1
|
Yossri D, Din NHKE, Afifi NS, Adel-Khattab D. Soft tissue response to titanium healing abutments treated by Er: YAG laser or plasma spray: A randomized controlled feasibility clinical study with SEM and histological analysis. Clin Implant Dent Relat Res 2025; 27:e13373. [PMID: 39410747 DOI: 10.1111/cid.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 02/04/2025]
Abstract
OBJECTIVE Soft tissue seal around implants ensures stable osseointegration and a long-term survival of dental implants. Different surface modification and decontamination for implant abutments were endorsed in order to improve peri-implant soft tissue healing, such as laser, plasma spray, acid etching, and steaming. The aim of this study was to evaluate the response of peri-implant soft tissue to titanium abutments treated with Erbium-doped: Yttrium-Aluminum-Garnet (Er:YAG) laser versus plasma spray. METHODS Twenty-four patients who required implant placement in the maxillary arch participated in this study. Patients were divided into three groups, abutments treated with Er:YAG laser versus cold plasma spray and untreated abutments. Fourteen days following the implant abutment insertion, soft tissue peri-implant biopsies were taken for histological, histochemical, and immunohistochemical evaluation. Scanning electron microscopy was done for the abutments; plaque index (PI) and gingival index (GI) were assessed 14 days and 3 months following final restoration. RESULTS Regarding the histological results, the least mean inflammatory cell count was in the plasma group (174.09 ± 40.67), followed by the laser group (654.27 ± 85.95) and the control group (852.00 ± 117.98), with statistically significant differences between them. The mean area fraction of collagen fibers showed the highest value in the plasma group (9.73 ± 1.91), followed by the laser group (3.25 ± 0.49), while the lowest value was found in the control group (1.17 ± 0.51). The immunohistochemical expression of E-cadherin was significantly higher and uniformly distributed in the plasma group (42.4 ± 11.2%) followed by the laser group (15.4 ± 4.07%) and the control group (6.8 ± 1.7%). SEM analysis of healing abutments showed fibroblast-like cells, which were more developed with dense fibers in the plasma group; laser group fibers showed fewer and more delicate fibers than the plasma group, while no fibers were detected in the control group. CONCLUSION Within the limitations of this feasibility study, the present data concluded that plasma spray and Erbium: YAG laser can be used for abutment surface treatment to achieve better peri-implant soft tissue healing. Clinically and histologically, plasma spray showed a better effect on the peri-implant soft tissues by reducing the inflammatory reaction, promoting collagen fiber formation, higher fibroblast-like cell attachment, and upregulating E-cadherin expression than Erbium: YAG laser and control groups.
Collapse
Affiliation(s)
- Dalia Yossri
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Nevine H Kheir El Din
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Nermeen Sami Afifi
- Department of Oral Pathology, Faculty of Dentistry, Ain Shams University and Misr International University, Cairo, Egypt
| | - Doaa Adel-Khattab
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Thangavelu L, Parthasarathy PR, Tharmar MAA. Ceramic Biomaterials in Dental Implantology—Time for Change of Status Quo: An Updated Review. WORLD JOURNAL OF DENTISTRY 2024; 15:733-742. [DOI: 10.5005/jp-journals-10015-2471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Zaheer N, Khan AY, Ghani S, Basit A, Ahsan A, Jajja MA. Finite element analysis of non-ultraviolet and ultraviolet-irradiated titanium implants. Odontology 2024:10.1007/s10266-024-01006-z. [PMID: 39316234 DOI: 10.1007/s10266-024-01006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
AIM The purpose of this study is to calculate von Mises stresses, von Mises strains, deformation, principal stresses and principal elastic strains of non-UV and UV-irradiated hybrid SLA (sandblasted, large-grit, acid-etched)-coated titanium implants. MATERIALS AND METHODS A cross-sectional analytical study was conducted at the Institute of Dentistry, CMH Lahore Medical College. Cone beam computed tomography (CBCT) data of One Hundred and Thirty Eight Dio Hybrid sandblasted and acid-etched implants of identical dimensions (10 mm in length and 4.5 mm in diameter) were allocated in the three groups. Control group A samples were not given UV irradiation, while groups B and C were given UVA (382 nm, 25 mWcm-2) and UVC (260 nm, 15 mWcm-2) irradiation, respectively. The CBCT data were analyzed using FEA (ANSYS software). CBCT images were taken before functional loading (8th week) and after functional loading (26th week). A 3-way ANOVA test was employed to see the difference between the three groups. Tukey test was utilized for multiple comparisons. p ≤ 0.05 was considered significant. RESULTS The control group exhibited the highest average values for maximum von Mises stress, von Mises strain, deformation, principal stress, and principal elastic strain in both the maxilla and mandible compared to the UV-irradiated groups. Additionally, these measures consistently displayed higher averages in the maxilla across all groups compared to the mandible. Particularly, the UVC-irradiated group demonstrated the lowest von Mises stresses around the implants compared to the UVA group. CONCLUSION Insignificant differences were observed between UVA- and UVC-irradiated implants in terms of principal stress, deformation, von Mises strain, and principal elastic strain. The only notable distinction was in von Mises stress, where the UVC-irradiated group exhibited lower von Mises stress around SLA-coated titanium implants.
Collapse
Affiliation(s)
- Naauman Zaheer
- Oral Biology Department, CMH Lahore Medical College & Institute of Dentistry, National University of Medical Sciences, Rawalpindi, Pakistan.
| | - Asfund Yar Khan
- CMH Lahore Medical College & Institute of Dentistry, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Sufyan Ghani
- University of Engineering and Technology, Lahore, Pakistan
| | - Abdul Basit
- CMH Lahore Medical College and Institute of Dentistry, Lahore, Pakistan
| | - Alisha Ahsan
- CMH Lahore Medical College & Institute of Dentistry, National University of Medical Sciences, Rawalpindi, Pakistan
| | | |
Collapse
|
4
|
Jiang Y, Bao X, Yu Y, Zhang Y, Liu M, Meng F, Wang B, Chen J. Effects of different plasma treatments on bonding properties of zirconia. Heliyon 2024; 10:e32493. [PMID: 38975209 PMCID: PMC11225731 DOI: 10.1016/j.heliyon.2024.e32493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
This in vitro study was to evaluate the effect of different non-thermal atmospheric pressure plasma (NTP) on shear bond strength (SBS) between yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) and self-adhesive resin cement. In this study, The Y-TZP specimens were divided into 4 groups according to the surface treatment methods as follows: Control (no surface treatment), Sb (Sandblasting), AP(argon NTP), and CP(20 % oxygen and 80 % argon combination NTP). Y-TZP specimens were randomly selected from each group to observe and test the following indexes: scanning electron microscope to observe the surface morphology; atomic force microscope to detect the surface roughness; contact angle detector to detect the surface contact angle; energy spectrometer to analyze the surface elements. Then, resin cement (Rely X-U200) was bonded to human isolated teeth with Y-TZP specimens to measure SBS. The results showed that for the SE test, the NTP group was significantly higher than the control group (p < 0.05). The results of the SBS test showed that the SBS values of the NTP group were significantly higher than those of the other groups, regardless of the plasma treatment (p < 0.05). However, there was no significant difference between groups AP and CP in a test of SBS (p > 0.05). This study shows that non-thermal atmospheric pressure plasma can improve the shear bond strength of Y-TZP by increasing the surface energy. The addition of oxygen ratio to argon is more favorable to increase the shear bond strength and is worth further investigation.
Collapse
Affiliation(s)
- Yulin Jiang
- Chongqing University Central Hospital, Chongqing Emergency Medical Center, 400014, Chongqing Province, China
- Department of Stomatology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Xudong Bao
- Department of Stomatology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Yang Yu
- Department of Stomatology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Yannan Zhang
- Department of Stomatology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Min Liu
- Department of Stomatology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Fanhao Meng
- Department of Stomatology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Bo Wang
- Department of Stomatology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Jianfeng Chen
- Department of Stomatology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| |
Collapse
|
5
|
Liao Y, Xu J, Zheng Z, Fu R, Zhang X, Gan S, Yang S, Hou C, Xu HHK, Chen W. Novel Nonthermal Atmospheric Plasma Irradiation of Titanium Implants Promotes Osteogenic Effect in Osteoporotic Conditions. ACS Biomater Sci Eng 2024; 10:3255-3267. [PMID: 38684056 DOI: 10.1021/acsbiomaterials.4c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Osteoporosis is a metabolic disease characterized by bone density and trabecular bone loss. Bone loss may affect dental implant osseointegration in patients with osteoporosis. To promote implant osseointegration in osteoporotic patients, we further used a nonthermal atmospheric plasma (NTAP) treatment device previously developed by our research group. After the titanium implant (Ti) is placed into the device, the working gas flow and the electrode switches are turned on, and the treatment is completed in 30 s. Previous studies showed that this NTAP device can remove carbon contamination from the implant surface, increase the hydroxyl groups, and improve its wettability to promote osseointegration in normal conditions. In this study, we demonstrated the tremendous osteogenic enhancement effect of NTAP-Ti in osteoporotic conditions in rats for the first time. Compared to Ti, the proliferative potential of osteoporotic bone marrow mesenchymal stem cells on NTAP-Ti increased by 180% at 1 day (P = 0.004), while their osteogenic differentiation increased by 149% at 14 days (P < 0.001). In addition, the results indicated that NTAP-Ti significantly improved osseointegration in osteoporotic rats in vivo. Compared to the Ti, the bone volume fraction (BV/TV) and trabecular number (Tb.N) values of NTAP-Ti in osteoporotic rats, respectively, increased by 18% (P < 0.001) and 25% (P = 0.007) at 6 weeks and the trabecular separation (Tb.Sp) value decreased by 26% (P = 0.02) at 6 weeks. In conclusion, this study proved a novel NTAP irradiation titanium implant that can significantly promote osseointegration in osteoporotic conditions.
Collapse
Affiliation(s)
- Yihan Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jia Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruijie Fu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinyuan Zhang
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuhan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chuping Hou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hockin H K Xu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, Maryland 21201, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Dias LFG, Costa RC, Sacramento CM, Ruiz KGS, Barão VAR, Lisboa-Filho PN. Tailoring bisphosphonate-doped titanium films to optimally couple cellular responses and antibacterial activity for biomedical applications. Biointerphases 2024; 19:031002. [PMID: 38836787 DOI: 10.1116/6.0003611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
Titanium (Ti) is widely utilized as an implant material; nonetheless, its integration with bone tissue faces limitations due to a patient's comorbidities. To address this challenge, we employed a strategic approach involving the growth of thin films by spin-coating and surface functionalization with etidronate (ETI), alendronate (ALE), and risedronate (RIS). Our methodology involved coating of Ti cp IV disks with thin films of TiO2, hydroxyapatite (HA), and their combinations (1:1 and 1:2 v/v), followed by surface functionalization with ETI, ALE, and RIS. Bisphosphonate-doped films were evaluated in terms of surface morphology and physical-chemical properties by techniques such as electron microscopy, confocal microscopy, and x-ray photoelectron spectroscopy. The antibacterial potential of bisphosphonates alone or functionalized onto the Ti surface was tested against Staphylococcus aureus biofilms. Primary human bone mesenchymal stem cells were used to determine in vitro cell metabolism and mineralization. Although RIS alone did not demonstrate any antibacterial effect as verified by minimum inhibitory concentration assay, when Ti surfaces were functionalized with RIS, partial inhibition of Staphylococcus aureus growth was noted, probably because of the physical-chemical surface properties. Furthermore, samples comprising TiO2/HA (1:1 and 1:2 v/v) showcased an enhancement in the metabolism of nondifferentiated cells and can potentially enhance the differentiation of osteoblastic precursors. All samples demonstrated cell viability higher than 80%. Addition of hydroxyapatite and presence of bisphosphonates increase the metabolic activity and the mineralization of human bone mesenchymal cells. While these findings hold promise, it is necessary to conduct further studies to evaluate the system's performance in vivo and ensure its long-term safety. This research marks a significant stride toward optimizing the efficacy of titanium implants through tailored surface modifications.
