1
|
Moloney PB, Delanty N. An overview of the value of mTOR inhibitors to the treatment of epilepsy: the evidence to date. Expert Rev Neurother 2025:1-17. [PMID: 39903448 DOI: 10.1080/14737175.2025.2462280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
INTRODUCTION Dysregulated mechanistic target of rapamycin (mTOR) activity is implicated in seizure development in epilepsies caused by variants in mTOR pathway genes. Sirolimus and everolimus, allosteric mTOR inhibitors, are widely used in transplant medicine and oncology. Everolimus is approved for treating seizures in tuberous sclerosis complex (TSC), the prototype mTORopathy. Emerging evidence suggests that mTOR inhibitors could also be effective in other mTORopathies, such as DEPDC5-related epilepsy and focal cortical dysplasia type 2 (FCD2). AREAS COVERED This narrative review summarizes key regulatory proteins in the mTOR cascade and outlines epilepsy syndromes linked to variants in genes encoding these proteins, particularly TSC, GATOR1-related epilepsies, and FCD2. It discusses the clinical pharmacology of mTOR inhibitors and the evidence supporting their efficacy as antiseizure medications (ASM) in mTORopathies. Lastly, potential benefits of next-generation mTOR inhibitors for CNS indications are evaluated. EXPERT OPINION The therapeutic benefits of mTOR inhibitors in TSC are well-established, but their value in other mTORopathies remains uncertain. Despite targeting the underlying disease biology, their efficacy in TSC is not significantly different from other ASM, likely due in part to pharmacokinetic constraints. Next-generation mTOR inhibitors that address these limitations may offer improved response rates, but they are in the preclinical development phase.
Collapse
Affiliation(s)
- Patrick B Moloney
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Epilepsy, Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Norman Delanty
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Research Ireland FutureNeuro Centre, Dublin, Ireland
| |
Collapse
|
2
|
Blair RE, Hawkins E, Pinchbeck LR, DeLorenzo RJ, Deshpande LS. Chronic Epilepsy and Mossy Fiber Sprouting Following Organophosphate-Induced Status Epilepticus in Rats. J Pharmacol Exp Ther 2024; 388:325-332. [PMID: 37643794 PMCID: PMC10801751 DOI: 10.1124/jpet.123.001739] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Organophosphate (OP) compounds are highly toxic and include pesticides and chemical warfare nerve agents. OP exposure inhibits the acetylcholinesterase enzyme, causing cholinergic overstimulation that can evolve into status epilepticus (SE) and produce lethality. Furthermore, OP-induced SE survival is associated with mood and memory dysfunction and spontaneous recurrent seizures (SRS). In male Sprague-Dawley rats, we assessed hippocampal pathology and chronic SRS following SE induced by administration of OP agents paraoxon (2 mg/kg, s.c.), diisopropyl fluorophosphate (4 mg/kg, s.c.), or O-isopropyl methylphosphonofluoridate (GB; sarin) (2 mg/kg, s.c.), immediately followed by atropine and 2-PAM. At 1-hour post-OP-induced SE onset, midazolam was administered to control SE. Approximately 6 months after OP-induced SE, SRS were evaluated using video and electroencephalography monitoring. Histopathology was conducted using hematoxylin and eosin (H&E), while silver sulfide (Timm) staining was used to assess mossy fiber sprouting (MFS). Across all the OP agents, over 60% of rats that survived OP-induced SE developed chronic SRS. H&E staining revealed a significant hippocampal neuronal loss, while Timm staining revealed extensive MFS within the inner molecular region of the dentate gyrus. This study demonstrates that OP-induced SE is associated with hippocampal neuronal loss, extensive MFS, and the development of SRS, all hallmarks of chronic epilepsy. SIGNIFICANCE STATEMENT: Models of organophosphate (OP)-induced SE offer a unique resource to identify molecular mechanisms contributing to neuropathology and the development of chronic OP morbidities. These models could allow the screening of targeted therapeutics for efficacious treatment strategies for OP toxicities.
Collapse
Affiliation(s)
- Robert E Blair
- Departments of Neurology (R.E.B., E.H., R.J.D., L.S.D.) and Pharmacology and Toxicology (R.J.D., L.S.D.) School of Medicine, and Department of Biology, College of Humanities & Sciences (L.R.P.), Virginia Commonwealth University, Richmond, Virginia
| | - Elisa Hawkins
- Departments of Neurology (R.E.B., E.H., R.J.D., L.S.D.) and Pharmacology and Toxicology (R.J.D., L.S.D.) School of Medicine, and Department of Biology, College of Humanities & Sciences (L.R.P.), Virginia Commonwealth University, Richmond, Virginia
| | - Lauren R Pinchbeck
- Departments of Neurology (R.E.B., E.H., R.J.D., L.S.D.) and Pharmacology and Toxicology (R.J.D., L.S.D.) School of Medicine, and Department of Biology, College of Humanities & Sciences (L.R.P.), Virginia Commonwealth University, Richmond, Virginia
| | - Robert J DeLorenzo
- Departments of Neurology (R.E.B., E.H., R.J.D., L.S.D.) and Pharmacology and Toxicology (R.J.D., L.S.D.) School of Medicine, and Department of Biology, College of Humanities & Sciences (L.R.P.), Virginia Commonwealth University, Richmond, Virginia
| | - Laxmikant S Deshpande
- Departments of Neurology (R.E.B., E.H., R.J.D., L.S.D.) and Pharmacology and Toxicology (R.J.D., L.S.D.) School of Medicine, and Department of Biology, College of Humanities & Sciences (L.R.P.), Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
3
|
Ots HD, Anderson T, Sherrerd-Smith W, DelBianco J, Rasic G, Chuprin A, Toor Z, Fitch E, Ahuja K, Reid F, Musto AE. Scoping review of disease-modifying effect of drugs in experimental epilepsy. Front Neurol 2023; 14:1097473. [PMID: 36908628 PMCID: PMC9997527 DOI: 10.3389/fneur.2023.1097473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Objective Epilepsy affects ~50 million people worldwide causing significant medical, financial, and sociologic concerns for affected patients and their families. To date, treatment of epilepsy is primarily symptomatic management because few effective preventative or disease-modifying interventions exist. However, recent research has identified neurobiological mechanisms of epileptogenesis, providing new pharmacologic targets to investigate. The current scientific evidence remains scattered across multiple studies using different model and experimental designs. The review compiles different models of anti-epileptogenic investigation and highlights specific compounds with potential epileptogenesis-modifying experimental drugs. It provides a platform for standardization of future epilepsy research to allow a more robust compound analysis of compounds with potential for epilepsy prevention. Methods PubMed, Ovid MEDLINE, and Web of Science were searched from 2007 to 2021. Studies with murine models of epileptogenesis and explicitly detailed experimental procedures were included in the scoping review. In total, 51 articles were selected from 14,983 and then grouped by five core variables: (1) seizure frequency, (2) seizure severity, (3) spontaneous recurrent seizures (SRS), (4) seizure duration, and (5) mossy fiber sprouting (MFS). The variables were differentiated based on experimental models including methods of seizure induction, treatment schedule and timeline of data collection. Data was categorized by the five core variables and analyzed by converting original treatment values to units of percent of its respective control. Results Discrepancies in current epileptogenesis models significantly complicate inter-study comparison of potential anti-epileptogenic interventions. With our analysis, many compounds showed a potential to reduce epileptogenic characteristics defined by the five core variables. WIN55,212-2, aspirin, rapamycin, 1400W, and LEV + BQ788 were identified compounds with the potential of effective anti-epileptic properties. Significance Our review highlights the need for consistent methodology in epilepsy research and provides a novel approach for future research. Inconsistent experimental designs hinder study comparison, slowing the progression of treatments for epilepsy. If the research community can optimize and standardize parameters such as methods of seizure induction, administration schedule, sampling time, and aniMal models, more robust meta-analysis and collaborative research would follow. Additionally, some compounds such as rapamycin, WIN 55,212-2, aspirin, 1400W, and LEV + BQ788 showed anti-epileptogenic modulation across multiple variables. We believe they warrant further study both individually and synergistically.
Collapse
Affiliation(s)
- Heather D. Ots
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Taylor Anderson
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | - John DelBianco
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Gordana Rasic
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Anthony Chuprin
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Zeeshan Toor
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Elizabeth Fitch
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Kripa Ahuja
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Faith Reid
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Alberto E. Musto
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, United States
- Department of Neurology, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
4
|
Buchin A, de Frates R, Nandi A, Mann R, Chong P, Ng L, Miller J, Hodge R, Kalmbach B, Bose S, Rutishauser U, McConoughey S, Lein E, Berg J, Sorensen S, Gwinn R, Koch C, Ting J, Anastassiou CA. Multi-modal characterization and simulation of human epileptic circuitry. Cell Rep 2022; 41:111873. [PMID: 36577383 PMCID: PMC9841067 DOI: 10.1016/j.celrep.2022.111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/16/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
Temporal lobe epilepsy is the fourth most common neurological disorder, with about 40% of patients not responding to pharmacological treatment. Increased cellular loss is linked to disease severity and pathological phenotypes such as heightened seizure propensity. While the hippocampus is the target of therapeutic interventions, the impact of the disease at the cellular level remains unclear. Here, we show that hippocampal granule cells change with disease progression as measured in living, resected hippocampal tissue excised from patients with epilepsy. We show that granule cells increase excitability and shorten response latency while also enlarging in cellular volume and spine density. Single-nucleus RNA sequencing combined with simulations ascribes the changes to three conductances: BK, Cav2.2, and Kir2.1. In a network model, we show that these changes related to disease progression bring the circuit into a more excitable state, while reversing them produces a less excitable, "early-disease-like" state.
Collapse
Affiliation(s)
| | | | | | - Rusty Mann
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Peter Chong
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lindsay Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Brian Kalmbach
- Allen Institute for Brain Science, Seattle, WA, USA; University of Washington, Seattle, WA, USA
| | - Soumita Bose
- Allen Institute for Brain Science, Seattle, WA, USA; CiperHealth, San Francisco, CA, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA, USA; University of Washington, Seattle, WA, USA
| | - Jim Berg
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Jonathan Ting
- Allen Institute for Brain Science, Seattle, WA, USA; University of Washington, Seattle, WA, USA
| | - Costas A Anastassiou
- Allen Institute for Brain Science, Seattle, WA, USA; Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
5
|
Salaka RJ, Nair KP, Sasibhushana RB, Udayakumar D, Kutty BM, Srikumar BN, Shankaranarayana Rao BS. Differential effects of levetiracetam on hippocampal CA1 synaptic plasticity and molecular changes in the dentate gyrus in epileptic rats. Neurochem Int 2022; 158:105378. [PMID: 35753511 DOI: 10.1016/j.neuint.2022.105378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/27/2022] [Accepted: 06/12/2022] [Indexed: 11/25/2022]
Abstract
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsies. Pharmacological treatment with anti-seizure drugs (ASDs) remains the mainstay in epilepsy management. Levetiracetam (LEV) is a second-generation ASD with a novel SV2A protein target and is indicated for treating focal epilepsies. While there is considerable literature in acute models, its effect in chronic epilepsy is less clear. Particularly, its effects on neuronal excitability, synaptic plasticity, adult hippocampal neurogenesis, and histological changes in chronic epilepsy have not been evaluated thus far, which formed the basis of the present study. Six weeks post-lithium-pilocarpine-induced status epilepticus (SE), epileptic rats were injected with levetiracetam (54mg/kg b.w. i.p.) once daily for two weeks. Following LEV treatment, Schaffer collateral - CA1 (CA3-CA1) synaptic plasticity and structural changes in hippocampal subregions CA3 and CA1 were evaluated. The number of doublecortin (DCX+) and reelin (RLN+) positive neurons was estimated. Further, mossy fiber sprouting was evaluated in DG by Timm staining, and splash test was performed to assess the anxiety-like behavior. Chronic epilepsy resulted in decreased basal synaptic transmission and increased paired-pulse facilitation without affecting post-tetanic potentiation and long-term potentiation. Moreover, chronic epilepsy decreased hippocampal subfields volume, adult hippocampal neurogenesis, and increased reelin expression and mossy fiber sprouting with increased anxiety-like behavior. LEV treatment restored basal synaptic transmission and paired-pulse facilitation ratio in CA3-CA1 synapses. LEV also restored the CA1 subfield volume in chronic epilepsy. LEV did not affect epilepsy-induced abnormal adult hippocampal neurogenesis, ectopic migration of newborn granule cells, mossy fiber sprouting in DG, and anxiety-like behavior. Our results indicate that in addition to reducing seizures, LEV has favorable effects on synaptic transmission and structural plasticity in chronic epilepsy. These findings add new dimensions to the use of LEV in chronic epilepsy and paves way for further research into its effects on cognition and affective behavior.
