1
|
Xu Q, Gan R, Wang Q, Cheng P, Hu Z, Wang J. Metabolomic and molecular analysis reveals multiple pathways of TBBPA-induced developmental toxicity in zebrafish embryos. Toxicol Appl Pharmacol 2025; 498:117295. [PMID: 40090624 DOI: 10.1016/j.taap.2025.117295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/23/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
Tetrabromobisphenol A (TBBPA), a commonly utilized flame retardant, presents potential risks to both environmental and human health, with particular concern regarding its impact on embryonic development.This study employed zebrafish embryos as a model organism to investigate the comprehensive toxicological effects of TBBPA exposure, integrating metabolomics analysis with molecular and biochemical approaches. Embryos exposed to TBBPA concentrations ranging from 0.5 to 1.5 mg/L exhibited significant dose-dependent developmental abnormalities, including pericardial edema, yolk sac enlargement, and body axis curvature. At 96 h, we observed 50 % mortality at 1 mg/L. At 144 h of exposure to 0.1 mg/L TBBPA, automated behavioral analysis revealed significant changes in larval swimming patterns, characterized by reduced total distance moved, shortened active swimming time, impaired acceleration parameters, and abnormal spatial distribution. UHPLC-Q-TOF-MS-based metabolomics analysis revealed substantial perturbations in multiple biochemical pathways, particularly affecting neurotransmitter metabolism, energy homeostasis, and oxidative stress responses. TBBPA exposure significantly disrupted dopamine and serotonin metabolism, evidenced by altered enzyme expression and metabolite levels. Notable changes in oxidative stress markers, including GSH, MDA, and SOD, indicated significant cellular damage, while inflammatory responses showed dysregulation of both pro- and anti-inflammatory cytokines. Energy metabolism was comprehensively affected, with disruptions in glycolysis, TCA cycle, and amino acid metabolism pathways. The study identified key metabolic signatures of TBBPA toxicity and elucidated the interconnected mechanisms underlying its developmental impacts, providing valuable insights for environmental risk assessment and regulatory considerations. These findings emphasize the complex nature of TBBPA toxicity and highlight the need for careful evaluation of its environmental impact, particularly concerning early developmental exposure.
Collapse
Affiliation(s)
- Qian Xu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Ruixi Gan
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Qing Wang
- Department of Interventional Surgery, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, Shandong, China
| | - Peizhao Cheng
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Ziyun Hu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Junsong Wang
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| |
Collapse
|
2
|
Jin S, Sun Z, Fang X, Yang W, Fang S, Zhang J. From Wilson's Disease to Neurodevelopmental Disorder with Involuntary Movements, Different Genetic Interpretations in a Female Patient. Mov Disord 2024; 39:1878-1880. [PMID: 39044438 DOI: 10.1002/mds.29930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND A 19-year-old female patient presented at 2 years of age with dysarthria, incoherent speech, and unsteady ambulation. She is prone to leaning backward when walking and has involuntary movements of the whole body. Besides, she has poor numeracy skills. She has been diagnosed with Wilson's disease (WD) in China and Japan. OBJECTIVE The objective of this study was to further clarify the diagnosis of this patient. METHODS The patient and her parents were detected with whole-exome sequencing. RESULTS Based on the genetic test results, genetic analyses, and clinical manifestations, a diagnosis of WD in this patient was ruled out. The patient was eventually diagnosed with neurodevelopmental disorder with involuntary movements. CONCLUSIONS This study reinterprets the genetic test results of a young female patient and leads to reflections on the genetic diagnostic criteria for WD: the Leipzig score is suitable for the diagnosis of most WD patients, and the genetic testing section of the score is of great diagnostic value. However, in some special cases, the proband and their first-degree relatives should further complete cosegregation analysis to determine the origin of the lesion gene and to verify the reliability of the genetic test. In addition, this study suggests that further improving the scoring rules of the gene testing part of the Leipzig scoring system may be more helpful in achieving an accurate diagnosis of WD. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Shan Jin
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Zhengzhe Sun
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Xiang Fang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Wenming Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Shuzhen Fang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jing Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
3
|
Ben Said M, Jallouli O, Ben Aissa A, Souissi A, Kamoun F, Fakhfakh F, Masmoudi S, Ben Ayed I, Charfi Triki C. Customized targeted massively parallel sequencing enables the identification of novel pathogenic variants in Tunisian patients with developmental and epileptic encephalopathy. Epilepsia Open 2024; 9:1697-1709. [PMID: 37867425 PMCID: PMC11450609 DOI: 10.1002/epi4.12848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023] Open
Abstract
OBJECTIVE To develop a high-throughput sequencing panel for the diagnosis of developmental and epileptic encephalopathy in Tunisia and to clarify the frequency of disease-causing genes in this region. METHODS We developed a custom panel for next-generation sequencing of the coding sequences of 116 genes in individuals with developmental and epileptic encephalopathy from the Tunisian population. Segregation analyses and in silico studies have been conducted to assess the identified variants' pathogenicity. RESULTS We report 12 pathogenic variants in SCN1A, CHD2, CDKL5, SZT2, KCNT1, GNAO1, PCDH19, MECP2, GRIN2A, and SYNGAP1 in patients with developmental and epileptic encephalopathy. Five of these variants are novel: "c.149delA, p.(Asn50MetfsTer26)" in CDKL5; "c.3616C > T, p.(Arg1206Ter)" in SZT2; "c.111_113del, p.(Leu39del)" in GNAO1; "c.1435G>C, p.(Asp479His)" in PCDH19; and "c.2143delC, p.(Arg716GlyfsTer10)" in SYNGAP1. Additionally, for four of our patients, the genetic result facilitated the choice of the appropriate treatment. SIGNIFICANCE This is the first report of a custom gene panel to identify genetic variants implicated in developmental and epileptic encephalopathy in the Tunisian population as well as the North African region (Tunisia, Egypt, Libya, Algeria, Morocco) with a diagnostic rate of 30%. This high-throughput sequencing panel has considerably improved the rate of positive diagnosis of developmental and epileptic encephalopathy in the Tunisian population, which was less than 15% using Sanger sequencing. The benefit of genetic testing in these patients was approved by both physicians and parents.