Collapse
Affiliation(s)
- Leonardo F G Dias
- School of Sciences, São Paulo State University (UNESP), Bauru, São Paulo 17033360, Brazil
| | - Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Catharina M Sacramento
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Karina G S Ruiz
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Paulo N Lisboa-Filho
- School of Sciences, São Paulo State University (UNESP), Bauru, São Paulo 17033360, Brazil
| |
Collapse
|
7
|
Calazans Neto JV, Ferreira I, Ramos AP, Bolfarini C, Batalha RL, Dos Reis AC, Valente MLDC. Comparative analysis of the physical, chemical, and microbiological properties of Ti-6Al-4V disks produced by different methods and subjected to surface treatments. J Prosthet Dent 2024; 131:742.e1-742.e8. [PMID: 38383281 DOI: 10.1016/j.prosdent.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
STATEMENT OF PROBLEM To improve the osseointegration of dental implants and reduce microbiological growth, different micro- and nanoscale surface topographies can be used. PURPOSE The purpose of this in vitro study was to evaluate the influence of Ti-6Al-4V with 4 surfaces, machined (DU), machined+hydroxyapatite (DUHAp), machined+acid-alkali treatment (DUAA), and additive manufacturing (DMA), on the physical, chemical, and microbiological properties. MATERIAL AND METHODS The topography of Ti-6Al-4V disks with the 4 surfaces was evaluated by scanning electron microscopy (SEM), the chemical composition by energy dispersive X-ray spectroscopy (EDS), and the crystalline structure by X-ray diffraction (XRD). Physical and chemical properties were analyzed by using wettability and surface free energy, roughness, and microbial adhesion against Staphylococcus aureus by colony forming units (CFU). One-way ANOVA analysis of variance and the Tukey multiple comparisons test were applied to evaluate the data, except CFU, which was submitted to the Kruskal-Wallis nonparametric test (α=.05). RESULTS DU photomicrographs showed a topography characteristic of a polished machined surface, DUHAp and DUAA exhibited patterns corresponding to the surface modifications performed, and in DMA the presence of partially fused spherical particles was observed. The EDS identified chemical elements inherent in the Ti-6Al-4V, and the DUHAp and DUAA disks also had the ions from the treatments applied. XRD patterns revealed similarities between DU and DMA, as well as characteristic peaks of hydroxyapatite (HA) in the DUHAp disk and the DUAA. Compared with DU and DMA the DUHAp and DUAA groups showed hydrophilic behavior with smaller contact angles and higher surface free energy (P<.05). DMA showed a higher mean value of roughness, different from the others (P<.05), and a higher CFU for S. aureus (P=.006). CONCLUSIONS DUHAp and DUAA showed similar behaviors regarding wettability, surface free energy, and bacterial adhesion. Among the untreated groups, DMA exhibited higher roughness, bacterial adhesion, and lower wettability and surface free energy.
Collapse
Affiliation(s)
- João Vicente Calazans Neto
- Master's student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Izabela Ferreira
- Master's student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Ana Paula Ramos
- Professor, Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, (USP), Ribeirão Preto, Brazil
| | - Claudemiro Bolfarini
- Professor, Professor, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Rodolfo Lisboa Batalha
- Researcher, Materials and Technologies, Department of Research, Development and Innovation, Institute of Welding and Quality (ISQ), Porto Salvo, Oeiras, Portugal
| | - Andréa Cândido Dos Reis
- Professor, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Mariana Lima da Costa Valente
- Professor, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil.
| |
Collapse
|
8
|
Omatsu K, Yamawaki I, Taguchi Y, Tsumori N, Hashimoto Y, Umeda M. Surface modification affects human gingival epithelial cell behavior on polyetheretherketone surfaces. Dent Mater J 2024; 43:191-199. [PMID: 38246630 DOI: 10.4012/dmj.2023-196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Gingival epithelial attachment to the abutment is important for the prevention of peri-implantitis. Polyetheretherketone (PEEK) has recently gained attention as an alternative material to titanium; however, it is biologically inert, which is disadvantageous for obtaining soft tissue sealing of the transmucosal part of the implant abutment. Therefore, ultraviolet (UV) irradiation, argon plasma irradiation, and buffing were selected as treatments to modify the PEEK surface. None of the treatments had any effect on the material's mechanical strength. The UV and plasma treatments did not significantly affect the surface morphology. Surface elemental analysis showed a decrease in carbon content and an increase in oxygen content and wettability for all treatments. Human gingival epithelial cell adhesion, proliferation, and the expression of adhesion proteins integrin β4 and laminin 332, were increased. Surface modification to PEEK was suggested to enhance cell activity on PEEK.
Collapse
Affiliation(s)
- Keiju Omatsu
- Department of Periodontology, School of Dentistry, Osaka Dental University
| | - Isao Yamawaki
- Department of Periodontology, School of Dentistry, Osaka Dental University
| | - Yoichiro Taguchi
- Department of Periodontology, School of Dentistry, Osaka Dental University
| | - Norimasa Tsumori
- Department of Periodontology, School of Dentistry, Osaka Dental University
| | - Yoshiya Hashimoto
- Department of Biomaterials, School of Dentistry, Osaka Dental University
| | - Makoto Umeda
- Department of Periodontology, School of Dentistry, Osaka Dental University
| |
Collapse
|
9
|
Schafer S, Swain T, Parra M, Slavin BV, Mirsky NA, Nayak VV, Witek L, Coelho PG. Nonthermal Atmospheric Pressure Plasma Treatment of Endosteal Implants for Osseointegration and Antimicrobial Efficacy: A Comprehensive Review. Bioengineering (Basel) 2024; 11:320. [PMID: 38671741 PMCID: PMC11048570 DOI: 10.3390/bioengineering11040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The energy state of endosteal implants is dependent on the material, manufacturing technique, cleaning procedure, sterilization method, and surgical manipulation. An implant surface carrying a positive charge renders hydrophilic properties, thereby facilitating the absorption of vital plasma proteins crucial for osteogenic interactions. Techniques to control the surface charge involve processes like oxidation, chemical and topographical adjustments as well as the application of nonthermal plasma (NTP) treatment. NTP at atmospheric pressure and at room temperature can induce chemical and/or physical reactions that enhance wettability through surface energy changes. NTP has thus been used to modify the oxide layer of endosteal implants that interface with adjacent tissue cells and proteins. Results have indicated that if applied prior to implantation, NTP strengthens the interaction with surrounding hard tissue structures during the critical phases of early healing, thereby promoting rapid bone formation. Also, during this time period, NTP has been found to result in enhanced biomechanical fixation. As such, the application of NTP may serve as a practical and reliable method to improve healing outcomes. This review aims to provide an in-depth exploration of the parameters to be considered in the application of NTP on endosteal implants. In addition, the short- and long-term effects of NTP on osseointegration are addressed, as well as recent advances in the utilization of NTP in the treatment of periodontal disease.
Collapse
Affiliation(s)
- Sogand Schafer
- Division of Plastic, Reconstructive and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Tina Swain
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marcelo Parra
- Center of Excellence in Morphological and Surgical Studies (CEMyQ), Faculty of Medicine, Universidad de la Frontera, Temuco 4811230, Chile
- Department of Comprehensive Adult Dentistry, Faculty of Dentistry, Universidad de la Frontera, Temuco 4811230, Chile
| | - Blaire V. Slavin
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Biomaterials Division, New York University Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
10
|
Zhang WS, Liu Y, Shao SY, Shu CQ, Zhou YH, Zhang SM, Qiu J. Surface characteristics and in vitro biocompatibility of titanium preserved in a vitamin C-containing saline storage solution. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:3. [PMID: 38206387 PMCID: PMC10784388 DOI: 10.1007/s10856-023-06769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
The purpose of this study is to explore a storage solution for titanium implants and investigate its osteogenic properties. The commercial pure titanium (cp-Ti) surface and double-etched (SLA) titanium surface specimens were preserved in air, saline, 10 mM Vitamin C (VitC)-containing saline and 100 mM VitC-containing saline storage solutions for 2 weeks. The surface microtopography of titanium was observed by scanning electron microscopy (SEM), the surface elemental compositions of the specimens were analyzed by Raman and X-ray photoelectron spectroscopy (XPS), and water contact angle and surface roughness of the specimens were tested. The protein adsorption capacity of two titanium surfaces after storage in different media was examined by BCA kit. The MC3T3-E1 osteoblasts were cultured on two titanium surfaces after storage in different media, and the proliferation, adhesion and osteogenic differentiation activity of osteoblasts were detected by CCK-8, laser confocal microscope (CLSM) and Western blot. The SEM results indicated that the titanium surfaces of the air group were relatively clean while scattered sodium chloride or VitC crystals were seen on the titanium surfaces of the other three groups. There were no significant differences in the micromorphology of the titanium surfaces among the four groups. Raman spectroscopy detected VitC crystals on the titanium surfaces of two experimental groups. The XPS, water contact angle and surface roughness results suggested that cp-Ti and SLA-Ti stored in 0.9% NaCl and two VitC-containing saline storage solutions possessed less carbon contamination and higher surface hydrophilicity. Moreover, the protein adsorption potentials of cp-Ti and SLA-Ti surfaces were significantly improved under preservation in two VitC-containing saline storage solutions. The results of in vitro study showed that the preservation of two titanium surfaces in 100 mM VitC-containing saline storage solution upregulated the cell adhesion, proliferation, osteogenic related protein expressions of MC3T3-E1 osteoblasts. In conclusion, preservation of cp-Ti and SLA-Ti in 100 mM VitC-containing saline storage solution could effectively reduce carbon contamination and enhance surface hydrophilicity, which was conducive to osteogenic differentiation of osteoblasts.
Collapse
Affiliation(s)
- Wen-Si Zhang
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, PR China
| | - Yao Liu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, PR China
| | - Shui-Yi Shao
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, PR China
| | - Chang-Qing Shu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, PR China
| | - Yi-Heng Zhou
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, PR China
| | - Song-Mei Zhang
- Department of Comprehensive Care, Tufts University School of Dental Medicine Boston, Boston, MA, USA
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, PR China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, PR China.
| |
Collapse
|
11
|
Pu F, Yu Y, Zhang Z, Wu W, Shao Z, Li C, Feng J, Xue L, Chen F. Research and Application of Medical Polyetheretherketone as Bone Repair Material. Macromol Biosci 2023; 23:e2300032. [PMID: 37088909 DOI: 10.1002/mabi.202300032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/01/2023] [Indexed: 04/25/2023]
Abstract
Polyetheretherketone (PEEK) can potentially be used for bone repair because its elastic modulus is similar to that of human natural bone and good biocompatibility and chemical stability. However, its hydrophobicity and biological inertness limit its application in the biomedical field. Inspired by the composition, structure, and function of bone tissue, many strategies are proposed to change the structure and functionality of the PEEK surface. In this review, the applications of PEEK in bone repair and the optimization strategy for PEEK's biological activity are reviewed, which provides a direction for the development of multifunctional bone repair materials in the future.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of Wuhan (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yihan Yu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Wei Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chao Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jing Feng
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of Wuhan (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Longjian Xue
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
| |
Collapse
|
12
|
Böker KO, Gätjen L, Dölle C, Vasic K, Taheri S, Lehmann W, Schilling AF. Reduced Cell Adhesion on LightPLAS-Coated Implant Surfaces in a Three-Dimensional Bioreactor System. Int J Mol Sci 2023; 24:11608. [PMID: 37511369 PMCID: PMC10380481 DOI: 10.3390/ijms241411608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Most implants used in trauma surgery are made of steel and remain inside the body only temporarily. The strong tissue interaction of such implants sometimes creates problems with their explantation. Modified implant surfaces, which decrease tissue attachment, might allow an easier removal and therefore a better outcome. Such a modification must retain the implant function, and needs to be biocompatible and cost-effective. Here, we used a novel VUV-light (Vacuum-Ultraviolett)-based coating technology (LightPLAS) to generate coated stainless-steel plates. The tested LightPLAS coating only had an average thickness of around 335 nm, making it unlikely to interfere with implant function. The coated plates showed good biocompatibility according to ISO 10993-5 and ISO 10993-12, and reduced cell adhesion after four different time points in a 2D cell culture system with osteoblast-like MG-63 cells. Furthermore, we could show decreased cell adhesion in our 3D cell culture system, which mimics the fluid flow above the implant materials as commonly present in the in vivo environment. This new method of surface coating could offer extended options to design implant surfaces for trauma surgery to reduce cell adhesion and implant ingrowth. This may allow for a faster removal time, resulting in shorter overall operation times, thereby reducing costs and complication rates and increasing patient wellbeing.
