relationship between cerebellum and the aforementioned diseases. Our findings reveal a growing body of research unequivocally establishing a link between the cerebellum and AD, other forms of dementia, and other NDs, supported by clinical evidence, pathological and biochemical profiles, structural and functional neuroimaging data, and electrophysiological findings. By contrasting cerebellar observations with those from the cerebral cortex and hippocampus, we highlight the cerebellum's distinct role in the disease processes. Furthermore, we also explore the emerging therapeutic potential of targeting cerebellum for the treatment of these diseases. This review underscores the importance of the cerebellum in these diseases, offering new insights into the disease mechanisms and novel therapeutic strategies.
Collapse
Affiliation(s)
- Cui Yang
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Guangdong Liu
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Xi Chen
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Weidong Le
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| |
Collapse
|
2
|
Vandebergh M, Ramos EM, Corriveau-Lecavalier N, Ramanan VK, Kornak J, Mester C, Kolander T, Brushaber D, Staffaroni AM, Geschwind D, Wolf A, Kantarci K, Gendron TF, Petrucelli L, Van den Broeck M, Wynants S, Baker MC, Borrego – Écija S, Appleby B, Barmada S, Bozoki A, Clark D, Darby RR, Dickerson BC, Domoto-Reilly K, Fields JA, Galasko DR, Ghoshal N, Graff-Radford N, Grant IM, Honig LS, Hsiung GYR, Huey ED, Irwin D, Knopman DS, Kwan JY, Léger GC, Litvan I, Masdeu JC, Mendez MF, Onyike C, Pascual B, Pressman P, Ritter A, Roberson ED, Snyder A, Sullivan AC, Tartaglia MC, Wint D, Heuer HW, Forsberg LK, Boxer AL, Rosen HJ, Boeve BF, Rademakers R. Gene specific effects on brain volume and cognition of TMEM106B in frontotemporal lobar degeneration. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.05.24305253. [PMID: 38633784 PMCID: PMC11023674 DOI: 10.1101/2024.04.05.24305253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Background and Objectives TMEM106B has been proposed as a modifier of disease risk in FTLD-TDP, particularly in GRN mutation carriers. Furthermore, TMEM106B has been investigated as a disease modifier in the context of healthy aging and across multiple neurodegenerative diseases. The objective of this study is to evaluate and compare the effect of TMEM106B on gray matter volume and cognition in each of the common genetic FTD groups and in sporadic FTD patients. Methods Participants were enrolled through the ARTFL/LEFFTDS Longitudinal Frontotemporal Lobar Degeneration (ALLFTD) study, which includes symptomatic and presymptomatic individuals with a pathogenic mutation in C9orf72, GRN, MAPT, VCP, TBK1, TARDBP, symptomatic non-mutation carriers, and non-carrier family controls. All participants were genotyped for the TMEM106B rs1990622 SNP. Cross-sectionally, linear mixed-effects models were fitted to assess an association between TMEM106B and genetic group interaction with each outcome measure (gray matter volume and UDS3-EF for cognition), adjusting for education, age, sex and CDR®+NACC-FTLD sum of boxes. Subsequently, associations between TMEM106B and each outcome measure were investigated within the genetic group. For longitudinal modeling, linear mixed-effects models with time by TMEM106B predictor interactions were fitted. Results The minor allele of TMEM106B rs1990622, linked to a decreased risk of FTD, associated with greater gray matter volume in GRN mutation carriers under the recessive dosage model. This was most pronounced in the thalamus in the left hemisphere, with a retained association when considering presymptomatic GRN mutation carriers only. The minor allele of TMEM106B rs1990622 also associated with greater cognitive scores among all C9orf72 mutation carriers and in presymptomatic C9orf72 mutation carriers, under the recessive dosage model. Discussion We identified associations of TMEM106B with gray matter volume and cognition in the presence of GRN and C9orf72 mutations. This further supports TMEM106B as modifier of TDP-43 pathology. The association of TMEM106B with outcomes of interest in presymptomatic GRN and C9orf72 mutation carriers could additionally reflect TMEM106B's impact on divergent pathophysiological changes before the appearance of clinical symptoms.
Collapse
Affiliation(s)
- Marijne Vandebergh
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Eliana Marisa Ramos
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - John Kornak
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Carly Mester
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Tyler Kolander
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Danielle Brushaber
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Adam M Staffaroni
- Department of Neurology, Memory and Aging Center, University of California, San Francisco Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Daniel Geschwind
- Institute for Precision Health, Departments of Neurology, Psychiatry and Human Genetics at David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amy Wolf
- Department of Neurology, Memory and Aging Center, University of California, San Francisco Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Kejal Kantarci
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Marleen Van den Broeck
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Wynants
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Sergi Borrego – Écija
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Brian Appleby
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
| | - Sami Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Andrea Bozoki
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - David Clark
- Department of Neurology, Indiana University, Indianapolis, IN, USA
| | - R Ryan Darby
- Department of Neurology, Vanderbilt University, Nashville, TN, USA
| | | | | | - Julie A. Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Douglas R. Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Nupur Ghoshal
- Departments of Neurology and Psychiatry, Washington University School of Medicine, Washington University, St. Louis, MO, USA
| | | | - Ian M Grant
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Lawrence S Honig
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, Columbia University, New York, NY, USA
| | - Ging-Yuek Robin Hsiung
- Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward D Huey
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - David Irwin
- Department of Neurology and Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David S Knopman
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Justin Y Kwan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Gabriel C Léger
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Irene Litvan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Joseph C Masdeu
- Department of Neurology, Houston Methodist, Houston, TX, USA
| | - Mario F Mendez
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chiadi Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Belen Pascual
- Department of Neurology, Houston Methodist, Houston, TX, USA
| | - Peter Pressman
- Department of Neurology, University of Colorado, Aurora, CO, USA
| | - Aaron Ritter
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, 89106, USA
| | - Erik D Roberson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Allison Snyder
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Anna Campbell Sullivan
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, UT Health San Antonio
| | - M Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Dylan Wint
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, 89106, USA
| | - Hilary W Heuer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Leah K Forsberg
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Adam L Boxer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, University of California, San Francisco Weill Institute for Neurosciences, San Francisco, CA, USA
| | | | - Rosa Rademakers
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
3
|
Stocks J, Gibson E, Popuri K, Beg MF, Rosen H, Wang L. Spatial and Temporal Relationships Between Atrophy and Hypometabolism in Behavioral-Variant Frontotemporal Dementia. Alzheimer Dis Assoc Disord 2024; 38:112-119. [PMID: 38812447 PMCID: PMC11141524 DOI: 10.1097/wad.0000000000000611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/07/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE Individuals with behavioral-variant frontotemporal dementia (bvFTD) show changes in brain structure as assessed by MRI and brain function assessed by 18FDG-PET hypometabolism. However, current understanding of the spatial and temporal interplay between these measures remains limited. METHODS Here, we examined longitudinal atrophy and hypometabolism relationships in 15 bvFTD subjects with 2 to 4 follow-up MRI and PET scans (56 visits total). Subject-specific slopes of atrophy and hypometabolism over time were extracted across brain regions and correlated with baseline measures both locally, via Pearson correlations, and nonlocally, via sparse canonical correlation analyses (SCCA). RESULTS Notably, we identified a robust link between initial hypometabolism and subsequent cortical atrophy rate changes in bvFTD subjects. Network-level exploration unveiled alignment between baseline hypometabolism and ensuing atrophy rates in the dorsal attention, language, and default mode networks. SCCA identified 2 significant and highly localized components depicting the connection between baseline hypometabolism and atrophy slope over time. The first centered around bilateral orbitofrontal, frontopolar, and medial prefrontal lobes, whereas the second concentrated in the left temporal lobe and precuneus. CONCLUSIONS This study highlights 18FDG-PET as a dependable predictor of forthcoming atrophy in spatially adjacent brain regions for individuals with bvFTD.
Collapse
Affiliation(s)
- Jane Stocks
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA 60611
| | - Erin Gibson
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada, M4N 3M5
| | - Karteek Popuri
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada, V5A1S6
- Memorial University of Newfoundland, Department of Computer Science, St. John’s, NL, Canada
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada, V5A1S6
| | - Howard Rosen
- School of Medicine, University of California, San Francisco, USA, 94143
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA 60611
- Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, OH, USA 43210
| |
Collapse
|
4
|
Shen T, Vogel JW, Duda J, Phillips JS, Cook PA, Gee J, Elman L, Quinn C, Amado DA, Baer M, Massimo L, Grossman M, Irwin DJ, McMillan CT. Novel data-driven subtypes and stages of brain atrophy in the ALS-FTD spectrum. Transl Neurodegener 2023; 12:57. [PMID: 38062485 PMCID: PMC10701950 DOI: 10.1186/s40035-023-00389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND TDP-43 proteinopathies represent a spectrum of neurological disorders, anchored clinically on either end by amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). The ALS-FTD spectrum exhibits a diverse range of clinical presentations with overlapping phenotypes, highlighting its heterogeneity. This study was aimed to use disease progression modeling to identify novel data-driven spatial and temporal subtypes of brain atrophy and its progression in the ALS-FTD spectrum. METHODS We used a data-driven procedure to identify 13 anatomic clusters of brain volume for 57 behavioral variant FTD (bvFTD; with either autopsy-confirmed TDP-43 or TDP-43 proteinopathy-associated genetic variants), 103 ALS, and 47 ALS-FTD patients with likely TDP-43. A Subtype and Stage Inference (SuStaIn) model was trained to identify subtypes of individuals along the ALS-FTD spectrum with distinct brain atrophy patterns, and we related subtypes and stages to clinical, genetic, and neuropathological features of disease. RESULTS SuStaIn identified three novel subtypes: two disease subtypes with predominant brain atrophy in either prefrontal/somatomotor regions or limbic-related regions, and a normal-appearing group without obvious brain atrophy. The limbic-predominant subtype tended to present with more impaired cognition, higher frequencies of pathogenic variants in TBK1 and TARDBP genes, and a higher proportion of TDP-43 types B, E and C. In contrast, the prefrontal/somatomotor-predominant subtype had higher frequencies of pathogenic variants in C9orf72 and GRN genes and higher proportion of TDP-43 type A. The normal-appearing brain group showed higher frequency of ALS relative to ALS-FTD and bvFTD patients, higher cognitive capacity, higher proportion of lower motor neuron onset, milder motor symptoms, and lower frequencies of genetic pathogenic variants. The overall SuStaIn stages also correlated with evidence for clinical progression including longer disease duration, higher King's stage, and cognitive decline. Additionally, SuStaIn stages differed across clinical phenotypes, genotypes and types of TDP-43 pathology. CONCLUSIONS Our findings suggest distinct neurodegenerative subtypes of disease along the ALS-FTD spectrum that can be identified in vivo, each with distinct brain atrophy, clinical, genetic and pathological patterns.
Collapse
Affiliation(s)
- Ting Shen
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jacob W Vogel
- Department of Clinical Sciences, SciLifeLab, Lund University, 222 42, Lund, Sweden
| | - Jeffrey Duda
- Penn Image Computing and Science Lab (PICSL), Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jeffrey S Phillips
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Philip A Cook
- Penn Image Computing and Science Lab (PICSL), Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James Gee
- Penn Image Computing and Science Lab (PICSL), Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lauren Elman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Colin Quinn
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Defne A Amado
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael Baer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lauren Massimo
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David J Irwin
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Corey T McMillan
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Assogna M, Premi E, Gazzina S, Benussi A, Ashton NJ, Zetterberg H, Blennow K, Gasparotti R, Padovani A, Tadayon E, Romanella S, Sprugnoli G, Pascual-Leone A, Di Lorenzo F, Koch G, Borroni B, Santarnecchi E. Association of Choroid Plexus Volume With Serum Biomarkers, Clinical Features, and Disease Severity in Patients With Frontotemporal Lobar Degeneration Spectrum. Neurology 2023; 101:e1218-e1230. [PMID: 37500561 PMCID: PMC10516270 DOI: 10.1212/wnl.0000000000207600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/15/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Choroid plexus (ChP) is emerging as a key brain structure in the pathophysiology of neurodegenerative disorders. In this observational study, we investigated ChP volume in a large cohort of patients with frontotemporal lobar degeneration (FTLD) spectrum to explore a possible link between ChP volume and other disease-specific biomarkers. METHODS Participants included patients meeting clinical criteria for a probable syndrome in the FTLD spectrum. Structural brain MRI imaging, serum neurofilament light (NfL), serum phosphorylated-Tau181 (p-Tau181), and cognitive and behavioral data were collected. MRI ChP volumes were obtained from an ad-hoc segmentation model based on a Gaussian Mixture Models algorithm. RESULTS Three-hundred and sixteen patients within FTLD spectrum were included in this study, specifically 135 patients diagnosed with behavioral variant frontotemporal dementia (bvFTD), 75 primary progressive aphasia, 46 progressive supranuclear palsy, and 60 corticobasal syndrome. In addition, 82 age-matched healthy participants were recruited as controls (HCs). ChP volume was significantly larger in patients with FTLD compared with HC, across the clinical subtype. Moreover, we found a significant difference in ChP volume between HC and patients stratified for disease-severity based on CDR plus NACC FTLD, including patients at very early stage of the disease. Interestingly, ChP volume correlated with serum NfL, cognitive/behavioral deficits, and with patterns of cortical atrophy. Finally, ChP volume seemed to discriminate HC from patients with FTLD better than other previously identified brain structure volumes. DISCUSSION Considering the clinical, pathologic, and genetic heterogeneity of the disease, ChP could represent a potential biomarker across the FTLD spectrum, especially at the early stage of disease. Further longitudinal studies are needed to establish its role in disease onset and progression. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that choroid plexus volume, as measured on MRI scan, can assist in differentiating patients with FTLD from healthy controls and in characterizing disease severity.
Collapse
Affiliation(s)
- Martina Assogna
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Enrico Premi
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Stefano Gazzina
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Alberto Benussi
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Nicholas J Ashton
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Henrik Zetterberg
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Kaj Blennow
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Roberto Gasparotti
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Alessandro Padovani
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Ehsan Tadayon
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Sara Romanella
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Giulia Sprugnoli
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Alvaro Pascual-Leone
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Francesco Di Lorenzo
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Giacomo Koch
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Barbara Borroni
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Emiliano Santarnecchi
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy.
| |
Collapse
|
6
|
Shen T, Vogel JW, Duda J, Phillips JS, Cook PA, Gee J, Elman L, Quinn C, Amado DA, Baer M, Massimo L, Grossman M, Irwin DJ, McMillan CT. Novel data-driven subtypes and stages of brain atrophy in the ALS-FTD spectrum. RESEARCH SQUARE 2023:rs.3.rs-3183113. [PMID: 37609205 PMCID: PMC10441467 DOI: 10.21203/rs.3.rs-3183113/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Background TDP-43 proteinopathies represents a spectrum of neurological disorders, anchored clinically on either end by amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). The ALS-FTD spectrum exhibits a diverse range of clinical presentations with overlapping phenotypes, highlighting its heterogeneity. This study aimed to use disease progression modeling to identify novel data-driven spatial and temporal subtypes of brain atrophy and its progression in the ALS-FTD spectrum. Methods We used a data-driven procedure to identify 13 anatomic clusters of brain volumes for 57 behavioral variant FTD (bvFTD; with either autopsy-confirmed TDP-43 or TDP-43 proteinopathy-associated genetic variants), 103 ALS, and 47 ALS-FTD patients with likely TDP-43. A Subtype and Stage Inference (SuStaIn) model was trained to identify subtypes of individuals along the ALS-FTD spectrum with distinct brain atrophy patterns, and we related subtypes and stages to clinical, genetic, and neuropathological features of disease. Results SuStaIn identified three novel subtypes: two disease subtypes with predominant brain atrophy either in prefrontal/somatomotor regions or limbic-related regions, and a normal-appearing group without obvious brain atrophy. The Limbic-predominant subtype tended to present with more impaired cognition, higher frequencies of pathogenic variants in TBK1 and TARDBP genes, and a higher proportion of TDP-43 type B, E and C. In contrast, the Prefrontal/Somatomotor-predominant subtype had higher frequencies of pathogenic variants in C9orf72 and GRN genes and higher proportion of TDP-43 type A. The normal-appearing brain group showed higher frequency of ALS relative to ALS-FTD and bvFTD patients, higher cognitive capacity, higher proportion of lower motor neuron onset, milder motor symptoms, and lower frequencies of genetic pathogenic variants. Overall SuStaIn stages also correlated with evidence for clinical progression including longer disease duration, higher King's stage, and cognitive decline. Additionally, SuStaIn stages differed across clinical phenotypes, genotypes and types of TDP-43 pathology. Conclusions Our findings suggest distinct neurodegenerative subtypes of disease along the ALS-FTD spectrum that can be identified in vivo, each with distinct brain atrophy, clinical, genetic and pathological patterns.
Collapse
Affiliation(s)
- Ting Shen
- University of Pennsylvania Perelman School of Medicine
| | | | - Jeffrey Duda
- University of Pennsylvania Perelman School of Medicine
| | | | - Philip A Cook
- University of Pennsylvania Perelman School of Medicine
| | - James Gee
- University of Pennsylvania Perelman School of Medicine
| | - Lauren Elman
- University of Pennsylvania Perelman School of Medicine
| | - Colin Quinn
- University of Pennsylvania Perelman School of Medicine
| | - Defne A Amado
- University of Pennsylvania Perelman School of Medicine
| | - Michael Baer
- University of Pennsylvania Perelman School of Medicine
| | | | | | - David J Irwin
- University of Pennsylvania Perelman School of Medicine
| | | |
Collapse
|
7
|
Tafuri B, Filardi M, Frisullo ME, De Blasi R, Rizzo G, Nigro S, Logroscino G. Behavioral variant frontotemporal dementia in patients with primary psychiatric disorder: A magnetic resonance imaging study. Brain Behav 2023; 13:e2896. [PMID: 36864745 PMCID: PMC10097141 DOI: 10.1002/brb3.2896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND The clinical diagnosis of behavioral variant frontotemporal dementia (bvFTD) in patients with a history of primary psychiatric disorder (PPD) is challenging. PPD shows the typical cognitive impairments observed in patients with bvFTD. Therefore, the correct identification of bvFTD onset in patients with a lifetime history of PPD is pivotal for an optimal management. METHODS Twenty-nine patients with PPD were included in this study. After clinical and neuropsychological evaluations, 16 patients with PPD were clinically classified as bvFTD (PPD-bvFTD+), while in 13 cases clinical symptoms were associated with the typical course of the psychiatric disorder itself (PPD-bvFTD-). Voxel- and surface-based investigations were used to characterize gray matter changes. Volumetric and cortical thickness measures were used to predict the clinical diagnosis at a single-subject level using a support vector machine (SVM) classification framework. Finally, we compared classification performances of magnetic resonance imaging (MRI) data with automatic visual rating scale of frontal and temporal atrophy. RESULTS PPD-bvFTD+ showed a gray matter decrease in thalamus, hippocampus, temporal pole, lingual, occipital, and superior frontal gyri compared to PPD-bvFTD- (p < .05, family-wise error-corrected). SVM classifier showed a discrimination accuracy of 86.2% in differentiating PPD patients with bvFTD from those without bvFTD. CONCLUSIONS Our study highlights the utility of machine learning applied to structural MRI data to support the clinician in the diagnosis of bvFTD in patients with a history of PPD. Gray matter atrophy in temporal, frontal, and occipital brain regions may represent a useful hallmark for a correct identification of dementia in PPD at a single-subject level.
Collapse
Affiliation(s)
- Benedetta Tafuri
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy.,Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Card. G. Panico", Tricase, Italy
| | - Marco Filardi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy.,Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Card. G. Panico", Tricase, Italy
| | - Maria Elisa Frisullo
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Card. G. Panico", Tricase, Italy
| | - Roberto De Blasi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Card. G. Panico", Tricase, Italy.,Department of Radiology, Pia Fondazione Cardinale G. Panico, Tricase, Lecce, Italy
| | - Giovanni Rizzo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Salvatore Nigro
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Card. G. Panico", Tricase, Italy.,Institute of Nanotechnology (NANOTEC), National Research Council, Lecce, Italy
| | - Giancarlo Logroscino
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy.,Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Card. G. Panico", Tricase, Italy
| |
Collapse
|
8
|
Samra K, MacDougall AM, Bouzigues A, Bocchetta M, Cash DM, Greaves CV, Convery RS, Hardy C, van Swieten JC, Seelaar H, Jiskoot LC, Moreno F, Sanchez-Valle R, Laforce R, Graff C, Masellis M, Tartaglia MC, Rowe JB, Borroni B, Finger E, Synofzik M, Galimberti D, Vandenberghe R, de Mendonça A, Butler CR, Gerhard A, Ducharme S, Le Ber I, Santana I, Pasquier F, Levin J, Otto M, Sorbi S, Warren JD, Rohrer JD, Russell LL. Genetic forms of primary progressive aphasia within the GENetic Frontotemporal dementia Initiative (GENFI) cohort: comparison with sporadic primary progressive aphasia. Brain Commun 2023; 5:fcad036. [PMID: 36938528 PMCID: PMC10019761 DOI: 10.1093/braincomms/fcad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/26/2022] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Primary progressive aphasia is most commonly a sporadic disorder, but in some cases, it can be genetic. This study aimed to understand the clinical, cognitive and imaging phenotype of the genetic forms of primary progressive aphasia in comparison to the canonical nonfluent, semantic and logopenic subtypes seen in sporadic disease. Participants with genetic primary progressive aphasia were recruited from the international multicentre GENetic Frontotemporal dementia Initiative study and compared with healthy controls as well as a cohort of people with sporadic primary progressive aphasia. Symptoms were assessed using the GENetic Frontotemporal dementia Initiative language, behavioural, neuropsychiatric and motor scales. Participants also underwent a cognitive assessment and 3 T volumetric T1-weighted MRI. One C9orf72 (2%), 1 MAPT (6%) and 17 GRN (44%) symptomatic mutation carriers had a diagnosis of primary progressive aphasia. In the GRN cohort, 47% had a diagnosis of nonfluent variant primary progressive aphasia, and 53% had a primary progressive aphasia syndrome that did not fit diagnostic criteria for any of the three subtypes, called primary progressive aphasia-not otherwise specified here. The phenotype of the genetic nonfluent variant primary progressive aphasia group largely overlapped with that of sporadic nonfluent variant primary progressive aphasia, although the presence of an associated atypical parkinsonian syndrome was characteristic of sporadic and not genetic disease. The primary progressive aphasia -not otherwise specified group however was distinct from the sporadic subtypes with impaired grammar/syntax in the presence of relatively intact articulation, alongside other linguistic deficits. The pattern of atrophy seen on MRI in the genetic nonfluent variant primary progressive aphasia group overlapped with that of the sporadic nonfluent variant primary progressive aphasia cohort, although with more posterior cortical involvement, whilst the primary progressive aphasia-not otherwise specified group was strikingly asymmetrical with involvement particularly of the insula and dorsolateral prefrontal cortex but also atrophy of the orbitofrontal cortex and the medial temporal lobes. Whilst there are overlapping symptoms between genetic and sporadic primary progressive aphasia syndromes, there are also distinct features. Future iterations of the primary progressive aphasia consensus criteria should encompass such information with further research needed to understand the earliest features of these disorders, particularly during the prodromal period of genetic disease.