Collapse
Affiliation(s)
- Mariem Ben Said
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
| | - Olfa Jallouli
- Department of Child Neurology, Hedi Chaker Hospital, LR19ES15University of SfaxSfaxTunisia
| | - Abir Ben Aissa
- Department of Child Neurology, Hedi Chaker Hospital, LR19ES15University of SfaxSfaxTunisia
| | - Amal Souissi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
| | - Fatma Kamoun
- Department of Child Neurology, Hedi Chaker Hospital, LR19ES15University of SfaxSfaxTunisia
| | - Faiza Fakhfakh
- Molecular Genetics and Functional Laboratory, Faculty of Science of SfaxUniversity of SfaxSfaxTunisia
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
| | - Ikhlas Ben Ayed
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
| | - Chahnez Charfi Triki
- Department of Child Neurology, Hedi Chaker Hospital, LR19ES15University of SfaxSfaxTunisia
| |
Collapse
|
4
|
Taira R, Akamine S, Okuzono S, Fujii F, Hatai E, Yonemoto K, Takemoto R, Kato H, Masuda K, Kato TA, Kira R, Tsujimura K, Yamamura K, Ozaki N, Ohga S, Sakai Y. Gnao1 is a molecular switch that regulates the Rho signaling pathway in differentiating neurons. Sci Rep 2024; 14:17097. [PMID: 39048611 PMCID: PMC11269603 DOI: 10.1038/s41598-024-68062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
GNAO1 encodes G protein subunit alpha O1 (Gαo). Pathogenic variations in GNAO1 cause developmental delay, intractable seizures, and progressive involuntary movements from early infancy. Because the functional role of GNAO1 in the developing brain remains unclear, therapeutic strategies are still unestablished for patients presenting with GNAO1-associated encephalopathy. We herein report that siRNA-mediated depletion of Gnao1 perturbs the expression of transcripts associated with Rho GTPase signaling in Neuro2a cells. Consistently, siRNA treatment hampered neurite outgrowth and extension. Growth cone formation was markedly disrupted in monolayer neurons differentiated from iPSCs from a patient with a pathogenic variant of Gαo (p.G203R). This variant disabled neuro-spherical assembly, acquisition of the organized structure, and polarized signals of phospho-MLC2 in cortical organoids from the patient's iPSCs. We confirmed that the Rho kinase inhibitor Y27632 restored these morphological phenotypes. Thus, Gαo determines the self-organizing process of the developing brain by regulating the Rho-associated pathway. These data suggest that Rho GTPase pathway might be an alternative target of therapy for patients with GNAO1-associated encephalopathy.
Collapse
Affiliation(s)
- Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Satoshi Akamine
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
| | - Sayaka Okuzono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
| | - Fumihiko Fujii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
| | - Eriko Hatai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
| | - Kousuke Yonemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
| | - Ryuichi Takemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Keita Tsujimura
- Group of Brain Function and Development, Neuroscience Institute of the Graduate School of Science, Nagoya University, Aichi, Japan
- Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Shionogi Pharma Co., Ltd., Settsu, Osaka, Japan
| | - Kenichiro Yamamura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
| | - Norio Ozaki
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Highashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
5
|
Solis GP, Koval A, Valnohova J, Kazemzadeh A, Savitsky M, Katanaev VL. Neomorphic Gαo mutations gain interaction with Ric8 proteins in GNAO1 encephalopathies. J Clin Invest 2024; 134:e172057. [PMID: 38874642 PMCID: PMC11291268 DOI: 10.1172/jci172057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
GNAO1 mutated in pediatric encephalopathies encodes the major neuronal G protein Gαo. Of the more than 80 pathogenic mutations, most are single amino acid substitutions spreading across the Gαo sequence. We performed extensive characterization of Gαo mutants, showing abnormal GTP uptake and hydrolysis and deficiencies in binding Gβγ and RGS19. Plasma membrane localization of Gαo was decreased for a subset of mutations that leads to epilepsy; dominant interactions with GPCRs also emerged for the more severe mutants. Pathogenic mutants massively gained interaction with Ric8A and, surprisingly, Ric8B proteins, relocalizing them from cytoplasm to Golgi. Of these 2 mandatory Gα-subunit chaperones, Ric8A is normally responsible for the Gαi/Gαo, Gαq, and Gα12/Gα13 subfamilies, and Ric8B solely responsible for Gαs/Gαolf. Ric8 mediates the disease dominance when engaging in neomorphic interactions with pathogenic Gαo through imbalance of the neuronal G protein signaling networks. As the strength of Gαo-Ric8B interactions correlates with disease severity, our study further identifies an efficient biomarker and predictor for clinical manifestations in GNAO1 encephalopathies. Our work uncovers the neomorphic molecular mechanism of mutations underlying pediatric encephalopathies and offers insights into other maladies caused by G protein malfunctioning and further genetic diseases.
Collapse
Affiliation(s)
- Gonzalo P. Solis
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexey Koval
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jana Valnohova
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Arghavan Kazemzadeh
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mikhail Savitsky
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vladimir L. Katanaev
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- School of Medicine and Life Sciences, Department of Pharmacy and Pharmacology, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
6
|
Falsaperla R, Sortino V, Marino SD, Collotta AD, Gammeri C, Sipala FM, Volti GL, Ruggieri M, Ronsisvalle S. Molecular Dynamic Simulations to Determine Individualized Therapy: Tetrabenazine for the GNAO1 Encephalopathy E246K Variant. Mol Diagn Ther 2024; 28:329-337. [PMID: 38581611 DOI: 10.1007/s40291-024-00706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2024] [Indexed: 04/08/2024]
Abstract
INTRODUCTION GNAO1 encephalopathy is characterized by severe hypotonia, psychomotor retardation, epilepsy, and movement disorders. Genetic variations in GNAO1 have been linked to neurological symptoms including movement disorders like dystonia. The correlation between the E246K mutation in the Gα subunit and aberrant signal transduction of G proteins has been established but no data are reported regarding the efficacy of medical treatment with tetrabenazine. METHODS Molecular modeling studies were performed to elucidate the molecular mechanisms underlying this mutation. We developed drug efficacy models using molecular dynamic simulations that replicated the behavior of wild-type and mutated proteins in the presence or absence of ligands. RESULTS AND DISCUSSION We demonstrated that the absence of the mutation leads to normal signal transduction upon receptor activation by the endogenous ligand, but not in the presence of tetrabenazine. In contrast, the presence of the mutation resulted in abnormal signal transduction in the presence of the endogenous ligand, which was corrected by the drug tetrabenazine. Tetrabenazine was identified as a promising therapeutic option for pediatric patients suffering from encephalopathy due to an E246K mutation in the GNAO1 gene validated through molecular dynamics. This is a potential first example of the use of this technique in a rare neurological pediatric disease.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Neonatal Intensive Care Unit and Neonatal Accompaniment Unit, Azienda Ospedaliero-Universitaria Policlinico "Rodolico-San Marco", San Marco Hospital, University of Catania, Catania, Italy.
- Unit of Clinical Paediatrics, Azienda Ospedaliero-Universitaria Policlinico, "Rodolico-San Marco", San Marco Hospital, Catania, Italy.
- Pediatric Clinic, University of Ferrara, Ferrara, Italy.