Collapse
Affiliation(s)
- Raghava Jagadeesh Salaka
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Kala P Nair
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | | | - Deepashree Udayakumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Bettadapura N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | | |
Collapse
|
6
|
Twible C, Abdo R, Zhang Q. Astrocyte Role in Temporal Lobe Epilepsy and Development of Mossy Fiber Sprouting. Front Cell Neurosci 2021; 15:725693. [PMID: 34658792 PMCID: PMC8514632 DOI: 10.3389/fncel.2021.725693] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Epilepsy affects approximately 50 million people worldwide, with 60% of adult epilepsies presenting an onset of focal origin. The most common focal epilepsy is temporal lobe epilepsy (TLE). The role of astrocytes in the presentation and development of TLE has been increasingly studied and discussed within the literature. The most common histopathological diagnosis of TLE is hippocampal sclerosis. Hippocampal sclerosis is characterized by neuronal cell loss within the Cornu ammonis and reactive astrogliosis. In some cases, mossy fiber sprouting may be observed. Mossy fiber sprouting has been controversial in its contribution to epileptogenesis in TLE patients, and the mechanisms surrounding the phenomenon have yet to be elucidated. Several studies have reported that mossy fiber sprouting has an almost certain co-existence with reactive astrogliosis within the hippocampus under epileptic conditions. Astrocytes are known to play an important role in the survival and axonal outgrowth of central and peripheral nervous system neurons, pointing to a potential role of astrocytes in TLE and associated cellular alterations. Herein, we review the recent developments surrounding the role of astrocytes in the pathogenic process of TLE and mossy fiber sprouting, with a focus on proposed signaling pathways and cellular mechanisms, histological observations, and clinical correlations in human patients.
Collapse
Affiliation(s)
- Carolyn Twible
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada
| | - Rober Abdo
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada.,Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Qi Zhang
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada.,Department of Pathology and Lab Medicine, London Health Sciences Centre, University Hospital, London, ON, Canada
| |
Collapse
|
7
|
Wu J, Wang L, Huang Y, Wu Q, Luo X, Li Y, Ren S, Wu G. Cognitive Impairment and Mossy Fiber Sprouting in a Rat Model of Drug-Resistant Epilepsy Induced by Lithium-Pilocarpine. Curr Neurovasc Res 2021; 18:374-380. [PMID: 34538230 DOI: 10.2174/1567202618666210917155408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The mossy fiber sprouting (MFS) in the dentate gyrus is a common pathological change of epilepsy. Previous studies suggested that it is associated with drug-resistant epilepsy, and mossy cells control spontaneous seizures and spatial memory. METHODS We investigated the correlations among cognitive impairment, MFS, seizure frequency and drug resistance in a rat model of epilepsy induced by lithium-pilocarpine. Phenytoin and phenobarbital were used to screen drug resistance. Cognitive function and MFS were detected through the novel object recognition (NOR) test, Morris water maze (MWM) test and Timm staining. RESULTS The results showed that object memory and spatial memory functions were both significantly impaired in rats with epilepsy, and only spatial memory impairment was more severe in rats with drug-resistant epilepsy. More frequent spontaneous seizures and more obvious MFS were observed in the drug-resistant rats. The seizure frequency was significantly associated with the MWM performance but not with the NOR performance in rats with epilepsy. The degree of MFS was significantly associated with seizure frequency and spatial memory function. CONCLUSION Taken together, these correlations among drug resistance, seizure frequency, spatial memory impairment and MFS suggested the possibility of a common pathological mechanism. More studies are needed to clarify the underlying mechanism behind these correlations and the detailed role of MFS in epilepsy. The mechanism of mossy cell change may be an important target for the treatment of seizures, drug resistance and cognitive dysfunction in patients with epilepsy.
Collapse
Affiliation(s)
- Jing Wu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang. China
| | - Likun Wang
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang. China
| | - Yuanxin Huang
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang. China
| | - Qian Wu
- School of Clinical Medicine, Guizhou Medical University, Guiyang. China
| | - Xingmei Luo
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang. China
| | - Yinghui Li
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang. China
| | - Siying Ren
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang. China
| | - Guofeng Wu
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang. China
| |
Collapse
|
8
|
Selected Molecular Targets for Antiepileptogenesis. Int J Mol Sci 2021; 22:ijms22189737. [PMID: 34575901 PMCID: PMC8466306 DOI: 10.3390/ijms22189737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023] Open
Abstract
The term epileptogenesis defines the usually durable process of converting normal brain into an epileptic one. The resistance of a significant proportion of patients with epilepsy to the available pharmacotherapy prompted the concept of a causative treatment option consisting in stopping or modifying the progress of epileptogenesis. Most antiepileptic drugs possess only a weak or no antiepileptogenic potential at all, but a few of them appear promising in this regard; these include, for example, eslicarbazepine (a sodium and T-type channel blocker), lamotrigine (a sodium channel blocker and glutamate antagonist) or levetiracetam (a ligand of synaptic vehicle protein SV2A). Among the approved non-antiepileptic drugs, antiepileptogenic potential seems to reside in losartan (a blocker of angiotensin II type 1 receptors), biperiden (an antiparkinsonian drug), nonsteroidal anti-inflammatory drugs, antioxidative drugs and minocycline (a second-generation tetracycline with anti-inflammatory and antioxidant properties). Among other possible antiepileptogenic compounds, antisense nucleotides have been considered, among these an antagomir targeting microRNA-134. The drugs and agents mentioned above have been evaluated in post-status epilepticus models of epileptogenesis, so their preventive efficacy must be verified. Limited clinical data indicate that biperiden in patients with brain injuries is well-tolerated and seems to reduce the incidence of post-traumatic epilepsy. Exceptionally, in this regard, our own original data presented here point to c-Fos as an early seizure duration, but not seizure intensity-related, marker of early epileptogenesis. Further research of reliable markers of early epileptogenesis is definitely needed to improve the process of designing adequate antiepileptogenic therapies.
Collapse
|
9
|
Anstötz M, Fiske MP, Maccaferri G. Impaired KCC2 Function Triggers Interictal-Like Activity Driven by Parvalbumin-Expressing Interneurons in the Isolated Subiculum In Vitro. Cereb Cortex 2021; 31:4681-4698. [PMID: 33987649 PMCID: PMC8408463 DOI: 10.1093/cercor/bhab115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 12/30/2022] Open
Abstract
The decreased expression of the KCC2 membrane transporter in subicular neurons has been proposed to be a key epileptogenic event in temporal lobe epilepsy (TLE). Here, we have addressed this question in a reduced model in vitro and have studied the properties and mechanistic involvement of a major class of interneurons, that is, parvalbumin-expressing cells (PVs). When exposed to the KCC2 blocker VU0463271, mouse subicular slices generated hypersynchronous discharges that could be recorded electrophysiologically and visualized as clusters of co-active neurons with calcium imaging. The pharmacological profile of these events resembled interictal-like discharges in human epileptic tissue because of their dependence on GABAA and AMPA receptors. On average, PVs fired before pyramidal cells (PCs) and the area of co-active clusters was comparable to the individual axonal spread of PVs, suggesting their mechanistic involvement. Optogenetic experiments confirmed this hypothesis, as the flash-stimulation of PVs in the presence of VU0463271 initiated interictal-like discharges, whereas their optogenetic silencing suppressed network hyper-excitability. We conclude that reduced KCC2 activity in subicular networks in vitro is sufficient to induce interictal-like activity via altered GABAergic signaling from PVs without other epilepsy-related changes. This conclusion supports an epileptogenic role for impaired subicular KCC2 function during the progression of TLE.
Collapse
Affiliation(s)
- Max Anstötz
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Michael Patrick Fiske
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gianmaria Maccaferri
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
10
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|
11
|
Casillas‐Espinosa PM, Ali I, O'Brien TJ. Neurodegenerative pathways as targets for acquired epilepsy therapy development. Epilepsia Open 2020; 5:138-154. [PMID: 32524040 PMCID: PMC7278567 DOI: 10.1002/epi4.12386] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
There is a growing body of clinical and experimental evidence that neurodegenerative diseases and epileptogenesis after an acquired brain insult may share common etiological mechanisms. Acquired epilepsy commonly develops as a comorbid condition in patients with neurodegenerative diseases such as Alzheimer's disease, although it is likely much under diagnosed in practice. Progressive neurodegeneration has also been described after traumatic brain injury, stroke, and other forms of brain insults. Moreover, recent evidence has shown that acquired epilepsy is often a progressive disorder that is associated with the development of drug resistance, cognitive decline, and worsening of other neuropsychiatric comorbidities. Therefore, new pharmacological therapies that target neurobiological pathways that underpin neurodegenerative diseases have potential to have both an anti-epileptogenic and disease-modifying effect on the seizures in patients with acquired epilepsy, and also mitigate the progressive neurocognitive and neuropsychiatric comorbidities. Here, we review the neurodegenerative pathways that are plausible targets for the development of novel therapies that could prevent the development or modify the progression of acquired epilepsy, and the supporting published experimental and clinical evidence.