Collapse
Affiliation(s)
- Kai Oliver Böker
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Georg-August-University, 37075 Goettingen, Germany
| | - Linda Gätjen
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, 28359 Bremen, Germany
| | - Christopher Dölle
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, 28359 Bremen, Germany
| | - Katarina Vasic
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Georg-August-University, 37075 Goettingen, Germany
| | - Shahed Taheri
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Georg-August-University, 37075 Goettingen, Germany
| | - Wolfgang Lehmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Georg-August-University, 37075 Goettingen, Germany
| | - Arndt Friedrich Schilling
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Georg-August-University, 37075 Goettingen, Germany
| |
Collapse
|
13
|
Staehlke S, Brief J, Senz V, Eickner T, Nebe JB. Optimized Gingiva Cell Behavior on Dental Zirconia as a Result of Atmospheric Argon Plasma Activation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4203. [PMID: 37374388 DOI: 10.3390/ma16124203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023]
Abstract
Several physico-chemical modifications have been developed to improve cell contact with prosthetic oral implant surfaces. The activation with non-thermal plasmas was one option. Previous studies found that gingiva fibroblasts on laser-microstructured ceramics were hindered in their migration into cavities. However, after argon (Ar) plasma activation, the cells concentrated in and around the niches. The change in surface properties of zirconia and, subsequently, the effect on cell behavior is unclear. In this study, polished zirconia discs were activated by atmospheric pressure Ar plasma using the kINPen®09 jet for 1 min. Surfaces were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), and water contact angle. In vitro studies with human gingival fibroblasts (HGF-1) focused on spreading, actin cytoskeleton organization, and calcium ion signaling within 24 h. After Ar plasma activation, surfaces were more hydrophilic. XPS revealed decreased carbon and increased oxygen, zirconia, and yttrium content after Ar plasma. The Ar plasma activation boosted the spreading (2 h), and HGF-1 cells formed strong actin filaments with pronounced lamellipodia. Interestingly, the cells' calcium ion signaling was also promoted. Therefore, argon plasma activation of zirconia seems to be a valuable tool to bioactivate the surface for optimal surface occupation by cells and active cell signaling.
Collapse
Affiliation(s)
- Susanne Staehlke
- Institute for Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Jakob Brief
- VITA Zahnfabrik H. Rauter GmbH & Co. KG, 79713 Bad Säckingen, Germany
| | - Volkmar Senz
- Institute for Biomedical Engineering, Rostock University Medical Center, 18119 Rostock, Germany
| | - Thomas Eickner
- Institute for Biomedical Engineering, Rostock University Medical Center, 18119 Rostock, Germany
| | - J Barbara Nebe
- Institute for Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
- Department Science and Technology of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
14
|
Görgen CI, Sagheb K, Lehmann KM, Schmidtmann I, Wentaschek S. Influence of cold atmospheric-pressure-plasma in combination with different pretreatment methods on the pull-off tensile load in two-piece abutment-crowns: an in-vitro study. BMC Oral Health 2023; 23:186. [PMID: 36997908 PMCID: PMC10064688 DOI: 10.1186/s12903-023-02880-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/13/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND In implant prosthetic dentistry, the adhesive connection of individualized ceramic crowns and prefabricated titanium bases leads to several benefits. However, the durability of the bonding could be a weak point and especially depends on sufficient surface pretreatment. Cold atmospheric-pressure plasma (CAP) is a pretreatment method that should improve the surface properties without physical damage. Thus, the purpose of this study was to investigate the influence of CAP treatment on pull-off tensile load in two-piece abutment crowns. METHODS Eighty zirconia crowns and titanium bases were divided into eight groups (n = 10) according to their surface pretreatment prior to cementation with Panavia V5: no treatment (A); sandblasting (B); 10-MDP primer (C); sandblasting and primer (D); CAP (AP); sandblasting and CAP (BP); CAP and primer (CP); sandblasting, CAP and primer (DP). The specimens were thermocycled (5°/55°, 5000 cycles), and then the pull-off tensile load (TL) was measured. Statistical analyses were performed using three-way ANOVA with Tukey post-hoc and Fisher's exact tests. RESULTS The results showed that the TL was highest in group D (p < 0.0001). Some combinations of different treatments led to effects that were greater than the sum of the individual effects. These effects were modified by interactions. Only in combination with primer, CAP treatment had a small but positive significant effect (group CP vs. C and CP vs. AP, p < 0.0001) which however did not come close to the strong interaction effect that resulted from the combination of sandblasting and primer. CONCLUSION Within the limitations of this study, CAP treatment cannot be recommended in this specific field of indication due to its unreliable influence on TL in combination with other pretreatment methods.
Collapse
Affiliation(s)
- Carolin-Isabel Görgen
- Department for Prosthetic Dentistry and Materials, University Medical Centre, Augustusplatz 2, 55131, Mainz, Germany.
| | - Kawe Sagheb
- Department for Prosthetic Dentistry and Materials, University Medical Centre, Augustusplatz 2, 55131, Mainz, Germany
| | - Karl Martin Lehmann
- Department for Prosthetic Dentistry and Materials, University Medical Centre, Augustusplatz 2, 55131, Mainz, Germany
| | - Irene Schmidtmann
- Institute for Medical Biostatistics, Epidemiology and Informatics, University Medical Centre, Obere Zahlbacher Str. 69, 55131, Mainz, Germany
| | - Stefan Wentaschek
- Department for Prosthetic Dentistry and Materials, University Medical Centre, Augustusplatz 2, 55131, Mainz, Germany
| |
Collapse
|
15
|
Gao Y, Ding Q, Li W, Gu R, Zhang P, Zhang L. Role and Mechanism of a Micro-/Nano-Structured Porous Zirconia Surface in Regulating the Biological Behavior of Bone Marrow Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36913521 DOI: 10.1021/acsami.2c22736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Zirconia as a promising dental implant material has attracted much attention in recent years. Improving the bone binding ability of zirconia is critical for clinical applications. Here, we established a distinct micro-/nano-structured porous zirconia through dry-pressing with addition of pore-forming agents followed by hydrofluoric acid etching (POROHF). Porous zirconia without hydrofluoric acid treatment (PORO), sandblasting plus acid-etching zirconia, and sintering zirconia surface were applied as controls. After human bone marrow mesenchymal stem cells (hBMSCs) were seeded on these four groups of zirconia specimens, we observed the highest cell affinity and extension on POROHF. In addition, the POROHF surface displayed an improved osteogenic phenotype in contrast to the other groups. Moreover, the POROHF surface facilitated angiogenesis of hBMSCs, as confirmed by optimal stimulation of vascular endothelial growth factor B and angiopoietin 1 (ANGPT1) expression. Most importantly, the POROHF group demonstrated the most obvious bone matrix development in vivo. To investigate further the underlying mechanism, RNA sequencing was employed and critical target genes modulated by POROHF were identified. Taken together, this study established an innovative micro-/nano-structured porous zirconia surface that significantly promoted osteogenesis and investigated the potential underlying mechanism. Our present work will improve the osseointegration of zirconia implants and help further clinical applications.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Qian Ding
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Wenjin Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Lei Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| |
Collapse
|
16
|
Etibarlı N, Üstün Ö, Akan T. Effect of nonthermal argon plasma treatment on the surface properties and phase transformation of zirconia. J Oral Sci 2023; 65:136-140. [PMID: 36990759 DOI: 10.2334/josnusd.22-0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
PURPOSE This study aims to evaluate the effect of applying different parameters of nonthermal argon plasma (NTAP) on the surface roughness and phase transformation of yttrium-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramics. METHODS A total of 60 zirconia samples were prepared and randomly divided into six groups according to their surface treatments (n = 10). Group 1: control group; Group 2: argon plasma with a flow rate of 5 lt/min for 4 min; Group 3: 8 lt/min for 4 min; Group 4: 8 lt/min for 2 min; Group 5: 5 l/min for 2 min; Group 6: air abrasion with Al2O3 particle. The surface roughness was measured with a profilometer, and surface topography was observed using scanning electron microscopy (SEM). X-ray diffraction (XRD) analysis was performed to investigate the phase transformation. RESULTS The air abrasion group showed the highest surface roughness. The lowest relative monoclinic phase amount (Xm) was observed in the control group (0.4%), and the highest Xm value was observed in group 6 (7.8%). CONCLUSION While the air abrasion group showed the highest average surface roughness, it also caused the highest phase transformation. With a flow rate of 8 lt/min for 2 min NTAP treatment increased the surface roughness without causing significant phase transformation.
Collapse
Affiliation(s)
| | - Özlem Üstün
- Department of Prosthodontics, Faculty of Dentistry, Akdeniz University
| | - Tamer Akan
- Department of Physics, Faculty of Science and Letters, Osmangazi University
| |
Collapse
|
17
|
Zhu X, Shi J, Ye X, Ma X, Zheng M, Yang Y, Tan J. Influence of Cold Atmospheric Plasma on Surface Characteristics and Bond Strength of a Resin Nanoceramic. MATERIALS (BASEL, SWITZERLAND) 2022; 16:44. [PMID: 36614395 PMCID: PMC9821266 DOI: 10.3390/ma16010044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The purpose of this study was to investigate the effect of cold atmospheric plasma (CAP) treatment on resin nanoceramic (RNC) surface state and its bond strength with resin cement. RNC with different surface treatments were prepared: control, sandblasting treatment (SB), hydrofluoric acid etching (HF) and plasma treatment of helium gas (CAP-He) and argon gas (CAP-Ar). The prepared samples were measured by SEM, Ra, Rz, contact angle goniometer, and XPS for surface characteristics. The shear bond test of RNC was examined in nine groups: SB + saline coupling agent (SL), HF + SL, CAP-He/Ar, CAP-He/Ar + SL, SB + CAP-He/Ar + SL, and control. The bond strength between RNC and resin cement was compared using shear bond strength test, before and after thermocycling. After CAP irradiation, the surface topography maintained, while the surface water contact angle was significantly reduced to 10.18° ± 1.36° (CAP-He) and 7.58° ± 1.79° (CAP-Ar). The removal of carbon contamination and inducing of oxygen radicals was detected after CAP treatment. The bond strength was improved by CAP treatment, but varied on CAP gas species and combination methods. CAP of Ar gas had better SBS than He gas. After thermocycling, CAP-Ar + SL showed the maximized shear bond strength (32.38 ± 1.42 MPa), even higher than SB + SL group (30.08 ± 2.80 MPa, p < 0.05). In conclusion, CAP treatment of helium and argon can improve the bonding properties of RNC by improving surface wettability, and CAP of argon gas combined with silane coupling agent shows the highest bond strength.