Collapse
Affiliation(s)
- Kiran Samra
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Amy M MacDougall
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Caroline V Greaves
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Rhian S Convery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Chris Hardy
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | | | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia Universitary Hospital, San Sebastian, Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Raquel Sanchez-Valle
- Alzheimer’s disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d’Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, Québec City, Canada
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Daniela Galimberti
- Fondazione Ca’ Granda, IRCCS Ospedale Policlinico, Milan, Italy
- University of Milan, Centro Dino Ferrari, Milan, Italy
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Alexandre de Mendonça
- Laboratory of Neurosciences, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
- Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Germany
| | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Québec, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute – Institut du Cerveau – ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Isabel Santana
- University Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Florence Pasquier
- Univ Lille, Inserm 1172, Lille, France
- Inserm 1172, Lille, France
- CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, France
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians Universität München, Munich, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Jason D Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
9
|
Lee H, Mackenzie IRA, Beg MF, Popuri K, Rademakers R, Wittenberg D, Hsiung GYR. White-matter abnormalities in presymptomatic GRN and C9orf72 mutation carriers. Brain Commun 2022; 5:fcac333. [PMID: 36632182 PMCID: PMC9825756 DOI: 10.1093/braincomms/fcac333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/26/2022] [Accepted: 12/18/2022] [Indexed: 12/23/2022] Open
Abstract
A large proportion of familial frontotemporal dementia is caused by TAR DNA-binding protein 43 (transactive response DNA-binding protein 43 kDa) proteinopathies. Accordingly, carriers of autosomal dominant mutations in the genes associated with TAR DNA-binding protein 43 aggregation, such as Chromosome 9 open reading frame 72 (C9orf72) or progranulin (GRN), are at risk of later developing frontotemporal dementia. Brain imaging abnormalities that develop before dementia onset in mutation carriers may serve as proxies for the presymptomatic stages of familial frontotemporal dementia due to a genetic cause. Our study objective was to investigate brain MRI-based white-matter changes in predementia participants carrying mutations in C9orf72 or GRN genes. We analysed mutation carriers and their family member controls (noncarriers) from the University of British Columbia familial frontotemporal dementia study. First, a total of 42 participants (8 GRN carriers; 11 C9orf72 carriers; 23 noncarriers) had longitudinal T1-weighted MRI over ∼2 years. White-matter signal hypointensities were segmented and volumes were calculated for each participant. General linear models were applied to compare the baseline burden and the annualized rate of accumulation of signal abnormalities among mutation carriers and noncarriers. Second, a total of 60 participants (9 GRN carriers; 17 C9orf72 carriers; 34 noncarriers) had cross-sectional diffusion tensor MRI available. For each participant, we calculated the average fractional anisotropy and mean, radial and axial diffusivity parameter values within the normal-appearing white-matter tissues. General linear models were applied to compare whether mutation carriers and noncarriers had different trends in diffusion tensor imaging parameter values as they neared the expected age of onset. Baseline volumes of white-matter signal abnormalities were not significantly different among mutation carriers and noncarriers. Longitudinally, GRN carriers had significantly higher annualized rates of accumulation (estimated mean: 15.87%/year) compared with C9orf72 carriers (3.69%/year) or noncarriers (2.64%/year). A significant relationship between diffusion tensor imaging parameter values and increasing expected age of onset was found in the periventricular normal-appearing white-matter region. Specifically, GRN carriers had a tendency of a faster increase of mean and radial diffusivity values and C9orf72 carriers had a tendency of a faster decline of fractional anisotropy values as they reached closer to the expected age of dementia onset. These findings suggest that white-matter changes may represent early markers of familial frontotemporal dementia due to genetic causes. However, GRN and C9orf72 mutation carriers may have different mechanisms leading to tissue abnormalities.
Collapse
Affiliation(s)
- Hyunwoo Lee
- Correspondence to: Hyunwoo Lee S154-2211 Wesbrook Mall Vancouver, B.C., Canada V6T 2B5 E-mail:
| | - Ian R A Mackenzie
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver V6T2B5, Canada
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby V5A1S6, Canada
| | - Karteek Popuri
- Department of Computer Science, Memorial University of Newfoundland, St John’s A1B3X5, Canada
| | - Rosa Rademakers
- Applied and Translational Neurogenomics, VIB Center for Molecular Neurology, VIB, Antwerp 2610, Belgium,Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium,Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dana Wittenberg
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver V6T2B5, Canada
| | - Ging-Yuek Robin Hsiung
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver V6T2B5, Canada
| |
Collapse
|
10
|
Santamaría-García H, Ogonowsky N, Baez S, Palacio N, Reyes P, Schulte M, López A, Matallana D, Ibanez A. Neurocognitive patterns across genetic levels in behavioral variant frontotemporal dementia: a multiple single cases study. BMC Neurol 2022; 22:454. [PMID: 36474176 PMCID: PMC9724347 DOI: 10.1186/s12883-022-02954-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Behavioral variant frontotemporal dementia (bvFTD) has been related to different genetic factors. Identifying multimodal phenotypic heterogeneity triggered by various genetic influences is critical for improving diagnosis, prognosis, and treatments. However, the specific impact of different genetic levels (mutations vs. risk variants vs. sporadic presentations) on clinical and neurocognitive phenotypes is not entirely understood, specially in patites from underrepresented regions such as Colombia. METHODS Here, in a multiple single cases study, we provide systematic comparisons regarding cognitive, neuropsychiatric, brain atrophy, and gene expression-atrophy overlap in a novel cohort of FTD patients (n = 42) from Colombia with different genetic levels, including patients with known genetic influences (G-FTD) such as those with genetic mutations (GR1) in particular genes (MAPT, TARDBP, and TREM2); patients with risk variants (GR2) in genes associated with FTD (tau Haplotypes H1 and H2 and APOE variants including ε2, ε3, ε4); and sporadic FTD patients (S-FTD (GR3)). RESULTS We found that patients from GR1 and GR2 exhibited earlier disease onset, pervasive cognitive impairments (cognitive screening, executive functioning, ToM), and increased brain atrophy (prefrontal areas, cingulated cortices, basal ganglia, and inferior temporal gyrus) than S-FTD patients (GR3). No differences in disease duration were observed across groups. Additionally, significant neuropsychiatric symptoms were observed in the GR1. The GR1 also presented more clinical and neurocognitive compromise than GR2 patients; these groups, however, did not display differences in disease onset or duration. APOE and tau patients showed more neuropsychiatric symptoms and primary atrophy in parietal and temporal cortices than GR1 patients. The gene-atrophy overlap analysis revealed atrophy in regions with specific genetic overexpression in all G-FTD patients. A differential family presentation did not explain the results. CONCLUSIONS Our results support the existence of genetic levels affecting the clinical, neurocognitive, and, to a lesser extent, neuropsychiatric presentation of bvFTD in the present underrepresented sample. These results support tailored assessments characterization based on the parallels of genetic levels and neurocognitive profiles in bvFTD.
Collapse
Affiliation(s)
- Hernando Santamaría-García
- PhD program in Neuroscience, Pontificia Universidad Javeriana, Bogotá, Colombia.
- Memory and cognition Center, Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia.
- Department of Neurology, Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA.
| | - Natalia Ogonowsky
- CONICET & Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
| | - Sandra Baez
- Faculty of Psychology, Universidad de los Andes, Bogotá, Colombia
| | - Nicole Palacio
- Integrated Program in Neuroscience, McGill University, Montreal, Canada
| | - Pablo Reyes
- PhD program in Neuroscience, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Michael Schulte
- CONICET & Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
| | - Andrea López
- Pontificia Universidad Javeriana, Bogotá, Colombia
- Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | | | - Agustín Ibanez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago de Chile, Chile.
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, & National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
- Trinity Collegue of Dublin, Dublin, Irland.
- Global Brain Health Insititute, Universidad California San Francisco-Trinity College of Dublin, San Francisco, USA.
- Global Brain Health Insititute, Universidad California San Francisco-Trinity College of Dublin, Dublin, Irland.
| |
Collapse
|
11
|
Finger E, Malik R, Bocchetta M, Coleman K, Graff C, Borroni B, Masellis M, Laforce R, Greaves CV, Russell LL, Convery RS, Bouzigues A, Cash DM, Otto M, Synofzik M, Rowe JB, Galimberti D, Tiraboschi P, Bartha R, Shoesmith C, Tartaglia MC, van Swieten JC, Seelaar H, Jiskoo LC, Sorbi S, Butler CR, Gerhard A, Sanchez-Valle R, de Mendonça A, Moreno F, Vandenberghe R, Le Ber I, Levin J, Pasquier F, Santana I, Rohrer JD, Ducharme S. Neurodevelopmental effects of genetic frontotemporal dementia in young adult mutation carriers. Brain 2022; 146:2120-2131. [PMID: 36458975 DOI: 10.1093/brain/awac446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/05/2022] [Accepted: 10/16/2022] [Indexed: 12/03/2022] Open
Abstract
While frontotemporal dementia (frontotemporal dementia) has been considered a neurodegenerative disease that starts in mid-life or later, it is now clearly established that cortical and subcortical volume loss is observed more than a decade prior to symptom onset and progresses with aging. To test the hypothesis that genetic mutations causing frontotemporal dementia have neurodevelopmental consequences, we have examined the youngest adults in the GENFI cohort of pre-symptomatic frontotemporal dementia mutation carriers who are between the ages of 19 and 30y. Structural brain differences and improved performance on some cognitive tests was found for MAPT and GRN mutation carriers relative to familial non-carriers, while smaller volumes were observed in C9orf72 repeat expansion carriers at a mean age of 26y. The detection of such early differences supports potential advantageous neurodevelopmental consequences of some frontotemporal dementia causing genetic mutations. These results have implications for design of therapeutic interventions for frontotemporal dementia. Future studies at younger ages are needed to identify specific early pathophysiologic or compensatory processes in the neurodevelopmental period.
Collapse
Affiliation(s)
- Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Rubina Malik
- Schulich School of Medicine & Dentistry, Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kristy Coleman
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Caroline Graff
- Karolinska Institutet, Department NVS, Division of Neurogeriatrics, Stockholm, Sweden
- Unit for Hereditary Dementia, Theme Aging, Karolinska University Hospital-Solna Stockholm Sweden
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Mario Masellis
- Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, Faculté de Médecine, Université Laval, Québec, Canada
| | - Caroline V Greaves
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rhian S Convery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Markus Otto
- Department of Neurology, University Hospital Ulm, Ulm, Germany
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust and Medical Research Council Cognition and brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Robert Bartha
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Christen Shoesmith
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Maria Carmela Tartaglia
- Toronto Western Hospital, Tanz Centre for Research in Neurodegenerative Disease, Toronto, ON, Canada
| | - John C van Swieten
- Department of Neurology and Alzheimer center, Erasmus Medical Center Rotterdam, the Netherlands
| | - Harro Seelaar
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Lize C Jiskoo
- Department of Neurology and Alzheimer center, Erasmus Medical Center Rotterdam, the Netherlands
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Chris R Butler
- Department of Clinical Neurology, University of Oxford, Oxford, UK
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
- Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Germany
| | - Raquel Sanchez-Valle
- Neurology Department, Hospital Clinic, Institut d'Investigacions Biomèdiques, Barcelona, Spain
| | | | - Fermin Moreno
- Hospital Universitario Donostia, San Sebastian, Spain
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich; German Center for Neurodegenerative Diseases (DZNE), Munich; Munich Cluster of Systems Neurology, Munich, Germany
| | - Florence Pasquier
- Univ Lille, Lille, France
- Inserm 1172, Lille, France
- CHU, CNR-MAJ, Labex Distalz, LiCEND, Lille, France
| | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Portugal
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Simon Ducharme
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
12
|
Giannini LAA, Ohm DT, Rozemuller AJM, Dratch L, Suh E, van Deerlin VM, Trojanowski JQ, Lee EB, van Swieten JC, Grossman M, Seelaar H, Irwin DJ. Isoform-specific patterns of tau burden and neuronal degeneration in MAPT-associated frontotemporal lobar degeneration. Acta Neuropathol 2022; 144:1065-1084. [PMID: 36066634 PMCID: PMC9995405 DOI: 10.1007/s00401-022-02487-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/26/2023]
Abstract
Frontotemporal lobar degeneration with MAPT pathogenic variants (FTLD-MAPT) has heterogeneous tau pathological inclusions postmortem, consisting of three-repeat (3R) or four-repeat (4R) tau isoforms, or a combination (3R + 4R). Here, we studied grey matter tau burden, its relation to neuronal degeneration, and regional patterns of pathology in different isoform groups of FTLD-MAPT. We included 38 FTLD-MAPT autopsy cases with 10 different MAPT pathogenic variants, grouped based on predominant tau isoform(s). In up to eleven regions (ten cortical and one striatal), we quantified grey matter tau burden using digital histopathological analysis and assigned semi-quantitative ratings for neuronal degeneration (i.e. 0-4) and separate burden of glial and neuronal tau inclusions (i.e. 0-3). We used mixed modelling to compare pathology measures (1) across the entire cohort and (2) within isoform groups. In the total cohort, tau burden and neuronal degeneration were positively associated and most severe in the anterior temporal, anterior cingulate and transentorhinal cortices. Isoform groups showed distinctive features of tau burden and neuronal degeneration. Across all regions, the 3R isoform group had lower tau burden compared to the 4R group (p = 0.008), while at the same time showing more severe neuronal degeneration than the 4R group (p = 0.002). The 3R + 4R group had an intermediate profile with relatively high tau burden along with relatively severe neuronal degeneration. Neuronal tau inclusions were most frequent in the 4R group (p < 0.001 vs. 3R), while cortical glial tau inclusions were most frequent in the 3R + 4R and 4R groups (p ≤ 0.009 vs. 3R). Regionally, neuronal degeneration was consistently most severe in the anterior temporal cortex within each isoform group. In contrast, the regions with the highest tau burden differed in isoform groups (3R: striatum; 3R + 4R: striatum, inferior parietal lobule, middle frontal cortex, anterior cingulate cortex; 4R: transentorhinal cortex, anterior temporal cortex, fusiform gyrus). We conclude that FTLD-MAPT isoform groups show distinctive features of overall neuronal degeneration and regional tau burden, but all share pronounced anterior temporal neuronal degeneration. These data suggest that distinct isoform-related mechanisms of genetic tauopathies, with slightly divergent tau distribution, may share similar regional vulnerability to neurodegeneration within the frontotemporal paralimbic networks.
Collapse
Affiliation(s)
- Lucia A A Giannini
- Alzheimer Center, Department of Neurology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Daniel T Ohm
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Frontotemporal Degeneration Center (FTDC), University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - Laynie Dratch
- Frontotemporal Degeneration Center (FTDC), University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - EunRan Suh
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivianna M van Deerlin
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John C van Swieten
- Alzheimer Center, Department of Neurology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Murray Grossman
- Frontotemporal Degeneration Center (FTDC), University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - Harro Seelaar
- Alzheimer Center, Department of Neurology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - David J Irwin
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Frontotemporal Degeneration Center (FTDC), University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
Staffaroni AM, Quintana M, Wendelberger B, Heuer HW, Russell LL, Cobigo Y, Wolf A, Goh SYM, Petrucelli L, Gendron TF, Heller C, Clark AL, Taylor JC, Wise A, Ong E, Forsberg L, Brushaber D, Rojas JC, VandeVrede L, Ljubenkov P, Kramer J, Casaletto KB, Appleby B, Bordelon Y, Botha H, Dickerson BC, Domoto-Reilly K, Fields JA, Foroud T, Gavrilova R, Geschwind D, Ghoshal N, Goldman J, Graff-Radford J, Graff-Radford N, Grossman M, Hall MGH, Hsiung GY, Huey ED, Irwin D, Jones DT, Kantarci K, Kaufer D, Knopman D, Kremers W, Lago AL, Lapid MI, Litvan I, Lucente D, Mackenzie IR, Mendez MF, Mester C, Miller BL, Onyike CU, Rademakers R, Ramanan VK, Ramos EM, Rao M, Rascovsky K, Rankin KP, Roberson ED, Savica R, Tartaglia MC, Weintraub S, Wong B, Cash DM, Bouzigues A, Swift IJ, Peakman G, Bocchetta M, Todd EG, Convery RS, Rowe JB, Borroni B, Galimberti D, Tiraboschi P, Masellis M, Finger E, van Swieten JC, Seelaar H, Jiskoot LC, Sorbi S, Butler CR, Graff C, Gerhard A, Langheinrich T, Laforce R, Sanchez-Valle R, de Mendonça A, Moreno F, Synofzik M, Vandenberghe R, Ducharme S, Le Ber I, Levin J, Danek A, Otto M, Pasquier F, Santana I, Kornak J, Boeve BF, Rosen HJ, Rohrer JD, Boxer AL. Temporal order of clinical and biomarker changes in familial frontotemporal dementia. Nat Med 2022; 28:2194-2206. [PMID: 36138153 PMCID: PMC9951811 DOI: 10.1038/s41591-022-01942-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 07/08/2022] [Indexed: 01/17/2023]
Abstract
Unlike familial Alzheimer's disease, we have been unable to accurately predict symptom onset in presymptomatic familial frontotemporal dementia (f-FTD) mutation carriers, which is a major hurdle to designing disease prevention trials. We developed multimodal models for f-FTD disease progression and estimated clinical trial sample sizes in C9orf72, GRN and MAPT mutation carriers. Models included longitudinal clinical and neuropsychological scores, regional brain volumes and plasma neurofilament light chain (NfL) in 796 carriers and 412 noncarrier controls. We found that the temporal ordering of clinical and biomarker progression differed by genotype. In prevention-trial simulations using model-based patient selection, atrophy and NfL were the best endpoints, whereas clinical measures were potential endpoints in early symptomatic trials. f-FTD prevention trials are feasible but will likely require global recruitment efforts. These disease progression models will facilitate the planning of f-FTD clinical trials, including the selection of optimal endpoints and enrollment criteria to maximize power to detect treatment effects.
Collapse
Affiliation(s)
- Adam M Staffaroni
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| | | | | | - Hilary W Heuer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Yann Cobigo
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Amy Wolf
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sheng-Yang Matt Goh
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Carolin Heller
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Annie L Clark
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jack Carson Taylor
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Amy Wise
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Elise Ong
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Leah Forsberg
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Danielle Brushaber
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Julio C Rojas
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lawren VandeVrede
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Peter Ljubenkov
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Joel Kramer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kaitlin B Casaletto
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Brian Appleby
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
| | - Yvette Bordelon
- Department of Neurology, University of California, Los Angeles, Los Angeles, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Tatiana Foroud
- Indiana University School of Medicine, National Centralized Repository for Alzheimer's, Indianapolis, IN, USA
| | | | - Daniel Geschwind
- Department of Neurology, University of California, Los Angeles, Los Angeles, USA
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nupur Ghoshal
- Departments of Neurology and Psychiatry, Washington University School of Medicine, Washington University, St. Louis, MO, USA
| | - Jill Goldman
- Department of Neurology, Columbia University, New York, NY, USA
| | | | | | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew G H Hall
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ging-Yuek Hsiung
- Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward D Huey
- Department of Neurology, Columbia University, New York, NY, USA
| | - David Irwin
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Kejal Kantarci
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Daniel Kaufer
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - David Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Walter Kremers
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Argentina Lario Lago
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Maria I Lapid
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Irene Litvan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Diane Lucente
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ian R Mackenzie
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mario F Mendez
- Department of Neurology, University of California, Los Angeles, Los Angeles, USA
| | - Carly Mester
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Eliana Marisa Ramos
- Department of Neurology, University of California, Los Angeles, Los Angeles, USA
| | - Meghana Rao
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Katya Rascovsky
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine P Rankin
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Erik D Roberson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - M Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Sandra Weintraub
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Bonnie Wong
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Imogen J Swift
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Georgia Peakman
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Emily G Todd
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Rhian S Convery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust and Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Mario Masellis
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | | | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
- Departments of Geriatric Medicine and Nuclear Medicine, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Tobias Langheinrich
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
- Cerebral Function Unit, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Raquel Sanchez-Valle
- Alzheimer's disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | | | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa, Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Simon Ducharme
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montreal, Québec, Canada
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology, Munich, Germany
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Florence Pasquier
- University of Lille, Lille, France
- Inserm, Lille, France
- CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, Lille, France
| | - Isabel Santana
- Neurology Service, Faculty of Medicine, University Hospital of Coimbra (HUC), University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - John Kornak
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Adam L Boxer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
Termine A, Fabrizio C, Caltagirone C, Petrosini L. A Reproducible Deep-Learning-Based Computer-Aided Diagnosis Tool for Frontotemporal Dementia Using MONAI and Clinica Frameworks. Life (Basel) 2022; 12:947. [PMID: 35888037 PMCID: PMC9323676 DOI: 10.3390/life12070947] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/16/2022] Open
Abstract
Despite Artificial Intelligence (AI) being a leading technology in biomedical research, real-life implementation of AI-based Computer-Aided Diagnosis (CAD) tools into the clinical setting is still remote due to unstandardized practices during development. However, few or no attempts have been made to propose a reproducible CAD development workflow for 3D MRI data. In this paper, we present the development of an easily reproducible and reliable CAD tool using the Clinica and MONAI frameworks that were developed to introduce standardized practices in medical imaging. A Deep Learning (DL) algorithm was trained to detect frontotemporal dementia (FTD) on data from the NIFD database to ensure reproducibility. The DL model yielded 0.80 accuracy (95% confidence intervals: 0.64, 0.91), 1 sensitivity, 0.6 specificity, 0.83 F1-score, and 0.86 AUC, achieving a comparable performance with other FTD classification approaches. Explainable AI methods were applied to understand AI behavior and to identify regions of the images where the DL model misbehaves. Attention maps highlighted that its decision was driven by hallmarking brain areas for FTD and helped us to understand how to improve FTD detection. The proposed standardized methodology could be useful for benchmark comparison in FTD classification. AI-based CAD tools should be developed with the goal of standardizing pipelines, as varying pre-processing and training methods, along with the absence of model behavior explanations, negatively impact regulators' attitudes towards CAD. The adoption of common best practices for neuroimaging data analysis is a step toward fast evaluation of efficacy and safety of CAD and may accelerate the adoption of AI products in the healthcare system.