Collapse
Affiliation(s)
- Pablo M. Casillas‐Espinosa
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
| | - Idrish Ali
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
| | - Terence J. O'Brien
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
- Department of NeurologyThe Alfred HospitalMelbourneVic.Australia
- Department of NeurologyThe Royal Melbourne HospitalParkvilleVic.Australia
| |
Collapse
|
12
|
Miziak B, Konarzewska A, Ułamek-Kozioł M, Dudra-Jastrzębska M, Pluta R, Czuczwar SJ. Anti-Epileptogenic Effects of Antiepileptic Drugs. Int J Mol Sci 2020; 21:ijms21072340. [PMID: 32231010 PMCID: PMC7178140 DOI: 10.3390/ijms21072340] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Generally, the prevalence of epilepsy does not exceed 0.9% of the population and approximately 70% of epilepsy patients may be adequately controlled with antiepileptic drugs (AEDs). Moreover, status epilepticus (SE) or even a single seizure may produce neurodegeneration within the brain and SE has been recognized as one of acute brain insults leading to acquired epilepsy via the process of epileptogenesis. Two questions thus arise: (1) Are AEDs able to inhibit SE-induced neurodegeneration? and (2) if so, can a probable neuroprotective potential of particular AEDs stop epileptogenesis? An affirmative answer to the second question would practically point to the preventive potential of a given neuroprotective AED following acute brain insults. The available experimental data indicate that diazepam (at low and high doses), gabapentin, pregabalin, topiramate and valproate exhibited potent or moderate neuroprotective effects in diverse models of SE in rats. However, only diazepam (at high doses), gabapentin and pregabalin exerted some protective activity against acquired epilepsy (spontaneous seizures). As regards valproate, its effects on spontaneous seizures were equivocal. With isobolography, some supra-additive combinations of AEDs have been delineated against experimental seizures. One of such combinations, levetiracetam + topiramate proved highly synergistic in two models of seizures and this particular combination significantly inhibited epileptogenesis in rats following status SE. Importantly, no neuroprotection was evident. It may be strikingly concluded that there is no correlation between neuroprotection and antiepileptogenesis. Probably, preclinically verified combinations of AEDs may be considered for an anti-epileptogenic therapy.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (B.M.); (A.K.); (M.D.-J.)
| | - Agnieszka Konarzewska
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (B.M.); (A.K.); (M.D.-J.)
| | - Marzena Ułamek-Kozioł
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Monika Dudra-Jastrzębska
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (B.M.); (A.K.); (M.D.-J.)
| | - Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Correspondence: (R.P.); (S.J.C.); Tel.: +48-22-6086-540 (ext. 6086-469) (R.P.); +48-81-448-65-00 (S.J.C.); Fax: +48-81-448-65-01 (S.J.C.); +48-22-6086-627/668-55-32 (R.P.)
| | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (B.M.); (A.K.); (M.D.-J.)
- Correspondence: (R.P.); (S.J.C.); Tel.: +48-22-6086-540 (ext. 6086-469) (R.P.); +48-81-448-65-00 (S.J.C.); Fax: +48-81-448-65-01 (S.J.C.); +48-22-6086-627/668-55-32 (R.P.)
| |
Collapse
|
13
|
Yip KL, Koon CM, Chen ZY, Chook P, Leung PC, Schachter S, Leung WH, Mok CT, Leung H. The antiepileptic effect of Gastrodiae Rhizoma through modulating overexpression of mTOR and attenuating astrogliosis in pilocarpine mice model. Epilepsia Open 2019; 5:50-60. [PMID: 32140643 PMCID: PMC7049815 DOI: 10.1002/epi4.12372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 10/21/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022] Open
Abstract
Objective To investigate the effect of water extract of Gastrodiae Rhizoma (GR) on the development of acquired temporal lobe epilepsy (TLE) and on regulating the expression of the mammalian target of rapamycin (mTOR) and semaphorin 3F (SEMA3F). Methods A pilocarpine‐induced status epilepticus (SE) model was adopted to precipitate injury in the limbic systems. GR and carbamazepine (CBZ) treatments were given to mice for 14 days prior to SE induction to demonstrate the antiepileptic effects and continued for 5 more days to illustrate the effects on histologic studies. Results Our results consolidated that GR treatment (92.1 minutes) could delay the SE onset in comparison with the control group (61.5 minutes, P = .041). Fewer mice had reached SE with GR treatment (41.7%) when compared with the control group (83.3%, P = .044). GR treatment (2.1 hours/mouse) could suppress the number of acute seizures in post‐SE survival mice when compared with the control group (4.5 hours/mouse, P < .001). The effects of GR treatment were elucidated with the mechanism of actions. GR treatment reduced the overexpression of mTOR (0.27 vs 0.67 AU/mg protein, P = .047). GR treatment increased the underexpression of SEMA3F (0.51 vs 0.16 µg/mg protein, P = .034). In the histochemical study of microtubule‐associated protein 2 (MAP2) staining, our results showed that GR prevented neuronal loss in the GR treatment group (64.8% positively stained pixel area) as compared with the control group (59%, P = .014) in the hippocampus. In glial fibrillary acidic protein (GFAP) staining, the severity of astrogliosis was mitigated by the GR treatment (4.1% positively stained pixel area) when compared to the control group (5.6%, P = .047) in the hippocampus. Significance These results provide preclinical evidence to support the use of GR, which could suppress acute seizures and relieve pathological changes in pilocarpine‐induced TLE mice. We demonstrated that the antiepileptic effects of GR could be accompanied by mTOR reduction and astrogliosis attenuation.
Collapse
Affiliation(s)
- Ka Lai Yip
- Department of Medicine and Therapeutics The Chinese University of Hong Kong New Territories Hong Kong
| | - Chi Man Koon
- Institute of Chinese Medicine The Chinese University of Hong Kong New Territories Hong Kong.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants The Chinese University of Hong Kong New Territories Hong Kong
| | - Zi Yi Chen
- Department of Neurology The First Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Ping Chook
- Institute of Chinese Medicine The Chinese University of Hong Kong New Territories Hong Kong.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants The Chinese University of Hong Kong New Territories Hong Kong
| | - Ping Chung Leung
- Institute of Chinese Medicine The Chinese University of Hong Kong New Territories Hong Kong.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants The Chinese University of Hong Kong New Territories Hong Kong
| | - Steven Schachter
- Beth Israel Deaconess Medical Center Harvard Medical School Boston MA USA.,Center for Integration of Medicine and Innovative Technology Massachusetts General Hospital Boston MA USA
| | - Wai Hong Leung
- Department of Medicine and Therapeutics The Chinese University of Hong Kong New Territories Hong Kong
| | - Chung Tong Mok
- Department of Medicine and Therapeutics The Chinese University of Hong Kong New Territories Hong Kong
| | - Howan Leung
- Department of Medicine and Therapeutics The Chinese University of Hong Kong New Territories Hong Kong
| |
Collapse
|
14
|
Beenhakker M, Ritger M. One Seizure Please, Hold the Sprouts: The Role of Hippocampal Mossy Fiber Sprouting in Epilepsy. Epilepsy Curr 2019; 19:414-416. [PMID: 31558042 PMCID: PMC6891178 DOI: 10.1177/1535759719876556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
[Box: see text].
Collapse
|
15
|
Gericke B, Brandt C, Theilmann W, Welzel L, Schidlitzki A, Twele F, Kaczmarek E, Anjum M, Hillmann P, Löscher W. Selective inhibition of mTORC1/2 or PI3K/mTORC1/2 signaling does not prevent or modify epilepsy in the intrahippocampal kainate mouse model. Neuropharmacology 2019; 162:107817. [PMID: 31654704 DOI: 10.1016/j.neuropharm.2019.107817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/26/2019] [Accepted: 10/18/2019] [Indexed: 12/23/2022]
Abstract
Dysregulation of the PI3K/Akt/mTOR pathway has been implicated in several brain disorders, including epilepsy. Rapamycin and similar compounds inhibit mTOR. complex 1 and have been reported to decrease seizures, delay seizure development, or prevent epileptogenesis in different animal models of genetic or acquired epilepsies. However, data for acquired epilepsy are inconsistent, which, at least in part, may be due to the poor brain penetration and long brain persistence of rapamycin and the fact that it blocks only one of the two cellular mTOR complexes. Here we examined the antiepileptogenic or disease-modifying effects of two novel, brain-permeable and well tolerated 1,3,5-triazine derivatives, the ATP-competitive mTORC1/2 inhibitor PQR620 and the dual pan-PI3K/mTORC1/2 inhibitor PQR530 in the intrahippocampal kainate mouse model, in which spontaneous seizures develop after status epilepticus (SE). Following kainate injection, the two compounds were administered over 2 weeks at doses previously been shown to block mTORC1/2 or PI3K/mTORC1/2 in the mouse brain. When spontaneous seizures were recorded by continuous (24/7) video-EEG recording starting 6 weeks after termination of treatment, no effects on incidence or frequency of seizures were observed. Drug treatment suppressed the epilepsy-induced activation of the PI3K/Akt/mTOR pathway in the hippocampus, but granule cell dispersion in the dentate gyrus was not prevented. When epilepsy-associated behavioral alterations were determined 12-14 weeks after kainate, mice pretreated with PQR620 or PQR530 exhibited reduced anxiety-related behavior in the light-dark box, indicating a disease-modifying effect. Overall, the data indicate that mTORC1/C2 or PI3K/mTORC1/C2 inhibition may not be an antiepileptogenic strategy for SE-induced epilepsy.
Collapse
Affiliation(s)
- Birthe Gericke
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Claudia Brandt
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Wiebke Theilmann
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Lisa Welzel
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Alina Schidlitzki
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Friederike Twele
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Edith Kaczmarek
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Muneeb Anjum
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | | | - Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
16
|
Maia GH, Soares JI, Almeida SG, Leite JM, Baptista HX, Lukoyanova AN, Brazete CS, Lukoyanov NV. Altered serotonin innervation in the rat epileptic brain. Brain Res Bull 2019; 152:95-106. [DOI: 10.1016/j.brainresbull.2019.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 01/19/2023]
|
17
|
Abstract
Remodeled Cortical Inhibition Prevents Motor Seizures in Generalized Epilepsy Jiang X, Lupien-Meilleur A, Tazerart S, Lachance M, Samarova E, Araya R, Lacaille JC, Rossignol E. Ann Neurol. 2018 Sep;84(3):436-451. OBJECTIVE Deletions of CACNA1A, encoding the α1 subunit of CaV 2.1 channels, cause epilepsy with ataxia in humans. Whereas the deletion of Cacna1a in γ-aminobutyric acidergic (GABAergic) interneurons (INs) derived from the medial ganglionic eminence (MGE) impairs cortical inhibition and causes generalized seizures in Nkx2.1Cre;Cacna1ac/c mice, the targeted deletion of Cacna1a in somatostatin-expressing INs (SOM-INs), a subset of MGE-derived INs, does not result in seizures, indicating a crucial role of parvalbumin-expressing (PV) INs. Here, we identify the cellular and network consequences of Cacna1a deletion specifically in PV-INs. METHODS We generated PVCre;Cacna1ac/c mutant mice carrying a conditional Cacna1a deletion in PV neurons and evaluated the cortical cellular and network outcomes of this mutation by combining immunohistochemical assays, in vitro electrophysiology, 2-photon imaging, and in vivo video-electroencephalographic recordings. RESULTS PVCre;Cacna1ac/c mice display reduced cortical perisomatic inhibition and frequent absences, but only rare motor seizures. Compared to Nkx2.1Cre;Cacna1ac/c mice, PVCre;Cacna1ac/c mice have a net increase in cortical inhibition, with a gain of dendritic inhibition through sprouting of SOM-IN axons, largely preventing motor seizures. This beneficial compensatory remodeling of cortical GABAergic innervation is mechanistic target of rapamycin complex 1 (mTORC1)-dependent, and its inhibition with rapamycin leads to a striking increase in motor seizures. Furthermore, we show that a direct chemogenic activation of cortical SOM-INs prevents motor seizures in a model of kainate-induced seizures. INTERPRETATION Our findings provide novel evidence suggesting that the remodeling of cortical inhibition, with an mTOR-dependent gain of dendritic inhibition, determines the seizure phenotype in generalized epilepsy and that mTOR inhibition can be detrimental in epilepsies not primarily due to mTOR hyperactivation.