Collapse
Affiliation(s)
- Xiaoming Zhu
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing 100101, China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Jiamin Shi
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Xinyi Ye
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xinrong Ma
- Department of Stomotology, Peking University Third Hospital, Beijing 100191, China
| | - Miao Zheng
- Department of Stomotology, Peking University Third Hospital, Beijing 100191, China
| | - Yang Yang
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Jianguo Tan
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
18
|
Long L, Zhang M, Gan S, Zheng Z, He Y, Xu J, Fu R, Guo Q, Yu D, Chen W. Comparison of early osseointegration of non-thermal atmospheric plasma-functionalized/ SLActive titanium implant surfaces in beagle dogs. Front Bioeng Biotechnol 2022; 10:965248. [DOI: 10.3389/fbioe.2022.965248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Hydrophilic dental implants are gaining increasing interest for their ability to accelerate bone formation. However, commercially available hydrophilic implants, such as SLActive™, have some major limitations due to their time-dependent biological aging and lower cost-effectiveness. The non-thermal atmospheric plasma (NTAP) treatment is a reliable way to gain a hydrophilic surface and enhance osseointegration. However, a few studies have been carried out to compare the osseointegration of NTAP-functionalized titanium implants and commercially available hydrophilic implants.Purpose: In this study, we compare the osseointegration abilities of the NTAP-functionalized titanium implant and Straumann SLActive.Material and methods: The NTAP effectiveness was examined using in vitro cell experiments. Then, six beagle dogs were included in the in vivo experiment. Straumann SLActive implants, SLA implants, and SLA implants treated with NTAP were implanted in the mandibular premolar area of dogs. After 2 w, 4 w, and 8 w, the animals were sacrificed and specimens were collected. Radiographic and histological analyses were used to measure osseointegration.Results: NTAP treatment accelerated the initial attachment and differentiation of MC3T3-E1 cells. In the in vivo experiment, bone parameters (e.g., BIC value and BV/TV) and volume of new bone of NTAP groups were close to those of the SLActive group. Additionally, although there was no statistical difference, the osseointegration of SLActive and NTAP groups was evidently superior to that of the SLA group.Conclusion: NTAP-functionalized implants enhanced cell interaction with material and subsequent bone formation. The osseointegration of the NTAP-functionalized implant was comparable to that of the SLActive implant at the early osseointegration stage.
Collapse
|
19
|
Negreiros WM, Cotta MA, Rueggeberg FA, Bonvent JJ, Nascimento FD, Giannini M. Effects of argon plasma and aging on the mechanical properties and phase transformation of 3Y-TZP zirconia. Braz Dent J 2022; 33:100-107. [PMID: 36287491 PMCID: PMC9645163 DOI: 10.1590/0103-6440202204849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/03/2022] [Indexed: 11/05/2022] Open
Abstract
To evaluate the flexural strength (FS) and flexural modulus (FM) of a commercial 3Y-TZ0P ceramic after artificial aging and either without or with two application times of non-thermal plasma treatments (NTP). In addition, changes in crystalline phase transformation and surface nano-topography after NTP application, during different aging periods, were evaluated. Ninety 3Y-TZP bars (45x4x3 mm) were made for FS and FM testing, and assigned to nine groups (n=10): no NTP/no aging (Control); no NTP/4h aging; no NTP/30h aging; 10s NTP/no aging; 10s NTP/4h aging; 10s NTP/30h aging; 60s NTP/no aging; 60s NTP/4h aging and 60s NTP/30h aging. Artificial accelerated aging was simulated using an autoclave (134º C at 2 bar) for up to 30h. FS and FM were assessed using a universal testing machine and data analyzed using a ANOVA and Tukey test (α=0.05). The volume change in zirconia monoclinic phase (MPV) was evaluated using X-ray diffraction and surface nano-topography was assessed using atomic force microscopy (baseline until 30h-aging). NTP application did not influence the FS and FM of zirconia. Compared to the Control (no NTP/no aging), the FS of zirconia samples treated for 30 hours in autoclave (“no NTP/30h aging” group) increased. Artificial aging for 30 hours significantly increased the FM of zirconia, regardless of NTP application. MPV tended to increase following the increase in aging time, which might result in the surface irregularities observed at 30h-aging. NTP did not alter the zirconia properties tested, but 30h-aging can change the zirconia FS, FM and MPV.
Collapse
|
20
|
Plasma of Argon Treatment of the Implant Surface, Systematic Review of In Vitro Studies. Biomolecules 2022; 12:biom12091219. [PMID: 36139059 PMCID: PMC9496338 DOI: 10.3390/biom12091219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
This paper aims to review the evidence of the cellular activity on titanium samples exposed to Plasma of Argon (PoA) treatment. A systematic review was carried out based on the PRISMA statement by searching the Cochrane Library, PubMed, Web of Science, EMBASE and Scopus, up to October 2020. Papers were selected according to PICOS format that is: Population (P): osteoblasts, fibroblasts, gingival cells; Intervention (I): PoA disinfection treatment; Comparison (C): untreated controls; Outcome (O): cell culture; Setting (S): in vitro assays. The quality assessment was performed according to the CRIS Guidelines (Checklist for Reporting In vitro Studies). A total of 661 articles were found, of which 16 were included. The quality assessment revealed an overall poor quality of the studies analyzed. In vitro studies on the potential of PoA showed a potential effect in promoting higher cell adhesion and protein adsorption in the earliest times (hours). This outcome was not so evident when later stages of cell growth on the surfaces were tested and compared to the control groups. Only one study was conducted in vivo on a human sample regarding abutment cleaning. No meta-analysis was conducted because of the variety of experimental settings, mixed methods and different cell lines studied. PoA seems to be effective in promoting cell adhesion and protein adsorption. The duration of this effect remains unclear. Further evidence is required to demonstrate the long-term efficacy of the treatment and to support the use of PoA treatment in clinical practice.
Collapse
|
21
|
Guo L, Zou Z, Smeets R, Kluwe L, Hartjen P, Gosau M, Henningsen A. Attachment and Osteogenic Potential of Dental Pulp Stem Cells on Non-Thermal Plasma and UV Light Treated Titanium, Zirconia and Modified PEEK Surfaces. MATERIALS 2022; 15:ma15062225. [PMID: 35329678 PMCID: PMC8950369 DOI: 10.3390/ma15062225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
Ultraviolet (UV) light and non-thermal plasma (NTP) treatment are chairside methods that can efficiently improve the biological aging of implant material surfaces caused by customary storage. However, the behaviors of stem cells on these treated surfaces of the implant are still unclear. This study aimed to investigate the effects of UV light and NTP treated surfaces of titanium, zirconia and modified polyetheretherketone (PEEK, BioHPP) on the attachment and osteogenic potential of human dental pulp stem cells (DPSCs) in vitro. Machined disks were treated using UV light and argon or oxygen NTP for 12 min each. Untreated disks were set as controls. DPSCs were cultured from the wisdom teeth of adults that gave informed consent. After 24 h of incubation, the attachment and viability of cells on surfaces were assessed. Cells were further osteogenically induced, alkaline phosphatase (ALP) activity was detected via a p-Nitrophenyl phosphate assay (day 14 and 21) and mineralization degree was measured using a Calcium Assay kit (day 21). UV light and NTP treated titanium, zirconia and BioHPP surfaces improved the early attachment and viability of DPSCs. ALP activity and mineralization degree of osteoinductive DPSCs were significantly increased on UV light and NTP treated surfaces of titanium, zirconia and also oxygen plasma treated Bio-HPP (p < 0.05). In conclusion, UV light and NTP treatments may improve the attachment of DPSCs on titanium, zirconia and BioHPP surfaces. Osteogenic differentiation of DPSCs can be enhanced on UV light and NTP treated surfaces of titanium and zirconia, as well as on oxygen plasma treated Bio-HPP.
Collapse
Affiliation(s)
- Linna Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany; (Z.Z.); (R.S.); (L.K.); (P.H.); (M.G.)
- Division Regenerative Orofacial Medicine, Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany;
- Correspondence:
| | - Ziang Zou
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany; (Z.Z.); (R.S.); (L.K.); (P.H.); (M.G.)
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany; (Z.Z.); (R.S.); (L.K.); (P.H.); (M.G.)
- Division Regenerative Orofacial Medicine, Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Lan Kluwe
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany; (Z.Z.); (R.S.); (L.K.); (P.H.); (M.G.)
| | - Philip Hartjen
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany; (Z.Z.); (R.S.); (L.K.); (P.H.); (M.G.)
- Division Regenerative Orofacial Medicine, Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany; (Z.Z.); (R.S.); (L.K.); (P.H.); (M.G.)
| | - Anders Henningsen
- Division Regenerative Orofacial Medicine, Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany;
- Private Practice ELBE MKG, 22587 Hamburg, Germany
| |
Collapse
|
22
|
Laser Structured Dental Zirconium for Soft Tissue Cell Occupation—Importance of Wettability Modulation. MATERIALS 2022; 15:ma15030732. [PMID: 35160678 PMCID: PMC8836786 DOI: 10.3390/ma15030732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/01/2023]
Abstract
Various approaches are being pursued to physico-chemically modify the zirconia neck region of dental implants to improve the integration into the surrounding soft tissue. In this study, polished zirconia discs were laser microstructured with periodic cavities and convex waves. These zirconia samples were additionally activated by argon plasma using the kINPen®09. The surface topography was characterized by scanning electron microscopy and the surface wettability by water contact angle. The in vitro study with human gingival fibroblasts (HGF-1) was focused on cell spreading, morphology, and actin cytoskeleton organization within the first 24 h. The laser-induced microstructures were originally hydrophobic (e.g., 60 µm cavities 138.4°), but after argon plasma activation, the surfaces switched to the hydrophilic state (60 µm cavities 13.7°). HGF-1 cells adhered flatly on the polished zirconia. Spreading is hampered on cavity structures, and cells avoid the holes. However, cells on laser-induced waves spread well. Interestingly, argon plasma activation for only 1 min promoted adhesion and spreading of HGF-1 cells even after 2 h cultivation. The cells crawl and grow into the depth of the cavities. Thus, a combination of both laser microstructuring and argon plasma activation of zirconia seems to be optimal for a strong gingival cell attachment.
Collapse
|
23
|
Krautwald L, Smeets R, Stolzer C, Rutkowski R, Guo L, Reitmeier A, Gosau M, Henningsen A. Osseointegration of Zirconia Implants after UV-Light or Cold Atmospheric Plasma Surface Treatment In Vivo. MATERIALS 2022; 15:ma15020496. [PMID: 35057216 PMCID: PMC8781961 DOI: 10.3390/ma15020496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/04/2021] [Accepted: 12/15/2021] [Indexed: 12/04/2022]
Abstract
The influence of UV light and non-thermal plasma on the osseointegration of yttria-stabilized zirconia implants (Y-TZP) comparing the two methods is unclear. The aim of this study was to show the influence of these methods on the osseointegration of dental zirconia implants in an animal model. A total of 54 implants were either untreated, treated with UV light (UV), or non-thermal oxygen plasma for 12 min and inserted into the parietal bones of six domestic pigs. The animals were sacrificed after a healing interval of two, four, and nine weeks. The degree of osseointegration was determined using histomorphometric determination of bone-to-implant contact values (BIC) and the bone-to-implant contact values within the retentive parts of the implants (BAFO). BIC values decreased in all groups after four weeks of healing and re-increased after nine weeks in all groups. BAFO increased significantly over time in all groups. However, there were no statistically significant differences in BIC and BAFO values between the control group and the test groups and over time. Clinical studies may follow to confirm the influence of cold plasma and UV light on the healing and survival of zirconia implants.