| | - Vincenzo Sortino
- Unit of Clinical Paediatrics, Azienda Ospedaliero-Universitaria Policlinico, "Rodolico-San Marco", San Marco Hospital, Catania, Italy
| | - Simona Domenica Marino
- Unit of Clinical Paediatrics, Azienda Ospedaliero-Universitaria Policlinico, "Rodolico-San Marco", San Marco Hospital, Catania, Italy
| | - Ausilia Desiree Collotta
- Unit of Clinical Paediatrics, Azienda Ospedaliero-Universitaria Policlinico, "Rodolico-San Marco", San Marco Hospital, Catania, Italy
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Carmela Gammeri
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Federica Maria Sipala
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 87, 95125, Catania, Italy
| | - Martino Ruggieri
- Unit of Clinical Pediatrics, Unit of Rare Diseases, AOU "Policlinico", PO "G. Rodolico", University of Catania, Catania, Italy
| | - Simone Ronsisvalle
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
7
|
van der Veen S, Tse GTW, Ferretti A, Garone G, Post B, Specchio N, Fung VSC, Trivisano M, Scheffer IE. Movement Disorders in Patients With Genetic Developmental and Epileptic Encephalopathies. Neurology 2023; 101:e1884-e1892. [PMID: 37748886 PMCID: PMC10663013 DOI: 10.1212/wnl.0000000000207808] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Movement disorders (MDs) are underrecognized in the developmental and epileptic encephalopathies (DEEs). There are now more than 800 genes implicated in causing the DEEs; relatively few of these rare genetic diseases are known to be associated with MDs. We identified patients with genetic DEEs who had MDs, classified the nature of their MDs, and asked whether specific patterns correlated with the underlying mechanism. METHODS We classified the type of MDs associated with specific genetic DEEs in a large international cohort of patients and analyzed whether specific patterns of MDs reflected the underlying biological dysfunction. RESULTS Our cohort comprised 77 patients with a genetic DEE with a median age of 9 (range 1-38) years. Stereotypies (37/77, 48%) and dystonia (34/77, 44%) were the most frequent MDs, followed by chorea (18/77, 23%), myoclonus (14/77, 18%), ataxia (9/77, 12%), tremor (7/77, 9%), and hypokinesia (6/77, 8%). In 47% of patients, a combination of MDs was seen. The MDs were first observed at a median age of 18 months (range day 2-35 years). Dystonia was more likely to be observed in nonambulatory patients, while ataxia was less likely. In 46% of patients, therapy was initiated with medication (34/77, 44%), deep brain stimulation (1/77, 1%), or intrathecal baclofen (1/77, 1%). We found that patients with channelopathies or synaptic vesicle trafficking defects were more likely to experience dystonia; whereas, stereotypies were most frequent in individuals with transcriptional defects. DISCUSSION MDs are often underrecognized in patients with genetic DEEs, but recognition is critical for the management of these complex neurologic diseases. Distinguishing MDs from epileptic seizures is important in tailoring patient treatment. Understanding which MDs occur with different biological mechanisms will inform early diagnosis and management.
Collapse
Affiliation(s)
- Sterre van der Veen
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Gabrielle T W Tse
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Alessandro Ferretti
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Giacomo Garone
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Bart Post
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Nicola Specchio
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Victor S C Fung
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Marina Trivisano
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Ingrid E Scheffer
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia.
| |
Collapse
|
8
|
Domínguez-Carral J, Ludlam WG, Segarra MJ, Marti MF, Balsells S, Muchart J, Petrović DČ, Espinoza I, Ortigoza-Escobar JD, Martemyanov KA. Severity of GNAO1-Related Disorder Correlates with Changes in G-Protein Function. Ann Neurol 2023; 94:987-1004. [PMID: 37548038 PMCID: PMC10681096 DOI: 10.1002/ana.26758] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE GNAO1-related disorders (OMIM #615473 and #617493), caused by variants in the GNAO1 gene, are characterized by developmental delay or intellectual disability, hypotonia, movement disorders, and epilepsy. Neither a genotype-phenotype correlation nor a clear severity score have been established for this disorder. The objective of this prospective and retrospective observational study was to develop a severity score for GNAO1-related disorders, and to delineate the correlation between the underlying molecular mechanisms and clinical severity. METHODS A total of 16 individuals with GNAO1-related disorders harboring 12 distinct missense variants, including four novel variants (p.K46R, p.T48I, p.R209P, and p.L235P), were examined with repeated clinical assessments, video-electroencephalogram monitoring, and brain magnetic resonance imaging. The molecular pathology of each variant was delineated using a molecular deconvoluting platform. RESULTS The patients displayed a wide variability in the severity of their symptoms. This heterogeneity was well represented in the GNAO1-related disorders severity score, with a broad range of results. Patients with the same variant had comparable severity scores, indicating that differences in disease profiles are not due to interpatient variability, but rather, to unique disease mechanisms. Moreover, we found a significant correlation between clinical severity scores and molecular mechanisms. INTERPRETATION The clinical score proposed here provides further insight into the correlation between pathophysiology and phenotypic severity in GNAO1-related disorders. We found that each variant has a unique profile of clinical phenotypes and pathological molecular mechanisms. These findings will contribute to better understanding GNAO1-related disorders. Additionally, the severity score will facilitate standardization of patients categorization and assessment of response to therapies in development. ANN NEUROL 2023;94:987-1004.
Collapse
Affiliation(s)
- Jana Domínguez-Carral
- Epilepsy Unit, Department of Child Neurology, Institut de
Recerca Sant Joan de Déu, Barcelona, Spain
| | - William Grant Ludlam
- Department of Neuroscience, The Herbert Wertheim UF
Scripps Institute for Biomedical Innovation & Technology, University of Florida,
Jupiter, FL 33458, USA
| | | | | | - Sol Balsells
- Department of Statistics Institut de Recerca Sant Joan de
Déu Barcelona Spain
| | - Jordi Muchart
- Department of Pediatric Radiology, Hospital Sant Joan de
Déu, Barcelona, Spain
| | | | - Iván Espinoza
- Pediatric Neurology Department, Hospital Nacional Cayetano
Heredia, Lima, Perú
| | | | - Juan Dario Ortigoza-Escobar
- Movement Disorders Unit, Department of Child Neurology,
Institut de Recerca Sant Joan de Déu
- U-703 Centre for Biomedical Research on Rare Diseases
(CIBER-ER), Instituto de Salud Carlos III, 08002 Barcelona, Spain
- European Reference Network for Rare Neurological
Diseases (ERN-RND), Barcelona, Spain
| | - Kirill A. Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF
Scripps Institute for Biomedical Innovation & Technology, University of Florida,
Jupiter, FL 33458, USA
| |
Collapse
|
9
|
Larasati YA, Solis GP, Koval A, Griffiths ST, Berentsen R, Aukrust I, Lesca G, Chatron N, Ville D, Korff CM, Katanaev VL. Clinical Cases and the Molecular Profiling of a Novel Childhood Encephalopathy-Causing GNAO1 Mutation P170R. Cells 2023; 12:2469. [PMID: 37887313 PMCID: PMC10605901 DOI: 10.3390/cells12202469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
De novo mutations in GNAO1, the gene encoding the major neuronal G protein Gαo, cause a spectrum of pediatric encephalopathies with seizures, motor dysfunction, and developmental delay. Of the >80 distinct missense pathogenic variants, many appear to uniformly destabilize the guanine nucleotide handling of the mutant protein, speeding up GTP uptake and deactivating GTP hydrolysis. Zinc supplementation emerges as a promising treatment option for this disease, as Zn2+ ions reactivate the GTP hydrolysis on the mutant Gαo and restore cellular interactions for some of the mutants studied earlier. The molecular etiology of GNAO1 encephalopathies needs further elucidation as a prerequisite for the development of efficient therapeutic approaches. In this work, we combine clinical and medical genetics analysis of a novel GNAO1 mutation with an in-depth molecular dissection of the resultant protein variant. We identify two unrelated patients from Norway and France with a previously unknown mutation in GNAO1, c.509C>G that results in the production of the Pro170Arg mutant Gαo, leading to severe developmental and epileptic encephalopathy. Molecular investigations of Pro170Arg identify this mutant as a unique representative of the pathogenic variants. Its 100-fold-accelerated GTP uptake is not accompanied by a loss in GTP hydrolysis; Zn2+ ions induce a previously unseen effect on the mutant, forcing it to lose the bound GTP. Our work combining clinical and molecular analyses discovers a novel, biochemically distinct pathogenic missense variant of GNAO1 laying the ground for personalized treatment development.