Collapse
|
18
|
A Network Model Reveals That the Experimentally Observed Switch of the Granule Cell Phenotype During Epilepsy Can Maintain the Pattern Separation Function of the Dentate Gyrus. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-319-99103-0_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Cavarsan CF, Malheiros J, Hamani C, Najm I, Covolan L. Is Mossy Fiber Sprouting a Potential Therapeutic Target for Epilepsy? Front Neurol 2018; 9:1023. [PMID: 30555406 PMCID: PMC6284045 DOI: 10.3389/fneur.2018.01023] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) caused by hippocampal sclerosis is one of the most frequent focal epilepsies in adults. It is characterized by focal seizures that begin in the hippocampus, sometimes spread to the insulo-perisylvian regions and may progress to secondary generalized seizures. Morphological alterations in hippocampal sclerosis are well defined. Among them, hippocampal sclerosis is characterized by prominent cell loss in the hilus and CA1, and abnormal mossy fiber sprouting (granular cell axons) into the dentate gyrus inner molecular layer. In this review, we highlight the role of mossy fiber sprouting in seizure generation and hippocampal excitability and discuss the response of alternative treatment strategies in terms of MFS and spontaneous recurrent seizures in models of TLE (temporal lobe epilepsy).
Collapse
Affiliation(s)
- Clarissa F Cavarsan
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jackeline Malheiros
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Clement Hamani
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil.,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Imad Najm
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Luciene Covolan
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil.,Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
20
|
Lalitha S, Minz RW, Medhi B. Understanding the controversial drug targets in epilepsy and pharmacoresistant epilepsy. Rev Neurosci 2018; 29:333-345. [PMID: 29211683 DOI: 10.1515/revneuro-2017-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/11/2017] [Indexed: 12/18/2022]
Abstract
Accumulating experimental data suggests a number of successful drug targets against epilepsy which eventually failed in the clinical setup. Mammalian target of rapamycin inhibitors, multi-drug resistance transporter inhibitors, cyclo-oxygenase-2 inhibitors, statins, etc. are the most promising and well studied among them. Drugs aiming at these targets produced beneficial response in most of the in vitro and in vivo seizure models. However, in certain situations, they have produced differential rather controversial results. Their effects varied with the seizure model, species, time and route of administration, different drugs from the same class, etc. This review emphasises on such drugs which presented with variability in their beneficial effects against seizures and epilepsy. This review critically summarises the preclinical evidence of these targets in the context of seizures and the probable reasons for their variability and clinical failures.
Collapse
Affiliation(s)
- Sree Lalitha
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Ranjana W Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
21
|
Abstract
Evidence from both preclinical and clinical studies suggest the importance of zinc homeostasis in seizures/epilepsy. Undoubtedly, zinc, via modulation of a variety of targets, is necessary for maintaining the balance between neuronal excitation and inhibition, while an imbalance between excitation and inhibition underlies seizures. However, the relationship between zinc signaling and seizures/epilepsy is complex as both extracellular and intracellular zinc may produce either protective or detrimental effects. This review provides an overview of preclinical/behavioral, functional and molecular studies, as well as clinical data on the involvement of zinc in the pathophysiology and treatment of seizures/epilepsy. Furthermore, the potential of targeting elements associated with zinc signaling or homeostasis and zinc levels as a therapeutic strategy for epilepsy is discussed.
Collapse
Affiliation(s)
- Urszula Doboszewska
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland.
| | - Katarzyna Młyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland
| | - Aleksandra Wlaź
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Ewa Poleszak
- Department of Applied Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland; Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
22
|
Brandt C, Hillmann P, Noack A, Römermann K, Öhler LA, Rageot D, Beaufils F, Melone A, Sele AM, Wymann MP, Fabbro D, Löscher W. The novel, catalytic mTORC1/2 inhibitor PQR620 and the PI3K/mTORC1/2 inhibitor PQR530 effectively cross the blood-brain barrier and increase seizure threshold in a mouse model of chronic epilepsy. Neuropharmacology 2018; 140:107-120. [PMID: 30081001 DOI: 10.1016/j.neuropharm.2018.08.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/09/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
The mTOR signaling pathway has emerged as a possible therapeutic target for epilepsy. Clinical trials have shown that mTOR inhibitors such as everolimus reduce seizures in tuberous sclerosis complex patients with intractable epilepsy. Furthermore, accumulating preclinical data suggest that mTOR inhibitors may have anti-seizure or anti-epileptogenic actions in other types of epilepsy. However, the chronic use of rapalogs such as everolimus is limited by poor tolerability, particularly by immunosuppression, poor brain penetration and induction of feedback loops which might contribute to their limited therapeutic efficacy. Here we describe two novel, brain-permeable and well tolerated small molecule 1,3,5-triazine derivatives, the catalytic mTORC1/C2 inhibitor PQR620 and the dual pan-PI3K/mTOR inhibitor PQR530. These derivatives were compared with the mTORC1 inhibitors rapamycin and everolimus as well as the anti-seizure drugs phenobarbital and levetiracetam. The anti-seizure potential of these compounds was determined by evaluating the electroconvulsive seizure threshold in normal and epileptic mice. Rapamycin and everolimus only poorly penetrated into the brain (brain:plasma ratio 0.0057 for rapamycin and 0.016 for everolimus). In contrast, the novel compounds rapidly entered the brain, reaching brain:plasma ratios of ∼1.6. Furthermore, they significantly decreased phosphorylation of S6 ribosomal protein in the hippocampus of normal and epileptic mice, demonstrating effective mTOR inhibition. PQR620 and PQR530 significantly increased seizure threshold at tolerable doses. The effect of PQR620 was more marked in epileptic vs. nonepileptic mice, matching the efficacy of levetiracetam. Overall, the novel compounds described here have the potential to overcome the disadvantages of rapalogs for treatment of epilepsy and mTORopathies directly connected to mutations in the mTOR signaling cascade.
Collapse
Affiliation(s)
- Claudia Brandt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | | | - Andreas Noack
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Leon A Öhler
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Denise Rageot
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Anna Melone
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Alexander M Sele
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
23
|
Godale CM, Danzer SC. Signaling Pathways and Cellular Mechanisms Regulating Mossy Fiber Sprouting in the Development of Epilepsy. Front Neurol 2018; 9:298. [PMID: 29774009 PMCID: PMC5943493 DOI: 10.3389/fneur.2018.00298] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/17/2018] [Indexed: 02/04/2023] Open
Abstract
The sprouting of hippocampal dentate granule cell axons, termed mossy fibers, into the dentate inner molecular layer is one of the most consistent findings in tissue from patients with mesial temporal lobe epilepsy. Decades of research in animal models have revealed that mossy fiber sprouting creates de novo recurrent excitatory connections in the hippocampus, fueling speculation that the pathology may drive temporal lobe epileptogenesis. Conducting definitive experiments to test this hypothesis, however, has been challenging due to the difficulty of dissociating this sprouting from the many other changes occurring during epileptogenesis. The field has been largely driven, therefore, by correlative data. Recently, the development of powerful transgenic mouse technologies and the discovery of novel drug targets has provided new tools to assess the role of mossy fiber sprouting in epilepsy. We can now selectively manipulate hippocampal granule cells in rodent epilepsy models, providing new insights into the granule cell subpopulations that participate in mossy fiber sprouting. The cellular pathways regulating this sprouting are also coming to light, providing new targets for pharmacological intervention. Surprisingly, many investigators have found that blocking mossy fiber sprouting has no effect on seizure occurrence, while seizure frequency can be reduced by treatments that have no effect on this sprouting. These results raise new questions about the role of mossy fiber sprouting in epilepsy. Here, we will review these findings with particular regard to the contributions of new granule cells to mossy fiber sprouting and the regulation of this sprouting by the mTOR signaling pathway.
Collapse
Affiliation(s)
- Christin M Godale
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States.,Department of Anesthesia, University of Cincinnati, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
24
|
Lim JA, Moon J, Kim TJ, Jun JS, Park B, Byun JI, Sunwoo JS, Park KI, Lee ST, Jung KH, Jung KY, Kim M, Jeon D, Chu K, Lee SK. Clustering of spontaneous recurrent seizures separated by long seizure-free periods: An extended video-EEG monitoring study of a pilocarpine mouse model. PLoS One 2018; 13:e0194552. [PMID: 29558523 PMCID: PMC5860752 DOI: 10.1371/journal.pone.0194552] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/06/2018] [Indexed: 02/07/2023] Open
Abstract
Seizure clustering is a common and significant phenomenon in patients with epilepsy. The clustering of spontaneous recurrent seizures (SRSs) in animal models of epilepsy, including mouse pilocarpine models, has been reported. However, most studies have analyzed seizures for a short duration after the induction of status epilepticus (SE). In this study, we investigated the detailed characteristics of seizure clustering in the chronic stage of a mouse pilocarpine-induced epilepsy model for an extended duration by continuous 24/7 video-EEG monitoring. A seizure cluster was defined as the occurrence of one or more seizures per day for at least three consecutive days and at least five seizures during the cluster period. We analyzed the cluster duration, seizure-free period, cluster interval, and numbers of seizures within and outside the seizure clusters. The video-EEG monitoring began 84.5±33.7 days after the induction of SE and continued for 53.7±20.4 days. Every mouse displayed seizure clusters, and 97.0% of the seizures occurred within a cluster period. The seizure clusters were followed by long seizure-free periods of 16.3±6.8 days, showing a cyclic pattern. The SRSs also occurred in a grouped pattern within a day. We demonstrate that almost all seizures occur in clusters with a cyclic pattern in the chronic stage of a mouse pilocarpine-induced epilepsy model. The seizure-free periods between clusters were long. These findings should be considered when performing in vivo studies using this animal model. Furthermore, this model might be appropriate for studying the unrevealed mechanism of ictogenesis.
Collapse
Affiliation(s)
- Jung-Ah Lim
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Department of Neurology, Gangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Jangsup Moon
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Tae-Joon Kim
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Jin-Sun Jun
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Byeongsu Park
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Department of Neurology, Ulsan University Hospital, Ulsan University College of Medicine, Ulsan, Korea
| | - Jung-Ick Byun
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Department of Neurology, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Jun-Sang Sunwoo
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Department of Neurology, Soonchunhyang University School of Medicine, Seoul, South Korea
| | - Kyung-Il Park
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Department of Neurology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, South Korea
| | - Soon-Tae Lee
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Keun-Hwa Jung
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Ki-Young Jung
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Manho Kim
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Daejong Jeon
- Advanced Neural Technologies, Co., Seoul, South Korea
| | - Kon Chu
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Sang Kun Lee
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
25
|
Talos DM, Jacobs LM, Gourmaud S, Coto CA, Sun H, Lim KC, Lucas TH, Davis KA, Martinez-Lage M, Jensen FE. Mechanistic target of rapamycin complex 1 and 2 in human temporal lobe epilepsy. Ann Neurol 2018; 83:311-327. [PMID: 29331082 DOI: 10.1002/ana.25149] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is a chronic epilepsy syndrome defined by seizures and progressive neurological disabilities, including cognitive impairments, anxiety, and depression. Here, human TLE specimens were investigated focusing on the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) and complex 2 (mTORC2) activities in the brain, given that both pathways may represent unique targets for treatment. METHODS Surgically resected hippocampal and temporal lobe samples from therapy-resistant TLE patients were analyzed by western blotting to quantify the expression of established mTORC1 and mTORC2 activity markers and upstream or downstream signaling pathways involving the two complexes. Histological and immunohistochemical techniques were used to assess hippocampal and neocortical structural abnormalities and cell-specific expression of individual biomarkers. Samples from patients with focal cortical dysplasia (FCD) type II served as positive controls. RESULTS We found significantly increased expression of phospho-mTOR (Ser2448), phospho-S6 (Ser235/236), phospho-S6 (Ser240/244), and phospho-Akt (Ser473) in TLE samples compared to controls, consistent with activation of both mTORC1 and mTORC2. Our work identified the phosphoinositide 3-kinase and Ras/extracellular signal-regulated kinase signaling pathways as potential mTORC1 and mTORC2 upstream activators. In addition, we found that overactive mTORC2 signaling was accompanied by induction of two protein kinase B-dependent prosurvival pathways, as evidenced by increased inhibitory phosphorylation of forkhead box class O3a (Ser253) and glycogen synthase kinase 3 beta (Ser9). INTERPRETATION Our data demonstrate that mTOR signaling is significantly dysregulated in human TLE, offering new targets for pharmacological interventions. Specifically, clinically available drugs that suppress mTORC1 without compromising mTOR2 signaling, such as rapamycin and its analogs, may represent a new group of antiepileptogenic agents in TLE patients. Ann Neurol 2018;83:311-327.