Collapse
Affiliation(s)
- Lisa Krautwald
- Division “Regenerative Orofacial Medicine”, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (L.K.); (R.S.); (L.G.); (M.G.)
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (C.S.); (R.R.)
| | - Ralf Smeets
- Division “Regenerative Orofacial Medicine”, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (L.K.); (R.S.); (L.G.); (M.G.)
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (C.S.); (R.R.)
| | - Carolin Stolzer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (C.S.); (R.R.)
| | - Rico Rutkowski
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (C.S.); (R.R.)
| | - Linna Guo
- Division “Regenerative Orofacial Medicine”, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (L.K.); (R.S.); (L.G.); (M.G.)
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Aline Reitmeier
- Department of Laboratory Animal Science, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
| | - Martin Gosau
- Division “Regenerative Orofacial Medicine”, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (L.K.); (R.S.); (L.G.); (M.G.)
| | - Anders Henningsen
- Division “Regenerative Orofacial Medicine”, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (L.K.); (R.S.); (L.G.); (M.G.)
- Private Practice ELBE MKG, Suelldorfer Kirchenweg 1A, 22587 Hamburg, Germany
- Correspondence:
| |
Collapse
|
24
|
Passos IDAG, Marques JDN, Câmara JVF, Simão RA, Prado MD, Pereira GDDS. Effect of non-thermal argon plasma on the shear strength of adhesive systems. POLIMEROS 2022. [DOI: 10.1590/0104-1428.20220019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Sun L, Hong G. Surface Modifications for Zirconia Dental Implants: A Review. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.733242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zirconia-based bioceramic is a potential material for dental implants developed and introduced in dentistry 30 years ago. However, some limitations still exist for zirconia implants caused by several factors, such as manufacturing difficulties, low-temperature degradation (LTD), long-term stability, and clinical experience. Several studies validated that some subtle changes on the zirconia surface might significantly impact its mechanical properties and osseointegration. Thus, attention was paid to the effect of surface modification of zirconia implants. This review generally summarizes the surface modifications of zirconia implants to date classified as physical treatment, chemical treatment, and surface coating, aiming to give an overall perspective based on the current situation. In conclusion, surface modification is an effective and essential method for zirconia implant application. However, before clinical use, we need more knowledge about these modification methods.
Collapse
|
26
|
Human osteoblast and fibroblast response to oral implant biomaterials functionalized with non-thermal oxygen plasma. Sci Rep 2021; 11:17302. [PMID: 34453071 PMCID: PMC8397744 DOI: 10.1038/s41598-021-96526-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Plasma-treatment of oral implant biomaterials prior to clinical insertion is envisaged as a potential surface modification method for enhanced implant healing. To investigate a putative effect of plasma-functionalized implant biomaterials on oral tissue cells, this investigation examined the response of alveolar bone osteoblasts and gingival fibroblasts to clinically established zirconia- and titanium-based implant surfaces for bone and soft tissue integration. The biomaterials were either functionalized with oxygen-plasma in a plasma-cleaner or left untreated as controls, and were characterized in terms of topography and wettability. For the biological evaluation, the cell adhesion, morphogenesis, metabolic activity and proliferation were examined, since these parameters are closely interconnected during cell-biomaterial interaction. The results revealed that plasma-functionalization increased implant surface wettability. The magnitude of this effect thereby depended on surface topography parameters and initial wettability of the biomaterials. Concerning the cell response, plasma-functionalization of smooth surfaces affected initial fibroblast morphogenesis, whereas osteoblast morphology on rough surfaces was mainly influenced by topography. The plasma- and topography-induced differential cell morphologies were however not strong enough to trigger a change in proliferation behaviour. Hence, the results indicate that oxygen plasma-functionalization represents a possible cytocompatible implant surface modification method which can be applied for tailoring implant surface wettability.
Collapse
|
27
|
Qu Y, Liu L. Zirconia Materials for Dental Implants: A Literature Review. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.687983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Titanium is currently the most commonly used material for manufacturing dental implants. However, its potential toxic effects and the gray color have resulted in increasing requests for metal-free treatment options. Zirconia is a type of ceramic materials that has been extensively used in medicine field, such as implant abutments and various joint replacement appliances. Amounts of clinical evaluations have indicated good biocompatibility for zirconia products. Besides, its toothlike color, low affinity for plaque and outstanding mechanical and chemical properties have made it an ideal candidate for dental implants. The aim of this study is to review the laboratory and clinical papers about several kinds of zirconia materials and zirconia surface modification techniques. Although there are plenty of literatures on these topics, most of the researches focused on the mechanical properties of the materials or based on cell and animal experiments. Randomized clinical trials on zirconia materials are still urgently needed to validate their application as dental implants.
Collapse
|
28
|
Kunrath MF, Hubler R, Silva RM, Barros M, Teixeira ER, Correia A. Influence of saliva interaction on surface properties manufactured for rapid osseointegration in dental implants. BIOFOULING 2021; 37:757-766. [PMID: 34396855 DOI: 10.1080/08927014.2021.1964487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/10/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Surface treatments are designed to promote modified implant surfaces with positive interactions with the surrounding living tissues. However, the inadvertent early contact of these surfaces with oral fluids during surgery may lead to undesired conditions affecting osseointegration. This study aimed to investigate the possible alterations in the physico-chemical properties of modified-surfaces caused by early saliva exposure. Titanium (Ti) surfaces were exposed to three different samples of human saliva and later analyzed for protein adhesion, physico-chemical surface alterations, and osteogenic cell-viability. The results indicated that surface roughness was the most significant factor influencing saliva protein adsorption; moreover, hydrophilic surfaces had critically lost their characteristics after contact with saliva. Decreased cell viability was observed in cultures after contact with saliva. Early contact with saliva might negatively influence modified surface properties and local cell viability. Careful surgical insertion of implants with hydrophilic surfaces is recommended, particularly in sites where saliva interaction is prone to occur.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Dentistry Department, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Roberto Hubler
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Raquel M Silva
- Faculty of Dental Medicine, Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Viseu, Portugal
| | - Marlene Barros
- Faculty of Dental Medicine, Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Viseu, Portugal
| | - Eduardo R Teixeira
- Dentistry Department, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - André Correia
- Faculty of Dental Medicine, Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Viseu, Portugal
| |
Collapse
|
29
|
Rathee G, Bartwal G, Rathee J, Mishra YK, Kaushik A, Solanki PR. Emerging Multimodel Zirconia Nanosystems for High‐Performance Biomedical Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Garima Rathee
- Special Centre for Nano science Jawaharlal Nehru University New Delhi India
| | - Gaurav Bartwal
- Hemwati Nandan Bahuguna Garhwal University Birla Campus, Pauri Garhwal Srinagar Uttarakhand 246174 India
| | - Jyotsna Rathee
- CSE Department Deenbandhu Chhoturam University of Science and Technology Murthal Haryana 131039 India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute NanoSYD University of Southern Denmark Alison 2 6400 Sønderborg Denmark
| | - Ajeet Kaushik
- NanoBioTech Laboratory Department of Natural Sciences, Division of Sciences, Art, and Mathematics Florida Polytechnic University Lakeland FL 33805 USA
| | - Pratima R. Solanki
- Special Centre for Nano science Jawaharlal Nehru University New Delhi India
| |
Collapse
|
30
|
UV-Mediated Photofunctionalization of Indirect Restorative Materials Enhances Bonding to a Resin-Based Luting Agent. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9987860. [PMID: 34195290 PMCID: PMC8181058 DOI: 10.1155/2021/9987860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022]
Abstract
Purpose The potential of UV-mediated photofunctionalization to enhance the resin-based luting agent bonding performance to aged materials was investigated. Methods Sixty samples of each material were prepared. Yttria-stabilized zirconia (YZr) and Pd-Au alloy (Pd-Au) plates were fabricated and sandblasted. Lithium disilicate glass-ceramic (LDS) was CAD-CAM prepared and ground with #800 SiC paper. Half of the specimens were immersed in machine oil for 24 h to simulate the carbon adsorption. Then, all of the specimens (noncarbon- and carbon-adsorbed) were submitted to UV-mediated photofunctionalization with a 15 W UV-LED (265 nm, 300 mA, 7692 μW/cm2) for 0 (control groups), 5, and 15 min and subjected to contact angle (Ɵ) measurement and bonded using a resin cement (Panavia™ V5, Kuraray Noritake, Japan). The tensile bond strength (TBS) test was performed after 24 h. The Ɵ (°) and TBS (MPa) data were statistically analyzed using two-way ANOVA and Bonferroni correction tests (α = 0.05). Results In the carbon-adsorbed groups, UV-mediated photofunctionalization for 5 min significantly decreased Ɵ of all materials and increased TBS of YZr, and UV for 15 min significantly increased the TBS of LDS and Pd-Au. In noncarbon-adsorbed groups, UV-photofunctionalization did not significantly change the Ɵ or TBS except YZr specimens UV-photofunctionalized for 15 min. Conclusion UV-mediated photofunctionalization might have removed the adsorbed hydrocarbon molecules from the materials' surfaces and enhanced bond strengths of Panavia™ V5 to YZr, LDS, and Pd-Au. Additionally, UV-mediated photofunctionalization improved the overall TBS of YZr. Further investigation on the optimum conditions of UV photofunctionalization on indirect restorative materials should be conducted.
Collapse
|
31
|
Kligman S, Ren Z, Chung CH, Perillo MA, Chang YC, Koo H, Zheng Z, Li C. The Impact of Dental Implant Surface Modifications on Osseointegration and Biofilm Formation. J Clin Med 2021; 10:1641. [PMID: 33921531 PMCID: PMC8070594 DOI: 10.3390/jcm10081641] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Implant surface design has evolved to meet oral rehabilitation challenges in both healthy and compromised bone. For example, to conquer the most common dental implant-related complications, peri-implantitis, and subsequent implant loss, implant surfaces have been modified to introduce desired properties to a dental implant and thus increase the implant success rate and expand their indications. Until now, a diversity of implant surface modifications, including different physical, chemical, and biological techniques, have been applied to a broad range of materials, such as titanium, zirconia, and polyether ether ketone, to achieve these goals. Ideal modifications enhance the interaction between the implant's surface and its surrounding bone which will facilitate osseointegration while minimizing the bacterial colonization to reduce the risk of biofilm formation. This review article aims to comprehensively discuss currently available implant surface modifications commonly used in implantology in terms of their impact on osseointegration and biofilm formation, which is critical for clinicians to choose the most suitable materials to improve the success and survival of implantation.
Collapse
Affiliation(s)
- Stefanie Kligman
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Zhi Ren
- Biofilm Research Laboratories, Department of Orthodontics, Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (Z.R.); (H.K.)
| | - Chun-Hsi Chung
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.-H.C.); (M.A.P.)
| | - Michael Angelo Perillo
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.-H.C.); (M.A.P.)
| | - Yu-Cheng Chang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Hyun Koo
- Biofilm Research Laboratories, Department of Orthodontics, Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (Z.R.); (H.K.)