Collapse
Affiliation(s)
- Andrea Termine
- Data Science Unit, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (A.T.); (C.F.)
| | - Carlo Fabrizio
- Data Science Unit, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (A.T.); (C.F.)
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy;
| | - Laura Petrosini
- Experimental and Behavioral Neurophysiology, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | | |
Collapse
|
15
|
Heikkinen S, Cajanus A, Katisko K, Hartikainen P, Vanninen R, Haapasalo A, Krüger J, Remes AM, Solje E. Brainstem atrophy is linked to extrapyramidal symptoms in frontotemporal dementia. J Neurol 2022; 269:4488-4497. [PMID: 35377014 PMCID: PMC9294011 DOI: 10.1007/s00415-022-11095-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 11/26/2022]
Abstract
AbstractExtrapyramidal (EP) symptoms are a known feature in a subpopulation of patients with behavioral variant frontotemporal dementia (bvFTD). Concomitant EP symptoms with FTD-like neuropsychiatric symptoms are also core features in progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). This complicates the early diagnosis of these disorders. Our retrospective register study aimed to discover imaging (MRI and FDG-PET) biomarkers to differentiate PSP, CBD, and bvFTD patients with extrapyramidal symptoms (EP +) from bvFTD patients without EP symptoms (EP-). The records of 2751 patients were screened for the diagnoses and presence of EP symptoms. A total of 222 patients were submitted to imaging analysis and applicable imaging data were recovered from 139 patients. Neuroimaging data were analyzed using Freesurfer software. In the whole cohort, EP + patients showed lower volumes of gray matter compared to EP- patients in the putamen (p = 0.002), bilateral globus pallidum (p = 0.002, p = 0.042), ventral diencephalon (p = 0.002) and brain stem (p < 0.001). In the bvFTD subgroup, there was volumetric difference between EP + and EP− patients in the brain stem. FDG-PET scans in the bvFTD patient subgroup showed that EP + patients had comparative hypometabolism of the superior cerebellar peduncle (SCP) and the frontal lobes. We discovered that EP symptoms are linked to brainstem atrophy in bvFTD patients and the whole cohort. Also, evident hypometabolism in the SCP of bvFTD EP + patients was detected as compared to bvFTD EP− patients. This could indicate that the EP symptoms in these diseases have a more caudal origin in the brainstem than in Parkinson’s disease.
Collapse
Affiliation(s)
- Sami Heikkinen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, P.O. Box 1627 (Yliopistonranta 1C), 70211, Kuopio, Finland
| | - Antti Cajanus
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, P.O. Box 1627 (Yliopistonranta 1C), 70211, Kuopio, Finland
| | - Kasper Katisko
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, P.O. Box 1627 (Yliopistonranta 1C), 70211, Kuopio, Finland
| | | | - Ritva Vanninen
- Department of Radiology, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine - Radiology, University of Eastern Finland, Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Johanna Krüger
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland
- MRC, Oulu University Hospital, Oulu, Finland
| | - Anne M Remes
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland
- MRC, Oulu University Hospital, Oulu, Finland
| | - Eino Solje
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, P.O. Box 1627 (Yliopistonranta 1C), 70211, Kuopio, Finland.
- Neuro Center, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
16
|
Tisdall MD, Ohm DT, Lobrovich R, Das SR, Mizsei G, Prabhakaran K, Ittyerah R, Lim S, McMillan CT, Wolk DA, Gee J, Trojanowski JQ, Lee EB, Detre JA, Yushkevich P, Grossman M, Irwin DJ. Ex vivo MRI and histopathology detect novel iron-rich cortical inflammation in frontotemporal lobar degeneration with tau versus TDP-43 pathology. Neuroimage Clin 2022; 33:102913. [PMID: 34952351 PMCID: PMC8715243 DOI: 10.1016/j.nicl.2021.102913] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/28/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023]
Abstract
Comparative study of whole-hemisphere ex vivo T2*-weighted MRI and histopathology. Sample of FTLD-Tau and FTLD-TDP subtypes with reference to healthy and AD brain. Novel focal upper cortical-layer iron-rich pathology distinguishes FTLD-TDP from clinically-similar FTLD-Tau and AD. Distinct novel iron-rich FTLD-Tau pathology in mid-to-deep cortical-layers and WM. T2*-weighted MRI signatures offer in vivo biomarker targets for FTLD proteinopathy.
Frontotemporal lobar degeneration (FTLD) is a heterogeneous spectrum of age-associated neurodegenerative diseases that include two main pathologic categories of tau (FTLD-Tau) and TDP-43 (FTLD-TDP) proteinopathies. These distinct proteinopathies are often clinically indistinguishable during life, posing a major obstacle for diagnosis and emerging therapeutic trials tailored to disease-specific mechanisms. Moreover, MRI-derived measures have had limited success to date discriminating between FTLD-Tau or FTLD-TDP. T2*-weighted (T2*w) ex vivo MRI has previously been shown to be sensitive to non-heme iron in healthy intracortical lamination and myelin, and to pathological iron deposits in amyloid-beta plaques and activated microglia in Alzheimer’s disease neuropathologic change (ADNC). However, an integrated, ex vivo MRI and histopathology approach is understudied in FTLD. We apply joint, whole-hemisphere ex vivo MRI at 7 T and histopathology to the study autopsy-confirmed FTLD-Tau (n = 4) and FTLD-TDP (n = 3), relative to ADNC disease-control brains with antemortem clinical symptoms of frontotemporal dementia (n = 2), and an age-matched healthy control. We detect distinct laminar patterns of novel iron-laden glial pathology in both FTLD-Tau and FTLD-TDP brains. We find iron-positive ameboid and hypertrophic microglia and astrocytes largely in deeper GM and adjacent WM in FTLD-Tau. In contrast, FTLD-TDP presents prominent superficial cortical layer iron reactivity in astrocytic processes enveloping small blood vessels with limited involvement of adjacent WM, as well as more diffuse distribution of punctate iron-rich dystrophic microglial processes across all GM lamina. This integrated MRI/histopathology approach reveals ex vivo MRI features that are consistent with these pathological observations distinguishing FTLD-Tau and FTLD-TDP subtypes, including prominent irregular hypointense signal in deeper cortex in FTLD-Tau whereas FTLD-TDP showed upper cortical layer hypointense bands and diffuse cortical speckling. Moreover, differences in adjacent WM degeneration and iron-rich gliosis on histology between FTLD-Tau and FTLD-TDP were also readily apparent on MRI as hyperintense signal and irregular areas of hypointensity, respectively that were more prominent in FTLD-Tau compared to FTLD-TDP. These unique histopathological and radiographic features were distinct from healthy control and ADNC brains, suggesting that iron-sensitive T2*w MRI, adapted to in vivo application at sufficient resolution, may eventually offer an opportunity to improve antemortem diagnosis of FTLD proteinopathies using tissue-validated methods.
Collapse
Affiliation(s)
- M Dylan Tisdall
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States.
| | - Daniel T Ohm
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Rebecca Lobrovich
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Sandhitsu R Das
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Gabor Mizsei
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Karthik Prabhakaran
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Ranjit Ittyerah
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Sydney Lim
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Corey T McMillan
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - David A Wolk
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - James Gee
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - John Q Trojanowski
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, United States
| | - Edward B Lee
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, United States
| | - John A Detre
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States; Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Paul Yushkevich
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Murray Grossman
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - David J Irwin
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States; Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, United States.
| |
Collapse
|
17
|
Buciuc M, Martin PR, Tosakulwong N, Murray ME, Petrucelli L, Senjem ML, Spychalla AJ, Knopman DS, Boeve BF, Petersen RC, Parisi JE, Reichard RR, Dickson DW, Jack CR, Whitwell JL, Josephs KA. TDP-43-associated atrophy in brains with and without frontotemporal lobar degeneration. Neuroimage Clin 2022; 34:102954. [PMID: 35168140 PMCID: PMC8850800 DOI: 10.1016/j.nicl.2022.102954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 11/29/2022]
Abstract
Transactive response DNA-binding protein of ∼43 kDa (TDP-43), a primary pathologic substrate in tau-negative frontotemporal lobar degeneration (FTLD), is also often found in the brains of elderly individuals without FTLD and is a key player in the process of neurodegeneration in brains with and without FTLD. It is unknown how rates and trajectories of TDP-43-associated brain atrophy compare between these two groups. Additionally, non-FTLD TDP-43 inclusions are not homogeneous and can be divided into two morphologic types: type-α and neurofibrillary tangle-associated type-β. Therefore, we explored whether neurodegeneration also varies due to the morphologic type. In this longitudinal retrospective study of 293 patients with 843 MRI scans spanning over ∼10 years, we used a Bayesian hierarchical linear model to quantify similarities and differences between the non-FTLD TDP-43 (type-α/type-β) and FTLD-TDP (n = 68) in both regional volume at various timepoints before death and annualized rate of atrophy. Since Alzheimer's disease (AD) is a frequent co-pathology in non-FTLD TDP-43, we further divided types α/β based on presence/absence of intermediate-high likelihood AD: AD-TDP type-β (n = 90), AD-TDP type-α (n = 104), and Pure-TDP (n = 31, all type-α). FTLD-TDP was associated with faster atrophy rates in the inferior temporal lobe and temporal pole compared to all non-FTLD TDP-43 groups. The atrophy rate in the frontal lobe was modulated by age with younger FTLD-TDP having the fastest rates. Older FTLD-TDP showed a limbic predominant pattern of neurodegeneration. AD-TDP type-α showed faster rates of hippocampal atrophy and smaller volumes of amygdala, temporal pole, and inferior temporal lobe compared to AD-TDP type-β. Pure-TDP was associated with slowest rates and less atrophy in all brain regions. The results suggest that there are differences and similarities in longitudinal brain volume loss between FTLD-TDP and non-FTLD TDP-43. Within FTLD-TDP age plays a role in which brain regions are the most affected. Additionally, brain atrophy regional rates also vary by non-FTLD TDP-43 type.
Collapse
Affiliation(s)
- Marina Buciuc
- Department of Neurology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Peter R Martin
- Department of Quantitative Health Sciences, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Nirubol Tosakulwong
- Department of Quantitative Health Sciences, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224, USA.
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224, USA.
| | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Anthony J Spychalla
- Department of Radiology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - David S Knopman
- Department of Neurology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - R Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224, USA.
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Jennifer L Whitwell
- Department of Radiology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| |
Collapse
|
18
|
Strikwerda-Brown C, Ahmed RM, Piguet O, Irish M. Try to see it my way - Examining the relationship between visual perspective taking and theory of mind in frontotemporal dementia. Brain Cogn 2022; 157:105835. [PMID: 35007869 DOI: 10.1016/j.bandc.2021.105835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/03/2021] [Accepted: 12/23/2021] [Indexed: 11/02/2022]
Abstract
The behavioural variant of frontotemporal dementia (bvFTD) is characterised by pronounced alterations in social functioning, including the understanding of others' thoughts and feelings via theory of mind. The emergence of such impairments in other social disorders such as autism and schizophrenia is suggested to reflect an inability to imagine the other person's visual perspective of the world. To our knowledge, relationships between visual perspective taking and theory of mind have not previously been explored in bvFTD. Here, we sought to examine the capacity for visual perspective taking and theory of mind in bvFTD, and to establish their inter-relationships and underlying neural correlates. Fifteen bvFTD patients and 15 healthy Controls completed a comprehensive battery of perspective taking measures, comprising Level 1 ('what') and Level 2 ('how') visual perspective taking tasks, a cartoon task capturing theory of mind, and a questionnaire assessing subjective perspective taking in daily life. Compared with Controls, bvFTD patients displayed significant impairments across all perspective taking measures. These perspective taking impairments, however, were not correlated with one another in bvFTD. Region-of-interest voxel-based morphometry analyses suggested distinct neural correlates for visual perspective taking (inferior frontal gyrus) versus theory of mind (medial prefrontal cortex, precuneus), which appeared to partially overlap with those implicated in subjective perspective taking (inferior frontal gyrus, precuneus, temporoparietal junction). Despite pervasive impairments in all aspects of perspective taking in bvFTD, these did not appear to relate to one another at the behavioural or neural level in our study. Future large-scale studies manipulating discrete aspects of the tasks will help to clarify the neurocognitive mechanisms of, and relationships between, visual perspective taking and theory of mind in bvFTD, along with their real-world implications.
Collapse
Affiliation(s)
- Cherie Strikwerda-Brown
- The University of Sydney, Brain and Mind Centre, Australia; The University of Sydney, School of Psychology, Australia
| | - Rebekah M Ahmed
- The University of Sydney, Brain and Mind Centre, Australia; The University of Sydney, Sydney Medical School, Australia
| | - Olivier Piguet
- The University of Sydney, Brain and Mind Centre, Australia; The University of Sydney, School of Psychology, Australia
| | - Muireann Irish
- The University of Sydney, Brain and Mind Centre, Australia; The University of Sydney, School of Psychology, Australia.
| |
Collapse
|
19
|
Dadar M, Manera AL, Ducharme S, Collins DL. White matter hyperintensities are associated with grey matter atrophy and cognitive decline in Alzheimer's disease and frontotemporal dementia. Neurobiol Aging 2021; 111:54-63. [PMID: 34968832 DOI: 10.1016/j.neurobiolaging.2021.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/21/2021] [Accepted: 11/26/2021] [Indexed: 01/18/2023]
Abstract
White matter hyperintensities (WMHs) are commonly assumed to represent non-specific cerebrovascular disease comorbid to neurodegenerative processes, rather than playing a synergistic role. We compared the impact of WMHs on grey matter (GM) atrophy and cognition in normal aging (n = 571), mild cognitive impairment (MCI, n = 551), Alzheimer's dementia (AD, n = 212), fronto-temporal dementia (FTD, n = 125), and Parkinson's disease (PD, n = 271). Longitudinal data were obtained from ADNI, FTLDNI, and PPMI datasets. Mixed-effects models were used to compare WMHs and GM atrophy between patients and controls and assess the impact of WMHs on GM atrophy and cognition. MCI, AD, and FTD patients had significantly higher WMH loads than controls. WMHs were related to GM atrophy in insular and parieto-occipital regions in MCI/AD, and frontal regions and basal ganglia in FTD. In addition, WMHs contributed to more severe cognitive deficits in AD and FTD compared to controls, whereas their impact in MCI and PD was not significantly different from controls. These results suggest potential synergistic effects between WMHs and proteinopathies in the neurodegenerative process in MCI, AD and FTD.
Collapse
Affiliation(s)
- Mahsa Dadar
- NeuroImaging and Surgical Tools Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Ana Laura Manera
- NeuroImaging and Surgical Tools Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Simon Ducharme
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Douglas Mental Health University Institute and Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - D Louis Collins
- NeuroImaging and Surgical Tools Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
20
|
Spinelli EG, Ghirelli A, Basaia S, Cividini C, Riva N, Canu E, Castelnovo V, Domi T, Magnani G, Caso F, Caroppo P, Prioni S, Rossi G, Tremolizzo L, Appollonio I, Silani V, Carrera P, Filippi M, Agosta F. Structural MRI Signatures in Genetic Presentations of the Frontotemporal Dementia/Motor Neuron Disease Spectrum. Neurology 2021; 97:e1594-e1607. [PMID: 34544819 PMCID: PMC8548958 DOI: 10.1212/wnl.0000000000012702] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/09/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To assess cortical, subcortical, and cerebellar gray matter (GM) atrophy using MRI in patients with disorders of the frontotemporal lobar degeneration (FTLD) spectrum with known genetic mutations. METHODS Sixty-six patients carrying FTLD-related mutations were enrolled, including 44 with pure motor neuron disease (MND) and 22 with frontotemporal dementia (FTD). Sixty-one patients with sporadic FTLD (sFTLD) matched for age, sex, and disease severity with genetic FTLD (gFTLD) were also included, as well as 52 healthy controls. A whole-brain voxel-based morphometry (VBM) analysis was performed. GM volumes of subcortical and cerebellar structures were obtained. RESULTS Compared with controls, GM atrophy on VBM was greater and more diffuse in genetic FTD, followed by sporadic FTD and genetic MND cases, whereas patients with sporadic MND (sMND) showed focal motor cortical atrophy. Patients carrying C9orf72 and GRN mutations showed the most widespread cortical volume loss, in contrast with GM sparing in SOD1 and TARDBP. Globally, patients with gFTLD showed greater atrophy of parietal cortices and thalami compared with sFTLD. In volumetric analysis, patients with gFTLD showed volume loss compared with sFTLD in the caudate nuclei and thalami, in particular comparing C9-MND with sMND cases. In the cerebellum, patients with gFTLD showed greater atrophy of the right lobule VIIb than sFTLD. Thalamic volumes of patients with gFTLD with a C9orf72 mutation showed an inverse correlation with Frontal Behavioral Inventory scores. DISCUSSION Measures of deep GM and cerebellar structural involvement may be useful markers of gFTLD, particularly C9orf72-related disorders, regardless of the clinical presentation within the FTLD spectrum.