Collapse
Affiliation(s)
- Delia M Talos
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Leah M Jacobs
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Sarah Gourmaud
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Carlos A Coto
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Hongyu Sun
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA.,Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Kuei-Cheng Lim
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Timothy H Lucas
- Department of Neurosurgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Kathryn A Davis
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Maria Martinez-Lage
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Frances E Jensen
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
26
|
Reddy SD, Clossen BL, Reddy DS. Epigenetic Histone Deacetylation Inhibition Prevents the Development and Persistence of Temporal Lobe Epilepsy. J Pharmacol Exp Ther 2018; 364:97-109. [PMID: 29101217 DOI: 10.1124/jpet.117.244939] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/31/2017] [Indexed: 03/08/2025] Open
Abstract
Epilepsy is a chronic brain disease characterized by repeated unprovoked seizures. Currently, no drug therapy exists for curing epilepsy or disease modification in people at risk. Despite several emerging mechanisms, there have been few studies of epigenetic signaling in epileptogenesis, the process whereby a normal brain becomes progressively epileptic because of precipitating factors. Here, we report a novel role of histone deacetylation as a critical epigenetic mechanism in epileptogenesis. Experiments were conducted using the histone deacetylase (HDAC) inhibitor sodium butyrate in the hippocampus kindling model of temporal lobe epilepsy (TLE), a classic model heavily used to approve drugs for treatment of epilepsy. Daily treatment with butyrate significantly inhibited HDAC activity and retarded the development of limbic epileptogenesis without affecting after-discharge signal. HDAC inhibition markedly impaired the persistence of seizure expression many weeks after epilepsy development. Moreover, subchronic HDAC inhibition for 2 weeks resulted in a striking retardation of epileptogenesis. HDAC inhibition, unexpectedly, also showed erasure of the epileptogenic state in epileptic animals. Finally, butyrate-treated animals exhibited a powerful reduction in mossy fiber sprouting, a morphologic index of epileptogenesis. Together these results underscore that HDAC inhibition prevents the development of TLE, indicating HDAC's critical signaling role in epileptogenesis. These findings, therefore, envisage a unique novel therapy for preventing or curing epilepsy by targeting the epigenetic HDAC pathway.
Collapse
Affiliation(s)
- Sandesh D Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, Texas
| | - Bryan L Clossen
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, Texas
| |
Collapse
|
27
|
Brain Injury-Induced Synaptic Reorganization in Hilar Inhibitory Neurons Is Differentially Suppressed by Rapamycin. eNeuro 2017; 4:eN-NWR-0134-17. [PMID: 29085896 PMCID: PMC5659239 DOI: 10.1523/eneuro.0134-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 09/07/2017] [Accepted: 09/20/2017] [Indexed: 12/18/2022] Open
Abstract
Following traumatic brain injury (TBI), treatment with rapamycin suppresses mammalian (mechanistic) target of rapamycin (mTOR) activity and specific components of hippocampal synaptic reorganization associated with altered cortical excitability and seizure susceptibility. Reemergence of seizures after cessation of rapamycin treatment suggests, however, an incomplete suppression of epileptogenesis. Hilar inhibitory interneurons regulate dentate granule cell (DGC) activity, and de novo synaptic input from both DGCs and CA3 pyramidal cells after TBI increases their excitability but effects of rapamycin treatment on the injury-induced plasticity of interneurons is only partially described. Using transgenic mice in which enhanced green fluorescent protein (eGFP) is expressed in the somatostatinergic subset of hilar inhibitory interneurons, we tested the effect of daily systemic rapamycin treatment (3 mg/kg) on the excitability of hilar inhibitory interneurons after controlled cortical impact (CCI)-induced focal brain injury. Rapamycin treatment reduced, but did not normalize, the injury-induced increase in excitability of surviving eGFP+ hilar interneurons. The injury-induced increase in response to selective glutamate photostimulation of DGCs was reduced to normal levels after mTOR inhibition, but the postinjury increase in synaptic excitation arising from CA3 pyramidal cell activity was unaffected by rapamycin treatment. The incomplete suppression of synaptic reorganization in inhibitory circuits after brain injury could contribute to hippocampal hyperexcitability and the eventual reemergence of the epileptogenic process upon cessation of mTOR inhibition. Further, the cell-selective effect of mTOR inhibition on synaptic reorganization after CCI suggests possible mechanisms by which rapamycin treatment modifies epileptogenesis in some models but not others.
Collapse
|
28
|
Santos VR, Pun RYK, Arafa SR, LaSarge CL, Rowley S, Khademi S, Bouley T, Holland KD, Garcia-Cairasco N, Danzer SC. PTEN deletion increases hippocampal granule cell excitability in male and female mice. Neurobiol Dis 2017; 108:339-351. [PMID: 28855130 DOI: 10.1016/j.nbd.2017.08.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/10/2017] [Accepted: 08/26/2017] [Indexed: 02/06/2023] Open
Abstract
Deletion of the mTOR pathway inhibitor PTEN from postnatally-generated hippocampal dentate granule cells causes epilepsy. Here, we conducted field potential, whole cell recording and single cell morphology studies to begin to elucidate the mechanisms by which granule cell-specific PTEN-loss produces disease. Cells from both male and female mice were recorded to identify sex-specific effects. PTEN knockout granule cells showed altered intrinsic excitability, evident as a tendency to fire in bursts. PTEN knockout granule cells also exhibited increased frequency of spontaneous excitatory synaptic currents (sEPSCs) and decreased frequency of inhibitory currents (sIPSCs), further indicative of a shift towards hyperexcitability. Morphological studies of PTEN knockout granule cells revealed larger dendritic trees, more dendritic branches and an impairment of dendrite self-avoidance. Finally, cells from both female control and female knockout mice received more sEPSCs and more sIPSCs than corresponding male cells. Despite the difference, the net effect produced statistically equivalent EPSC/IPSC ratios. Consistent with this latter observation, extracellularly evoked responses in hippocampal slices were similar between male and female knockouts. Both groups of knockouts were abnormal relative to controls. Together, these studies reveal a host of physiological and morphological changes among PTEN knockout cells likely to underlie epileptogenic activity. SIGNIFICANCE STATEMENT Hyperactivation of the mTOR pathway is associated with numerous neurological diseases, including autism and epilepsy. Here, we demonstrate that deletion of the mTOR negative regulator, PTEN, from a subset of hippocampal dentate granule impairs dendritic patterning, increases excitatory input and decreases inhibitory input. We further demonstrate that while granule cells from female mice receive more excitatory and inhibitory input than males, PTEN deletion produces mostly similar changes in both sexes. Together, these studies provide new insights into how the relatively small number (≈200,000) of PTEN knockout granule cells instigates the development of the profound epilepsy syndrome evident in both male and female animals in this model.
Collapse
Affiliation(s)
- Victor R Santos
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Raymund Y K Pun
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Salwa R Arafa
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; University of Cincinnati, College of Pharmacy, Cincinnati, OH 45267, United States
| | - Candi L LaSarge
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Shane Rowley
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Shadi Khademi
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Tom Bouley
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Katherine D Holland
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45267, United States.
| |
Collapse
|
29
|
Buckmaster PS, Abrams E, Wen X. Seizure frequency correlates with loss of dentate gyrus GABAergic neurons in a mouse model of temporal lobe epilepsy. J Comp Neurol 2017; 525:2592-2610. [PMID: 28425097 PMCID: PMC5963263 DOI: 10.1002/cne.24226] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/19/2023]
Abstract
Epilepsy occurs in one of 26 people. Temporal lobe epilepsy is common and can be difficult to treat effectively. It can develop after brain injuries that damage the hippocampus. Multiple pathophysiological mechanisms involving the hippocampal dentate gyrus have been proposed. This study evaluated a mouse model of temporal lobe epilepsy to test which pathological changes in the dentate gyrus correlate with seizure frequency and help prioritize potential mechanisms for further study. FVB mice (n = 127) that had experienced status epilepticus after systemic treatment with pilocarpine 31-61 days earlier were video-monitored for spontaneous, convulsive seizures 9 hr/day every day for 24-36 days. Over 4,060 seizures were observed. Seizure frequency ranged from an average of one every 3.6 days to one every 2.1 hr. Hippocampal sections were processed for Nissl stain, Prox1-immunocytochemistry, GluR2-immunocytochemistry, Timm stain, glial fibrillary acidic protein-immunocytochemistry, glutamic acid decarboxylase in situ hybridization, and parvalbumin-immunocytochemistry. Stereological methods were used to measure hilar ectopic granule cells, mossy cells, mossy fiber sprouting, astrogliosis, and GABAergic interneurons. Seizure frequency was not significantly correlated with the generation of hilar ectopic granule cells, the number of mossy cells, the extent of mossy fiber sprouting, the extent of astrogliosis, or the number of GABAergic interneurons in the molecular layer or hilus. Seizure frequency significantly correlated with the loss of GABAergic interneurons in or adjacent to the granule cell layer, but not with the loss of parvalbumin-positive interneurons. These findings prioritize the loss of granule cell layer interneurons for further testing as a potential cause of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Paul S. Buckmaster
- Department of Comparative Medicine, Stanford University, Stanford, California
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, California
| | - Emily Abrams
- Department of Comparative Medicine, Stanford University, Stanford, California
| | - Xiling Wen
- Department of Comparative Medicine, Stanford University, Stanford, California
| |
Collapse
|
30
|
Lösing P, Niturad CE, Harrer M, Reckendorf CMZ, Schatz T, Sinske D, Lerche H, Maljevic S, Knöll B. SRF modulates seizure occurrence, activity induced gene transcription and hippocampal circuit reorganization in the mouse pilocarpine epilepsy model. Mol Brain 2017; 10:30. [PMID: 28716058 PMCID: PMC5513048 DOI: 10.1186/s13041-017-0310-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/28/2017] [Indexed: 11/10/2022] Open
Abstract
A hallmark of temporal lobe epilepsy (TLE) is hippocampal neuronal demise and aberrant mossy fiber sprouting. In addition, unrestrained neuronal activity in TLE patients induces gene expression including immediate early genes (IEGs) such as Fos and Egr1. We employed the mouse pilocarpine model to analyze the transcription factor (TF) serum response factor (SRF) in epileptogenesis, seizure induced histopathology and IEG induction. SRF is a neuronal activity regulated TF stimulating IEG expression as well as nerve fiber growth and guidance. Adult conditional SRF deficient mice (SrfCaMKCreERT2) were more refractory to initial status epilepticus (SE) acquisition. Further, SRF deficient mice developed more spontaneous recurrent seizures (SRS). Genome-wide transcriptomic analysis uncovered a requirement of SRF for SE and SRS induced IEG induction (e.g. Fos, Egr1, Arc, Npas4, Btg2, Atf3). SRF was required for epilepsy associated neurodegeneration, mossy fiber sprouting and inflammation. We uncovered MAP kinase signaling as SRF target during epilepsy. Upon SRF ablation, seizure evoked induction of dual specific phosphatases (Dusp5 and Dusp6) was reduced. Lower expression of these negative ERK kinase regulators correlated with altered P-ERK levels in epileptic Srf mutant animals. Overall, this study uncovered an SRF contribution to several processes of epileptogenesis in the pilocarpine model.