- Center for Innovation & Precision Dentistry, School of Dental Medicine and School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhong Zheng
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.-H.C.); (M.A.P.)
| |
Collapse
|
32
|
Razali M, Ngeow WC, Omar RA, Chai WL. An In-Vitro Analysis of Peri-Implant Mucosal Seal Following Photofunctionalization of Zirconia Abutment Materials. Biomedicines 2021; 9:biomedicines9010078. [PMID: 33467486 PMCID: PMC7830892 DOI: 10.3390/biomedicines9010078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
The presence of epithelial and connective tissue attachment at the peri-implant-soft tissue region has been demonstrated to provide a biological barrier of the alveolar bone from the oral environment. This barrier can be improved via surface modification of implant abutment materials. The effect of photofunctionalization on creating a bioactive surface for the enhancement of the epithelial and connective tissue attachment of zirconia implant abutment's peri-implant mucosal interface using organotypic model has not been investigated. Therefore, this study aimed to evaluate the soft tissue seal around peri-implant mucosa and to understand the effect of photofunctionalization on the abutment materials. Three types of abutment materials were used in this study; yttria-stabilized zirconia (YSZ), alumina-toughened zirconia, and grade 2 commercially pure titanium (CPTi) which were divided into nontreated (N-Tx) and photofunctionalized group (UV-Tx). The three-dimensional peri-implant mucosal model was constructed using primary human gingival keratinocytes and fibroblasts co-cultured on the acellular dermal membrane. The biological seal was determined through the concentration of tritiated water permeating the material-soft tissue interface. The biological seal formed by the soft tissue in the N-Tx group was significantly reduced compared to the UV-treated group (p < 0.001), with YSZ exhibiting the lowest permeability among all materials. Photofunctionalization of implant abutment materials improved the biological seal of the surrounding soft tissue peri-implant interface.
Collapse
Affiliation(s)
- Masfueh Razali
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Correspondence: (M.R.); (W.L.C.); Tel.: +603-92897745 (M.R.); +603-79674548 (W.L.C.)
| | - Wei Cheong Ngeow
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Ros Anita Omar
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Wen Lin Chai
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Correspondence: (M.R.); (W.L.C.); Tel.: +603-92897745 (M.R.); +603-79674548 (W.L.C.)
| |
Collapse
|
33
|
Effect of cementation delay on bonding of self-adhesive resin cement to yttria-stabilized tetragonal zirconia polycrystal ceramic treated with nonthermal argon plasma. J Prosthet Dent 2021; 125:693.e1-693.e7. [PMID: 33431178 DOI: 10.1016/j.prosdent.2020.11.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
STATEMENT OF PROBLEM Nonthermal argon plasma (NTAP) has been reported to improve the bond strength of resin cements to yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramics. However, the effect of the inevitable delay before cementation and after treating Y-TZP ceramics with NTAP is unclear. PURPOSE The purpose of this in vitro study was to investigate whether delays of 8, 12, and 24 hours between the Y-TZP ceramic treatment with NTAP and the cementation would affect the surface energy and the bond strength of a self-adhesive resin cement to Y-TZP ceramic. MATERIAL AND METHODS Sixty plates and 50 blocks of 3Y-TZP ceramic were divided into 2 groups (n=30 and n=25): as-sintered (AS) and airborne-particle abraded with 50-μm Al2O3 (APA). These groups were further divided into 5 subgroups (n=6 and n=5) according to the delay between the NTAP treatment and the measurement of surface energy and microtensile bond strength (μTBS) evaluation: (0, 8, 12, and 24 hours). For both 3Y-TZP surface conditions (AS and APA), a control group without NTAP treatment was used (ASC and APAC). The surface energy (SE) was evaluated with a goniometer and the 3Y-TZP elemental composition with X-ray photoelectron spectroscopy (XPS). For the μTBS test, the 3Y-TZP ceramic blocks were cemented to composite resin blocks with a self-adhesive resin cement. After storage in distilled water at 37 °C for 24 hours, the 3Y-TZP-composite resin blocks were sectioned into beams and submitted to a μTBS test. Data were submitted to 2-way ANOVA and the Tukey HSD test (α=.05). RESULTS For the AS group, NTAP increased the SE irrespective of the delay before measurement: ASC<0 hour=8 hours=12 hours=24 hours (P<.05). For the APA group, except after 12 hours, NTAP also increased the surface energy (P<.05). XPS analysis showed an increase in the oxygen/carbon ratio after NTAP treatment for both groups. For the AS group, NTAP increased the μTBS after 0, 8, and 12 hours (P<.05), whereas for the APA group this occurred only after 8 hours (P<.05). For the AS and APA groups, the highest μTBS was reached after 8 hours (P<.05). CONCLUSIONS Treatment of 3Y-TZP ceramic with NTAP improved the SE and increased the μTBS of self-adhesive resin cement to 3Y-TZP ceramic. These effects were time dependent, with better results at 8 hours after NTAP treatment.
Collapse
|
34
|
Time Dependency of Non-Thermal Oxygen Plasma and Ultraviolet Irradiation on Cellular Attachment and mRNA Expression of Growth Factors in Osteoblasts on Titanium and Zirconia Surfaces. Int J Mol Sci 2020; 21:ijms21228598. [PMID: 33202662 PMCID: PMC7697706 DOI: 10.3390/ijms21228598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022] Open
Abstract
Ultraviolet (UV) light and non-thermal plasma (NTP) are promising chair-side surface treatment methods to overcome the time-dependent aging of dental implant surfaces. After showing the efficiency of UV light and NTP treatment in restoring the biological activity of titanium and zirconia surfaces in vitro, the objective of this study was to define appropriate processing times for clinical use. Titanium and zirconia disks were treated by UV light and non-thermal oxygen plasma with increasing duration. Non-treated disks were set as controls. Murine osteoblast-like cells (MC3T3-E1) were seeded onto the treated or non-treated disks. After 2 and 24 h of incubation, the viability of cells on surfaces was assessed using an MTS assay. mRNA expression of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) were assessed using real-time reverse transcription polymerase chain reaction analysis. Cellular morphology and attachment were observed using confocal microscopy. The viability of MC3T3-E1 was significantly increased in 12 min UV-light treated and 1 min oxygen NTP treated groups. VEGF relative expression reached the highest levels on 12 min UV-light and 1 min NTP treated surfaces of both disks. The highest levels of HGF relative expression were reached on 12 min UV light treated zirconia surfaces. However, cells on 12 and 16 min UV-light and NTP treated surfaces of both materials had a more widely spread cytoskeleton compared to control groups. Twelve min UV-light and one min non-thermal oxygen plasma treatment on titanium and zirconia may be the favored times in terms of increasing the viability, mRNA expression of growth factors and cellular attachment in MC3T3-E1 cells.
Collapse
|
35
|
Abstract
Dental implants are widely used in the field of oral restoration, but there are still problems leading to implant failures in clinical application, such as failed osseointegration, marginal bone resorption, and peri-implantitis, which restrict the success rate of dental implants and patient satisfaction. Poor osseointegration and bacterial infection are the most essential reasons resulting in implant failure. To improve the clinical outcomes of implants, many scholars devoted to modifying the surface of implants, especially to preparing different physical and chemical modifications to improve the osseointegration between alveolar bone and implant surface. Besides, the bioactive-coatings to promote the adhesion and colonization of ossteointegration-related proteins and cells also aim to improve the osseointegration. Meanwhile, improving the anti-bacterial performance of the implant surface can obstruct the adhesion and activity of bacteria, avoiding the occurrence of inflammation related to implants. Therefore, this review comprehensively investigates and summarizes the modifying or coating methods of implant surfaces, and analyzes the ossteointegration ability and anti-bacterial characteristics of emerging functional coatings in published references.
Collapse
|
36
|
Decontamination of Ti Oxide Surfaces by Using Ultraviolet Light: Hg-Vapor vs. LED-Based Irradiation. Antibiotics (Basel) 2020; 9:antibiotics9110724. [PMID: 33105704 PMCID: PMC7690427 DOI: 10.3390/antibiotics9110724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
C-range Ultraviolet (UVC) mercury (Hg)-vapor lamps have shown the successful decontamination of hydrocarbons and antimicrobial effects from titanium surfaces. This study focused on surface chemistry modifications of titanium dental implants by using two different light sources, Hg-vapor lamps and Light Emitting Diodes (LEDs), so as to compare the effectivity of both photofunctionalization technologies. Two different devices, a small Hg-vapor lamp (λ = 254 nm) and a pair of closely placed LEDs (λ = 278 nm), were used to irradiate the implants for 12 min. X-ray Photoelectron Spectroscopy (XPS) was employed to characterize the chemical composition of the surfaces, analysing the samples before and after the lighting treatment, performing a wide and narrow scan around the energy peaks of carbon, oxygen and titanium. XPS analysis showed a reduction in the concentration of surface hydrocarbons in both UVC technologies from around 26 to 23.4 C at.% (carbon atomic concentration). Besides, simultaneously, an increase in concentration of oxygen and titanium was observed. LED-based UVC photofunctionalization has been suggested to be as effective a method as Hg-vapor lamps to remove the hydrocarbons from the surface of titanium dental implants. Therefore, due to the increase in worldwide mercury limitations, LED-based technology could be a good alternative decontamination source.
Collapse
|
37
|
Takao S, Komasa S, Agariguchi A, Kusumoto T, Pezzotti G, Okazaki J. Effects of Plasma Treatment on the Bioactivity of Alkali-Treated Ceria-Stabilised Zirconia/Alumina Nanocomposite (NANOZR). Int J Mol Sci 2020; 21:E7476. [PMID: 33050494 PMCID: PMC7589822 DOI: 10.3390/ijms21207476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/27/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022] Open
Abstract
Zirconia ceramics such as ceria-stabilized zirconia/alumina nanocomposites (nano-ZR) are applied as implant materials due to their excellent mechanical properties. However, surface treatment is required to obtain sufficient biocompatibility. In the present study, we explored the material surface functionalization and assessed the initial adhesion of rat bone marrow mesenchymal stem cells, their osteogenic differentiation, and production of hard tissue, on plasma-treated alkali-modified nano-ZR. Superhydrophilicity was observed on the plasma-treated surface of alkali-treated nano-ZR along with hydroxide formation and reduced surface carbon. A decreased contact angle was also observed as nano-ZR attained an appropriate wettability index. Treated samples showed higher in vitro bovine serum albumin (BSA) adsorption, initial adhesion of bone marrow and endothelial vascular cells, high alkaline phosphatase activity, and increased expression of bone differentiation-related factors. Furthermore, the in vivo performance of treated nano-ZR was evaluated by implantation in the femur of male Sprague-Dawley rats. The results showed that the amount of bone formed after the plasma treatment of alkali-modified nano-ZR was higher than that of untreated nano-ZR. Thus, induction of superhydrophilicity in nano-ZR via atmospheric pressure plasma treatment affects bone marrow and vascular cell adhesion and promotes bone formation without altering other surface properties.
Collapse
Affiliation(s)
- Seiji Takao
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.T.); (A.A.); (J.O.)
| | - Satoshi Komasa
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.T.); (A.A.); (J.O.)
| | - Akinori Agariguchi
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.T.); (A.A.); (J.O.)
| | - Tetsuji Kusumoto
- Department of Japan Faculty of Health Sciences, Osaka Dental University, 1-4-4, Makino-honmachi, Hirakata-shi, Osaka 573-1121, Japan;
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory and Research Institute for Nanoscience, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan;
| | - Joji Okazaki
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.T.); (A.A.); (J.O.)
| |
Collapse
|
38
|
Ao XG, Chen WC. [Research progress on the osseointegration of titanium implants promoted by cold atmospheric plasma]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:566-570. [PMID: 33085243 DOI: 10.7518/hxkq.2020.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The application of cold atmospheric plasma to titanium surface modification has recently become a research focus in the area of material modification. Previous studies found that cold atmospheric plasma can affect the colonization of bacteria and biological behaviors of osteoblasts by changing the surface characteristics of titanium in vitro. In vivo studies reveal that cold atmospheric plasma can promote the process of osseointegration of titanium implants. This review focuses on research on the effects of the surface modification of titanium implants with cold atmospheric plasma on osseointegration.