Collapse
Affiliation(s)
- Edoardo Gioele Spinelli
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., C.C., E.C., V.C., M.F., F.A.) and Experimental Neuropathology Unit (N.R., T.D.), Division of Neuroscience, Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (E.G.S., G.M., F.C., M.F., F.A.), Laboratory of Clinical Molecular Biology (P. Carrera), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., C.C., V.C., M.F., F.A.); Unit of Neurology 5-Neuropathology (P. Caroppo, S.P., G.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Neurology Unit (L.T., I.A.), "San Gerardo" Hospital and University of Milano-Bicocca, Monza; Department of Neurology and Laboratory of Neuroscience (V.S.), IRCCS Istituto Auxologico Italiano; and "Dino Ferrari" Center, Department of Pathophysiology and Transplantation (V.S.), Università degli Studi di Milano, Milan, Italy
| | - Alma Ghirelli
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., C.C., E.C., V.C., M.F., F.A.) and Experimental Neuropathology Unit (N.R., T.D.), Division of Neuroscience, Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (E.G.S., G.M., F.C., M.F., F.A.), Laboratory of Clinical Molecular Biology (P. Carrera), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., C.C., V.C., M.F., F.A.); Unit of Neurology 5-Neuropathology (P. Caroppo, S.P., G.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Neurology Unit (L.T., I.A.), "San Gerardo" Hospital and University of Milano-Bicocca, Monza; Department of Neurology and Laboratory of Neuroscience (V.S.), IRCCS Istituto Auxologico Italiano; and "Dino Ferrari" Center, Department of Pathophysiology and Transplantation (V.S.), Università degli Studi di Milano, Milan, Italy
| | - Silvia Basaia
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., C.C., E.C., V.C., M.F., F.A.) and Experimental Neuropathology Unit (N.R., T.D.), Division of Neuroscience, Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (E.G.S., G.M., F.C., M.F., F.A.), Laboratory of Clinical Molecular Biology (P. Carrera), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., C.C., V.C., M.F., F.A.); Unit of Neurology 5-Neuropathology (P. Caroppo, S.P., G.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Neurology Unit (L.T., I.A.), "San Gerardo" Hospital and University of Milano-Bicocca, Monza; Department of Neurology and Laboratory of Neuroscience (V.S.), IRCCS Istituto Auxologico Italiano; and "Dino Ferrari" Center, Department of Pathophysiology and Transplantation (V.S.), Università degli Studi di Milano, Milan, Italy
| | - Camilla Cividini
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., C.C., E.C., V.C., M.F., F.A.) and Experimental Neuropathology Unit (N.R., T.D.), Division of Neuroscience, Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (E.G.S., G.M., F.C., M.F., F.A.), Laboratory of Clinical Molecular Biology (P. Carrera), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., C.C., V.C., M.F., F.A.); Unit of Neurology 5-Neuropathology (P. Caroppo, S.P., G.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Neurology Unit (L.T., I.A.), "San Gerardo" Hospital and University of Milano-Bicocca, Monza; Department of Neurology and Laboratory of Neuroscience (V.S.), IRCCS Istituto Auxologico Italiano; and "Dino Ferrari" Center, Department of Pathophysiology and Transplantation (V.S.), Università degli Studi di Milano, Milan, Italy
| | - Nilo Riva
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., C.C., E.C., V.C., M.F., F.A.) and Experimental Neuropathology Unit (N.R., T.D.), Division of Neuroscience, Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (E.G.S., G.M., F.C., M.F., F.A.), Laboratory of Clinical Molecular Biology (P. Carrera), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., C.C., V.C., M.F., F.A.); Unit of Neurology 5-Neuropathology (P. Caroppo, S.P., G.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Neurology Unit (L.T., I.A.), "San Gerardo" Hospital and University of Milano-Bicocca, Monza; Department of Neurology and Laboratory of Neuroscience (V.S.), IRCCS Istituto Auxologico Italiano; and "Dino Ferrari" Center, Department of Pathophysiology and Transplantation (V.S.), Università degli Studi di Milano, Milan, Italy
| | - Elisa Canu
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., C.C., E.C., V.C., M.F., F.A.) and Experimental Neuropathology Unit (N.R., T.D.), Division of Neuroscience, Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (E.G.S., G.M., F.C., M.F., F.A.), Laboratory of Clinical Molecular Biology (P. Carrera), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., C.C., V.C., M.F., F.A.); Unit of Neurology 5-Neuropathology (P. Caroppo, S.P., G.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Neurology Unit (L.T., I.A.), "San Gerardo" Hospital and University of Milano-Bicocca, Monza; Department of Neurology and Laboratory of Neuroscience (V.S.), IRCCS Istituto Auxologico Italiano; and "Dino Ferrari" Center, Department of Pathophysiology and Transplantation (V.S.), Università degli Studi di Milano, Milan, Italy
| | - Veronica Castelnovo
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., C.C., E.C., V.C., M.F., F.A.) and Experimental Neuropathology Unit (N.R., T.D.), Division of Neuroscience, Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (E.G.S., G.M., F.C., M.F., F.A.), Laboratory of Clinical Molecular Biology (P. Carrera), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., C.C., V.C., M.F., F.A.); Unit of Neurology 5-Neuropathology (P. Caroppo, S.P., G.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Neurology Unit (L.T., I.A.), "San Gerardo" Hospital and University of Milano-Bicocca, Monza; Department of Neurology and Laboratory of Neuroscience (V.S.), IRCCS Istituto Auxologico Italiano; and "Dino Ferrari" Center, Department of Pathophysiology and Transplantation (V.S.), Università degli Studi di Milano, Milan, Italy
| | - Teuta Domi
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., C.C., E.C., V.C., M.F., F.A.) and Experimental Neuropathology Unit (N.R., T.D.), Division of Neuroscience, Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (E.G.S., G.M., F.C., M.F., F.A.), Laboratory of Clinical Molecular Biology (P. Carrera), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., C.C., V.C., M.F., F.A.); Unit of Neurology 5-Neuropathology (P. Caroppo, S.P., G.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Neurology Unit (L.T., I.A.), "San Gerardo" Hospital and University of Milano-Bicocca, Monza; Department of Neurology and Laboratory of Neuroscience (V.S.), IRCCS Istituto Auxologico Italiano; and "Dino Ferrari" Center, Department of Pathophysiology and Transplantation (V.S.), Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Magnani
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., C.C., E.C., V.C., M.F., F.A.) and Experimental Neuropathology Unit (N.R., T.D.), Division of Neuroscience, Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (E.G.S., G.M., F.C., M.F., F.A.), Laboratory of Clinical Molecular Biology (P. Carrera), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., C.C., V.C., M.F., F.A.); Unit of Neurology 5-Neuropathology (P. Caroppo, S.P., G.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Neurology Unit (L.T., I.A.), "San Gerardo" Hospital and University of Milano-Bicocca, Monza; Department of Neurology and Laboratory of Neuroscience (V.S.), IRCCS Istituto Auxologico Italiano; and "Dino Ferrari" Center, Department of Pathophysiology and Transplantation (V.S.), Università degli Studi di Milano, Milan, Italy
| | - Francesca Caso
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., C.C., E.C., V.C., M.F., F.A.) and Experimental Neuropathology Unit (N.R., T.D.), Division of Neuroscience, Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (E.G.S., G.M., F.C., M.F., F.A.), Laboratory of Clinical Molecular Biology (P. Carrera), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., C.C., V.C., M.F., F.A.); Unit of Neurology 5-Neuropathology (P. Caroppo, S.P., G.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Neurology Unit (L.T., I.A.), "San Gerardo" Hospital and University of Milano-Bicocca, Monza; Department of Neurology and Laboratory of Neuroscience (V.S.), IRCCS Istituto Auxologico Italiano; and "Dino Ferrari" Center, Department of Pathophysiology and Transplantation (V.S.), Università degli Studi di Milano, Milan, Italy
| | - Paola Caroppo
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., C.C., E.C., V.C., M.F., F.A.) and Experimental Neuropathology Unit (N.R., T.D.), Division of Neuroscience, Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (E.G.S., G.M., F.C., M.F., F.A.), Laboratory of Clinical Molecular Biology (P. Carrera), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., C.C., V.C., M.F., F.A.); Unit of Neurology 5-Neuropathology (P. Caroppo, S.P., G.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Neurology Unit (L.T., I.A.), "San Gerardo" Hospital and University of Milano-Bicocca, Monza; Department of Neurology and Laboratory of Neuroscience (V.S.), IRCCS Istituto Auxologico Italiano; and "Dino Ferrari" Center, Department of Pathophysiology and Transplantation (V.S.), Università degli Studi di Milano, Milan, Italy
| | - Sara Prioni
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., C.C., E.C., V.C., M.F., F.A.) and Experimental Neuropathology Unit (N.R., T.D.), Division of Neuroscience, Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (E.G.S., G.M., F.C., M.F., F.A.), Laboratory of Clinical Molecular Biology (P. Carrera), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., C.C., V.C., M.F., F.A.); Unit of Neurology 5-Neuropathology (P. Caroppo, S.P., G.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Neurology Unit (L.T., I.A.), "San Gerardo" Hospital and University of Milano-Bicocca, Monza; Department of Neurology and Laboratory of Neuroscience (V.S.), IRCCS Istituto Auxologico Italiano; and "Dino Ferrari" Center, Department of Pathophysiology and Transplantation (V.S.), Università degli Studi di Milano, Milan, Italy
| | - Giacomina Rossi
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., C.C., E.C., V.C., M.F., F.A.) and Experimental Neuropathology Unit (N.R., T.D.), Division of Neuroscience, Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (E.G.S., G.M., F.C., M.F., F.A.), Laboratory of Clinical Molecular Biology (P. Carrera), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., C.C., V.C., M.F., F.A.); Unit of Neurology 5-Neuropathology (P. Caroppo, S.P., G.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Neurology Unit (L.T., I.A.), "San Gerardo" Hospital and University of Milano-Bicocca, Monza; Department of Neurology and Laboratory of Neuroscience (V.S.), IRCCS Istituto Auxologico Italiano; and "Dino Ferrari" Center, Department of Pathophysiology and Transplantation (V.S.), Università degli Studi di Milano, Milan, Italy
| | - Lucio Tremolizzo
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., C.C., E.C., V.C., M.F., F.A.) and Experimental Neuropathology Unit (N.R., T.D.), Division of Neuroscience, Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (E.G.S., G.M., F.C., M.F., F.A.), Laboratory of Clinical Molecular Biology (P. Carrera), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., C.C., V.C., M.F., F.A.); Unit of Neurology 5-Neuropathology (P. Caroppo, S.P., G.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Neurology Unit (L.T., I.A.), "San Gerardo" Hospital and University of Milano-Bicocca, Monza; Department of Neurology and Laboratory of Neuroscience (V.S.), IRCCS Istituto Auxologico Italiano; and "Dino Ferrari" Center, Department of Pathophysiology and Transplantation (V.S.), Università degli Studi di Milano, Milan, Italy
| | - Ildebrando Appollonio
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., C.C., E.C., V.C., M.F., F.A.) and Experimental Neuropathology Unit (N.R., T.D.), Division of Neuroscience, Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (E.G.S., G.M., F.C., M.F., F.A.), Laboratory of Clinical Molecular Biology (P. Carrera), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., C.C., V.C., M.F., F.A.); Unit of Neurology 5-Neuropathology (P. Caroppo, S.P., G.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Neurology Unit (L.T., I.A.), "San Gerardo" Hospital and University of Milano-Bicocca, Monza; Department of Neurology and Laboratory of Neuroscience (V.S.), IRCCS Istituto Auxologico Italiano; and "Dino Ferrari" Center, Department of Pathophysiology and Transplantation (V.S.), Università degli Studi di Milano, Milan, Italy
| | - Vincenzo Silani
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., C.C., E.C., V.C., M.F., F.A.) and Experimental Neuropathology Unit (N.R., T.D.), Division of Neuroscience, Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (E.G.S., G.M., F.C., M.F., F.A.), Laboratory of Clinical Molecular Biology (P. Carrera), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., C.C., V.C., M.F., F.A.); Unit of Neurology 5-Neuropathology (P. Caroppo, S.P., G.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Neurology Unit (L.T., I.A.), "San Gerardo" Hospital and University of Milano-Bicocca, Monza; Department of Neurology and Laboratory of Neuroscience (V.S.), IRCCS Istituto Auxologico Italiano; and "Dino Ferrari" Center, Department of Pathophysiology and Transplantation (V.S.), Università degli Studi di Milano, Milan, Italy
| | - Paola Carrera
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., C.C., E.C., V.C., M.F., F.A.) and Experimental Neuropathology Unit (N.R., T.D.), Division of Neuroscience, Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (E.G.S., G.M., F.C., M.F., F.A.), Laboratory of Clinical Molecular Biology (P. Carrera), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., C.C., V.C., M.F., F.A.); Unit of Neurology 5-Neuropathology (P. Caroppo, S.P., G.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Neurology Unit (L.T., I.A.), "San Gerardo" Hospital and University of Milano-Bicocca, Monza; Department of Neurology and Laboratory of Neuroscience (V.S.), IRCCS Istituto Auxologico Italiano; and "Dino Ferrari" Center, Department of Pathophysiology and Transplantation (V.S.), Università degli Studi di Milano, Milan, Italy
| | - Massimo Filippi
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., C.C., E.C., V.C., M.F., F.A.) and Experimental Neuropathology Unit (N.R., T.D.), Division of Neuroscience, Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (E.G.S., G.M., F.C., M.F., F.A.), Laboratory of Clinical Molecular Biology (P. Carrera), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., C.C., V.C., M.F., F.A.); Unit of Neurology 5-Neuropathology (P. Caroppo, S.P., G.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Neurology Unit (L.T., I.A.), "San Gerardo" Hospital and University of Milano-Bicocca, Monza; Department of Neurology and Laboratory of Neuroscience (V.S.), IRCCS Istituto Auxologico Italiano; and "Dino Ferrari" Center, Department of Pathophysiology and Transplantation (V.S.), Università degli Studi di Milano, Milan, Italy
| | - Federica Agosta
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., C.C., E.C., V.C., M.F., F.A.) and Experimental Neuropathology Unit (N.R., T.D.), Division of Neuroscience, Neurorehabilitation Unit (N.R., M.F.), Neurology Unit (E.G.S., G.M., F.C., M.F., F.A.), Laboratory of Clinical Molecular Biology (P. Carrera), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., C.C., V.C., M.F., F.A.); Unit of Neurology 5-Neuropathology (P. Caroppo, S.P., G.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan; Neurology Unit (L.T., I.A.), "San Gerardo" Hospital and University of Milano-Bicocca, Monza; Department of Neurology and Laboratory of Neuroscience (V.S.), IRCCS Istituto Auxologico Italiano; and "Dino Ferrari" Center, Department of Pathophysiology and Transplantation (V.S.), Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
21
|
Ssali T, Anazodo UC, Narciso L, Liu L, Jesso S, Richardson L, Günther M, Konstandin S, Eickel K, Prato F, Finger E, St Lawrence K. Sensitivity of arterial Spin labeling for characterization of longitudinal perfusion changes in Frontotemporal dementia and related disorders. NEUROIMAGE-CLINICAL 2021; 35:102853. [PMID: 34697009 PMCID: PMC9421452 DOI: 10.1016/j.nicl.2021.102853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022]
Abstract
This study demonstrates the value of ASL for longitudinal monitoring of perfusion in FTD patients. Good agreement was found in repeat measures of CBF in patients and controls. Transit times were not a significant source of error for the selected post labeling delay (2 s).
Background Advances in the understanding of the pathophysiology of frontotemporal dementia (FTD) and related disorders, along with the development of novel candidate disease modifying treatments, have stimulated the need for tools to assess the efficacy of new therapies. While perfusion imaging by arterial spin labeling (ASL) is an attractive approach for longitudinal imaging biomarkers of neurodegeneration, sources of variability between sessions including arterial transit times (ATT) and fluctuations in resting perfusion can reduce its sensitivity. Establishing the magnitude of perfusion changes that can be reliably detected is necessary to delineate longitudinal perfusion changes related to disease processes from the effects of these sources of error. Purpose To assess the feasibility of ASL for longitudinal monitoring of patients with FTD by quantifying between-session variability of perfusion on a voxel-by-voxel basis. Methods and materials ASL data were collected in 13 healthy controls and 8 patients with FTD or progressive supra-nuclear palsy. Variability in cerebral blood flow (CBF) by single delay pseudo-continuous ASL (SD-pCASL) acquired one month apart were quantified by the coefficient of variation (CV) and intraclass correlation coefficient (ICC). Additionally, CBF by SD-pCASL and ATT by low-resolution multiple inversion time ASL (LowRes-pCASL) were compared to Hadamard encoded sequences which are able to simultaneously measure CBF and ATT with improved time-efficiency. Results Agreement of grey-matter perfusion between sessions was found for both patients and controls (CV = 10.8% and 8.3% respectively) with good reliability for both groups (ICC > 0.6). Intensity normalization to remove day-to-day fluctuations in resting perfusion reduced the CV by 28%. Less than 5% of voxels had ATTs above the chosen post labelling delay (2 s), indicating that the ATT was not a significant source of error. Hadamard-encoded perfusion imaging yielded systematically higher CBF compared to SD-pCASL, but produced similar transit-time measurements. Power analysis revealed that SD-pCASL has the sensitivity to detect longitudinal changes as low as 10% with as few as 10 patient participants. Conclusion With the appropriate labeling parameters, SD-pCASL is a promising approach for assessing longitudinal changes in CBF associated with FTD.
Collapse
Affiliation(s)
- Tracy Ssali
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada.
| | - Udunna C Anazodo
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Lucas Narciso
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Linshan Liu
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Sarah Jesso
- Lawson Health Research Institute, London, Canada; St. Joseph's Health Care, London, Canada
| | - Lauryn Richardson
- Lawson Health Research Institute, London, Canada; St. Joseph's Health Care, London, Canada
| | - Matthias Günther
- Fraunhofer Institute for Medical Image Computing MEVIS, Bremen, Germany; University Bremen, Bremen, Germany
| | - Simon Konstandin
- Fraunhofer Institute for Medical Image Computing MEVIS, Bremen, Germany; Mediri GmbH, Heidelberg, Germany
| | | | - Frank Prato
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Elizabeth Finger
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada; Department of Clinical Neurological Sciences, Western University, London, Canada
| | - Keith St Lawrence
- Lawson Health Research Institute, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| |
Collapse
|
22
|
A comparison of automated atrophy measures across the frontotemporal dementia spectrum: Implications for trials. NEUROIMAGE-CLINICAL 2021; 32:102842. [PMID: 34626889 PMCID: PMC8503665 DOI: 10.1016/j.nicl.2021.102842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/13/2021] [Accepted: 09/23/2021] [Indexed: 11/22/2022]
Abstract
Background Frontotemporal dementia (FTD) is a common cause of young onset dementia, and whilst there are currently no treatments, there are several promising candidates in development and early phase trials. Comprehensive investigations of neuroimaging markers of disease progression across the full spectrum of FTD disorders are lacking and urgently needed to facilitate these trials. Objective To investigate the comparative performance of multiple automated segmentation and registration pipelines used to quantify longitudinal whole-brain atrophy across the clinical, genetic and pathological subgroups of FTD, in order to inform upcoming trials about suitable neuroimaging-based endpoints. Methods Seventeen fully automated techniques for extracting whole-brain atrophy measures were applied and directly compared in a cohort of 226 participants who had undergone longitudinal structural 3D T1-weighted imaging. Clinical diagnoses were behavioural variant FTD (n = 56) and primary progressive aphasia (PPA, n = 104), comprising semantic variant PPA (n = 38), non-fluent variant PPA (n = 42), logopenic variant PPA (n = 18), and PPA-not otherwise specified (n = 6). 49 of these patients had either a known pathogenic mutation or postmortem confirmation of their underlying pathology. 66 healthy controls were included for comparison. Sample size estimates to detect a 30% reduction in atrophy (80% power; 0.05 significance) were computed to explore the relative feasibility of these brain measures as surrogate markers of disease progression and their ability to detect putative disease-modifying treatment effects. Results Multiple automated techniques showed great promise, detecting significantly increased rates of whole-brain atrophy (p<0.001) and requiring sample sizes of substantially less than 100 patients per treatment arm. Across the different FTD subgroups, direct measures of volume change consistently outperformed their indirect counterparts, irrespective of the initial segmentation quality. Significant differences in performance were found between both techniques and patient subgroups, highlighting the importance of informed biomarker choice based on the patient population of interest. Conclusion This work expands current knowledge and builds on the limited longitudinal investigations currently available in FTD, as well as providing valuable information about the potential of fully automated neuroimaging biomarkers for sporadic and genetic FTD trials.
Collapse
|
23
|
Escal J, Fourier A, Formaglio M, Zimmer L, Bernard E, Mollion H, Bost M, Herrmann M, Ollagnon-Roman E, Quadrio I, Dorey JM. Comparative diagnosis interest of NfL and pNfH in CSF and plasma in a context of FTD-ALS spectrum. J Neurol 2021; 269:1522-1529. [PMID: 34313819 DOI: 10.1007/s00415-021-10714-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The 'Frontotemporal dementia-Amyotrophic lateral sclerosis Spectrum' (FAS) encompasses different phenotypes, including cognitive disorders (frontotemporal dementia, FTD) and/or motor impairments (amyotrophic lateral sclerosis, ALS). The aim of this study was to apprehend the specific uses of neurofilaments light chain (NfL) and phosphorylated neurofilaments heavy chain (pNfH) in a context of FAS. METHODS First, NfL and pNfH were measured in 39 paired cerebrospinal fluid (CSF) and plasma samples of FAS and primary psychiatric disorders (PPD) patients, considered as controls. Secondly, additional plasma samples were included to examine a larger cohort of 81 samples composed of symptomatic FAS and PPD patients, presymptomatic and non-carrier relatives individuals. The measures were performed using Simoa technology. RESULTS There was a positive correlation between CSF and plasma values for NfL (p < 0.0001) and for pNfH (p = 0.0036). NfL values were higher for all phenotypes of symptomatic FAS patients compared to PPD patients (p = 0.0016 in CSF; p = 0.0003 in plasma). On the contrary, pNfH values were solely increased in FAS patients exhibiting motor impairment. Unlike symptomatic FAS patients, presymptomatic cases had comparable concentrations with non-carrier individuals. CONCLUSION NfL, but not pNfH, appeared to be useful in a context of differential diagnosis between FTD and psychiatric patients. Nevertheless, pNfH seem more specific for the diagnosis and follow-up of motor impairments. In each specific indication, measures in CSF and plasma will provide identical interpretations.
Collapse
Affiliation(s)
- Jean Escal
- Laboratory of Neurobiology and Neurogenetics, Department of Biochemistry and Molecular Biology, Lyon University Hospital, Bron, France.,BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University, Bron, France
| | - Anthony Fourier
- Laboratory of Neurobiology and Neurogenetics, Department of Biochemistry and Molecular Biology, Lyon University Hospital, Bron, France. .,BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University, Bron, France.
| | - Maité Formaglio
- Neurocognition and Neuro-Ophthalmology Department, Lyon University Hospital, Bron, France.,Center for Memory Resources and Research, Lyon University Hospital, Lyon 1 University, Villeurbanne, France
| | - Luc Zimmer
- BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University, Bron, France
| | - Emilien Bernard
- Reference Center of ALS of Lyon, Lyon University Hospital, Lyon 1 University, Bron, France.,NeuroMyoGène Institute, CNRS UMR 5310, INSERM U1217, Lyon 1 University, Lyon, France
| | - Hélène Mollion
- Neurocognition and Neuro-Ophthalmology Department, Lyon University Hospital, Bron, France.,Center for Memory Resources and Research, Lyon University Hospital, Lyon 1 University, Villeurbanne, France
| | - Muriel Bost
- Laboratory of Neurobiology and Neurogenetics, Department of Biochemistry and Molecular Biology, Lyon University Hospital, Bron, France
| | - Mathieu Herrmann
- Department of Aging Psychiatry, Hospital Le Vinatier, Bron, France
| | - Elisabeth Ollagnon-Roman
- Department of Predictive Medicine of Neurological and Neurodegenerative Diseases, Lyon University Hospital, Lyon, France
| | - Isabelle Quadrio
- Laboratory of Neurobiology and Neurogenetics, Department of Biochemistry and Molecular Biology, Lyon University Hospital, Bron, France.,BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University, Bron, France.,Center for Memory Resources and Research, Lyon University Hospital, Lyon 1 University, Villeurbanne, France
| | - Jean-Michel Dorey
- Department of Aging Psychiatry, Hospital Le Vinatier, Bron, France.,Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon, France
| |
Collapse
|
24
|
Vieira SRL, Morris HR. Neurodegenerative Disease Risk in Carriers of Autosomal Recessive Disease. Front Neurol 2021; 12:679927. [PMID: 34149605 PMCID: PMC8211888 DOI: 10.3389/fneur.2021.679927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/14/2021] [Indexed: 01/19/2023] Open
Abstract
Genetics has driven significant discoveries in the field of neurodegenerative diseases (NDDs). An emerging theme in neurodegeneration warrants an urgent and comprehensive update: that carrier status of early-onset autosomal recessive (AR) disease, typically considered benign, is associated with an increased risk of a spectrum of late-onset NDDs. Glucosylceramidase beta (GBA1) gene mutations, responsible for the AR lysosomal storage disorder Gaucher disease, are a prominent example of this principle, having been identified as an important genetic risk factor for Parkinson disease. Genetic analyses have revealed further examples, notably GRN, TREM2, EIF2AK3, and several other LSD and mitochondria function genes. In this Review, we discuss the evidence supporting the strikingly distinct allele-dependent clinical phenotypes observed in carriers of such gene mutations and its impact on the wider field of neurodegeneration.