Collapse
Affiliation(s)
- Pascal Lösing
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Cristina Elena Niturad
- Department of Neurology and Epileptology, Hertie-Institute of Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Merle Harrer
- Department of Neurology and Epileptology, Hertie-Institute of Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | | | - Theresa Schatz
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Daniela Sinske
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie-Institute of Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Snezana Maljevic
- Department of Neurology and Epileptology, Hertie-Institute of Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.,Present address: The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville VIC, Melbourne, 3052, Australia
| | - Bernd Knöll
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
31
|
Łukawski K, Andres-Mach M, Czuczwar M, Łuszczki JJ, Kruszyński K, Czuczwar SJ. Mechanisms of epileptogenesis and preclinical approach to antiepileptogenic therapies. Pharmacol Rep 2017; 70:284-293. [PMID: 29477036 DOI: 10.1016/j.pharep.2017.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/17/2017] [Accepted: 07/12/2017] [Indexed: 12/30/2022]
Abstract
The prevalence of epilepsy is estimated 5-10 per 1000 population and around 70% of patients with epilepsy can be sufficiently controlled by antiepileptic drugs (AEDs). Epileptogenesis is the process responsible for converting normal into an epileptic brain and mechanisms responsible include among others: inflammation, neurodegeneration, neurogenesis, neural reorganization and plasticity. Some AEDs may be antiepileptiogenic (diazepam, eslicarbazepine) but the correlation between neuroprotection and inhibition of epileptogenesis is not evident. Antiepileptogenic activity has been postulated for mTOR ligands, resveratrol and losartan. So far, clinical evidence gives some hope for levetiracetam as an AED inhibiting epileptogenesis in neurosurgical patients. Biomarkers for epileptogenesis are needed for the proper selection of patients for evaluation of potential antiepileptogenic compounds.
Collapse
Affiliation(s)
- Krzysztof Łukawski
- Department of Physiopathology, Institute of Rural Health, Lublin, Poland; Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Marta Andres-Mach
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | - Mirosław Czuczwar
- 2nd Department of Anesthesiology and Intensive Care, Medical University of Lublin, Lublin, Poland
| | - Jarogniew J Łuszczki
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland; Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | | | - Stanisław J Czuczwar
- Department of Physiopathology, Institute of Rural Health, Lublin, Poland; Department of Pathophysiology, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
32
|
Zhu K, Yuan B, Hu M, Feng GF, Liu Y, Liu JX. Reduced abnormal integration of adult-generated granule cells does not attenuate spontaneous recurrent seizures in mice. Epilepsy Res 2017; 133:58-66. [DOI: 10.1016/j.eplepsyres.2017.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/10/2017] [Accepted: 04/03/2017] [Indexed: 11/26/2022]
|
33
|
Clossen BL, Reddy DS. Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1519-1538. [PMID: 28179120 PMCID: PMC5474195 DOI: 10.1016/j.bbadis.2017.02.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 11/16/2022]
Abstract
This article describes the recent advances in epileptogenesis and novel therapeutic approaches for the prevention of epilepsy, with a special emphasis on the pharmacological basis of disease-modification of epileptogenesis for curing epilepsy. Here we assess animal studies and human clinical trials of epilepsy spanning 1982-2016. Epilepsy arises from a number of neuronal factors that trigger epileptogenesis, which is the process by which a brain shifts from a normal physiologic state to an epileptic condition. The events precipitating these changes can be of diverse origin, including traumatic brain injury, cerebrovascular damage, infections, chemical neurotoxicity, and emergency seizure conditions such as status epilepticus. Expectedly, the molecular and system mechanisms responsible for epileptogenesis are not well defined or understood. To date, there is no approved therapy for the prevention of epilepsy. Epigenetic dysregulation, neuroinflammation, and neurodegeneration appear to trigger epileptogenesis. Targeted drugs are being identified that can truly prevent the development of epilepsy in at-risk people. The promising agents include rapamycin, COX-2 inhibitors, TRK inhibitors, epigenetic modulators, JAK-STAT inhibitors, and neurosteroids. Recent evidence suggests that neurosteroids may play a role in modulating epileptogenesis. A number of promising drugs are under investigation for the prevention or modification of epileptogenesis to halt the development of epilepsy. Some drugs in development appear rational for preventing epilepsy because they target the initial trigger or related signaling pathways as the brain becomes progressively more prone to seizures. Additional research into the target validity and clinical investigation is essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Bryan L Clossen
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
34
|
Kinjo ER, Rodríguez PXR, Dos Santos BA, Higa GSV, Ferraz MSA, Schmeltzer C, Rüdiger S, Kihara AH. New Insights on Temporal Lobe Epilepsy Based on Plasticity-Related Network Changes and High-Order Statistics. Mol Neurobiol 2017; 55:3990-3998. [PMID: 28555345 DOI: 10.1007/s12035-017-0623-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/16/2017] [Indexed: 12/21/2022]
Abstract
Epilepsy is a disorder of the brain characterized by the predisposition to generate recurrent unprovoked seizures, which involves reshaping of neuronal circuitries based on intense neuronal activity. In this review, we first detailed the regulation of plasticity-associated genes, such as ARC, GAP-43, PSD-95, synapsin, and synaptophysin. Indeed, reshaping of neuronal connectivity after the primary, acute epileptogenesis event increases the excitability of the temporal lobe. Herein, we also discussed the heterogeneity of neuronal populations regarding the number of synaptic connections, which in the theoretical field is commonly referred as degree. Employing integrate-and-fire neuronal model, we determined that in addition to increased synaptic strength, degree correlations might play essential and unsuspected roles in the control of network activity. Indeed, assortativity, which can be described as a condition where high-degree correlations are observed, increases the excitability of neural networks. In this review, we summarized recent topics in the field, and data were discussed according to newly developed or unusual tools, as provided by mathematical graph analysis and high-order statistics. With this, we were able to present new foundations for the pathological activity observed in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Erika Reime Kinjo
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Pedro Xavier Royero Rodríguez
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Bianca Araújo Dos Santos
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Guilherme Shigueto Vilar Higa
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Mariana Sacrini Ayres Ferraz
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Christian Schmeltzer
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
- Institute of Physics, Humboldt University at Berlin, Berlin, Germany
| | - Sten Rüdiger
- Institute of Physics, Humboldt University at Berlin, Berlin, Germany
| | - Alexandre Hiroaki Kihara
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil.
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
35
|
Short-Term Depression of Sprouted Mossy Fiber Synapses from Adult-Born Granule Cells. J Neurosci 2017; 37:5722-5735. [PMID: 28495975 DOI: 10.1523/jneurosci.0761-17.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 11/21/2022] Open
Abstract
Epileptic seizures potently modulate hippocampal adult neurogenesis, and adult-born dentate granule cells contribute to the pathologic retrograde sprouting of mossy fiber axons, both hallmarks of temporal lobe epilepsy. The characteristics of these sprouted synapses, however, have been largely unexplored, and the specific contribution of adult-born granule cells to functional mossy fiber sprouting is unknown, primarily due to technical barriers in isolating sprouted mossy fiber synapses for analysis. Here, we used DcxCreERT2 transgenic mice to permanently pulse-label age-defined cohorts of granule cells born either before or after pilocarpine-induced status epilepticus (SE). Using optogenetics, we demonstrate that adult-born granule cells born before SE form functional recurrent monosynaptic excitatory connections with other granule cells. Surprisingly, however, although healthy mossy fiber synapses in CA3 are well characterized "detonator" synapses that potently drive postsynaptic cell firing through their profound frequency-dependent facilitation, sprouted mossy fiber synapses from adult-born cells exhibited profound frequency-dependent depression, despite possessing some of the morphological hallmarks of mossy fiber terminals. Mature granule cells also contributed to functional mossy fiber sprouting, but exhibited less synaptic depression. Interestingly, granule cells born shortly after SE did not form functional excitatory synapses, despite robust sprouting. Our results suggest that, although sprouted mossy fibers form recurrent excitatory circuits with some of the morphological characteristics of typical mossy fiber terminals, the functional characteristics of sprouted synapses would limit the contribution of adult-born granule cells to hippocampal hyperexcitability in the epileptic hippocampus.SIGNIFICANCE STATEMENT In the hippocampal dentate gyrus, seizures drive retrograde sprouting of granule cell mossy fiber axons. We directly activated sprouted mossy fiber synapses from adult-born granule cells to study their synaptic properties. We reveal that sprouted synapses from adult-born granule cells have a diminished ability to sustain recurrent excitation in the epileptic hippocampus, which raises questions about the role of sprouting and adult neurogenesis in sustaining seizure-like activity.
Collapse
|
36
|
Maguire J. Spare the Neuron, Spoil the Network. Epilepsy Curr 2017; 17:169-170. [PMID: 28684953 PMCID: PMC5486428 DOI: 10.5698/1535-7511.17.3.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
Lam PM, Carlsen J, González MI. A calpain inhibitor ameliorates seizure burden in an experimental model of temporal lobe epilepsy. Neurobiol Dis 2017; 102:1-10. [PMID: 28237317 DOI: 10.1016/j.nbd.2017.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/27/2017] [Accepted: 02/20/2017] [Indexed: 01/08/2023] Open
Abstract
In this study, we used the pilocarpine model of epilepsy to evaluate the involvement of calpain dysregulation on epileptogenesis. Detection of spectrin breakdown products (SBDPs, a hallmark of calpain activation) after induction of pilocarpine-induced status epilepticus (SE) and before appearance of spontaneous seizure suggested the existence of sustained calpain activation during epileptogenesis. Acute treatment with a cell permeable inhibitor of calpain, MDL-28170, resulted in a partial but significant reduction on seizure burden. The reduction on seizure burden was associated with a limited reduction on the generation of SBDPs but was correlated with a reduction in astrocytosis, microglia activation and cell sprouting. Together, these observations provide evidence for the role of calpain in epileptogenesis. In addition, provide proof-of-principle for the use of calpain inhibitors as a novel strategy to prevent epileptic seizures and its associated pathologies.