Collapse
Affiliation(s)
- Xiao-Gang Ao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wen-Chuan Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
39
|
Kunrath MF, Monteiro MS, Gupta S, Hubler R, de Oliveira SD. Influence of titanium and zirconia modified surfaces for rapid healing on adhesion and biofilm formation of Staphylococcus epidermidis. Arch Oral Biol 2020; 117:104824. [DOI: 10.1016/j.archoralbio.2020.104824] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
|
40
|
Zheng Z, Ao X, Xie P, Wu J, Dong Y, Yu D, Wang J, Zhu Z, Xu HHK, Chen W. Effects of novel non-thermal atmospheric plasma treatment of titanium on physical and biological improvements and in vivo osseointegration in rats. Sci Rep 2020; 10:10637. [PMID: 32606349 PMCID: PMC7327023 DOI: 10.1038/s41598-020-67678-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/04/2020] [Indexed: 02/05/2023] Open
Abstract
Titanium (Ti) has achieved extensive applications due to its excellent biocompatibility and mechanical properties. Plasma can enhance surface hydrophilia of Ti with decreased carbon contamination. The traditional conditions using a single gas plasma was for longer treatment time and more prone to being contaminated. We designed and developed novel and universal apparatus and methods with a special clamping device of non-thermal atmospheric plasma (NTAP) treatment using mixed gas for Ti surface activation. We systematically and quantitatively investigated the effective effects of NTAP-Ti. The surface water contact angle decreased by 100%, the carbon content decreased by 80% and oxygen content increased by 50% in the novel NTAP-Ti surfaces. NTAP treatment accelerated the attachment, spread, proliferation, osteogenic differentiation and mineralization of MC3T3-E1 mouse preosteoblasts in vitro. The percentage of bone-to-implant contact increased by 25–40%, and the osteoclasts and bone resorption were suppressed by 50% in NTAP-Ti in vivo. In conclusion, NTAP-Ti substantially enhanced the physical and biological effects and integration with bone. The novel and universal apparatus and methods with a special clamping device using gas mixtures are promising for implant activation by swiftly and effectively changing the Ti surface to a hydrophilic one to enhance dental and orthopedic applications.
Collapse
Affiliation(s)
- Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaogang Ao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Peng Xie
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jie Wu
- School of Mechanical Engineering, Sichuan University, Chengdu, China
| | - Yuqing Dong
- School of Mechanical Engineering, Sichuan University, Chengdu, China
| | - Deping Yu
- School of Mechanical Engineering, Sichuan University, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhimin Zhu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hockin H K Xu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA.,Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
41
|
Komasa S, Takao S, Yang Y, Zeng Y, Li M, Yan S, Zhang H, Komasa C, Kobayashi Y, Nishizaki H, Nishida H, Kusumoto T, Okazaki J. Effects of UV Treatment on Ceria-Stabilized Zirconia/Alumina Nanocomposite (NANOZR). MATERIALS 2020; 13:ma13122772. [PMID: 32570895 PMCID: PMC7345710 DOI: 10.3390/ma13122772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
Nanostructured zirconia/alumina composite (NANOZR) has been explored as a suitable material for fabricating implants for patients with metal allergy. In this study, we examined the effect of UV treatment on the NANOZR surface. The experimental group was UV-treated NANOZR and the control group was untreated NANOZR. Observation of the surface of the UV-treated materials revealed no mechanical or structural change; however, the carbon content on the material surface was reduced, and the material surface displayed superhydrophilicity. Further, the effects of the UV-induced superhydrophilic properties of NANOZR plates on the adhesion behavior of various cells were investigated. Treatment of the NANOZR surface was found to facilitate protein adsorption onto it. An in vitro evaluation using rat bone marrow cells, human vascular endothelial cells, and rat periodontal ligament cells revealed high levels of adhesion in the experimental group. In addition, it was clarified that the NANOZR surface forms active oxygen and suppresses the generation of oxidative stress. Overall, the study results suggested that UV-treated NANOZR is useful as a new ceramic implant material.
Collapse
Affiliation(s)
- Satoshi Komasa
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.K.); (S.T.); (Y.Y.); (Y.Z.); (M.L.); (S.Y.); (H.Z.); (C.K.)
| | - Seiji Takao
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.K.); (S.T.); (Y.Y.); (Y.Z.); (M.L.); (S.Y.); (H.Z.); (C.K.)
| | - Yuanyuan Yang
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.K.); (S.T.); (Y.Y.); (Y.Z.); (M.L.); (S.Y.); (H.Z.); (C.K.)
| | - Yuhao Zeng
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.K.); (S.T.); (Y.Y.); (Y.Z.); (M.L.); (S.Y.); (H.Z.); (C.K.)
| | - Min Li
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.K.); (S.T.); (Y.Y.); (Y.Z.); (M.L.); (S.Y.); (H.Z.); (C.K.)
| | - Sifan Yan
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.K.); (S.T.); (Y.Y.); (Y.Z.); (M.L.); (S.Y.); (H.Z.); (C.K.)
| | - Honghao Zhang
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.K.); (S.T.); (Y.Y.); (Y.Z.); (M.L.); (S.Y.); (H.Z.); (C.K.)
| | - Chisato Komasa
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.K.); (S.T.); (Y.Y.); (Y.Z.); (M.L.); (S.Y.); (H.Z.); (C.K.)
| | - Yasuyuki Kobayashi
- Osaka Research Institute of Industrial Science and Technology, Morinomiya Center, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan;
| | - Hiroshi Nishizaki
- Department of Japan, Faculty of Health Sciences, Osaka Dental University, 1-4-4, Makino-honmachi, Hirakata-shi, Osaka 573-1121, Japan; (H.N.); (T.K.)
| | - Hisataka Nishida
- Department of Advanced Hard Materials, The Institute of Scientific and Industrial Research (ISIR), Osaka University, Osaka 567-0047, Japan;
| | - Tetsuji Kusumoto
- Department of Japan, Faculty of Health Sciences, Osaka Dental University, 1-4-4, Makino-honmachi, Hirakata-shi, Osaka 573-1121, Japan; (H.N.); (T.K.)
| | - Joji Okazaki
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1 Kuzuha-hanazono-cho, Hirakata, Osaka 573-1121, Japan; (S.K.); (S.T.); (Y.Y.); (Y.Z.); (M.L.); (S.Y.); (H.Z.); (C.K.)
- Correspondence: ; Tel.: +81-72-864-3084; Fax: +81-72-864-3184
| |
Collapse
|
42
|
Single-cell adhesion of human osteoblasts on plasma-conditioned titanium implant surfaces in vitro. J Mech Behav Biomed Mater 2020; 109:103841. [PMID: 32543406 DOI: 10.1016/j.jmbbm.2020.103841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/02/2020] [Accepted: 04/28/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVES This study aimed to demonstrate the effect of treating titanium-implant surfaces with plasma from two different sources on wettability and initial single-cell adhesion of human osteoblasts and to investigate whether aging affects treatment outcomes. METHODS Titanium disks with sandblasted and acid-etched (SLA) surfaces were treated with atmospheric pressure plasma (APP) and low-pressure plasma (LPP). For wetting behavior of the specimens after plasma treatment, the water contact angle was measured. The single-cell detachment force and amount of work of detachment of human osteoblasts were determined with single-cell force spectroscopy (SCFS). To evaluate the aging effect in APP-treated specimens, SCFS was conducted 10 and 60 min after treatment. RESULTS Significantly higher hydrophilicity was observed in the APP and LPP treatment groups than in the control group, but no significant difference was observed between the APP and LPP groups. No significant difference in cell-detachment force or work of detachment was observed, and there were no significant differences according to the conditioning mechanisms and storage time. SIGNIFICANCE Conditioning of the titanium surfaces with APP or LPP was not a significant influencing factor in the initial adhesion of the osteoblasts.
Collapse
|
43
|
Zeng Y, Komasa S, Nishida H, Agariguchi A, Sekino T, Okazaki J. Enhanced Osseointegration and Bio-Decontamination of Nanostructured Titanium Based on Non-Thermal Atmospheric Pressure Plasma. Int J Mol Sci 2020; 21:ijms21103533. [PMID: 32429471 PMCID: PMC7278937 DOI: 10.3390/ijms21103533] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Alkali-treated titanate layer with nanonetwork structures (TNS) is a promising surface for improving osseointegration capacity in implants. Nevertheless, there is a risk of device failure as a result of insufficient resistance to biofilm contamination. This study tested whether treatment using a handheld non-thermal plasma device could efficiently eliminate biofilm contamination without destroying the surface nanostructure while re-establishing a surface that promoted new bone generation. TNS specimens were treated by a piezoelectric direct discharge (PDD) plasma generator. The effect of decontamination was performed utilizing Staphylococcus aureus. The evaluation of initial cell attachment with adhesion images, alkaline phosphatase activity, extracellular matrix mineralization, and expression of genes related to osteogenesis was performed using rat bone marrow mesenchymal stem cells, and the bone response were evaluated in vivo using a rat femur model. Nanotopography and surface roughness did not significantly differ before and after plasma treatments. Cell and bone formation activity were improved by TNS plasma treatment. Furthermore, plasma treatment effectively eliminated biofilm contamination from the surface. These results suggested that this plasma treatment may be a promising approach for the treatment of nanomaterials immediately before implantation and a therapeutic strategy for peri-implantitis.
Collapse
Affiliation(s)
- Yuhao Zeng
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata-shi, Osaka 573-1121, Japan
| | - Satoshi Komasa
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata-shi, Osaka 573-1121, Japan
| | - Hisataka Nishida
- The Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akinori Agariguchi
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata-shi, Osaka 573-1121, Japan
| | - Tohru Sekino
- The Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Joji Okazaki
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata-shi, Osaka 573-1121, Japan
| |
Collapse
|
44
|
Dhaliwal JS, David SRN, Zulhilmi NR, Sodhi Dhaliwal SK, Knights J, de Albuquerque Junior RF. Contamination of titanium dental implants: a narrative review. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2810-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AbstractContamination of titanium dental implants may lead to implant failure. There are two major types of contaminants: the inorganic and organic contaminants. The inorganic contaminants mostly consist of elements such as calcium, phosphorus, chlorine, sulphur, sodium, silicon, fluorine and some organic carbons. Whereas organic contaminants consist of hydrocarbon, carboxylates, salts of organic acids, nitrogen from ammonium and bacterial cells/byproducts. Contaminants can alter the surface energy, chemical purity, thickness and composition of the oxide layer, however, we lack clinical evidence that contaminations have any effect at all. However, surface cleanliness seems to be essential for implant osseointegration.These contaminants may cause dental implants to fail in its function to restore missing teeth and also cause a financial burden to the patient and the health care services to invest in decontamination methods. Therefore, it is important to discuss the aetiology of dental implant failures. In this narrative review, we discuss two major types of contaminants: the inorganic and organic contaminants including bacterial contaminants. This review also aims to discuss the potential effect of contamination on Ti dental implants.