Collapse
Affiliation(s)
| | - Huw R. Morris
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
25
|
Schwarz AJ. The Use, Standardization, and Interpretation of Brain Imaging Data in Clinical Trials of Neurodegenerative Disorders. Neurotherapeutics 2021; 18:686-708. [PMID: 33846962 PMCID: PMC8423963 DOI: 10.1007/s13311-021-01027-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Imaging biomarkers play a wide-ranging role in clinical trials for neurological disorders. This includes selecting the appropriate trial participants, establishing target engagement and mechanism-related pharmacodynamic effect, monitoring safety, and providing evidence of disease modification. In the early stages of clinical drug development, evidence of target engagement and/or downstream pharmacodynamic effect-especially with a clear relationship to dose-can provide confidence that the therapeutic candidate should be advanced to larger and more expensive trials, and can inform the selection of the dose(s) to be further tested, i.e., to "de-risk" the drug development program. In these later-phase trials, evidence that the therapeutic candidate is altering disease-related biomarkers can provide important evidence that the clinical benefit of the compound (if observed) is grounded in meaningful biological changes. The interpretation of disease-related imaging markers, and comparability across different trials and imaging tools, is greatly improved when standardized outcome measures are defined. This standardization should not impinge on scientific advances in the imaging tools per se but provides a common language in which the results generated by these tools are expressed. PET markers of pathological protein aggregates and structural imaging of brain atrophy are common disease-related elements across many neurological disorders. However, PET tracers for pathologies beyond amyloid β and tau are needed, and the interpretability of structural imaging can be enhanced by some simple considerations to guard against the possible confound of pseudo-atrophy. Learnings from much-studied conditions such as Alzheimer's disease and multiple sclerosis will be beneficial as the field embraces rarer diseases.
Collapse
Affiliation(s)
- Adam J Schwarz
- Takeda Pharmaceuticals Ltd., 40 Landsdowne Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
26
|
Manera AL, Dadar M, Van Swieten JC, Borroni B, Sanchez-Valle R, Moreno F, Laforce R, Graff C, Synofzik M, Galimberti D, Rowe JB, Masellis M, Tartaglia MC, Finger E, Vandenberghe R, de Mendonca A, Tagliavini F, Santana I, Butler CR, Gerhard A, Danek A, Levin J, Otto M, Frisoni G, Ghidoni R, Sorbi S, Rohrer JD, Ducharme S, Collins DL. MRI data-driven algorithm for the diagnosis of behavioural variant frontotemporal dementia. J Neurol Neurosurg Psychiatry 2021; 92:jnnp-2020-324106. [PMID: 33722819 DOI: 10.1136/jnnp-2020-324106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/24/2020] [Accepted: 12/22/2020] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Structural brain imaging is paramount for the diagnosis of behavioural variant of frontotemporal dementia (bvFTD), but it has low sensitivity leading to erroneous or late diagnosis. METHODS A total of 515 subjects from two different bvFTD cohorts (training and independent validation cohorts) were used to perform voxel-wise morphometric analysis to identify regions with significant differences between bvFTD and controls. A random forest classifier was used to individually predict bvFTD from deformation-based morphometry differences in isolation and together with semantic fluency. Tenfold cross validation was used to assess the performance of the classifier within the training cohort. A second held-out cohort of genetically confirmed bvFTD cases was used for additional validation. RESULTS Average 10-fold cross-validation accuracy was 89% (82% sensitivity, 93% specificity) using only MRI and 94% (89% sensitivity, 98% specificity) with the addition of semantic fluency. In the separate validation cohort of definite bvFTD, accuracy was 88% (81% sensitivity, 92% specificity) with MRI and 91% (79% sensitivity, 96% specificity) with added semantic fluency scores. CONCLUSION Our results show that structural MRI and semantic fluency can accurately predict bvFTD at the individual subject level within a completely independent validation cohort coming from a different and independent database.
Collapse
Affiliation(s)
- Ana L Manera
- McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Mahsa Dadar
- McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Radiology and Nuclear Medicine, Laval University, Quebec City, Quebec, Canada
| | | | - Barbara Borroni
- Department of Clinical and Experimental Sciences, Centre for Ageing Brain and Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - Raquel Sanchez-Valle
- Alzheimer's disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Caroline Graff
- Department of Geriatric Medicine, Karolinska University Hospital-Huddinge, Stockholm, Sweden
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
| | - Daniela Galimberti
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- LANE - Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - James Benedict Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mario Masellis
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Disease, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Fabrizio Tagliavini
- Neurology and Neuropathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | | | - Alex Gerhard
- Institute of Brain, Behaviour and Mental Health, The University of Manchester, Manchester, UK
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians Universitat, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians Universitat, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Markus Otto
- Department of Neurology, University Hospital Ulm, Ulm, Germany
| | - Giovanni Frisoni
- LANE - Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Roberta Ghidoni
- Molecular Markers Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | | | - Simon Ducharme
- McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - D Louis Collins
- McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
27
|
Boeve BF, Rosen H. Clinical and Neuroimaging Aspects of Familial Frontotemporal Lobar Degeneration Associated with MAPT and GRN Mutations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:77-92. [PMID: 33433870 DOI: 10.1007/978-3-030-51140-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Numerous kindreds with familial frontotemporal lobar degeneration have been linked to mutations in microtubule-associated protein tau (MAPT) or progranulin (GRN) genes. While there are many similarities in the clinical manifestations and associated neuroimaging findings, there are also distinct differences. In this review, we compare and contrast the demographic/inheritance characteristics, histopathology, pathophysiology, clinical aspects, and key neuroimaging findings between those with MAPT and GRN mutations.
Collapse
Affiliation(s)
| | - Howard Rosen
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
28
|
Ntiri EE, Holmes MF, Forooshani PM, Ramirez J, Gao F, Ozzoude M, Adamo S, Scott CJM, Dowlatshahi D, Lawrence-Dewar JM, Kwan D, Lang AE, Symons S, Bartha R, Strother S, Tardif JC, Masellis M, Swartz RH, Moody A, Black SE, Goubran M. Improved Segmentation of the Intracranial and Ventricular Volumes in Populations with Cerebrovascular Lesions and Atrophy Using 3D CNNs. Neuroinformatics 2021; 19:597-618. [PMID: 33527307 DOI: 10.1007/s12021-021-09510-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2021] [Indexed: 11/30/2022]
Abstract
Successful segmentation of the total intracranial vault (ICV) and ventricles is of critical importance when studying neurodegeneration through neuroimaging. We present iCVMapper and VentMapper, robust algorithms that use a convolutional neural network (CNN) to segment the ICV and ventricles from both single and multi-contrast MRI data. Our models were trained on a large dataset from two multi-site studies (N = 528 subjects for ICV, N = 501 for ventricular segmentation) consisting of older adults with varying degrees of cerebrovascular lesions and atrophy, which pose significant challenges for most segmentation approaches. The models were tested on 238 participants, including subjects with vascular cognitive impairment and high white matter hyperintensity burden. Two of the three test sets came from studies not used in the training dataset. We assessed our algorithms relative to four state-of-the-art ICV extraction methods (MONSTR, BET, Deep Extraction, FreeSurfer, DeepMedic), as well as two ventricular segmentation tools (FreeSurfer, DeepMedic). Our multi-contrast models outperformed other methods across many of the evaluation metrics, with average Dice coefficients of 0.98 and 0.96 for ICV and ventricular segmentation respectively. Both models were also the most time efficient, segmenting the structures in orders of magnitude faster than some of the other available methods. Our networks showed an increased accuracy with the use of a conditional random field (CRF) as a post-processing step. We further validated both segmentation models, highlighting their robustness to images with lower resolution and signal-to-noise ratio, compared to tested techniques. The pipeline and models are available at: https://icvmapp3r.readthedocs.io and https://ventmapp3r.readthedocs.io to enable further investigation of the roles of ICV and ventricles in relation to normal aging and neurodegeneration in large multi-site studies.
Collapse
Affiliation(s)
- Emmanuel E Ntiri
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Melissa F Holmes
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Parisa M Forooshani
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Joel Ramirez
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Fuqiang Gao
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Miracle Ozzoude
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Sabrina Adamo
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Christopher J M Scott
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Dar Dowlatshahi
- Department of Medicine, The Ottawa Hospital, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | | | - Donna Kwan
- Department of Psychology, Faculty of Health, York University, Toronto, Canada
| | - Anthony E Lang
- The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Canada.,Department of Medicine (Neurology division), University of Toronto, Toronto, Canada
| | - Sean Symons
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Robert Bartha
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Robarts Research Institute, University of Western Ontario, London, Canada
| | - Stephen Strother
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada.,Department of Medicine (Neurology division), University of Toronto, Toronto, Canada.,Canadian Partnership for Stroke Recovery, Heart and Stroke Foundation, Toronto, Canada
| | - Richard H Swartz
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada.,Department of Medicine (Neurology division), University of Toronto, Toronto, Canada.,Canadian Partnership for Stroke Recovery, Heart and Stroke Foundation, Toronto, Canada
| | - Alan Moody
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Sandra E Black
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada.,Department of Medicine (Neurology division), University of Toronto, Toronto, Canada.,Canadian Partnership for Stroke Recovery, Heart and Stroke Foundation, Toronto, Canada
| | - Maged Goubran
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Canada. .,Canadian Partnership for Stroke Recovery, Heart and Stroke Foundation, Toronto, Canada.
| |
Collapse
|
29
|
Li Hi Shing S, McKenna MC, Siah WF, Chipika RH, Hardiman O, Bede P. The imaging signature of C9orf72 hexanucleotide repeat expansions: implications for clinical trials and therapy development. Brain Imaging Behav 2021; 15:2693-2719. [PMID: 33398779 DOI: 10.1007/s11682-020-00429-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 01/14/2023]
Abstract
While C9orf72-specific imaging signatures have been proposed by both ALS and FTD research groups and considerable presymptomatic alterations have also been confirmed in young mutation carriers, considerable inconsistencies exist in the literature. Accordingly, a systematic review of C9orf72-imaging studies has been performed to identify consensus findings, stereotyped shortcomings, and unique contributions to outline future directions. A formal literature review was conducted according to the STROBE guidelines. All identified papers were individually reviewed for sample size, choice of controls, study design, imaging modalities, statistical models, clinical profiling, and identified genotype-associated pathological patterns. A total of 74 imaging papers were systematically reviewed. ALS patients with GGGGCC repeat expansions exhibit relatively limited motor cortex involvement and widespread extra-motor pathology. C9orf72 positive FTD patients often show preferential posterior involvement. Reports of thalamic involvement are relatively consistent across the various phenotypes. Asymptomatic hexanucleotide repeat carriers often exhibit structural and functional changes decades prior to symptom onset. Common shortcomings included sample size limitations, lack of disease-controls, limited clinical profiling, lack of genetic testing in healthy controls, and absence of post mortem validation. There is a striking paucity of longitudinal studies and existing presymptomatic studies have not evaluated the predictive value of radiological changes with regard to age of onset and phenoconversion. With the advent of antisense oligonucleotide therapies, the meticulous characterisation of C9orf72-associated changes has gained practical relevance. Neuroimaging offers non-invasive biomarkers for future clinical trials, presymptomatic ascertainment, diagnostic and prognostic applications.
Collapse
Affiliation(s)
- Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mary Clare McKenna
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
30
|
Bocchetta M, Todd EG, Peakman G, Cash DM, Convery RS, Russell LL, Thomas DL, Eugenio Iglesias J, van Swieten JC, Jiskoot LC, Seelaar H, Borroni B, Galimberti D, Sanchez-Valle R, Laforce R, Moreno F, Synofzik M, Graff C, Masellis M, Carmela Tartaglia M, Rowe JB, Vandenberghe R, Finger E, Tagliavini F, de Mendonça A, Santana I, Butler CR, Ducharme S, Gerhard A, Danek A, Levin J, Otto M, Sorbi S, Le Ber I, Pasquier F, Rohrer JD. Differential early subcortical involvement in genetic FTD within the GENFI cohort. Neuroimage Clin 2021; 30:102646. [PMID: 33895632 PMCID: PMC8099608 DOI: 10.1016/j.nicl.2021.102646] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Studies have previously shown evidence for presymptomatic cortical atrophy in genetic FTD. Whilst initial investigations have also identified early deep grey matter volume loss, little is known about the extent of subcortical involvement, particularly within subregions, and how this differs between genetic groups. METHODS 480 mutation carriers from the Genetic FTD Initiative (GENFI) were included (198 GRN, 202 C9orf72, 80 MAPT), together with 298 non-carrier cognitively normal controls. Cortical and subcortical volumes of interest were generated using automated parcellation methods on volumetric 3 T T1-weighted MRI scans. Mutation carriers were divided into three disease stages based on their global CDR® plus NACC FTLD score: asymptomatic (0), possibly or mildly symptomatic (0.5) and fully symptomatic (1 or more). RESULTS In all three groups, subcortical involvement was seen at the CDR 0.5 stage prior to phenoconversion, whereas in the C9orf72 and MAPT mutation carriers there was also involvement at the CDR 0 stage. In the C9orf72 expansion carriers the earliest volume changes were in thalamic subnuclei (particularly pulvinar and lateral geniculate, 9-10%) cerebellum (lobules VIIa-Crus II and VIIIb, 2-3%), hippocampus (particularly presubiculum and CA1, 2-3%), amygdala (all subregions, 2-6%) and hypothalamus (superior tuberal region, 1%). In MAPT mutation carriers changes were seen at CDR 0 in the hippocampus (subiculum, presubiculum and tail, 3-4%) and amygdala (accessory basal and superficial nuclei, 2-4%). GRN mutation carriers showed subcortical differences at CDR 0.5 in the presubiculum of the hippocampus (8%). CONCLUSIONS C9orf72 expansion carriers show the earliest and most widespread changes including the thalamus, basal ganglia and medial temporal lobe. By investigating individual subregions, changes can also be seen at CDR 0 in MAPT mutation carriers within the limbic system. Our results suggest that subcortical brain volumes may be used as markers of neurodegeneration even prior to the onset of prodromal symptoms.
Collapse
Affiliation(s)
- Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Emily G Todd
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Georgia Peakman
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Rhian S Convery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - David L Thomas
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Juan Eugenio Iglesias
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom; Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, USA
| | - John C van Swieten
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, the Netherlands
| | - Lize C Jiskoot
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, the Netherlands
| | - Harro Seelaar
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, the Netherlands
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Raquel Sanchez-Valle
- Neurology Department, Hospital Clinic, Institut d'Investigacions Biomèdiques, Barcelona, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, Faculté de Médecine, Université Laval, Québec, Canada
| | - Fermin Moreno
- Hospital Universitario Donostia, San Sebastian, Spain
| | - Matthis Synofzik
- Department of Cognitive Neurology, Center for Neurology, Hertie-Institute for Clinical Brain Research, Tübingen, Germany
| | - Caroline Graff
- Karolinska Institutet, Department NVS, Division of Neurogeriatrics, Stockholm, Sweden; Unit for Hereditray Dementia, Theme Aging, Karolinska University Hospital-Solna Stockholm Sweden
| | - Mario Masellis
- Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maria Carmela Tartaglia
- Toronto Western Hospital, Tanz Centre for Research in Neurodegenerative Disease, Toronto, ON, Canada
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust and Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Fabrizio Tagliavini
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Portugal
| | - Chris R Butler
- Department of Clinical Neurology, University of Oxford, Oxford, United Kingdom
| | - Simon Ducharme
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom; Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Germany
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich German Center for Neurodegenerative Diseases (DZNE), Munich Munich Cluster of Systems Neurology, Munich, Germany
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich German Center for Neurodegenerative Diseases (DZNE), Munich Munich Cluster of Systems Neurology, Munich, Germany
| | - Markus Otto
- Department of Neurology, University Hospital Ulm, Ulm, Germany
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau- ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Centre deréférence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Florence Pasquier
- Univ Lille, France; Inserm 1172 Lille, France; CHU, CNR-MAJ, Labex Distalz, LiCENDLille, France
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | | |
Collapse
|
31
|
Giunta M, Libri I, Premi E, Brattini C, Paghera B, Archetti S, Gasparotti R, Padovani A, Borroni B, Benussi A. Clinical and radiological features of posterior cortical atrophy (PCA) in a GRN mutation carrier: a case report. Eur J Neurol 2020; 28:344-348. [PMID: 33030763 DOI: 10.1111/ene.14574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/01/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Posterior cortical atrophy (PCA) is a rare neurodegenerative syndrome, defined by a distinctive clinical-radiological profile, with Alzheimer's disease (AD) pathology accounting for the majority of cases. The aim of this report was to present the case of a patient with impairment of visual and constructional abilities as initial manifestations. METHOD The patient underwent a multidimensional assessment, including neuropsychological evaluation, structural and functional imaging and genetic screening. RESULTS Neurological and neuropsychological assessment showed an impairment of constructive and visuo-spatial skills, associated with dyscalculia, simultanagnosia, optic ataxia and oculomotor apraxia. In accordance with the latest consensus criteria, a diagnosis of PCA was made. Consistent with the clinical findings, structural and functional imaging showed a peculiar pattern of atrophy with primary involvement of right parieto-occipital cortices, whereas cerebrospinal fluid biochemical analysis did not reveal a profile compatible with AD pathology. Genetic screening identified a known pathogenic GRN mutation. CONCLUSION We present a case of PCA in a GRN mutation carrier in whom a concomitant AD pathological process was excluded. Consequently, although lacking histological data, our case suggests GRN-related pathology causative of PCA. Through this report we provide further evidence for a new neurodegenerative pathway leading to PCA, extending the clinical spectrum of GRN-associated phenotypes.
Collapse
Affiliation(s)
- M Giunta
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - I Libri
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - E Premi
- Stroke Unit, ASST Spedali Civili, Brescia, Italy
| | - C Brattini
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - B Paghera
- Nuclear Medicine Department, University of Brescia, Brescia, Italy
| | - S Archetti
- Biotechnology Laboratory, Department of Diagnostics, Spedali Civili Hospital, Brescia, Italy
| | - R Gasparotti
- Neuroradiology Unit, University of Brescia, Brescia, Italy
| | - A Padovani
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - B Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - A Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
32
|
Staffaroni AM, Goh SYM, Cobigo Y, Ong E, Lee SE, Casaletto KB, Wolf A, Forsberg LK, Ghoshal N, Graff-Radford NR, Grossman M, Heuer HW, Hsiung GYR, Kantarci K, Knopman DS, Kremers WK, Mackenzie IR, Miller BL, Pedraza O, Rascovsky K, Tartaglia MC, Wszolek ZK, Kramer JH, Kornak J, Boeve BF, Boxer AL, Rosen HJ. Rates of Brain Atrophy Across Disease Stages in Familial Frontotemporal Dementia Associated With MAPT, GRN, and C9orf72 Pathogenic Variants. JAMA Netw Open 2020; 3:e2022847. [PMID: 33112398 PMCID: PMC7593814 DOI: 10.1001/jamanetworkopen.2020.22847] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Importance Several clinical trials are planned for familial forms of frontotemporal lobar degeneration (f-FTLD). Precise modeling of brain atrophy in f-FTLD could improve the power to detect a treatment effect. Objective To characterize regions and rates of atrophy in the 3 primary f-FTLD genetic groups (MAPT, GRN, and C9orf72) across all disease stages from asymptomatic to dementia. Design, Setting, and Participants This investigation was a case-control study of participants enrolled in the Advancing Research and Treatment for Frontotemporal Lobar Degeneration or Longitudinal Evaluation of Familial Frontotemporal Dementia studies. The study took place at 18 North American academic medical centers between January 2009 and September 2018. Participants with f-FTLD (n = 100) with a known pathogenic variant (MAPT [n = 28], GRN [n = 33], or C9orf72 [n = 39]) were grouped according to disease stage (ie, Clinical Dementia Rating [CDR] plus National Alzheimer's Coordinating Center [NACC] FTLD module). Included were participants with at least 2 structural magnetic resonance images at presymptomatic (CDR + NACC FTLD = 0 [n = 57]), mild or questionable (CDR + NACC FTLD = 0.5 [n = 15]), or symptomatic (CDR + NACC FTLD = ≥1 [n = 28]) disease stages. The control group included family members of known pathogenic variant carriers who did not carry the pathogenic variant (n = 60). Main Outcomes and Measures This study fitted bayesian linear mixed-effects models in each voxel of the brain to quantify the rate of atrophy in each of the 3 genes, at each of the 3 disease stages, compared with controls. The study also analyzed rates of clinical decline in each of these groups, as measured by the CDR + NACC FTLD box score. Results The sample included 100 participants with f-FTLD with a known pathogenic variant (mean [SD] age, 50.48 [13.78] years; 53 [53%] female) and 60 family members of known pathogenic variant carriers who did not carry the pathogenic variant (mean [SD] age, 47.51 [12.43] years; 36 [60%] female). MAPT and GRN pathogenic variants were associated with increased rates of volume loss compared with controls at all stages of disease. In MAPT pathogenic variant carriers, statistically significant regions of accelerated volume loss compared with controls were identified in temporal regions bilaterally in the presymptomatic stage, with global spread in the symptomatic stage. For example, mean [SD] rates of atrophy in the left temporal were -231 [47] mm3 per year during the presymptomatic stage, -381 [208] mm3 per year during the mild stage, and -1485 [1025] mm3 per year during the symptomatic stage (P < .05). GRN pathogenic variant carriers generally had minimal increases in atrophy rates between the presymptomatic and mild stages, with rapid increases in atrophy rates in the symptomatic stages. For example, in the right frontal lobes, annualized volume loss was -267 [81] mm3 per year in the presymptomatic stage and -182 [90] mm3 per year in the mild stage, but -1169 [555] mm3 per year in the symptomatic stage. Compared with the other groups, C9orf72 expansion carriers showed minimal increases in rate of volume loss with disease progression. For example, the mean (SD) annualized rates of atrophy in the right frontal lobe in C9orf72 expansion carriers was -272 (118) mm3 per year in presymptomatic stages, -310 (189) mm3 per year in mildly symptomatic stages, and -251 (145) mm3 per year in symptomatic stages. Conclusions and Relevance These findings are relevant to clinical trial planning and suggest that the mechanism by which C9orf72 pathogenic variants lead to symptoms may be fundamentally different from the mechanisms associated with other pathogenic variants.