Collapse
Affiliation(s)
- Philip M Lam
- Department of Pediatrics, Division of Neurology and Translational Epilepsy Research Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jessica Carlsen
- Department of Pediatrics, Division of Neurology and Translational Epilepsy Research Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Marco I González
- Department of Pediatrics, Division of Neurology and Translational Epilepsy Research Program, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
38
|
Tai TY, Warner LN, Jones TD, Jung S, Concepcion FA, Skyrud DW, Fender J, Liu Y, Williams AD, Neumaier JF, D'Ambrosio R, Poolos NP. Antiepileptic action of c-Jun N-terminal kinase (JNK) inhibition in an animal model of temporal lobe epilepsy. Neuroscience 2017; 349:35-47. [PMID: 28237815 DOI: 10.1016/j.neuroscience.2017.02.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
Abstract
Several phosphorylation signaling pathways have been implicated in the pathogenesis of epilepsy arising from both genetic causes and acquired insults to the brain. Identification of dysfunctional signaling pathways in epilepsy may provide novel targets for antiepileptic therapies. We previously described a deficit in phosphorylation signaling mediated by p38 mitogen-activated protein kinase (p38 MAPK) that occurs in an animal model of temporal lobe epilepsy, and that produces neuronal hyperexcitability measured in vitro. We asked whether in vivo pharmacological manipulation of p38 MAPK activity would influence seizure frequency in chronically epileptic animals. Administration of a p38 MAPK inhibitor, SB203580, markedly worsened spontaneous seizure frequency, consistent with prior in vitro results. However, anisomycin, a non-specific p38 MAPK activator, significantly increased seizure frequency. We hypothesized that this unexpected result was due to activation of a related MAPK, c-Jun N-terminal kinase (JNK). Administration of JNK inhibitor SP600125 significantly decreased seizure frequency in a dose-dependent manner without causing overt behavioral abnormalities. Biochemical analysis showed increased JNK expression and activity in untreated epileptic animals. These results show for the first time that JNK is hyperactivated in an animal model of epilepsy, and that phosphorylation signaling mediated by JNK may represent a novel antiepileptic target.
Collapse
Affiliation(s)
- Tina Y Tai
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA, United States
| | - Lindsay N Warner
- Neurobiology Program, University of Washington, Seattle, WA, United States
| | - Terrance D Jones
- Department of Neurology, University of Washington, Seattle, WA, United States
| | - Sangwook Jung
- Department of Neurology, University of Washington, Seattle, WA, United States
| | | | - David W Skyrud
- Department of Chemistry, Seattle University, Seattle, WA, United States
| | - Jason Fender
- Department of Neurosurgery, University of Washington, Seattle, WA, United States
| | - Yusha Liu
- Departments of Psychiatry and Pharmacology, University of Washington, Seattle, WA, United States
| | - Aaron D Williams
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - John F Neumaier
- Departments of Psychiatry and Pharmacology, University of Washington, Seattle, WA, United States
| | - Raimondo D'Ambrosio
- Department of Neurosurgery, University of Washington, Seattle, WA, United States; Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| | - Nicholas P Poolos
- Department of Neurology, University of Washington, Seattle, WA, United States; Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States; Regional Epilepsy Center, University of Washington, Seattle, WA, United States.
| |
Collapse
|
39
|
Abstract
OBJECTIVE Epilepsy is a chronic neurological disease characterised with seizures. The aetiology of the most generalised epilepsies cannot be explicitly determined and the seizures are pronounced to be genetically determined by disturbances of receptors in central nervous system. Besides, neurotransmitter distributions or other metabolic problems are supposed to involve in epileptogenesis. Lack of adequate data about pharmacological agents that have antiepileptogenic effects point to need of research on this field. Thus, in this review, inflammatory aspects of epileptogenesis has been focussed via considering several concepts like role of immune system, blood-brain barrier and antibody involvement in epileptogenesis. METHODS We conducted an evidence-based review of the literatures in order to evaluate the possible participation of inflammatory processes to epileptogenesis and also, promising agents which are effective to these processes. We searched PubMed database up to November 2015 with no date restrictions. RESULTS In the present review, 163 appropriate articles were included. Obtained data suggests that inflammatory processes participate to epileptogenesis in several ways like affecting fibroblast growth factor-2 and tropomyosin receptor kinase B signalling pathways, detrimental proinflammatory pathways [such as the interleukin-1 beta (IL-1β)-interleukin-1 receptor type 1 (IL-1R1) system], mammalian target of rapamycin pathway, microglial activities, release of glial inflammatory proteins (such as macrophage inflammatory protein, interleukin 6, C-C motif ligand 2 and IL-1β), adhesion molecules that are suggested to function in signalling pathways between neurons and microglia and also linkage between these molecules and proinflammatory cytokines. CONCLUSION The literature research indicated that inflammation is a part of epileptogenesis. For this reason, further studies are necessary for assessing agents that will be effective in clinical use for therapeutic treatment of epileptogenesis.
Collapse
|
40
|
Farrell JS, Wolff MD, Teskey GC. Neurodegeneration and Pathology in Epilepsy: Clinical and Basic Perspectives. ADVANCES IN NEUROBIOLOGY 2017; 15:317-334. [PMID: 28674987 DOI: 10.1007/978-3-319-57193-5_12] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epilepsy is commonly associated with a number of neurodegenerative and pathological alterations in those areas of the brain that are involved in repeated electrographic seizures. These most prominently include neuron loss and an increase in astrocyte number and size but may also include enhanced blood-brain barrier permeability, the formation of new capillaries, axonal sprouting, and central inflammation. In animal models in which seizures are either repeatedly elicited or are self-generated, a similar set of neurodegenerative and pathological alterations in brain anatomy are observed. The primary causal agent responsible for these alterations may be the cascade of events that follow a seizure and lead to an hypoperfusion/hypoxic episode. While epilepsy has long and correctly been considered an electrical disorder, the vascular system likely plays an important causal role in the neurodegeneration and pathology that occur as a consequence of repeated seizures.
Collapse
Affiliation(s)
- Jordan S Farrell
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Marshal D Wolff
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - G Campbell Teskey
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
41
|
Abstract
Traumatic brain injury (TBI) greatly increases the risk of medically intractable epilepsy. Several models of TBI have been developed to investigate the relationship between TBI and posttraumatic epileptogenesis. Because the incident that precipitates development of epilepsy is known, studying mechanisms of epileptogenesis, identifying biomarkers to predict PTE, and developing treatments to prevent epilepsy after TBI are attainable research goals.
Collapse
|
42
|
Peng Y, Miao H, Wu S, Yang W, Zhang Y, Xie G, Xie X, Li J, Shi C, Ye L, Sun W, Wang L, Liang H, Ou J. ABHD5 interacts with BECN1 to regulate autophagy and tumorigenesis of colon cancer independent of PNPLA2. Autophagy 2016; 12:2167-2182. [PMID: 27559856 DOI: 10.1080/15548627.2016.1217380] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy critically contributes to metabolic reprogramming and chromosomal stability. It has been reported that monoallelic loss of the essential autophagy gene BECN1 (encoding BECN1/Beclin 1) promotes cancer development and progression. However, the mechanism by which BECN1 is inactivated in malignancy remains largely elusive. We have previously reported a tumor suppressor role of ABHD5 (abhydrolase domain containing 5), a co-activator of PNPLA2 (patatin like phospholipase domain containing 2) in colorectal carcinoma (CRC). Here we report a noncanonical role of ABHD5 in regulating autophagy and CRC tumorigenesis. ABHD5 directly competes with CASP3 for binding to the cleavage sites of BECN1, and consequently prevents BECN1 from being cleaved by CASP3. ABHD5 deficiency provides CASP3 an advantage to cleave and inactivate BECN1, thus impairing BECN1-induced autophagic flux and augmenting genomic instability, which subsequently promotes tumorigenesis. Notably, clinical data also confirm that ABHD5 proficiency is significantly correlated with the expression levels of BECN1, LC3-II and CASP3 in human CRC tissues. Our findings suggest that ABHD5 possesses a PNPLA2-independent function in regulating autophagy and tumorigenesis, further establishing the tumor suppressor role of ABHD5, and offering an opportunity to develop new approaches aimed at preventing CRC carcinogenesis.
Collapse
Affiliation(s)
- Yuan Peng
- a Department of Oncology and Southwest Cancer Center , Southwest Hospital, The Third Military Medical University , Chongqing , China
| | - Hongming Miao
- a Department of Oncology and Southwest Cancer Center , Southwest Hospital, The Third Military Medical University , Chongqing , China
| | - Shuang Wu
- a Department of Oncology and Southwest Cancer Center , Southwest Hospital, The Third Military Medical University , Chongqing , China
| | - Weiwen Yang
- a Department of Oncology and Southwest Cancer Center , Southwest Hospital, The Third Military Medical University , Chongqing , China
| | - Yue Zhang
- a Department of Oncology and Southwest Cancer Center , Southwest Hospital, The Third Military Medical University , Chongqing , China
| | - Ganfeng Xie
- a Department of Oncology and Southwest Cancer Center , Southwest Hospital, The Third Military Medical University , Chongqing , China
| | - Xiong Xie
- a Department of Oncology and Southwest Cancer Center , Southwest Hospital, The Third Military Medical University , Chongqing , China
| | - Jianjun Li
- a Department of Oncology and Southwest Cancer Center , Southwest Hospital, The Third Military Medical University , Chongqing , China
| | - Chunmeng Shi
- b Institute of Combined Injury, State Key Labortory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, The Third Military Medical University , Chongqing , China
| | - Lilin Ye
- c Institute of Immunology, The Third Military Medical University , Chongqing , China
| | - Wei Sun
- d Biomedical Analysis Center, Third Military Medical University , Chongqing , China
| | - Liting Wang
- d Biomedical Analysis Center, Third Military Medical University , Chongqing , China
| | - Houjie Liang
- a Department of Oncology and Southwest Cancer Center , Southwest Hospital, The Third Military Medical University , Chongqing , China
| | - Juanjuan Ou
- a Department of Oncology and Southwest Cancer Center , Southwest Hospital, The Third Military Medical University , Chongqing , China
| |
Collapse
|
43
|
Alexander A, Maroso M, Soltesz I. Organization and control of epileptic circuits in temporal lobe epilepsy. PROGRESS IN BRAIN RESEARCH 2016; 226:127-54. [PMID: 27323941 PMCID: PMC5140277 DOI: 10.1016/bs.pbr.2016.04.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
When studying the pathological mechanisms of epilepsy, there are a seemingly endless number of approaches from the ultrastructural level-receptor expression by EM-to the behavioral level-comorbid depression in behaving animals. Epilepsy is characterized as a disorder of recurrent seizures, which are defined as "a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain" (Fisher et al., 2005). Such abnormal activity typically does not occur in a single isolated neuron; rather, it results from pathological activity in large groups-or circuits-of neurons. Here we choose to focus on two aspects of aberrant circuits in temporal lobe epilepsy: their organization and potential mechanisms to control these pathological circuits. We also look at two scales: microcircuits, ie, the relationship between individual neurons or small groups of similar neurons, and macrocircuits, ie, the organization of large-scale brain regions. We begin by summarizing the large body of literature that describes the stereotypical anatomical changes in the temporal lobe-ie, the anatomical basis of alterations in microcircuitry. We then offer a brief introduction to graph theory and describe how this type of mathematical analysis, in combination with computational neuroscience techniques and using parameters obtained from experimental data, can be used to postulate how microcircuit alterations may lead to seizures. We then zoom out and look at the changes which are seen over large whole-brain networks in patients and animal models, and finally we look to the future.