Collapse
Affiliation(s)
- Yonika A. Larasati
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland (G.P.S.); (A.K.)
| | - Gonzalo P. Solis
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland (G.P.S.); (A.K.)
| | - Alexey Koval
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland (G.P.S.); (A.K.)
| | - Silja T. Griffiths
- Department of Pediatrics, Haukeland University Hospital, 5009 Bergen, Norway
| | - Ragnhild Berentsen
- Department of Medical Genetics, Haukeland University Hospital, 5009 Bergen, Norway; (R.B.)
| | - Ingvild Aukrust
- Department of Medical Genetics, Haukeland University Hospital, 5009 Bergen, Norway; (R.B.)
- Department of Clinical Science, University of Bergen, 5008 Bergen, Norway
| | - Gaetan Lesca
- Department of Medical Genetics, University Hospital of Lyon, 69002 Lyon, France; (G.L.); (N.C.)
| | - Nicolas Chatron
- Department of Medical Genetics, University Hospital of Lyon, 69002 Lyon, France; (G.L.); (N.C.)
| | - Dorothée Ville
- Pediatric Neurology Department, University Hospital of Lyon, 69002 Lyon, France;
| | - Christian M. Korff
- Pediatric Neurology Unit, University Hospitals of Geneva, CH-1211 Geneva, Switzerland;
| | - Vladimir L. Katanaev
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland (G.P.S.); (A.K.)
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690090, Russia
| |
Collapse
|
10
|
Thiel M, Bamborschke D, Janzarik WG, Assmann B, Zittel S, Patzer S, Auhuber A, Opp J, Matzker E, Bevot A, Seeger J, van Baalen A, Stüve B, Brockmann K, Cirak S, Koy A. Genotype-phenotype correlation and treatment effects in young patients with GNAO1-associated disorders. J Neurol Neurosurg Psychiatry 2023; 94:806-815. [PMID: 37225406 DOI: 10.1136/jnnp-2022-330261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/03/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Patients carrying pathogenic variants in GNAO1 often present with early-onset central hypotonia and global developmental delay, with or without epilepsy. As the disorder progresses, a complex hypertonic and hyperkinetic movement disorder is a common phenotype. A genotype-phenotype correlation has not yet been described and there are no evidence-based therapeutic recommendations. METHODS To improve understanding of the clinical course and pathophysiology of this ultra-rare disorder, we built up a registry for GNAO1 patients in Germany. In this retrospective, multicentre cohort study, we collected detailed clinical data, treatment effects and genetic data for 25 affected patients. RESULTS The main clinical features were symptom onset within the first months of life, with central hypotonia or seizures. Within the first year of life, nearly all patients developed a movement disorder comprising dystonia (84%) and choreoathetosis (52%). Twelve (48%) patients suffered life-threatening hyperkinetic crises. Fifteen (60%) patients had epilepsy with poor treatment response. Two patients showed an atypical phenotype and seven novel pathogenic variants in GNAO1 were identified. Nine (38%) patients were treated with bilateral deep brain stimulation of the globus pallidus internus. Deep brain stimulation reduced hyperkinetic symptoms and prevented further hyperkinetic crises. The in silico prediction programmes did not predict the phenotype by the genotype. CONCLUSION The broad clinical spectrum and genetic findings expand the phenotypical spectrum of GNAO1-associated disorder and therefore disprove the assumption that there are only two main phenotypes. No specific overall genotype-phenotype correlation was identified. We highlight deep brain stimulation as a useful treatment option in this disorder.
Collapse
Affiliation(s)
- Moritz Thiel
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Daniel Bamborschke
- Pediatric Neurology, University of Bonn, Faculty of Medicine, Bonn, Germany
| | - Wibke G Janzarik
- Pediatric Neurology and Muscle Disorders, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Birgit Assmann
- Department of General Pediatrics, Pediatric Neurology, Metabolic Diseases, Gastroenterology and Nephrology, University Hospital Heidelberg, Heidelberg, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Steffi Patzer
- Department of Pediatrics, Krankenhaus St. Elisabeth und St. Barbara, Halle (Saale), Germany
| | - Andrea Auhuber
- Sozialpädiatrisches Zentrum, Celle General Hospital, Celle, Germany
| | - Joachim Opp
- Sozialpädiatrisches Zentrum, Evangelisches Krankenhaus Oberhausen, Oberhausen, Germany
| | - Eva Matzker
- Pediatric Neurology, Carl-Thiem Hospital Cottbus, Cottbus, Germany
| | - Andrea Bevot
- Pediatric Neurology and Developmental Medicine, Eberhard Karls University Tübingen, Faculty of Medicine, Tübingen, Germany
| | - Juergen Seeger
- Sozialpädiatrisches Zentrum Frankfurt Mitte, Frankfurt, Germany
| | - Andreas van Baalen
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Kiel University (CAU), Kiel, Germany
| | - Burkhard Stüve
- Pediatric Neurology, DRK-Kinderklinik Siegen gGmbH, Siegen, Germany
| | - Knut Brockmann
- Division of Pediatric Neurology, Department of Paediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Sebahattin Cirak
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Anne Koy
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Carapancea E, Cilio MR. A novel approach to seizures in neonates. Eur J Paediatr Neurol 2023; 46:89-97. [PMID: 37544258 DOI: 10.1016/j.ejpn.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
THE CHALLENGE OF SEIZURE RECOGNITION Recognition of seizures in neonates remains the foremost challenge to overcome. All neonates at risk for seizures, especially the critically ill, should undergo video-EEG monitoring. The initial step toward an accurate diagnosis is the accurate description and interpretation of the electro-clinical phenotype. THE IMPORTANCE OF SEIZURE SEMIOLOGY AND ASSOCIATION WITH ETIOLOGY: The early distinction between acute provoked seizures and neonatal-onset epilepsies serves as the primary determinant for guiding management, treatment choices, and duration. Seizures in neonates should be seen as a symptom, not a disease, and their semiology may suggest the etiology. TREATMENT OF ACUTE PROVOKED SEIZURES Neonates with hypoxic-ischemic encephalopathy respond best to phenobarbital, while levetiracetam is a better choice for neonates with congenital heart diseases. Anti-seizure medication can be discontinued after 72 h of seizure freedom, before discharge from the hospital. TREATMENT OF NEONATAL EPILEPSIES Neonates with epilepsy usually require a personalized, etiology-based approach in terms of choice and duration of treatment. Neonates with channelopathies tend to respond to sodium channel blockers such as carbamazepine, oxcarbazepine, or phenytoin. The surgical option should be considered early in cases of large brain malformations, such as hemimegalencephaly.