Collapse
Affiliation(s)
- Adam M. Staffaroni
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco
| | - Sheng-Yang M. Goh
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco
| | - Yann Cobigo
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco
| | - Elise Ong
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco
| | - Suzee E. Lee
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco
| | - Kaitlin B. Casaletto
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco
| | - Amy Wolf
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco
| | - Leah K. Forsberg
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Nupur Ghoshal
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine in St Louis, St Louis, Missouri
| | | | - Murray Grossman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Hilary W. Heuer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco
| | - Ging-Yuek R. Hsiung
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kejal Kantarci
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - David S. Knopman
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Walter K. Kremers
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Ian R. Mackenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce L. Miller
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco
| | - Otto Pedraza
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, Florida
| | - Katya Rascovsky
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - M. Carmela Tartaglia
- Division of Neurology, Department of Medicine, Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | | | - Joel H. Kramer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco
| | - John Kornak
- Department of Epidemiology and Biostatistics, Memory and Aging Center, University of California, San Francisco
| | - Bradley F. Boeve
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Adam L. Boxer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco
| | - Howard J. Rosen
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco
| |
Collapse
|
33
|
Häkkinen S, Chu SA, Lee SE. Neuroimaging in genetic frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2020; 145:105063. [PMID: 32890771 DOI: 10.1016/j.nbd.2020.105063] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) have a strong clinical, genetic and pathological overlap. This review focuses on the current understanding of structural, functional and molecular neuroimaging signatures of genetic FTD and ALS. We overview quantitative neuroimaging studies on the most common genes associated with FTD (MAPT, GRN), ALS (SOD1), and both (C9orf72), and summarize visual observations of images reported in the rarer genes (CHMP2B, TARDBP, FUS, OPTN, VCP, UBQLN2, SQSTM1, TREM2, CHCHD10, TBK1).
Collapse
Affiliation(s)
- Suvi Häkkinen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie A Chu
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
34
|
Toller G, Ranasinghe K, Cobigo Y, Staffaroni A, Appleby B, Brushaber D, Coppola G, Dickerson B, Domoto-Reilly K, Fields J, Fong J, Forsberg L, Ghoshal N, Graff-Radford N, Grossman M, Heuer H, Hsiung GY, Huey E, Irwin D, Kantarci K, Kaufer D, Kerwin D, Knopman D, Kornak J, Kramer J, Litvan I, Mackenzie I, Mendez M, Miller B, Rademakers R, Ramos E, Rascovsky K, Roberson E, Syrjanen J, Tartaglia C, Weintraub S, Boeve B, Boxer A, Rosen H, Rankin K. Revised Self-Monitoring Scale: A potential endpoint for frontotemporal dementia clinical trials. Neurology 2020; 94:e2384-e2395. [PMID: 32371446 PMCID: PMC7357291 DOI: 10.1212/wnl.0000000000009451] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To investigate whether the Revised Self-Monitoring Scale (RSMS), an informant measure of socioemotional sensitivity, is a potential clinical endpoint for treatment trials for patients with behavioral variant frontotemporal dementia (bvFTD). METHODS We investigated whether RSMS informant ratings reflected disease severity in 475 participants (71 bvFTD mutation+, 154 bvFTD mutation-, 12 behavioral mild cognitive impairment [MCI] mutation+, 98 asymptomatic mutation+, 140 asymptomatic mutation-). In a subset of 62 patients (20 bvFTD mutation+, 35 bvFTD mutation-, 7 MCI mutation+) who had at least 2 time points of T1-weighted images available on the same 3T scanner, we examined longitudinal changes in RSMS score over time and its correspondence to progressive gray matter atrophy. RESULTS RSMS score showed a similar pattern in mutation carriers and noncarriers, with significant drops at each stage of progression from asymptomatic to very mild, mild, moderate, and severe disease (F 4,48 = 140.10, p < 0.001) and a significant slope of decline over time in patients with bvFTD (p = 0.004, 95% confidence interval [CI] -1.90 to -0.23). More rapid declines on the RSMS corresponded to faster gray matter atrophy predominantly in the salience network (SN), and RSMS score progression best predicted thalamic volume in very mild and mild disease stages of bvFTD. Higher RSMS score predicted more caregiver burden (p < 0.001, 95% CI -0.30 to -0.11). CONCLUSIONS The RSMS is sensitive to progression of both socioemotional symptoms and SN atrophy in patients with bvFTD and corresponds directly to caregiver burden. The RSMS may be useful in both neurologic practice and clinical trials aiming to treat behavioral symptoms of patients with bvFTD.
Collapse
Affiliation(s)
- Gianina Toller
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Kamalini Ranasinghe
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Yann Cobigo
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Adam Staffaroni
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Brian Appleby
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Danielle Brushaber
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Giovanni Coppola
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Bradford Dickerson
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Kimiko Domoto-Reilly
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Julie Fields
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Jamie Fong
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Leah Forsberg
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Nupur Ghoshal
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Neill Graff-Radford
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Murray Grossman
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Hilary Heuer
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Gink-Yuek Hsiung
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Edward Huey
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - David Irwin
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Kejal Kantarci
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Daniel Kaufer
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Diana Kerwin
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - David Knopman
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - John Kornak
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Joel Kramer
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Irene Litvan
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Ian Mackenzie
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Mario Mendez
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Bruce Miller
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Rosa Rademakers
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Eliana Ramos
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Katya Rascovsky
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Erik Roberson
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Jeremy Syrjanen
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Carmela Tartaglia
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Sandra Weintraub
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Brad Boeve
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Adam Boxer
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Howard Rosen
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL
| | - Katherine Rankin
- From the Department of Neurology (G.T., K.R., Y.C., A.S., J. Fong, H.H., J.K., J.K., B.M., A.B., H.R., K.R.), Memory and Aging Center, University of California, San Francisco; Case Western Reserve University (B.A.), Cleveland, OH; Mayo Clinic (D.B., J. Fields, L.F., N.G.-R., K.K., D. Knopman, J.S., B.B.), Rochester, MN; University of California (G.C., M.M., E.R.), Los Angeles; Department of Neurology (B.D.), Massachusetts General Hospital, Harvard Medical School, Boston; University of Washington (K.D.-R.), Seattle; Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.I., K.R.), Philadelphia; University of British Columbia (G.-Y.H., I.M.), Vancouver, Canada; Columbia University (E.H.), New York, NY; University of North Carolina (D. Kaufer), Chapel Hill; University of Texas Southwestern (D. Kerwin), Dallas; Department of Neuroscience (I.L.), Parkinson and Other Movement Disorder Center, University of California, San Diego; Mayo Clinic (R.R.), Jacksonville, FL; University of Alabama at Birmingham (E.R.); University of Toronto (C.T.), Ontario, Canada; and Mesulam Center for Cognitive Neurology and Alzheimer's Disease (S.W.), Northwestern University, Chicago, IL.
| |
Collapse
|
35
|
Ducharme S, Dols A, Laforce R, Devenney E, Kumfor F, van den Stock J, Dallaire-Théroux C, Seelaar H, Gossink F, Vijverberg E, Huey E, Vandenbulcke M, Masellis M, Trieu C, Onyike C, Caramelli P, de Souza LC, Santillo A, Waldö ML, Landin-Romero R, Piguet O, Kelso W, Eratne D, Velakoulis D, Ikeda M, Perry D, Pressman P, Boeve B, Vandenberghe R, Mendez M, Azuar C, Levy R, Le Ber I, Baez S, Lerner A, Ellajosyula R, Pasquier F, Galimberti D, Scarpini E, van Swieten J, Hornberger M, Rosen H, Hodges J, Diehl-Schmid J, Pijnenburg Y. Recommendations to distinguish behavioural variant frontotemporal dementia from psychiatric disorders. Brain 2020; 143:1632-1650. [PMID: 32129844 PMCID: PMC7849953 DOI: 10.1093/brain/awaa018] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/27/2019] [Accepted: 12/08/2019] [Indexed: 12/12/2022] Open
Abstract
The behavioural variant of frontotemporal dementia (bvFTD) is a frequent cause of early-onset dementia. The diagnosis of bvFTD remains challenging because of the limited accuracy of neuroimaging in the early disease stages and the absence of molecular biomarkers, and therefore relies predominantly on clinical assessment. BvFTD shows significant symptomatic overlap with non-degenerative primary psychiatric disorders including major depressive disorder, bipolar disorder, schizophrenia, obsessive-compulsive disorder, autism spectrum disorders and even personality disorders. To date, ∼50% of patients with bvFTD receive a prior psychiatric diagnosis, and average diagnostic delay is up to 5-6 years from symptom onset. It is also not uncommon for patients with primary psychiatric disorders to be wrongly diagnosed with bvFTD. The Neuropsychiatric International Consortium for Frontotemporal Dementia was recently established to determine the current best clinical practice and set up an international collaboration to share a common dataset for future research. The goal of the present paper was to review the existing literature on the diagnosis of bvFTD and its differential diagnosis with primary psychiatric disorders to provide consensus recommendations on the clinical assessment. A systematic literature search with a narrative review was performed to determine all bvFTD-related diagnostic evidence for the following topics: bvFTD history taking, psychiatric assessment, clinical scales, physical and neurological examination, bedside cognitive tests, neuropsychological assessment, social cognition, structural neuroimaging, functional neuroimaging, CSF and genetic testing. For each topic, responsible team members proposed a set of minimal requirements, optimal clinical recommendations, and tools requiring further research or those that should be developed. Recommendations were listed if they reached a ≥ 85% expert consensus based on an online survey among all consortium participants. New recommendations include performing at least one formal social cognition test in the standard neuropsychological battery for bvFTD. We emphasize the importance of 3D-T1 brain MRI with a standardized review protocol including validated visual atrophy rating scales, and to consider volumetric analyses if available. We clarify the role of 18F-fluorodeoxyglucose PET for the exclusion of bvFTD when normal, whereas non-specific regional metabolism abnormalities should not be over-interpreted in the case of a psychiatric differential diagnosis. We highlight the potential role of serum or CSF neurofilament light chain to differentiate bvFTD from primary psychiatric disorders. Finally, based on the increasing literature and clinical experience, the consortium determined that screening for C9orf72 mutation should be performed in all possible/probable bvFTD cases or suspected cases with strong psychiatric features.
Collapse
Affiliation(s)
- Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Str., Montreal, Quebec, H3A 2B4, Canada
| | - Annemiek Dols
- Department of Old Age Psychiatry, GGZ InGeest, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire (CIME), Laval University, Quebec, Canada
| | - Emma Devenney
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Fiona Kumfor
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Jan van den Stock
- Laboratory for Translational Neuropsychiatry, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Harro Seelaar
- Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Flora Gossink
- Department of Old Age Psychiatry, GGZ InGeest, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Everard Vijverberg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Edward Huey
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Department of Psychiatry, Colombia University, New York, USA
| | - Mathieu Vandenbulcke
- Department of Geriatric Psychiatry, University Hospitals Leuven, Leuven, Belgium
| | - Mario Masellis
- Department of Neurology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Calvin Trieu
- Department of Old Age Psychiatry, GGZ InGeest, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Chiadi Onyike
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Paulo Caramelli
- Behavioral and Cognitive Neurology Research Group, Department of Internal Medicine, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leonardo Cruz de Souza
- Behavioral and Cognitive Neurology Research Group, Department of Internal Medicine, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Maria Landqvist Waldö
- Division of Clinical Sciences Helsingborg, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Olivier Piguet
- Division of Clinical Sciences Helsingborg, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Wendy Kelso
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, Australia
| | - Dhamidhu Eratne
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, Australia
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - David Perry
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, USA
| | - Peter Pressman
- Department of Neurology, University of Colorado Denver, Aurora, USA
| | - Bradley Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rik Vandenberghe
- Department of Neurology, University Hospital Leuven, Leuven, Belgium
| | - Mario Mendez
- Department of Neurology, UCLA Medical Centre, University of California Los Angeles, Los Angeles, USA
| | - Carole Azuar
- Department of Neurology, Hôpital La Pitié Salpêtrière, Paris, France
| | - Richard Levy
- Department of Neurology, Hôpital La Pitié Salpêtrière, Paris, France
| | - Isabelle Le Ber
- Department of Neurology, Hôpital La Pitié Salpêtrière, Paris, France
| | - Sandra Baez
- Department of Psychology, Andes University, Bogota, Colombia
| | - Alan Lerner
- Department of Neurology, University Hospital Cleveland Medical Center, Cleveland, USA
| | - Ratnavalli Ellajosyula
- Department of Neurology, Manipal Hospital and Annasawmy Mudaliar Hospital, Bangalore, India
| | - Florence Pasquier
- Univ Lille, Inserm U1171, Memory Center, CHU Lille, DISTAlz, Lille, France
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Centro Dino Ferrari, Milan, Italy
- Fondazione IRCCS Ca’ Granda, Ospedale Policlinico, Neurodegenerative Diseases Unit Milan, Italy
| | - Elio Scarpini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Centro Dino Ferrari, Milan, Italy
- Fondazione IRCCS Ca’ Granda, Ospedale Policlinico, Neurodegenerative Diseases Unit Milan, Italy
| | - John van Swieten
- Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | - Howard Rosen
- Memory and Aging Center, University of California San Francisco, San Francisco, USA
| | - John Hodges
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Yolande Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Montembeault M, Sayah S, Rinaldi D, Le Toullec B, Bertrand A, Funkiewiez A, Saracino D, Camuzat A, Couratier P, Chouly M, Hannequin D, Aubier-Girard C, Pasquier F, Delbeuck X, Colliot O, Batrancourt B, Azuar C, Lévy R, Dubois B, Le Ber I, Migliaccio R. Cognitive inhibition impairments in presymptomatic C9orf72 carriers. J Neurol Neurosurg Psychiatry 2020; 91:366-372. [PMID: 32054668 DOI: 10.1136/jnnp-2019-322242] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate cognitive inhibition in presymptomatic C9orf72 mutation carriers (C9+) and its associated neuroanatomical correlates. METHODS Thirty-eight presymptomatic C9orf72 mutation carriers (C9+, mean age 38.2±8.0 years) and 22 C9- controls from the PREV-DEMALS cohort were included in this study. They underwent a cognitive inhibition assessment with the Hayling Sentence Completion Test (HSCT; time to completion (part B-part A); error score in part B) as well as a 3D MRI. RESULTS C9+ individuals younger than 40 years had higher error scores (part B) but equivalent HSCT time to completion (part B-part A) compared to C9- individuals. C9+ individuals older than 40 years had both higher error scores and longer time to completion. HSCT time to completion significantly predicted the proximity to estimated clinical conversion from presymptomatic to symptomatic phase in C9+ individuals (based on the average age at onset of affected relatives in the family). Anatomically, we found that HSCT time to completion was associated with the integrity of the cerebellum. CONCLUSION The HSCT represents a good marker of cognitive inhibition impairments in C9+ and of proximity to clinical conversion. This study also highlights the key role of the cerebellum in cognitive inhibition.
Collapse
Affiliation(s)
- Maxime Montembeault
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France.,Sorbonne University, Paris, France.,FrontLab, Paris, France.,Department of Neurology, University of California San Francisco, Memory and Aging Center, San Francisco, California, USA
| | - Sabrina Sayah
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France
| | - Daisy Rinaldi
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France.,Reference Centre for Rare of Early Onset Dementias, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Benjamin Le Toullec
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France.,Reference Centre for Rare of Early Onset Dementias, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Anne Bertrand
- Sorbonne University, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle Épinière, FrontLAB, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Aramis Project Team, Inria Research Center of Paris, Paris, France
| | - Aurélie Funkiewiez
- Reference Centre for Rare of Early Onset Dementias, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Department of Neurology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Dario Saracino
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France.,Reference Centre for Rare of Early Onset Dementias, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Aramis Project Team, Inria Research Center of Paris, Paris, France
| | - Agnès Camuzat
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France
| | - Philippe Couratier
- Centre de Référence SLA et autres maladies du motoneurone, Centre Hospitalier Universitaire de Limoges, Limoges, France.,Centre de Compétence Démences Rares, Centre Hospitalier Universitaire de Limoges, Limoges, France
| | - Marianne Chouly
- Centre de Référence SLA et autres maladies du motoneurone, Centre Hospitalier Universitaire de Limoges, Limoges, France.,Centre de Compétence Démences Rares, Centre Hospitalier Universitaire de Limoges, Limoges, France
| | - Didier Hannequin
- Centre National de Référence pour les Malades Alzheimer Jeunes, Centre Hospitalier Universitaire de Rouen, INSERM 1245, Rouen, France.,Department of Neurology, Centre Hospitalier Universitaire de Rouen, Rouen, France
| | - Carole Aubier-Girard
- Centre National de Référence pour les Malades Alzheimer Jeunes, Centre Hospitalier Universitaire de Rouen, INSERM 1245, Rouen, France.,Department of Neurology, Centre Hospitalier Universitaire de Rouen, Rouen, France
| | - Florence Pasquier
- Université de Lille, INSERM U1171, Centre de la mémoire (CMRR), Centre national de référence pour les malades Alzheimer jeunes (CNRMAJ), CHU Lille, Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease (DistAlz), Lille, France
| | - Xavier Delbeuck
- Université de Lille, INSERM U1171, Centre de la mémoire (CMRR), Centre national de référence pour les malades Alzheimer jeunes (CNRMAJ), CHU Lille, Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease (DistAlz), Lille, France
| | - Olivier Colliot
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France.,Aramis Project Team, Inria Research Center of Paris, Paris, France
| | - Bénédicte Batrancourt
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France.,Sorbonne University, Paris, France.,FrontLab, Paris, France
| | - Carole Azuar
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France.,FrontLab, Paris, France.,Reference Centre for Rare of Early Onset Dementias, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Richard Lévy
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France.,Sorbonne University, Paris, France.,FrontLab, Paris, France.,Reference Centre for Rare of Early Onset Dementias, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Bruno Dubois
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France.,Sorbonne University, Paris, France.,Reference Centre for Rare of Early Onset Dementias, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Isabelle Le Ber
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France.,Sorbonne University, Paris, France.,FrontLab, Paris, France.,Reference Centre for Rare of Early Onset Dementias, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Raffaella Migliaccio
- Inserm U1127, Institut du Cerveau, Hôpital Pitié-Salpêtrière, Paris, France .,Sorbonne University, Paris, France.,FrontLab, Paris, France.,Reference Centre for Rare of Early Onset Dementias, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | |
Collapse
|
37
|
Chen Q, Boeve BF, Senjem M, Tosakulwong N, Lesnick T, Brushaber D, Dheel C, Fields J, Forsberg L, Gavrilova R, Gearhart D, Graff-Radford J, Graff-Radford N, Jack CR, Jones D, Knopman D, Kremers WK, Lapid M, Rademakers R, Ramos EM, Syrjanen J, Boxer AL, Rosen H, Wszolek ZK, Kantarci K. Trajectory of lobar atrophy in asymptomatic and symptomatic GRN mutation carriers: a longitudinal MRI study. Neurobiol Aging 2020; 88:42-50. [PMID: 31918955 PMCID: PMC7767622 DOI: 10.1016/j.neurobiolaging.2019.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 02/05/2023]
Abstract
Loss-of-function mutations in the progranulin gene (GRN) are one of the major causes of familial frontotemporal lobar degeneration. Our objective was to determine the rates and trajectories of lobar cortical atrophy from longitudinal structural magnetic resonance imaging in both asymptomatic and symptomatic GRN mutation carriers. Individuals in this study were from the ADRC and LEFFTDS studies at the Mayo Clinic. We identified 13 GRN mutation carriers (8 asymptomatic, 5 symptomatic) and noncarriers (n = 10) who had at least 2 serial T1-weighted structural magnetic resonance images and were followed annually with a median of 3 years (range 1.0-9.8 years). Longitudinal changes in lobar cortical volume were analyzed using the tensor-based morphometry with symmetric normalization (TBM-SyN) algorithm. Linear mixed-effect models were used to model cortical volume change over time among 3 groups. The annual rates of frontal (p < 0.05) and parietal (p < 0.01) lobe cortical atrophy were higher in asymptomatic GRN mutation carriers than noncarriers. The symptomatic GRN mutation carriers also had increased rates of atrophy in the frontal (p < 0.01) and parietal lobe (p < 0.01) cortices than noncarriers. In addition, greater rates of cortical atrophy were observed in the temporal lobe cortices of symptomatic GRN mutation carriers than noncarriers (p < 0.001). We found that a decline in frontal and parietal lobar cortical volume occurs in asymptomatic GRN mutation carriers and continues in the symptomatic GRN mutation carriers, whereas an increased rate of temporal lobe cortical atrophy is observed only in symptomatic GRN mutation carriers. This sequential pattern of cortical involvement in GRN mutation carriers has important implications for using imaging biomarkers of neurodegeneration as an outcome measure in potential treatment trials involving GRN mutation carriers.