Collapse
Affiliation(s)
- A Alexander
- Stanford University, Stanford, CA, United States
| | - M Maroso
- Stanford University, Stanford, CA, United States
| | - I Soltesz
- Stanford University, Stanford, CA, United States.
| |
Collapse
|
44
|
Puttachary S, Sharma S, Verma S, Yang Y, Putra M, Thippeswamy A, Luo D, Thippeswamy T. 1400W, a highly selective inducible nitric oxide synthase inhibitor is a potential disease modifier in the rat kainate model of temporal lobe epilepsy. Neurobiol Dis 2016; 93:184-200. [PMID: 27208748 DOI: 10.1016/j.nbd.2016.05.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/04/2016] [Accepted: 05/15/2016] [Indexed: 12/21/2022] Open
Abstract
Status epilepticus (SE) initiates epileptogenesis to transform normal brain to epileptic state which is characterized by spontaneous recurrent seizures (SRS). Prior to SRS, progressive changes occur in the brain soon after SE, for example, loss of blood-brain barrier (BBB) integrity, neuronal hyper-excitability (epileptiform spiking), neuroinflammation [reactive gliosis, high levels of reactive oxygen/nitrogen species (ROS/RNS)], neurodegeneration and synaptic re-organization. Our hypothesis was that modification of early epileptogenic events will alter the course of disease development and its progression. We tested the hypothesis in the rat kainate model of chronic epilepsy using a novel disease modifying drug, 1400W, a highly selective inhibitor of inducible nitric oxide synthase (iNOS/NOS-II). In an in vitro mouse brain slice model, using a multi-electrode array system, co-application of 1400W with kainate significantly suppressed kainate-induced epileptiform spiking. In the rats, in vivo, 4h after the induction of SE with kainate, 1400W (20mg/kg, i.p.) was administered twice daily for three days to target early events of epileptogenesis. The rats were subjected to continuous (24/7) video-EEG monitoring, remotely, for six months from epidurally implanted cortical electrodes. The 1400W treatment significantly reduced the epileptiform spike rate during the first 12-74h post-SE, which resulted in >90% reduction in SRS in long-term during the six month period when compared to the vehicle-treated control group (257±113 versus 19±10 episodes). Immunohistochemistry (IHC) of brain sections at seven days and six months revealed a significant reduction in; reactive astrogliosis and microgliosis (M1 type), extravascular serum albumin (a marker for BBB leakage) and neurodegeneration in the hippocampus, amygdala and entorhinal cortex in the 1400W-treated rats when compared to the vehicle control. In the seven day group, hippocampal Western blots revealed downregulation of inwardly-rectifying potassium (Kir 4.1) channels and glutamate transporter-1 (GLT-1) levels in the vehicle group, and 1400W treatment partially reversed Kir 4.1 levels, however, GLT-1 levels were unaffected. In the six month group, a significant reduction in mossy fiber staining intensity in the inner molecular layer of the dentate gyrus was observed in the 1400W-treated group. Overall these findings demonstrate that 1400W, by reducing the epileptiform spike rate during the first three days of post-insult, potentially modifies epileptogenesis and the severity of chronic epilepsy in the rat kainate model of TLE.
Collapse
Affiliation(s)
- Sreekanth Puttachary
- Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50010, USA
| | - Shaunik Sharma
- Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50010, USA
| | - Saurabh Verma
- Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50010, USA
| | - Yang Yang
- Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50010, USA
| | - Marson Putra
- Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50010, USA
| | - Achala Thippeswamy
- Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50010, USA
| | - Diou Luo
- Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50010, USA
| | | |
Collapse
|
45
|
Dengler CG, Coulter DA. Normal and epilepsy-associated pathologic function of the dentate gyrus. PROGRESS IN BRAIN RESEARCH 2016; 226:155-78. [PMID: 27323942 DOI: 10.1016/bs.pbr.2016.04.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The dentate gyrus plays critical roles both in cognitive processing, and in regulation of the induction and propagation of pathological activity. The cellular and circuit mechanisms underlying these diverse functions overlap extensively. At the cellular level, the intrinsic properties of dentate granule cells combine to endow these neurons with a fundamental reluctance to activate, one of their hallmark traits. At the circuit level, the dentate gyrus constitutes one of the more heavily inhibited regions of the brain, with strong, fast feedforward and feedback GABAergic inhibition dominating responses to afferent activation. In pathologic states such as epilepsy, a number of alterations within the dentate gyrus combine to compromise the regulatory properties of this circuit, culminating in a collapse of its normal function. This epilepsy-associated transformation in the fundamental properties of this critical regulatory hippocampal circuit may contribute both to seizure propensity, and cognitive and emotional comorbidities characteristic of this disease state.
Collapse
Affiliation(s)
- C G Dengler
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - D A Coulter
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; The Research Institute of the Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| |
Collapse
|
46
|
Citraro R, Leo A, Constanti A, Russo E, De Sarro G. mTOR pathway inhibition as a new therapeutic strategy in epilepsy and epileptogenesis. Pharmacol Res 2016; 107:333-343. [DOI: 10.1016/j.phrs.2016.03.039] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 12/24/2022]
|
47
|
Hofmann G, Balgooyen L, Mattis J, Deisseroth K, Buckmaster PS. Hilar somatostatin interneuron loss reduces dentate gyrus inhibition in a mouse model of temporal lobe epilepsy. Epilepsia 2016; 57:977-83. [PMID: 27030321 DOI: 10.1111/epi.13376] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2016] [Indexed: 01/19/2023]
Abstract
OBJECTIVE In patients with temporal lobe epilepsy, seizures usually start in the hippocampus, and dentate granule cells are hyperexcitable. Somatostatin interneurons are a major subpopulation of inhibitory neurons in the dentate gyrus, and many are lost in patients and animal models. However, surviving somatostatin interneurons sprout axon collaterals and form new synapses, so the net effect on granule cell inhibition remains unclear. METHODS The present study uses optogenetics to activate hilar somatostatin interneurons and measure the inhibitory effect on dentate gyrus perforant path-evoked local field potential responses in a mouse model of temporal lobe epilepsy. RESULTS In controls, light activation of hilar somatostatin interneurons inhibited evoked responses up to 40%. Epileptic pilocarpine-treated mice exhibited loss of hilar somatostatin interneurons and less light-induced inhibition of evoked responses. SIGNIFICANCE These findings suggest that severe epilepsy-related loss of hilar somatostatin interneurons can overwhelm the surviving interneurons' capacity to compensate by sprouting axon collaterals.
Collapse
Affiliation(s)
- Gabrielle Hofmann
- Department of Comparative Medicine, Stanford University, Stanford, California, U.S.A.,College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, U.S.A
| | - Laura Balgooyen
- Department of Comparative Medicine, Stanford University, Stanford, California, U.S.A.,College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, U.S.A
| | - Joanna Mattis
- Department of Bioengineering, Stanford University, Stanford, California, U.S.A.,Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, U.S.A
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, California, U.S.A.,Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, U.S.A
| | - Paul S Buckmaster
- Department of Comparative Medicine, Stanford University, Stanford, California, U.S.A.,Department of Neurology & Neurological Sciences, Stanford University, Stanford, California, U.S.A
| |
Collapse
|
48
|
Butler CR, Boychuk JA, Smith BN. Differential effects of rapamycin treatment on tonic and phasic GABAergic inhibition in dentate granule cells after focal brain injury in mice. Exp Neurol 2016; 280:30-40. [PMID: 27018320 DOI: 10.1016/j.expneurol.2016.03.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/07/2016] [Accepted: 03/20/2016] [Indexed: 10/22/2022]
Abstract
The cascade of events leading to post-traumatic epilepsy (PTE) after traumatic brain injury (TBI) remains unclear. Altered inhibition in the hippocampal formation and dentate gyrus is a hallmark of several neurological disorders, including TBI and PTE. Inhibitory synaptic signaling in the hippocampus is predominately driven by γ-aminobutyric acid (GABA) neurotransmission, and is prominently mediated by postsynaptic type A GABA receptors (GABAAR's). Subsets of these receptors involved in tonic inhibition of neuronal membranes serve a fundamental role in maintenance of inhibitory state, and GABAAR-mediated tonic inhibition is altered functionally in animal models of both TBI and epilepsy. In this study, we assessed the effect of mTOR inhibition on hippocampal hilar inhibitory interneuron loss and synaptic and tonic GABAergic inhibition of dentate gyrus granule cells (DGCs) after controlled cortical impact (CCI) to determine if mTOR activation after TBI modulates GABAAR function. Hilar inhibitory interneuron density was significantly reduced 72h after CCI injury in the dorsal two-thirds of the hemisphere ipsilateral to injury compared with the contralateral hemisphere and sham controls. Rapamycin treatment did not alter this reduction in cell density. Synaptic and tonic current measurements made in DGCs at both 1-2 and 8-13weeks post-injury indicated reduced synaptic inhibition and THIP-induced tonic current density in DGCs ipsilateral to CCI injury at both time points post-injury, with no change in resting tonic GABAAR-mediated currents. Rapamycin treatment did not alter the reduced synaptic inhibition observed in ipsilateral DGCs 1-2weeks post-CCI injury, but further reduced synaptic inhibition of ipsilateral DGCs at 8-13weeks post-injury. The reduction in THIP-induced tonic current after injury, however, was prevented by rapamycin treatment at both time points. Rapamycin treatment thus differentially modifies CCI-induced changes in synaptic and tonic GABAAR-mediated currents in DGCs.
Collapse
Affiliation(s)
- Corwin R Butler
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, United States
| | - Jeffery A Boychuk
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, United States; Epilepsy Center, University of Kentucky, Lexington, KY 40536, United States; Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY 40536, United States
| | - Bret N Smith
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, United States; Epilepsy Center, University of Kentucky, Lexington, KY 40536, United States; Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
49
|
Impact of rapamycin on status epilepticus induced hippocampal pathology and weight gain. Exp Neurol 2016; 280:1-12. [PMID: 26995324 DOI: 10.1016/j.expneurol.2016.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 02/07/2023]
Abstract
Growing evidence implicates the dentate gyrus in temporal lobe epilepsy (TLE). Dentate granule cells limit the amount of excitatory signaling through the hippocampus and exhibit striking neuroplastic changes that may impair this function during epileptogenesis. Furthermore, aberrant integration of newly-generated granule cells underlies the majority of dentate restructuring. Recently, attention has focused on the mammalian target of rapamycin (mTOR) signaling pathway as a potential mediator of epileptogenic change. Systemic administration of the mTOR inhibitor rapamycin has promising therapeutic potential, as it has been shown to reduce seizure frequency and seizure severity in rodent models. Here, we tested whether mTOR signaling facilitates abnormal development of granule cells during epileptogenesis. We also examined dentate inflammation and mossy cell death in the dentate hilus. To determine if mTOR activation is necessary for abnormal granule cell development, transgenic mice that harbored fluorescently-labeled adult-born granule cells were treated with rapamycin following pilocarpine-induced status epilepticus. Systemic rapamycin effectively blocked phosphorylation of S6 protein (a readout of mTOR activity) and reduced granule cell mossy fiber axon sprouting. However, the accumulation of ectopic granule cells and granule cells with aberrant basal dendrites was not significantly reduced. Mossy cell death and reactive astrocytosis were also unaffected. These data suggest that anti-epileptogenic effects of mTOR inhibition may be mediated by mechanisms other than inhibition of these common dentate pathologies. Consistent with this conclusion, rapamycin prevented pathological weight gain in epileptic mice, suggesting that rapamycin might act on central circuits or even peripheral tissues controlling weight gain in epilepsy.
Collapse
|
50
|
Drion CM, Borm LE, Kooijman L, Aronica E, Wadman WJ, Hartog AF, van Vliet EA, Gorter JA. Effects of rapamycin and curcumin treatment on the development of epilepsy after electrically induced status epilepticus in rats. Epilepsia 2016; 57:688-97. [DOI: 10.1111/epi.13345] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Cato M. Drion
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - Lars E. Borm
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - Lieneke Kooijman
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - Eleonora Aronica
- Department (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
- Epilepsy Institute in the Netherlands; Heemstede The Netherlands
| | - Wytse J. Wadman
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - Aloysius F. Hartog
- Van‘t Hoff Institute for Molecular Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - Erwin A. van Vliet
- Department (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Jan A. Gorter
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|