Collapse
Affiliation(s)
- Evelina Carapancea
- Institute of Neuroscience (IoNS), Université Catholique de Louvain, Brussels, Belgium
| | - Maria Roberta Cilio
- Institute of Neuroscience (IoNS), Université Catholique de Louvain, Brussels, Belgium; Division of Pediatric Neurology, Department of Pediatrics, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
12
|
Li Y, Chen H, Li L, Cao X, Ding X, Chen L, Cao D. Phenotypes in children with GNAO1 encephalopathy in China. Front Pediatr 2023; 11:1086970. [PMID: 37705601 PMCID: PMC10495587 DOI: 10.3389/fped.2023.1086970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Background The GNAO1 gene encodes the α-subunit (Gαo) of the heterotrimeric guanine nucleotide-binding protein (G protein). The aim of this study was to explore the clinical characteristics of patients with GNAO1 pathogenic variations. Methods Ten patients with pathogenic variations in GNAO1 were enrolled from the Shenzhen Children's Hospital. Clinical data from several cases previously reported from China were also included and analyzed. Results Twenty-seven patients with variations in GNAO1 were analyzed (10 patients from Shenzhen Children's Hospital, 17 patients from previously published studies) including 12 boys and 15 girls. The median age of onset was 3 months with moderate to severe global developmental delay. Nineteen different GNAO1 heterozygous variants were identified. Epilepsy was observed in 18 patients (67%, 18/27), movement disorder (MD) was observed in 22 patients (81%, 22/27), and both were seen in 13 patients (48%, 13/27). Seizures typically presented as focal seizures in all patients with epilepsy. MD typically presented as dystonia and chorea. Loss-of-function (LOF) or partial loss-of-function (PLOF) mutations were more frequent in patients with developmental and epileptic encephalopathy (p = 0.029). Interictal electroencephalograms showed multifocal or diffuse epileptiform discharges. The most common magnetic resonance imaging finding was widened extracerebral space. In contrast to MD, in which improvements were not common, seizures were easily controlled by anti-seizure medications. Severe dystonia in three patients was effectively treated by deep brain stimulation. Seven (26%, 7/27) patients died of respiratory complications, status dystonicus, choreoathetosis, or sudden unexpected death in epilepsy. Conclusion We analyzed clinical data of 27 cases of GNAO1-related encephalopathy in China. MD seemed to be the central feature and was most difficult to control. LOF or PLOF variants were significantly associated with developmental and epileptic encephalopathy. The active intervention of severe dystonia may prevent death due to status dystonicus. However, future studies with larger samples are needed to confirm these results.
Collapse
Affiliation(s)
- Yanmei Li
- Shenzhen Children’s Hospital, Shantou University, Shenzhen, China
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Hong Chen
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
- Surgery Division, Epilepsy Center, Shenzhen Children’s Hospital, Shenzhen, China
| | - Lin Li
- Surgery Division, Epilepsy Center, Shenzhen Children’s Hospital, Shenzhen, China
| | - Xueyan Cao
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
- Surgery Division, Epilepsy Center, Shenzhen Children’s Hospital, Shenzhen, China
| | - Xin Ding
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Li Chen
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Dezhi Cao
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
- Surgery Division, Epilepsy Center, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
13
|
Katanaev VL. Humanization for neurological disease modeling: A roadmap to increase the potential of Drosophila model systems. Animal Model Exp Med 2023; 6:230-236. [PMID: 37323110 PMCID: PMC10272901 DOI: 10.1002/ame2.12322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/03/2023] [Indexed: 06/17/2023] Open
Abstract
Neuroscience and neurology research is dominated by experimentation with rodents. Around 75% of neurology disease-associated genes have orthologs in Drosophila melanogaster, the fruit fly amenable to complex neurological and behavioral investigations. However, non-vertebrate models including Drosophila have so far been unable to significantly replace mice and rats in this field of studies. One reason for this situation is the predominance of gene overexpression (and gene loss-of-function) methodologies used when establishing a Drosophila model of a given neurological disease, a strategy that does not recapitulate accurately enough the genetic disease conditions. I argue here the need for a systematic humanization approach, whereby the Drosophila orthologs of human disease genes are replaced with the human sequences. This approach will identify the list of diseases and the underlying genes that can be adequately modeled in the fruit fly. I discuss the neurological disease genes to which this systematic humanization approach should be applied and provide an example of such an application, and consider its importance for subsequent disease modeling and drug discovery in Drosophila. I argue that this paradigm will not only advance our understanding of the molecular etiology of a number of neurological disorders, but will also gradually enable researchers to reduce experimentation using rodent models of multiple neurological diseases and eventually replace these models.
Collapse
Affiliation(s)
- Vladimir L. Katanaev
- Department of Cell Physiology and Metabolism, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
- HumanaFly Facility, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
14
|
Novelli M, Galosi S, Zorzi G, Martinelli S, Capuano A, Nardecchia F, Granata T, Pollini L, Di Rocco M, Marras CE, Nardocci N, Leuzzi V. GNAO1-related movement disorder: An update on phenomenology, clinical course, and response to treatments. Parkinsonism Relat Disord 2023:105405. [PMID: 37142469 DOI: 10.1016/j.parkreldis.2023.105405] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 05/06/2023]
Abstract
AIM To evaluate clinical phenotype and molecular findings of 157 cases with GNAO1 pathogenic or likely pathogenic variants delineating the clinical spectrum, course, and response to treatments. METHOD Clinical phenotype, genetic data, and pharmacological and surgical treatment history of 11 novel cases and 146 previously published patients were analyzed. RESULTS Complex hyperkinetic movement disorder (MD) characterizes 88% of GNAO1 patients. Severe hypotonia and prominent disturbance of postural control seem to be hallmarks in the early stages preceding the hyperkinetic MD. In a subgroup of patients, paroxysmal exacerbations became so severe as to require admission to intensive care units (ICU). Almost all patients had a good response to deep brain stimulation (DBS). Milder phenotypes with late-onset focal/segmental dystonia, mild to moderate intellectual disability, and other minor neurological signs (i.e., parkinsonism and myoclonus) are emerging. MRI, previously considered noncontributory to a diagnosis, can show recurrent findings (i.e., cerebral atrophy, myelination and/or basal ganglia abnormalities). Fifty-eight GNAO1 pathogenic variants, including missense changes and a few recurrent splice site defects, have been reported. Substitutions at residues Gly203, Arg209 and Glu246, together with the intronic c.724-8G > A change, account for more than 50% of cases. INTERPRETATION Infantile or childhood-onset complex hyperkinetic MD (chorea and/or dystonia) with or without paroxysmal exacerbations, associated hypotonia, and developmental disorders should prompt research for GNAO1 mutations. DBS effectively controls and prevents severe exacerbations and should be considered early in patients with specific GNAO1 variants and refractory MD. Prospective and natural history studies are necessary to define genotype-phenotype correlations further and clarify neurological outcomes.
Collapse
Affiliation(s)
- Maria Novelli
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University of Rome, Italy.
| | - Giovanna Zorzi
- Department of Pediatric Neuroscience, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Tiziana Granata
- Department of Pediatric Neuroscience, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Luca Pollini
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| | - Martina Di Rocco
- Department of Human Neuroscience, Sapienza University of Rome, Italy; Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Nardo Nardocci
- Department of Pediatric Neuroscience, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| |
Collapse
|
15
|
Polikarpova AV, Egorova TV, Lunev EA, Tsitrina AA, Vassilieva SG, Savchenko IM, Silaeva YY, Deykin AV, Bardina MV. CRISPR/Cas9-generated mouse model with humanizing single-base substitution in the Gnao1 for safety studies of RNA therapeutics. Front Genome Ed 2023; 5:1034720. [PMID: 37077890 PMCID: PMC10106585 DOI: 10.3389/fgeed.2023.1034720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
The development of personalized medicine for genetic diseases requires preclinical testing in the appropriate animal models. GNAO1 encephalopathy is a severe neurodevelopmental disorder caused by heterozygous de novo mutations in the GNAO1 gene. GNAO1 c.607 G>A is one of the most common pathogenic variants, and the mutant protein Gαo-G203R likely adversely affects neuronal signaling. As an innovative approach, sequence-specific RNA-based therapeutics such as antisense oligonucleotides or effectors of RNA interference are potentially applicable for selective suppression of the mutant GNAO1 transcript. While in vitro validation can be performed in patient-derived cells, a humanized mouse model to rule out the safety of RNA therapeutics is currently lacking. In the present work, we employed CRISPR/Cas9 technology to introduce a single-base substitution into exon 6 of the Gnao1 to replace the murine Gly203-coding triplet (GGG) with the codon used in the human gene (GGA). We verified that genome-editing did not interfere with the Gnao1 mRNA or Gαo protein synthesis and did not alter localization of the protein in the brain structures. The analysis of blastocysts revealed the off-target activity of the CRISPR/Cas9 complexes; however, no modifications of the predicted off-target sites were detected in the founder mouse. Histological staining confirmed the absence of abnormal changes in the brain of genome-edited mice. The created mouse model with the “humanized” fragment of the endogenous Gnao1 is suitable to rule out unintended targeting of the wild-type allele by RNA therapeutics directed at lowering GNAO1 c.607 G>A transcripts.