Collapse
Affiliation(s)
- Qin Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Alzheimer's Disease Research Center, Mayo Clinic, Rochester, MN, USA
| | - Matthew Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Timothy Lesnick
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Danielle Brushaber
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA; Alzheimer's Disease Research Center, Mayo Clinic, Rochester, MN, USA
| | - Christina Dheel
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Alzheimer's Disease Research Center, Mayo Clinic, Rochester, MN, USA
| | - Julie Fields
- Department of Psychology and Psychiatry, Mayo Clinic, Rochester, MN, USA
| | - Leah Forsberg
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Alzheimer's Disease Research Center, Mayo Clinic, Rochester, MN, USA
| | - Ralitza Gavrilova
- Department of Clinical Genomic and Neurology, Mayo Clinic, Rochester, MN, USA
| | - Debra Gearhart
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Alzheimer's Disease Research Center, Mayo Clinic, Rochester, MN, USA
| | - Jonathan Graff-Radford
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Alzheimer's Disease Research Center, Mayo Clinic, Rochester, MN, USA
| | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Alzheimer's Disease Research Center, Mayo Clinic, Rochester, MN, USA
| | - David Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Alzheimer's Disease Research Center, Mayo Clinic, Rochester, MN, USA
| | - David Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Alzheimer's Disease Research Center, Mayo Clinic, Rochester, MN, USA
| | - Walter K Kremers
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Maria Lapid
- Department of Psychology and Psychiatry, Mayo Clinic, Rochester, MN, USA
| | - Rosa Rademakers
- Alzheimer's Disease Research Center, Mayo Clinic, Rochester, MN, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Eliana Marisa Ramos
- Department of Psychiatry, David Geffen School of Medicine University of California Los Angeles, Los Angeles, CA, USA
| | - Jeremy Syrjanen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Adam L Boxer
- Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Howie Rosen
- Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Alzheimer's Disease Research Center, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
38
|
Géraudie A, Guerrier L, Le Ber I, Clot F, Péran P, Pariente J. Atypical clinical presentation and typical FTD atrophy: 17-year clinical follow-up and MRI analysis of a slowly progressive bvFTD associated with C9orf72 expansion. Rev Neurol (Paris) 2020; 176:627-629. [PMID: 32178877 DOI: 10.1016/j.neurol.2020.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/01/2022]
Affiliation(s)
- A Géraudie
- Department of neurology, Toulouse university hospital, Toulouse, France.
| | - L Guerrier
- Inserm, UPS, ToNIC, Toulouse NeuroImaging Centre, university of Toulouse, Toulouse, France
| | - I Le Ber
- Inserm U 1127, CNRS UMR 7225, ICM Brain and Spine Institute, Sorbonne université, Paris, France; Centre de référence des démences rares, hôpital de la Pitié-Salpêtrière, Assistance publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - F Clot
- UF de neurogénétique moléculaire et cellulaire, département de génétique, hôpitaux universitaires La-Pitié-Salpêtrière-Charles Foix, AP-HP, Paris, France
| | - P Péran
- Inserm, UPS, ToNIC, Toulouse NeuroImaging Centre, university of Toulouse, Toulouse, France
| | - J Pariente
- Department of neurology, Toulouse university hospital, Toulouse, France; Inserm, UPS, ToNIC, Toulouse NeuroImaging Centre, university of Toulouse, Toulouse, France
| |
Collapse
|
39
|
Chen Q, Kantarci K. Imaging Biomarkers for Neurodegeneration in Presymptomatic Familial Frontotemporal Lobar Degeneration. Front Neurol 2020; 11:80. [PMID: 32184751 PMCID: PMC7058699 DOI: 10.3389/fneur.2020.00080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/22/2020] [Indexed: 02/05/2023] Open
Abstract
Frontotemporal lobar degeneration (FTLD) is a neurodegenerative disorder characterized by behavioral changes, language abnormality, as well as executive function deficits and motor impairment. In about 30-50% of FTLD patients, an autosomal dominant pattern of inheritance was found with major mutations in the MAPT, GRN, and the C9orf72 repeat expansion. These mutations could lead to neurodegenerative pathology years before clinical symptoms onset. With potential disease-modifying treatments that are under development, non-invasive biomarkers that help determine the early brain changes in presymptomatic FTLD patients will be critical for tracking disease progression and enrolling the right participants into the clinical trials at the right time during the disease course. In recent years, there is increasing evidence that a number of imaging biomarkers show the abnormalities during the presymptomatic stage. Imaging biomarkers of presymptomatic familial FTLD may provide insight into the underlying neurodegenerative process years before symptom onset. Structural magnetic resonance imaging (MRI) has demonstrated cortical degeneration with a mutation-specific neurodegeneration pattern years before onset of clinical symptoms in presymptomatic familial FTLD mutation carriers. In addition, diffusion tensor imaging (DTI) has shown the loss of white matter microstructural integrity in the presymptomatic stage of familial FTLD. Furthermore, proton magnetic resonance spectroscopy (1H MRS), which provides a non-invasive measurement of brain biochemistry, has identified early neurochemical abnormalities in presymptomatic MAPT mutation carriers. Positron emission tomography (PET) imaging with [18F]-fluorodeoxyglucose (FDG) has demonstrated the glucose hypometabolism in the presymptomatic stage of familial FTLD. Also, a novel PET ligand, 18F-AV-1451, has been used in this group to evaluate tau deposition in the brain. Promising imaging biomarkers for presymptomatic familial FTLD have been identified and assessed for specificity and sensitivity for accurate prediction of symptom onset and tracking disease progression during the presymptomatic stage when clinical measures are not useful. Furthermore, identifying imaging biomarkers for the presymptomatic stage is important for the design of disease-modifying trials. We review the recent progress in imaging biomarkers of the presymptomatic phase of familial FTLD and discuss the imaging techniques and analysis methods, with a focus on the potential implication of these imaging techniques and their utility in specific mutation types.
Collapse
Affiliation(s)
- Qin Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
40
|
Dawe RJ, Yu L, Arfanakis K, Schneider JA, Bennett DA, Boyle PA. Late-life cognitive decline is associated with hippocampal volume, above and beyond its associations with traditional neuropathologic indices. Alzheimers Dement 2020; 16:209-218. [PMID: 31914231 PMCID: PMC6953608 DOI: 10.1002/alz.12009] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/12/2019] [Accepted: 11/01/2019] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Reduced hippocampal volume is associated with late-life cognitive decline, but prior studies have not determined whether this association persists after accounting for Alzheimer's disease (AD) and other neuropathologies. METHODS Participants were 531 deceased older adults from community-based cohort studies of aging who had undergone annual cognitive evaluations. At death, brain tissue underwent neuropathologic examination and magnetic resonance imaging (MRI). Linear mixed models examined whether hippocampal volume measured via MRI accounted for variation in decline rate of global cognition and five cognitive domains, above and beyond neuropathologic indices. RESULTS Demographics and indices of AD, cerebrovascular disease, Lewy body disease, hippocampal sclerosis, TDP-43, and atherosclerosis accounted for 42.6% of the variation in global cognitive decline. Hippocampal volume accounted for an additional 5.4% of this variation and made similar contributions in four of the five cognitive domains. DISCUSSION Hippocampal volume is associated with late-life cognitive decline, above and beyond contributions from common neuropathologic indices.
Collapse
Affiliation(s)
- Robert J. Dawe
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Lei Yu
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Konstantinos Arfanakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Patricia A. Boyle
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
41
|
Rosen HJ, Boeve BF, Boxer AL. Tracking disease progression in familial and sporadic frontotemporal lobar degeneration: Recent findings from ARTFL and LEFFTDS. Alzheimers Dement 2020; 16:71-78. [PMID: 31914219 PMCID: PMC6953606 DOI: 10.1002/alz.12004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/17/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Familial frontotemporal lobar degeneration (f-FTLD) due to autosomal dominant mutations is an important entity for developing treatments for FTLD. The Advancing Research and Treatment for Frontotemporal Lobar Degeneration (ARTFL) and Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects (LEFFTDS) longitudinal studies were designed to describe the natural history of f-FTLD. METHODS We summarized recent publications from the ARTFL and LEFFTDS studies, along with other recent publications describing the natural history of f-FTLD. RESULTS Published and emerging studies are producing data on all phases of f-FTLD, including the asymptomatic and symptomatic phases of disease, as well as the transitional phase when symptoms are just beginning to develop. These data indicate that rates of change increase along with disease severity, which is consistent with commonly cited models of neurodegeneration, and that measurement of biomarkers may predict onset of symptoms. DISCUSSION Data from large multisite studies are producing important data on the natural history of f-FTLD that will be critical for planning intervention trials.
Collapse
Affiliation(s)
- Howard J. Rosen
- Department of NeurologyMemory and Aging CenterUniversity of California, San FranciscoSan FranciscoCalifornia
| | | | - Adam L. Boxer
- Department of NeurologyMemory and Aging CenterUniversity of California, San FranciscoSan FranciscoCalifornia
| |
Collapse
|
42
|
Kim EJ, Hwang JHL, Gaus SE, Nana AL, Deng J, Brown JA, Spina S, Lee MJ, Ramos EM, Grinberg LT, Kramer JH, Boxer AL, Gorno-Tempini ML, Rosen HJ, Miller BL, Seeley WW. Evidence of corticofugal tau spreading in patients with frontotemporal dementia. Acta Neuropathol 2020; 139:27-43. [PMID: 31542807 DOI: 10.1007/s00401-019-02075-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/10/2019] [Accepted: 08/11/2019] [Indexed: 01/09/2023]
Abstract
Common neurodegenerative diseases feature progressive accumulation of disease-specific protein aggregates in selectively vulnerable brain regions. Increasing experimental evidence suggests that misfolded disease proteins exhibit prion-like properties, including the ability to seed corruptive templating and self-propagation along axons. Direct evidence for transneuronal spread in patients, however, remains limited. To test predictions made by the transneuronal spread hypothesis in human tissues, we asked whether tau deposition within axons of the corticospinal and corticopontine pathways can be predicted based on clinical syndromes and cortical atrophy patterns seen in frontotemporal lobar degeneration (FTLD). Sixteen patients with Pick's disease, 21 with corticobasal degeneration, and 3 with FTLD-MAPT were included, spanning a range of clinical syndromes across the frontotemporal dementia (FTD) spectrum. Cortical involvement was measured using a neurodegeneration score, a tau score, and a composite score based on semiquantitative ratings and complemented by an MRI-based cortical atrophy W-map based on antemortem imaging. Midbrain cerebral peduncle and pontine base descending fibers were divided into three subregions, representing prefrontopontine, corticospinal, and parieto-temporo-occipital fiber pathways. Tau area fraction was calculated in each subregion and related to clinical syndrome and cortical measures. Within each clinical syndrome, there were predicted relationships between cortical atrophy patterns and axonal tau deposition in midbrain cerebral peduncle and pontine base. Between syndromes, contrasting and predictable patterns of brainstem axonal tau deposition emerged, with, for example, greater tau in prefrontopontine fibers in behavioral variant FTD and in corticospinal fibers in corticobasal syndrome. Finally, semiquantitative and quantitative cortical degeneration scores predicted brainstem axonal tau deposition based on anatomical principles. Taken together, these findings provide important human evidence in support of axonal tau spreading in patients with specific forms of tau-related neurodegeneration.
Collapse
Affiliation(s)
- Eun-Joo Kim
- Department of Neurology, Memory and Aging Center, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Republic of Korea
| | - Ji-Hye L Hwang
- Department of Neurology, Memory and Aging Center, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Stephanie E Gaus
- Department of Neurology, Memory and Aging Center, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Alissa L Nana
- Department of Neurology, Memory and Aging Center, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Jersey Deng
- Department of Neurology, Memory and Aging Center, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Jesse A Brown
- Department of Neurology, Memory and Aging Center, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Salvatore Spina
- Department of Neurology, Memory and Aging Center, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Myung Jun Lee
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Republic of Korea
| | - Eliana Marisa Ramos
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Lea T Grinberg
- Department of Neurology, Memory and Aging Center, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
- Department of Pathology, University of California, San Francisco, USA
| | - Joel H Kramer
- Department of Neurology, Memory and Aging Center, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Adam L Boxer
- Department of Neurology, Memory and Aging Center, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Maria Luisa Gorno-Tempini
- Department of Neurology, Memory and Aging Center, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA.
- Department of Pathology, University of California, San Francisco, USA.
| |
Collapse
|
43
|
Boeve B, Bove J, Brannelly P, Brushaber D, Coppola G, Dever R, Dheel C, Dickerson B, Dickinson S, Faber K, Fields J, Fong J, Foroud T, Forsberg L, Gavrilova R, Gearhart D, Ghoshal N, Goldman J, Graff-Radford J, Graff-Radford N, Grossman M, Haley D, Heuer H, Hsiung GYR, Huey E, Irwin D, Jones D, Jones L, Kantarci K, Karydas A, Knopman D, Kornak J, Kraft R, Kramer J, Kremers W, Kukull W, Lapid M, Lucente D, Mackenzie I, Manoochehri M, McGinnis S, Miller B, Pearlman R, Petrucelli L, Potter M, Rademakers R, Ramos EM, Rankin K, Rascovsky K, Sengdy P, Shaw L, Syrjanen J, Tatton N, Taylor J, Toga A, Trojanowski J, Weintraub S, Wong B, Wszolek Z, Boxer A, Rosen H. The longitudinal evaluation of familial frontotemporal dementia subjects protocol: Framework and methodology. Alzheimers Dement 2020; 16:22-36. [PMID: 31636026 PMCID: PMC6949411 DOI: 10.1016/j.jalz.2019.06.4947] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
INTRODUCTION It is important to establish the natural history of familial frontotemporal lobar degeneration (f-FTLD) and provide clinical and biomarker data for planning these studies, particularly in the asymptomatic phase. METHODS The Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects protocol was designed to enroll and follow at least 300 subjects for more than at least three annual visits who are members of kindreds with a mutation in one of the three most common f-FTLD genes-microtubule-associated protein tau, progranulin, or chromosome 9 open reading frame 72. RESULTS We present the theoretical considerations of f-FTLD and the aims/objectives of this protocol. We also describe the design and methodology for evaluating and rating subjects, in which detailed clinical and neuropsychological assessments are performed, biofluid samples are collected, and magnetic resonance imaging scans are performed using a standard protocol. DISCUSSION These data and samples, which are available to interested investigators worldwide, will facilitate planning for upcoming disease-modifying therapeutic trials in f-FTLD.
Collapse
Affiliation(s)
| | - Jessica Bove
- University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Brannelly
- Tau Consortium, Rainwater Charitable Foundation, Fort Worth, TX, USA
| | | | | | | | | | | | - Susan Dickinson
- Association for Frontotemporal Degeneration, Radnor, PA, USA
| | - Kelley Faber
- National Cell Repository for Alzheimer's Disease and Related Dementias (NCRAD), Indiana University, Indianapolis, IN, USA
| | | | | | - Tatiana Foroud
- National Cell Repository for Alzheimer's Disease and Related Dementias (NCRAD), Indiana University, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - David Irwin
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | - Walter Kukull
- National Alzheimer Coordinating Center (NACC), University of Washington, Seattle, WA, USA
| | | | | | - Ian Mackenzie
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | - Madeline Potter
- National Cell Repository for Alzheimer's Disease and Related Dementias (NCRAD), Indiana University, Indianapolis, IN, USA
| | | | | | | | | | - Pheth Sengdy
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Les Shaw
- University of Pennsylvania, Philadelphia, PA, USA
| | | | - Nadine Tatton
- Association for Frontotemporal Degeneration, Radnor, PA, USA
| | | | - Arthur Toga
- Laboratory of Neuroimaging (LONI), USC, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Staffaroni AM, Cobigo Y, Goh SYM, Kornak J, Bajorek L, Chiang K, Appleby B, Bove J, Bordelon Y, Brannelly P, Brushaber D, Caso C, Coppola G, Dever R, Dheel C, Dickerson BC, Dickinson S, Dominguez S, Domoto-Reilly K, Faber K, Ferrall J, Fields JA, Fishman A, Fong J, Foroud T, Forsberg LK, Gavrilova R, Gearhart D, Ghazanfari B, Ghoshal N, Goldman J, Graff-Radford J, Graff-Radford N, Grant I, Grossman M, Haley D, Heuer HW, Hsiung GY, Huey ED, Irwin DJ, Jones DT, Jones L, Kantarci K, Karydas A, Kaufer DI, Kerwin DR, Knopman DS, Kraft R, Kramer JH, Kremers WK, Kukull WA, Litvan I, Ljubenkov PA, Lucente D, Lungu C, Mackenzie IR, Maldonado M, Manoochehri M, McGinnis SM, McKinley E, Mendez MF, Miller BL, Multani N, Onyike C, Padmanabhan J, Pantelyat A, Pearlman R, Petrucelli L, Potter M, Rademakers R, Ramos EM, Rankin KP, Rascovsky K, Roberson ED, Rogalski E, Sengdy P, Shaw LM, Syrjanen J, Tartaglia MC, Tatton N, Taylor J, Toga A, Trojanowski JQ, Weintraub S, Wang P, Wong B, Wszolek Z, Boxer AL, Boeve BF, Rosen HJ. Individualized atrophy scores predict dementia onset in familial frontotemporal lobar degeneration. Alzheimers Dement 2020; 16:37-48. [PMID: 31272932 PMCID: PMC6938544 DOI: 10.1016/j.jalz.2019.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Some models of therapy for neurodegenerative diseases envision starting treatment before symptoms develop. Demonstrating that such treatments are effective requires accurate knowledge of when symptoms would have started without treatment. Familial frontotemporal lobar degeneration offers a unique opportunity to develop predictors of symptom onset. METHODS We created dementia risk scores in 268 familial frontotemporal lobar degeneration family members by entering covariate-adjusted standardized estimates of brain atrophy into a logistic regression to classify asymptomatic versus demented participants. The score's predictive value was tested in a separate group who were followed up longitudinally (stable vs. converted to dementia) using Cox proportional regressions with dementia risk score as the predictor. RESULTS Cross-validated logistic regression achieved good separation of asymptomatic versus demented (accuracy = 90%, SE = 0.06). Atrophy scores predicted conversion from asymptomatic or mildly/questionably symptomatic to dementia (HR = 1.51, 95% CI: [1.16,1.98]). DISCUSSION Individualized quantification of baseline brain atrophy is a promising predictor of progression in asymptomatic familial frontotemporal lobar degeneration mutation carriers.