Collapse
|
45
|
Rohr N, Zeller B, Matthisson L, Fischer J. Surface structuring of zirconia to increase fibroblast viability. Dent Mater 2020; 36:779-786. [PMID: 32354484 DOI: 10.1016/j.dental.2020.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The neck area of zirconia implants or abutments is currently either machined, polished and in some cases additionally heat-treated. The aim of the present study was to determine how the surface topography and crystalline structure of zirconia affects the viability of human gingival fibroblasts (HGF-1). METHODS Zirconia discs with a diameter of 13mm were either polished [Zp], polished and heat-treated [Zpt], machined [Zm], machined and heat-treated [Zmt] or sandblasted, etched and heat-treated [Z14] which is the surface topography of the endosseous part of a zirconia implant. The specimen surfaces were analyzed using scanning electron microscopy (SEM), characterized in terms of monoclinic to tetragonal phase ratio, storage effect on wettability and roughness. The viability and morphology of HGF-1 cells was then tested on all surfaces after 24h. RESULTS The effect of the heat-treatment was visualized for the polished specimens with SEM. Contact angle of water was significantly decreased after 2 weeks air storage of the zirconia. Cell viability was significantly higher on smooth surfaces (Zpt, Zm, Zmt) when compared to Z14. HGF-1 cells spread very flat and attached tightly to the smoother surfaces Zp, Zpt, Zm and Zmt while on Z14, cells did not fully extend into the etched morphology of zirconia and stretched over longer distances. SIGNIFICANCE For the structuring of the neck part of zirconia implants or abutments, a smooth surface with exposed grains might be suggested as the optimal substrate for human gingival fibroblasts. The wettability with water of zirconia decreases with prolonged air storage.
Collapse
Affiliation(s)
- Nadja Rohr
- Biomaterials and Technology, Department of Reconstructive Dentistry, University Center for Dental Medicine, University of Basel, Basel, Switzerland.
| | - Barbara Zeller
- Department of Reconstructive Dentistry, University Center for Dental Medicine, University of Basel, Basel, Switzerland
| | - Lea Matthisson
- Department of Reconstructive Dentistry, University Center for Dental Medicine, University of Basel, Basel, Switzerland
| | - Jens Fischer
- Biomaterials and Technology, Department of Reconstructive Dentistry, University Center for Dental Medicine, University of Basel, Basel, Switzerland
| |
Collapse
|
46
|
Canullo L, Genova T, Gross Trujillo E, Pradies G, Petrillo S, Muzzi M, Carossa S, Mussano F. Fibroblast Interaction with Different Abutment Surfaces: In Vitro Study. Int J Mol Sci 2020; 21:ijms21061919. [PMID: 32168919 PMCID: PMC7139398 DOI: 10.3390/ijms21061919] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Attaining an effective mucosal attachment to the transmucosal part of the implant could protect the peri-implant bone. Aim: To evaluate if chair side surface treatments (plasma of Argon and ultraviolet light) may affect fibroblast adhesion on different titanium surfaces designed for soft tissue healing. Methods: Grade 5 titanium discs with four different surface topographies were subdivided into 3 groups: argon-plasma; ultraviolet light, and no treatment. Cell morphology and adhesion tests were performed at 20 min, 24 h, and 72 h. Results: Qualitative observation of the surfaces performed at the SEM was in accordance with the anticipated features. Roughness values ranged from smooth (MAC Sa = 0.2) to very rough (XA Sa = 21). At 20 min, all the untreated surfaces presented hemispherical cells with reduced filopodia, while the cells on treated samples were more spread with broad lamellipodia. However, these differences in spreading behavior disappeared at 24 h and 72 h. Argon-plasma, but not UV, significantly increased the number of fibroblasts independently of the surface type but only at 20 min. Statistically, there was no surface in combination with a treatment that favored a greater cellular adhesion. Conclusions: Data showed potential biological benefits of treating implant abutment surfaces with the plasma of argon in relation to early-stage cell adhesion.
Collapse
Affiliation(s)
- Luigi Canullo
- Private Practice, Via Nizza, 46, 00198 Rome, Italy
- Correspondence: ; Tel.: +39-347-6201-976
| | - Tullio Genova
- Department of Life Sciences and Systems Biology, University of Torino, 10126 Turin, Italy;
- CIR Dental School—Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Turin, Italy; (S.C.); (F.M.)
| | - Esperanza Gross Trujillo
- Department of Buccofacial Prosthesis, University Complutense, 28040 Madrid, Spain; (E.G.T.); (G.P.)
| | - Guillermo Pradies
- Department of Buccofacial Prosthesis, University Complutense, 28040 Madrid, Spain; (E.G.T.); (G.P.)
| | - Sara Petrillo
- Department of Molecular Biotechnology and Health Sciences, University of Rome III, 00133 Rome, Italy;
| | - Maurizio Muzzi
- Department of Science, University of Rome III, 00133 Rome, Italy;
| | - Stefano Carossa
- CIR Dental School—Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Turin, Italy; (S.C.); (F.M.)
| | - Federico Mussano
- CIR Dental School—Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Turin, Italy; (S.C.); (F.M.)
| |
Collapse
|
47
|
Cytocompatibility of Titanium, Zirconia and Modified PEEK after Surface Treatment Using UV Light or Non-Thermal Plasma. Int J Mol Sci 2019; 20:ijms20225596. [PMID: 31717459 PMCID: PMC6888564 DOI: 10.3390/ijms20225596] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/28/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022] Open
Abstract
A number of modifications have been developed in order to enhance surface cytocompatibility for prosthetic support of dental implants. Among them, ultraviolet (UV) light and non-thermal plasma (NTP) treatment are promising methods. The objective of this study was to compare the effects of UV light and NTP on machined titanium, zirconia and modified polyetheretherketone (PEEK, BioHPP) surfaces in vitro. Machined samples of titanium, zirconia and BioHPP were treated by UV light and NTP of argon or oxygen for 12 min each. Non-treated disks were set as controls. A mouse fibroblast and a human gingival fibroblast cell line were used for in vitro experiments. After 2, 24 and 48 h of incubation, the attachment, viability and cytotoxicity of cells on surfaces were assessed. Results: Titanium, zirconia and BioHPP surfaces treated by UV light and oxygen plasma were more favorable to the early attachment of soft-tissue cells than non-treated surfaces, and the number of cells on those treated surfaces was significantly increased after 2, 24 and 48 h of incubation (p < 0.05). However, the effects of argon plasma treatment on the cytocompatibility of soft tissue cells varied with the type of cells and the treated material. UV light and oxygen plasma treatments may improve the attachment of fibroblast cells on machined titanium, zirconia and PEEK surfaces, that are materials for prosthetic support of dental implants.
Collapse
|
48
|
In vitro proinflammatory gene expression changes in human whole blood after contact with plasma-treated implant surfaces. J Craniomaxillofac Surg 2019; 47:1255-1261. [DOI: 10.1016/j.jcms.2019.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/28/2019] [Accepted: 05/06/2019] [Indexed: 11/18/2022] Open
|
49
|
Naauman Z, Rajion ZAB, Maliha S, Hariy P, Muhammad QS, Noor HAR. Ultraviolet A and Ultraviolet C Light-Induced Reduction of Surface Hydrocarbons on Titanium Implants. Eur J Dent 2019; 13:114-118. [PMID: 31170762 PMCID: PMC6635973 DOI: 10.1055/s-0039-1688741] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective
The carbon, titanium, and oxygen levels on titanium implant surfaces with or without ultraviolet (UV) pretreatment were evaluated at different wavelengths through X-ray photoelectron spectroscopy (XPS).
Materials and Methods
This interventional experimental study was conducted on nine Dio UFII implants with hybrid sandblasted and acid-etched (SLA) surface treatments, divided equally into three groups. Control group A samples were not given UV irradiation, while groups B and C samples were given UVA (382 nm, 25 mWcm
2
) and UVC (260 nm, 15 mWcm
2
) irradiation, respectively. The atomic ratio of carbon, titanium, and oxygen was compared through XPS.
Results
Mean carbon-to-titanium ratio and C1 peaks considerably increased in Group A compared to those in experimental Groups B and C. The intensity of Ti2p and O1s peaks was more pronounced for group C compared to that for groups A and B.
Conclusions
Although the decrease in surface hydrocarbons was the same in both UV-treated groups, the peak intensity of oxygen increased in the UVC-treated group. Thus, it can be concluded that compared with UVA irradiation, UVC irradiation has the potential to induce more hydrophilicity on SLA-coated implants.
Collapse
Affiliation(s)
- Zaheer Naauman
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia.,Department of Oral Biology, Institute of Dentistry, CMH Lahore Medical College, Lahore, Pakistan.,National University of Medical Sciences, Lahore, Pakistan
| | - Zainul Ahmad Bin Rajion
- Department of Oral Maxillofacial Imaging, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Shahbaz Maliha
- Department of Oral Biology, Rashid Latif Dental College, Lahore, Pakistan
| | - Pauzi Hariy
- Universiti Sains Malaysia's Science Officer Society, Science and Engineering Research Centre, Engineering Campus, Universiti Sains Malaysia, Penang, Malaysia
| | - Q Saeed Muhammad
- Department of Oral Biology, Institute of Dentistry, CMH Lahore Medical College, Lahore, Pakistan.,National University of Medical Sciences, Lahore, Pakistan
| | - H A Razak Noor
- Department in Oral and Maxillofacial Surgery, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
50
|
González-Blanco C, Rizo-Gorrita M, Luna-Oliva I, Serrera-Figallo MÁ, Torres-Lagares D, Gutiérrez-Pérez JL. Human Osteoblast Cell Behaviour on Titanium Discs Treated with Argon Plasma. MATERIALS 2019; 12:ma12111735. [PMID: 31142007 PMCID: PMC6600745 DOI: 10.3390/ma12111735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022]
Abstract
(1) Background. Titanium is characterized by its biocompatibility and resistance to stress and fatigue. Treatment with argon plasma may favour growth of human osteoblasts with respect to cell adhesion and proliferation. The aim of this study was to analyse the behaviour of human osteoblasts (MG-63) on Grade IV and V titanium possessing a sand-blasted, acid-etched (SLA) surface. SLA is a widely used surface treatment to create micro- and macroretentions to enhance osteoconductive properties on the surface. (2) Methods. One group of each grade of titanium was decontaminated with argon plasma and compared. On each disc, 20 × 104 cells were cultivated for morphological analysis, study of cell viability (regarding a negative control [100% viability]) and mitochondrial energy balance. (3) Results. At 24 h titanium treated with SLA showed a higher percentage of cell viability (47.3 ± 8.1%) compared to titanium IV treated with argon plasma, which presented a percentage of 79.1 ± 1.1%. Grade V titanium treated with argon plasma presented a higher viability percentage 91.3 ± 3.0% whereas nontreated Grade V titanium presented 53.3 ± 4.0%. Cells cultivated on the surfaces with an argon-plasma treatment were enlarged in comparison to non-treated discs. The cells with smaller circularity with a greater spread and spindle shape were the ones cultivated on the Grade V titanium surface. Cells seeded on treated titanium IV and titanium V, treated or not, showed higher mitochondrial activity over nontreated titanium IV. (4) Conclusions. Cells cultivated on those Grade V titanium discs that were decontaminated with argon plasma presented higher levels of cell adhesion and proliferation, lower mitochondrial damage and a higher mean cell area compared to those not decontaminated with argon plasma.
Collapse
Affiliation(s)
- Carolina González-Blanco
- Department of Oral Surgery, College of Dentistry, Seville University, Calle de Avicena s/n 41009 Seville, Spain.
| | - María Rizo-Gorrita
- Department of Oral Surgery, College of Dentistry, Seville University, Calle de Avicena s/n 41009 Seville, Spain.
| | - Irene Luna-Oliva
- Department of Oral Surgery, College of Dentistry, Seville University, Calle de Avicena s/n 41009 Seville, Spain.
| | | | - Daniel Torres-Lagares
- Department of Oral Surgery, College of Dentistry, Seville University, Calle de Avicena s/n 41009 Seville, Spain.
| | - José-Luis Gutiérrez-Pérez
- Department of Oral Surgery, College of Dentistry, Seville University, Calle de Avicena s/n 41009 Seville, Spain.
| |
Collapse
|