Collapse
Affiliation(s)
- Anna V. Polikarpova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
| | - Tatiana V. Egorova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
| | - Evgenii A. Lunev
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra A. Tsitrina
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow, Russia
| | - Svetlana G. Vassilieva
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
| | - Irina M. Savchenko
- Marlin Biotech, Sochi, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yuliya Y. Silaeva
- Core Facility Center, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| | - Alexey V. Deykin
- Marlin Biotech, Sochi, Russia
- Core Facility Center, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Laboratory of Genetic Technologies and Genome Editing for Biomedicine and Animal Health, Joint Center for Genetic Technologies, Belgorod National Research University, Belgorod, Russia
| | - Maryana V. Bardina
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Maryana V. Bardina,
| |
Collapse
|
16
|
Koval A, Larasati YA, Savitsky M, Solis GP, Good JM, Quinodoz M, Rivolta C, Superti-Furga A, Katanaev VL. In-depth molecular profiling of an intronic GNAO1 mutant as the basis for personalized high-throughput drug screening. MED 2023; 4:311-325.e7. [PMID: 37001522 DOI: 10.1016/j.medj.2023.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND The GNAO1 gene, encoding the major neuronal G protein Gαo, is mutated in a subset of pediatric encephalopathies. Most such mutations consist of missense variants. METHODS In this study, we present a precision medicine workflow combining next-generation sequencing (NGS) diagnostics, molecular etiology analysis, and personalized drug discovery. FINDINGS We describe a patient carrying a de novo intronic mutation (NM_020988.3:c.724-8G>A), leading to epilepsy-negative encephalopathy with motor dysfunction from the second decade. Our data show that this mutation creates a novel splice acceptor site that in turn causes an in-frame insertion of two amino acid residues, Pro-Gln, within the regulatory switch III region of Gαo. This insertion misconfigures the switch III loop and creates novel interactions with the catalytic switch II region, resulting in increased GTP uptake, defective GTP hydrolysis, and aberrant interactions with effector proteins. In contrast, intracellular localization, Gβγ interactions, and G protein-coupled receptor (GPCR) coupling of the Gαo[insPQ] mutant protein remain unchanged. CONCLUSIONS This in-depth analysis characterizes the heterozygous c.724-8G>A mutation as partially dominant negative, providing clues to the molecular etiology of this specific pathology. Further, this analysis allows us to establish and validate a high-throughput screening platform aiming at identifying molecules that could correct the aberrant biochemical functions of the mutant Gαo. FUNDING This work was supported by the Joint Seed Money Funding scheme between the University of Geneva and the Hebrew University of Jerusalem.
Collapse
Affiliation(s)
- Alexey Koval
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Yonika A Larasati
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Mikhail Savitsky
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Gonzalo P Solis
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Jean-Marc Good
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland; Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland; Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Vladimir L Katanaev
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia.
| |
Collapse
|
17
|
Brünger T, Pérez-Palma E, Montanucci L, Nothnagel M, Møller RS, Schorge S, Zuberi S, Symonds J, Lemke JR, Brunklaus A, Traynelis SF, May P, Lal D. Conserved patterns across ion channels correlate with variant pathogenicity and clinical phenotypes. Brain 2023; 146:923-934. [PMID: 36036558 PMCID: PMC9976975 DOI: 10.1093/brain/awac305] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Clinically identified genetic variants in ion channels can be benign or cause disease by increasing or decreasing the protein function. As a consequence, therapeutic decision-making is challenging without molecular testing of each variant. Our biophysical knowledge of ion-channel structures and function is just emerging, and it is currently not well understood which amino acid residues cause disease when mutated. We sought to systematically identify biological properties associated with variant pathogenicity across all major voltage and ligand-gated ion-channel families. We collected and curated 3049 pathogenic variants from hundreds of neurodevelopmental and other disorders and 12 546 population variants for 30 ion channel or channel subunits for which a high-quality protein structure was available. Using a wide range of bioinformatics approaches, we computed 163 structural features and tested them for pathogenic variant enrichment. We developed a novel 3D spatial distance scoring approach that enables comparisons of pathogenic and population variant distribution across protein structures. We discovered and independently replicated that several pore residue properties and proximity to the pore axis were most significantly enriched for pathogenic variants compared to population variants. Using our 3D scoring approach, we showed that the strongest pathogenic variant enrichment was observed for pore-lining residues and alpha-helix residues within 5Å distance from the pore axis centre and not involved in gating. Within the subset of residues located at the pore, the hydrophobicity of the pore was the feature most strongly associated with variant pathogenicity. We also found an association between the identified properties and both clinical phenotypes and functional in vitro assays for voltage-gated sodium channels (SCN1A, SCN2A, SCN8A) and N-methyl-D-aspartate receptor (GRIN1, GRIN2A, GRIN2B) encoding genes. In an independent expert-curated dataset of 1422 neurodevelopmental disorder pathogenic patient variants and 679 electrophysiological experiments, we show that pore axis distance is associated with seizure age of onset and cognitive performance as well as differential gain versus loss-of-channel function. In summary, we identified biological properties associated with ion-channel malfunction and show that these are correlated with in vitro functional readouts and clinical phenotypes in patients with neurodevelopmental disorders. Our results suggest that clinical decision support algorithms that predict variant pathogenicity and function are feasible in the future.