Collapse
Affiliation(s)
- Adam M. Staffaroni
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco CA, USA
| | - Yann Cobigo
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco CA, USA
| | - Sheng-Yang M. Goh
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco CA, USA
| | - John Kornak
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco CA, USA
| | - Lynn Bajorek
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco CA, USA
| | - Kevin Chiang
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco CA, USA
| | - Brian Appleby
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
| | - Jessica Bove
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yvette Bordelon
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Patrick Brannelly
- Tau Consortium, Rainwater Charitable Foundation, Fort Worth, TX, USA
| | | | - Christina Caso
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Giovanni Coppola
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Reilly Dever
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco CA, USA
| | | | - Bradford C. Dickerson
- Department of Neurology, Frontotemporal Disorders Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Susan Dickinson
- Association for Frontotemporal Degeneration, Radnor, PA, USA
| | - Sophia Dominguez
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Kelly Faber
- National Cell Repository for Alzheimer’s Disease (NCRAD), Indiana University, Indianapolis, IN, USA
| | - Jessica Ferrall
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Julie A. Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Ann Fishman
- Department of Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie Fong
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco CA, USA
| | - Tatiana Foroud
- National Cell Repository for Alzheimer’s Disease (NCRAD), Indiana University, Indianapolis, IN, USA
| | | | | | - Debra Gearhart
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Behnaz Ghazanfari
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nupur Ghoshal
- Departments of Neurology and Psychiatry, Washington University School of Medicine, Washington University, St. Louis, MO, USA
| | - Jill Goldman
- Department of Neurology, Columbia University, New York, NY, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| | | | | | - Ian Grant
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dana Haley
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Hilary W. Heuer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco CA, USA
| | - Ging-Yuek Hsiung
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward D. Huey
- Department of Neurology, Columbia University, New York, NY, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - David J. Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David T. Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Lynne Jones
- Department of Radiology, Washington University School of Medicine, Washington University, St. Louis, MO, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Anna Karydas
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco CA, USA
| | - Daniel I. Kaufer
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Diana R. Kerwin
- Department of Neurology and Neurotherapeutics, Center for Alzheimer’s and Neurodegenerative Diseases, The University of Texas, Southwestern Medical Center at Dallas, Dallas, TX, USA
- Department of Internal Medicine, The University of Texas, Southwestern Medical Center at Dallas, Dallas, TX, USA
| | | | - Ruth Kraft
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Joel H. Kramer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco CA, USA
| | - Walter K. Kremers
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Walter A. Kukull
- National Alzheimer Coordinating Center (NACC), University of Washington, Seattle, WA, USA
| | - Irene Litvan
- Department of Neurosciences, Parkinson and Other Movement Disorders Center, University of California, San Diego, San Diego, CA, USA
| | - Peter A. Ljubenkov
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco CA, USA
| | - Diane Lucente
- Department of Neurology, Frontotemporal Disorders Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Codrin Lungu
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Ian R. Mackenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Miranda Maldonado
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Scott M. McGinnis
- Department of Neurology, Frontotemporal Disorders Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emily McKinley
- Department of Neurology, Alzheimer’s Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mario F. Mendez
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bruce L. Miller
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco CA, USA
| | - Namita Multani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Chiadi Onyike
- Department of Geriatric Psychiatry and Neuropsychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Jaya Padmanabhan
- Department of Neurology, Frontotemporal Disorders Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alex Pantelyat
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Len Petrucelli
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA
| | - Madeline Potter
- National Cell Repository for Alzheimer’s Disease (NCRAD), Indiana University, Indianapolis, IN, USA
| | - Rosa Rademakers
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA
| | - Eliana Marisa Ramos
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Katherine P. Rankin
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco CA, USA
| | - Katya Rascovsky
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erik D. Roberson
- Department of Neurology, Alzheimer’s Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emily Rogalski
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Pheth Sengdy
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeremy Syrjanen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - M. Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nadine Tatton
- Association for Frontotemporal Degeneration, Radnor, PA, USA
| | - Joanne Taylor
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco CA, USA
| | - Arthur Toga
- Departments of Ophthalmology, Neurology, Psychiatry and the Behavioral Sciences, Radiology and Engineering, Laboratory of Neuroimaging (LONI), USC, Los Angeles, CA, USA
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sandra Weintraub
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ping Wang
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco CA, USA
| | - Bonnie Wong
- Department of Neurology, Frontotemporal Disorders Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Adam L. Boxer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco CA, USA
| | - Brad F. Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Howard J. Rosen
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco CA, USA
| |
Collapse
|
45
|
Manera AL, Dadar M, Collins DL, Ducharme S. Deformation based morphometry study of longitudinal MRI changes in behavioral variant frontotemporal dementia. Neuroimage Clin 2019; 24:102079. [PMID: 31795051 PMCID: PMC6879994 DOI: 10.1016/j.nicl.2019.102079] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/20/2019] [Accepted: 11/04/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To objectively quantify how cerebral volume loss could assist with clinical diagnosis and clinical trial design in the behavioural variant of frontotemporal dementia (bvFTD). METHODS We applied deformation-based morphometric analyses with robust registration to precisely quantify the magnitude and pattern of atrophy in patients with bvFTD as compared to cognitively normal controls (CNCs), to assess the progression of atrophy over one year follow up and to generate clinical trial sample size estimates to detect differences for the structures most sensitive to change. This study included 203 subjects - 70 bvFTD and 133 CNCs - with a total of 482 timepoints from the Frontotemporal Lobar Degeneration Neuroimaging Initiative. RESULTS Deformation based morphometry (DBM) revealed significant atrophy in the frontal lobes, insula, medial and anterior temporal regions bilaterally in bvFTD subjects compared to controls with outstanding subcortical involvement. We provide detailed information on regional changes per year. In both cross-sectional analysis and over a one-year follow-up period, ventricle expansion was the most prominent differentiator of bvFTD from controls and a sensitive marker of disease progression. CONCLUSIONS Automated measurement of ventricular expansion is a sensitive and reliable marker of disease progression in bvFTD to be used in clinical trials for potential disease modifying drugs, as well as possibly to implement in clinical practice. Ventricular expansion measured with DBM provides the lowest published estimated sample size for clinical trial design to detect significant differences over one and two years.
Collapse
Affiliation(s)
- Ana L Manera
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801, University, Montreal, Quebec H3A 2B4, Canada
| | - Mahsa Dadar
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801, University, Montreal, Quebec H3A 2B4, Canada
| | - D Louis Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801, University, Montreal, Quebec H3A 2B4, Canada.
| | - Simon Ducharme
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801, University, Montreal, Quebec H3A 2B4, Canada; Department of Psychiatry, McGill University Health Centre, Montreal Canada
| |
Collapse
|
46
|
Cajanus A, Solje E, Koikkalainen J, Lötjönen J, Suhonen NM, Hallikainen I, Vanninen R, Hartikainen P, de Marco M, Venneri A, Soininen H, Remes AM, Hall A. The Association Between Distinct Frontal Brain Volumes and Behavioral Symptoms in Mild Cognitive Impairment, Alzheimer's Disease, and Frontotemporal Dementia. Front Neurol 2019; 10:1059. [PMID: 31632342 PMCID: PMC6786130 DOI: 10.3389/fneur.2019.01059] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/19/2019] [Indexed: 11/28/2022] Open
Abstract
Our aim was to investigate the association between behavioral symptoms of agitation, disinhibition, irritability, elation, and aberrant motor behavior to frontal brain volumes in a cohort with various neurodegenerative diseases. A total of 121 patients with mild cognitive impairment (MCI, n = 58), Alzheimer's disease (AD, n = 45) and behavioral variant frontotemporal dementia (bvFTD, n = 18) were evaluated with a Neuropsychiatric Inventory (NPI). A T1-weighted MRI scan was acquired for each participant and quantified with a multi-atlas segmentation method. The volumetric MRI measures of the frontal lobes were associated with neuropsychiatric symptom scores with a linear model. In the regression model, we included CDR score and TMT B time as covariates to account for cognitive and executive functions. The brain volumes were corrected for age, gender and head size. The total behavioral symptom score of the five symptoms of interest was negatively associated with the volume of the subcallosal area (β = −0.32, p = 0.002). High disinhibition scores were associated with reduced volume in the gyrus rectus (β = −0.30, p = 0.002), medial frontal cortex (β = −0.30, p = 0.002), superior frontal gyrus (β = −0.28, p = 0.003), inferior frontal gyrus (β = −0.28, p = 0.005) and subcallosal area (β = −0.28, p = 0.005). Elation scores were associated with reduced volumes of the medial orbital gyrus (β = −0.30, p = 0.002) and inferior frontal gyrus (β = −0.28, p = 0.004). Aberrant motor behavior was associated with atrophy of frontal pole (β = −0.29, p = 0.005) and the subcallosal area (β = −0.39, p < 0.001). No significant associations with frontal brain volumes were found for agitation and irritability. We conclude that the subcallosal area may be common neuroanatomical area for behavioral symptoms in neurodegenerative diseases, and it appears to be independent of disease etiology.
Collapse
Affiliation(s)
- Antti Cajanus
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Eino Solje
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Neurology, Kuopio University Hospital, Kuopio, Finland
| | | | | | | | - Ilona Hallikainen
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Ritva Vanninen
- Department of Radiology, Kuopio University Hospital, Kuopio, Finland
| | | | - Matteo de Marco
- Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Annalena Venneri
- Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Hilkka Soininen
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Anne M Remes
- MRC Oulu, Oulu University Hospital, Oulu, Finland.,Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland
| | - Anette Hall
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
47
|
Tavares TP, Mitchell DGV, Coleman K, Shoesmith C, Bartha R, Cash DM, Moore KM, van Swieten J, Borroni B, Galimberti D, Tartaglia MC, Rowe J, Graff C, Tagliavini F, Frisoni G, Cappa S, Laforce R, de Mendonça A, Sorbi S, Wallstrom G, Masellis M, Rohrer JD, Finger EC. Ventricular volume expansion in presymptomatic genetic frontotemporal dementia. Neurology 2019; 93:e1699-e1706. [PMID: 31578297 PMCID: PMC6946476 DOI: 10.1212/wnl.0000000000008386] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
Abstract
Objective To characterize the time course of ventricular volume expansion in genetic frontotemporal dementia (FTD) and identify the onset time and rates of ventricular expansion in presymptomatic FTD mutation carriers. Methods Participants included patients with a mutation in MAPT, PGRN, or C9orf72, or first-degree relatives of mutation carriers from the GENFI study with MRI scans at study baseline and at 1 year follow-up. Ventricular volumes were obtained from MRI scans using FreeSurfer, with manual editing of segmentation and comparison to fully automated segmentation to establish reliability. Linear mixed models were used to identify differences in ventricular volume and in expansion rates as a function of time to expected disease onset between presymptomatic carriers and noncarriers. Results A total of 123 participants met the inclusion criteria and were included in the analysis (18 symptomatic carriers, 46 presymptomatic mutation carriers, and 56 noncarriers). Ventricular volume differences were observed 4 years prior to symptom disease onset for presymptomatic carriers compared to noncarriers. Annualized rates of ventricular volume expansion were greater in presymptomatic carriers relative to noncarriers. Importantly, time-intensive manually edited and fully automated ventricular volume resulted in similar findings. Conclusions Ventricular volume differences are detectable in presymptomatic genetic FTD. Concordance of results from time-intensive manual editing and fully automatic segmentation approaches support its value as a measure of disease onset and progression in future studies in both presymptomatic and symptomatic genetic FTD.
Collapse
Affiliation(s)
- Tamara P Tavares
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Derek G V Mitchell
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Kristy Coleman
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Christen Shoesmith
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Robert Bartha
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - David M Cash
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Katrina M Moore
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - John van Swieten
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Barbara Borroni
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Daniela Galimberti
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Maria Carmela Tartaglia
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - James Rowe
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Caroline Graff
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Fabrizio Tagliavini
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Giovanni Frisoni
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Stefano Cappa
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Robert Laforce
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Alexandre de Mendonça
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Sandro Sorbi
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Garrick Wallstrom
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Mario Masellis
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Jonathan D Rohrer
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
| | - Elizabeth C Finger
- From the Graduate Program in Neuroscience and Brain and Mind Institute (T.P.T., D.G.V.M., E.C.F.) and Departments of Clinical Neurological Sciences (C.S., E.C.F.) and Medical Biophysics (R.B.), Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; Parkwood Institute (K.C., E.C.F.), Lawson Health Research Institute, London, Canada; Dementia Research Centre, Department of Neurodegenerative Disease (D.M.C., K.M.M., J.D.R.), UCL Institute of Neurology, Queen Square; Centre for Medical Image Computing (D.M.C.), University College London, UK; Department of Neurology (J.v.S.), Erasmus Medical Center, Rotterdam, the Netherlands; Neurology Unit, Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Pathophysiology and Transplantation (D.G.), "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Italy; Toronto Western Hospital (M.C.T.), Tanz Centre for Research in Neurodegenerative Disease, Canada; Department of Clinical Neurosciences (J.R.), University of Cambridge, UK; Department NVS (C.G.), Center for Alzheimer Research, Division of Neurogenetics, Karolinska Institutet, Sweden; Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta (F.T.), Milan; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli (G.F., S.C.), Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging (G.F.), University Hospitals and University of Geneva, Switzerland; Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques (R.L.), CHU de Québec, and Faculté de Médecine, Université Laval, Canada; Faculty of Medicine (A.d.M.), University of Lisbon, Portugal; Department of Neuroscience, Psychology, Drug Research and Child Health (S.S.), University of Florence, and the IRCCS Foundazione Don Carlo Gnocchi (S.S.), Florence, Italy; Statistics & Data Corporation (G.W.), Tempe, AZ; and LC Campbell Cognitive Neurology Research Unit (M.M.), Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada.
| | | |
Collapse
|
48
|
Caswell C, McMillan CT, Xie SX, Van Deerlin VM, Suh E, Lee EB, Trojanowski JQ, Lee VMY, Irwin DJ, Grossman M, Massimo LM. Genetic predictors of survival in behavioral variant frontotemporal degeneration. Neurology 2019; 93:e1707-e1714. [PMID: 31537715 DOI: 10.1212/wnl.0000000000008387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To determine autosomal dominant genetic predictors of survival in individuals with behavioral variant frontotemporal degeneration (bvFTD). METHODS A retrospective chart review of 174 cases with a clinical phenotype of bvFTD but no associated elementary neurologic features was performed, with diagnosis either autopsy-confirmed (n = 57) or supported by CSF evidence of non-Alzheimer pathology (n = 117). Genetic analysis of the 3 most common genes with pathogenic autosomal dominant mutations associated with frontotemporal degeneration was performed in all patients, which identified cases with C9orf72 expansion (n = 28), progranulin (GRN) mutation (n = 12), and microtubule-associated protein tau (MAPT) mutation (n = 10). Cox proportional hazards regressions were used to test for associations between survival and mutation status, sex, age at symptom onset, and education. RESULTS Across all patients with bvFTD, the presence of a disease-associated pathogenic mutation was associated with shortened survival (hazard ratio [HR] 2.164, 95% confidence interval [CI] 1.391, 3.368). In separate models, a GRN mutation (HR 2.423, 95% CI 1.237, 4.744), MAPT mutation (HR 8.056, 95% CI 2.938, 22.092), and C9orf72 expansion (HR 1.832, 95% CI 1.034, 3.244) were each individually associated with shorter survival relative to sporadic bvFTD. A mutation on the MAPT gene results in an earlier age at onset than a C9orf72 expansion or mutation on the GRN gene (p = 0.016). CONCLUSIONS Our findings suggest that autosomal dominantly inherited mutations, modulated by age at symptom onset, associate with shorter survival among patients with bvFTD. We suggest that clinical trials and clinical management should consider mutation status and age at onset when evaluating disease progression.
Collapse
Affiliation(s)
- Carrie Caswell
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Corey T McMillan
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Sharon X Xie
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Vivianna M Van Deerlin
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - EunRan Suh
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Edward B Lee
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - John Q Trojanowski
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Virginia M-Y Lee
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - David J Irwin
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Murray Grossman
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Lauren M Massimo
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| |
Collapse
|
49
|
Bertrand A, Wen J, Rinaldi D, Houot M, Sayah S, Camuzat A, Fournier C, Fontanella S, Routier A, Couratier P, Pasquier F, Habert MO, Hannequin D, Martinaud O, Caroppo P, Levy R, Dubois B, Brice A, Durrleman S, Colliot O, Le Ber I. Early Cognitive, Structural, and Microstructural Changes in Presymptomatic C9orf72 Carriers Younger Than 40 Years. JAMA Neurol 2019; 75:236-245. [PMID: 29197216 DOI: 10.1001/jamaneurol.2017.4266] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Importance Presymptomatic carriers of chromosome 9 open reading frame 72 (C9orf72) mutation, the most frequent genetic cause of frontotemporal lobar degeneration and amyotrophic lateral sclerosis, represent the optimal target population for the development of disease-modifying drugs. Preclinical biomarkers are needed to monitor the effect of therapeutic interventions in this population. Objectives To assess the occurrence of cognitive, structural, and microstructural changes in presymptomatic C9orf72 carriers. Design, Setting, and Participants The PREV-DEMALS study is a prospective, multicenter, observational study of first-degree relatives of individuals carrying the C9orf72 mutation. Eighty-four participants entered the study between October 2015 and April 2017; 80 (95%) were included in cross-sectional analyses of baseline data. All participants underwent neuropsychological testing and magnetic resonance imaging; 63 (79%) underwent diffusion tensor magnetic resonance imaging. Gray matter volumes and diffusion tensor imaging metrics were calculated within regions of interest. Anatomical and microstructural differences between individuals who carried the C9orf72 mutation (C9+) and those who did not carry the C9orf72 mutation (C9-) were assessed using linear mixed-effects models. Data were analyzed from October 2015 to April 2017. Main Outcomes and Measures Differences in neuropsychological scores, gray matter volume, and white matter integrity between C9+ and C9- individuals. Results Of the 80 included participants, there were 41 C9+ individuals (24 [59%] female; mean [SD] age, 39.8 [11.1] years) and 39 C9- individuals (24 [62%] female; mean [SD] age, 45.2 [13.9] years). Compared with C9- individuals, C9+ individuals had lower mean (SD) praxis scores (163.4 [6.1] vs 165.3 [5.9]; P = .01) and intransitive gesture scores (34.9 [1.6] vs 35.7 [1.5]; P = .004), atrophy in 8 cortical regions of interest and in the right thalamus, and white matter alterations in 8 tracts. When restricting the analyses to participants younger than 40 years, compared with C9- individuals, C9+ individuals had lower praxis scores and intransitive gesture scores, atrophy in 4 cortical regions of interest and in the right thalamus, and white matter alterations in 2 tracts. Conclusions and Relevance Cognitive, structural, and microstructural alterations are detectable in young C9+ individuals. Early and subtle praxis alterations, underpinned by focal atrophy of the left supramarginal gyrus, may represent an early and nonevolving phenotype related to neurodevelopmental effects of C9orf72 mutation. White matter alterations reflect the future phenotype of frontotemporal lobar degeneration/amyotrophic lateral sclerosis, while atrophy appears more diffuse. Our results contribute to a better understanding of the preclinical phase of C9orf72 disease and of the respective contribution of magnetic resonance biomarkers. Trial Registration clinicaltrials.gov Identifier: NCT02590276.
Collapse
Affiliation(s)
- Anne Bertrand
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Aramis Project Team, Inria Research Center of Paris, Paris, France.,Department of Neuroradiology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Department of Radiology, Hôpital Saint Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Junhao Wen
- Aramis Project Team, Inria Research Center of Paris, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Paris, France
| | - Daisy Rinaldi
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Centre de Référence des Démences Rares ou Précoces, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marion Houot
- Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Department of Neurology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sabrina Sayah
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Paris, France
| | - Agnès Camuzat
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Paris, France
| | - Clémence Fournier
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Paris, France
| | - Sabrina Fontanella
- Aramis Project Team, Inria Research Center of Paris, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Paris, France
| | - Alexandre Routier
- Aramis Project Team, Inria Research Center of Paris, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Paris, France
| | - Philippe Couratier
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, Centre Hospitalier Universitaire de Limoges, Limoges, France.,Limoges University, Institut d'Epidémiologie Neurologique et Neurologie Tropicale, Centre National de la Recherche Scientifique, Fédération de Recherche 3503, Institut Génomique, Environnement, Immunité, Santé et Thérapeutiques, Limoges, France
| | - Florence Pasquier
- Neurology Department, National Reference Center for Young Onset Dementia, Centre Hospitalier Régional Universitaire de Lille, INSERM U1171, Lille, France.,Equipe d'accueil 1046, Maladie d'Alzheimer et Pathologies Vasculaires, Lille University, Lille, France
| | - Marie-Odile Habert
- Department of Nuclear Medicine, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Laboratoire d'Imagerie Biomédicale, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, INSERM U1146, Centre National de la Recherche Scientifique, UMR 7371, Paris, France
| | - Didier Hannequin
- Centre National de Référence pour les Malades Alzheimer Jeunes, Centre Hospitalier Universitaire de Rouen, INSERM 1245, Rouen, France.,Department of Neurology, Centre Hospitalier Universitaire de Rouen, Rouen, France
| | - Olivier Martinaud
- Centre National de Référence pour les Malades Alzheimer Jeunes, Centre Hospitalier Universitaire de Rouen, INSERM 1245, Rouen, France.,Department of Neurology, Centre Hospitalier Universitaire de Rouen, Rouen, France
| | - Paola Caroppo
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Paris, France.,Division of Neurology V and Neuropathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milano, Italy
| | - Richard Levy
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Centre de Référence des Démences Rares ou Précoces, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Department of Neurology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Bruno Dubois
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Centre de Référence des Démences Rares ou Précoces, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Department of Neurology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexis Brice
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Stanley Durrleman
- Aramis Project Team, Inria Research Center of Paris, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Paris, France
| | - Olivier Colliot
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Aramis Project Team, Inria Research Center of Paris, Paris, France.,Centre pour l'Acquisition et le Traitement des Images, Institut du Cerveau et la Moelle, Paris, France
| | - Isabelle Le Ber
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Centre de Référence des Démences Rares ou Précoces, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Department of Neurology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | |
Collapse
|
50
|
Gossye H, Van Broeckhoven C, Engelborghs S. The Use of Biomarkers and Genetic Screening to Diagnose Frontotemporal Dementia: Evidence and Clinical Implications. Front Neurosci 2019; 13:757. [PMID: 31447625 PMCID: PMC6691066 DOI: 10.3389/fnins.2019.00757] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Within the wide range of neurodegenerative brain diseases, the differential diagnosis of frontotemporal dementia (FTD) frequently poses a challenge. Often, signs and symptoms are not characteristic of the disease and may instead reflect atypical presentations. Consequently, the use of disease biomarkers is of importance to correctly identify the patients. Here, we describe how neuropsychological characteristics, neuroimaging and neurochemical biomarkers and screening for causal gene mutations can be used to differentiate FTD from other neurodegenerative diseases as well as to distinguish between FTD subtypes. Summarizing current evidence, we propose a stepwise approach in the diagnostic evaluation. Clinical consensus criteria that take into account a full neuropsychological examination have relatively good accuracy (sensitivity [se] 75–95%, specificity [sp] 82–95%) to diagnose FTD, although misdiagnosis (mostly AD) is common. Structural brain MRI (se 70–94%, sp 89–99%) and FDG PET (se 47–90%, sp 68–98%) or SPECT (se 36–100%, sp 41–100%) brain scans greatly increase diagnostic accuracy, showing greater involvement of frontal and anterior temporal lobes, with sparing of hippocampi and medial temporal lobes. If these results are inconclusive, we suggest detecting amyloid and tau cerebrospinal fluid (CSF) biomarkers that can indicate the presence of AD with good accuracy (se 74–100%, sp 82–97%). The use of P-tau181 and the Aβ1–42/Aβ1–40 ratio significantly increases the accuracy of correctly identifying FTD vs. AD. Alternatively, an amyloid brain PET scan can be performed to differentiate FTD from AD. When autosomal dominant inheritance is suspected, or in early onset dementia, mutation screening of causal genes is indicated and may also be offered to at-risk family members. We have summarized genotype–phenotype correlations for several genes that are known to cause familial frontotemporal lobar degeneration, which is the neuropathological substrate of FTD. The genes most commonly associated with this disease (C9orf72, MAPT, GRN, TBK1) are discussed, as well as some less frequent ones (CHMP2B, VCP). Several other techniques, such as diffusion tensor imaging, tau PET imaging and measuring serum neurofilament levels, show promise for future implementation as diagnostic biomarkers.
Collapse
Affiliation(s)
- Helena Gossye
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Institute Born - Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Center for Neurosciences, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Institute Born - Bunge, University of Antwerp, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Institute Born - Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Center for Neurosciences, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|