Collapse
Affiliation(s)
- Tobias Brünger
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | - Eduardo Pérez-Palma
- Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Universidad de Desarrollo, Santiago 7590943, Chile
| | - Ludovica Montanucci
- Lerner Research Institute Cleveland Clinic, Genomic Medicine Institute, Cleveland, OH 44195, USA
| | - Michael Nothnagel
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
- University Hospital Cologne, 50937 Cologne, Germany
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Treatment, the Danish Epilepsy Center, DK 4293 Dianalund, Denmark
| | - Stephanie Schorge
- Department of Neuroscience, Physiology and Pharmacology, UCL, London WC1E 6BT, UK
| | - Sameer Zuberi
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
- Institute of Health and Wellbeing, University of Glasgow, UK
| | - Joseph Symonds
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
- Institute of Health and Wellbeing, University of Glasgow, UK
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Andreas Brunklaus
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
- Institute of Health and Wellbeing, University of Glasgow, UK
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322-3090, USA
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Dennis Lal
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
- Lerner Research Institute Cleveland Clinic, Genomic Medicine Institute, Cleveland, OH 44195, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
18
|
Gambardella ML, Pede E, Orazi L, Leone S, Quintiliani M, Amorelli GM, Petrianni M, Galanti M, Amore F, Musto E, Perulli M, Contaldo I, Veredice C, Mercuri EM, Battaglia DI, Ricci D. Visual Function in Children with GNAO1-Related Encephalopathy. Genes (Basel) 2023; 14:genes14030544. [PMID: 36980817 PMCID: PMC10047968 DOI: 10.3390/genes14030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Background: GNAO1-related encephalopathies include a broad spectrum of developmental disorders caused by de novo heterozygous mutations in the GNAO1 gene, encoding the G (o) subunit α of G-proteins. These conditions are characterized by epilepsy, movement disorders and developmental impairment, in combination or as isolated features. Objective: This study aimed at describing the profile of neurovisual competences in children with GNAO1 deficiency to better characterize the phenotype of the disease spectrum. Methods: Four male and three female patients with confirmed genetic diagnosis underwent neurological examination, visual function assessment, and neurovisual and ophthalmological evaluation. Present clinical history of epilepsy and movement disorders, and neuroimaging findings were also evaluated. Results: The assessment revealed two trends in visual development. Some aspects of visual function, such as discrimination and perception of distance, depth and volume, appeared to be impaired at all ages, with no sign of improvement. Other aspects, reliant on temporal lobe competences (ventral stream) and more related to object–face exploration, recognition and environmental control, appeared to be preserved and improved with age. Significance: Visual function is often impaired, with patterns of visual impairment affecting the ventral stream less.
Collapse
Affiliation(s)
- Maria Luigia Gambardella
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Correspondence:
| | - Elisa Pede
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Lorenzo Orazi
- National Centre of Services and Research for the Prevention of Blindness and Rehabilitation of Visually Impaired, IAPB Italia ONLUS, 00168 Rome, Italy
- Ophthalmology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Simona Leone
- National Centre of Services and Research for the Prevention of Blindness and Rehabilitation of Visually Impaired, IAPB Italia ONLUS, 00168 Rome, Italy
- Ophthalmology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Michela Quintiliani
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giulia Maria Amorelli
- National Centre of Services and Research for the Prevention of Blindness and Rehabilitation of Visually Impaired, IAPB Italia ONLUS, 00168 Rome, Italy
- Ophthalmology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Petrianni
- National Centre of Services and Research for the Prevention of Blindness and Rehabilitation of Visually Impaired, IAPB Italia ONLUS, 00168 Rome, Italy
- Ophthalmology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marta Galanti
- National Centre of Services and Research for the Prevention of Blindness and Rehabilitation of Visually Impaired, IAPB Italia ONLUS, 00168 Rome, Italy
- Ophthalmology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Filippo Amore
- National Centre of Services and Research for the Prevention of Blindness and Rehabilitation of Visually Impaired, IAPB Italia ONLUS, 00168 Rome, Italy
- Ophthalmology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Elisa Musto
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Perulli
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Ilaria Contaldo
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Chiara Veredice
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Eugenio Maria Mercuri
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Daniela Ricci
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- National Centre of Services and Research for the Prevention of Blindness and Rehabilitation of Visually Impaired, IAPB Italia ONLUS, 00168 Rome, Italy
| |
Collapse
|
19
|
Iqbal S, Brünger T, Pérez-Palma E, Macnee M, Brunklaus A, Daly MJ, Campbell AJ, Hoksza D, May P, Lal D. Delineation of functionally essential protein regions for 242 neurodevelopmental genes. Brain 2023; 146:519-533. [PMID: 36256779 PMCID: PMC9924913 DOI: 10.1093/brain/awac381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 09/04/2022] [Indexed: 01/25/2023] Open
Abstract
Neurodevelopmental disorders (NDDs), including severe paediatric epilepsy, autism and intellectual disabilities are heterogeneous conditions in which clinical genetic testing can often identify a pathogenic variant. For many of them, genetic therapies will be tested in this or the coming years in clinical trials. In contrast to first-generation symptomatic treatments, the new disease-modifying precision medicines require a genetic test-informed diagnosis before a patient can be enrolled in a clinical trial. However, even in 2022, most identified genetic variants in NDD genes are 'variants of uncertain significance'. To safely enrol patients in precision medicine clinical trials, it is important to increase our knowledge about which regions in NDD-associated proteins can 'tolerate' missense variants and which ones are 'essential' and will cause a NDD when mutated. In addition, knowledge about functionally indispensable regions in the 3D structure context of proteins can also provide insights into the molecular mechanisms of disease variants. We developed a novel consensus approach that overlays evolutionary, and population based genomic scores to identify 3D essential sites (Essential3D) on protein structures. After extensive benchmarking of AlphaFold predicted and experimentally solved protein structures, we generated the currently largest expert curated protein structure set for 242 NDDs and identified 14 377 Essential3D sites across 189 gene disorders associated proteins. We demonstrate that the consensus annotation of Essential3D sites improves prioritization of disease mutations over single annotations. The identified Essential3D sites were enriched for functional features such as intermembrane regions or active sites and discovered key inter-molecule interactions in protein complexes that were otherwise not annotated. Using the currently largest autism, developmental disorders, and epilepsies exome sequencing studies including >360 000 NDD patients and population controls, we found that missense variants at Essential3D sites are 8-fold enriched in patients. In summary, we developed a comprehensive protein structure set for 242 NDDs and identified 14 377 Essential3D sites in these. All data are available at https://es-ndd.broadinstitute.org for interactive visual inspection to enhance variant interpretation and development of mechanistic hypotheses for 242 NDDs genes. The provided resources will enhance clinical variant interpretation and in silico drug target development for NDD-associated genes and encoded proteins.
Collapse
Affiliation(s)
- Sumaiya Iqbal
- The Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tobias Brünger
- Cologne Center for Genomics, University of Cologne, 50923 Köln, Germany
| | - Eduardo Pérez-Palma
- Universidad del Desarrollo, Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, 7610658 Las Condes, Santiago de Chile, Chile
| | - Marie Macnee
- Cologne Center for Genomics, University of Cologne, 50923 Köln, Germany
| | - Andreas Brunklaus
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow G12 8QQ, UK
- School of Health and Wellbeing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mark J Daly
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Institute for Molecular Medicine Finland (FIMM), Centre of Excellence in Complex Disease Genetics, University of Helsinki, 00100 Helsinki, Finland
| | - Arthur J Campbell
- The Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David Hoksza
- Department of Software Engineering, Faculty of Mathematics and Physics, Charles University, 110 00 Staré Město, Czechia, Czech Republic
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Dennis Lal
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Cologne Center for Genomics, University of Cologne, 50923 Köln, Germany
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Genomic Medicine Institute, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
20
|
Bobylova MY, Volkov IV, Gumennik EV, Rachmanina OA, Abramov MO, Volkova OK, Bayborina TS, Petrukhin AS. [Encephalopathy GNAO1]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:122-130. [PMID: 36719128 DOI: 10.17116/jnevro2023123011122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To study the clinical picture of all patients with GNAO1 encephalopathy detected in the Russian Federation. This publication is a multicenter study combining data from epileptological centers in Moscow, Novosibirsk, St. Petersburg, Nizhny Novgorod, Tyumen. MATERIAL AND METHODS Nine patients were included, aged 2 to 19 years, with 4 mutations. Male to female sex ratio = 5:4. RESULTS 8 patients (5 with mutation c.607G>A (p.Gly203Arg), 1 - c.155A>G (Gln52Arg), 1 - c.485G>A (p.Arg162Gln)) had a variant of epileptic encephalopathy, developmental encephalopathy, 1 patient had torsion dystonia without epilepsy (mutation c.713A>G (p.Asp238Gly)). Epileptic seizures in 8 children with epileptic encephalopathy GNAO1 in 100% debuted at 1 month of life, becoming the earliest symptom of the disease. Motor development delayed in 100% of cases. Mental development was not affected only in the case of the dystonic variant. Hyperkinesis (dystonia, choreoathetosis, ballism) followed later, from 2 to 8 months. They were more severe than epilepsy. 4 patients with the c.607G>A (p.Gly203Arg) mutation developed repeated dystonic storms that were resistant to most drugs. CONCLUSION Epilepsy in GNAO1 is difficult to treat, but temporary or complete remission is possible. Effective drug strategies for the treatment of hyperkinesis have not yet been developed. Expansion of indications for surgical therapy (DBS) of hyperkinesis in this syndrome is desirable.
Collapse
Affiliation(s)
- M Yu Bobylova
- LLC «Svt.Luca's Institute of Child and Adult Neurology and Epilepsy», Moscow, Russia
| | | | - E V Gumennik
- Clinic of Pediatric Neurology and Epileptology EpiJay, St. Petersburg, Russia
| | | | - M O Abramov
- LLC «Svt.Luca's Institute of Child and Adult Neurology and Epilepsy», Moscow, Russia
| | | | - T S Bayborina
- Children's City Clinical Hospital of emergency medical care, Novosibirsk, Russia
| | - A S Petrukhin
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
21
|
JoJo Yang QZ, Porter BE, Axeen ET. GNAO1-related neurodevelopmental disorder: Literature review and caregiver survey. Epilepsy Behav Rep 2022; 21:100582. [PMID: 36654732 PMCID: PMC9841045 DOI: 10.1016/j.ebr.2022.100582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023] Open
Abstract
Background GNAO1-related neurodevelopmental disorder is a heterogeneous condition characterized by hypotonia, developmental delay, epilepsy, and movement disorder. This study aims to better understand the spectrum of epilepsy associated with GNAO1 variants and experience with anti-seizure medications, and to review published epilepsy phenotypes in GNAO1. Methods An online survey was distributed to caregivers of individuals diagnosed with GNAO1 pathogenic variants, and a literature review was conducted. Results Fifteen respondents completed the survey with the median age of 39 months, including a novel variant p.Q52P. Nine had epilepsy - six had onset in the first week of life, three in the first year of life - but two reported no ongoing seizures. Seizure types varied. Individuals were taking a median of 3 seizure medications without a single best treatment. Our cohort was compared to a literature review of epilepsy in GNAO1. In 86 cases, 38 discrete variants were described; epilepsy is reported in 53 % cases, and a developmental and epileptic encephalopathy in 36 %. Conclusions While GNAO1-related epilepsy is most often early-onset and severe, seizures may not always be drug resistant or lifelong. Experience with anti-seizure medications is varied. Certain variant "hotspots" may correlate with epilepsy phenotype though genotype-phenotype correlation is poorly understood.
Collapse
Affiliation(s)
- Qian-Zhou JoJo Yang
- Division of Child Neurology, Department of Neurology, University of North Carolina, Chapel Hill, NC, United States,Corresponding author at: 170 Manning Dr, Campus Box 7025, Chapel Hill, NC 27599, United States
| | - Brenda E Porter
- Division of Child Neurology, Department of Neurology, Stanford University, Palo Alto, CA, United States
| | - Erika T Axeen
- Division of Pediatric Neurology, Department of Neurology, University of Virginia, United States
| |
Collapse
|
22
|
Larasati YA, Savitsky M, Koval A, Solis GP, Valnohova J, Katanaev VL. Restoration of the GTPase activity and cellular interactions of Gα o mutants by Zn 2+ in GNAO1 encephalopathy models. SCIENCE ADVANCES 2022; 8:eabn9350. [PMID: 36206333 PMCID: PMC9544338 DOI: 10.1126/sciadv.abn9350] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
De novo point mutations in GNAO1, gene encoding the major neuronal G protein Gαo, have recently emerged in patients with pediatric encephalopathy having motor, developmental, and epileptic dysfunctions. Half of clinical cases affect codons Gly203, Arg209, or Glu246; we show that these mutations accelerate GTP uptake and inactivate GTP hydrolysis through displacement Gln205 critical for GTP hydrolysis, resulting in constitutive GTP binding by Gαo. However, the mutants fail to adopt the activated conformation and display aberrant interactions with signaling partners. Through high-throughput screening of approved drugs, we identify zinc pyrithione and Zn2+ as agents restoring active conformation, GTPase activity, and cellular interactions of the encephalopathy mutants, with negligible effects on wild-type Gαo. We describe a Drosophila model of GNAO1 encephalopathy where dietary zinc restores the motor function and longevity of the mutant flies. Zinc supplements are approved for diverse human neurological conditions. Our work provides insights into the molecular etiology of GNAO1 encephalopathy and defines a potential therapy for the patients.
Collapse
Affiliation(s)
- Yonika A. Larasati
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Mikhail Savitsky
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Alexey Koval
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Gonzalo P. Solis
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Jana Valnohova
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Vladimir L. Katanaev
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia
| |
Collapse
|
23
|
Galosi S, Pollini L, Novelli M, Bernardi K, Di Rocco M, Martinelli S, Leuzzi V. Motor, epileptic, and developmental phenotypes in genetic disorders affecting G protein coupled receptors-cAMP signaling. Front Neurol 2022; 13:886751. [PMID: 36003298 PMCID: PMC9393484 DOI: 10.3389/fneur.2022.886751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Over the last years, a constantly increasing number of genetic diseases associated with epilepsy and movement disorders have been recognized. An emerging group of conditions in this field is represented by genetic disorders affecting G-protein-coupled receptors (GPCRs)–cAMP signaling. This group of postsynaptic disorders includes genes encoding for proteins highly expressed in the central nervous system and involved in GPCR signal transduction and cAMP production (e.g., GNAO1, GNB1, ADCY5, GNAL, PDE2A, PDE10A, and HPCA genes). While the clinical phenotype associated with ADCY5 and GNAL is characterized by movement disorder in the absence of epilepsy, GNAO1, GNB1, PDE2A, PDE10A, and HPCA have a broader clinical phenotype, encompassing movement disorder, epilepsy, and neurodevelopmental disorders. We aimed to provide a comprehensive phenotypical characterization of genetic disorders affecting the cAMP signaling pathway, presenting with both movement disorders and epilepsy. Thus, we reviewed clinical features and genetic data of 203 patients from the literature with GNAO1, GNB1, PDE2A, PDE10A, and HPCA deficiencies. Furthermore, we delineated genotype–phenotype correlation in GNAO1 and GNB1 deficiency. This group of disorders presents with a highly recognizable clinical phenotype combining distinctive motor, epileptic, and neurodevelopmental features. A severe hyperkinetic movement disorder with potential life-threatening exacerbations and high susceptibility to a wide range of triggers is the clinical signature of the whole group of disorders. The existence of a distinctive clinical phenotype prompting diagnostic suspicion and early detection has relevant implications for clinical and therapeutic management. Studies are ongoing to clarify the pathophysiology of these rare postsynaptic disorders and start to design disease-specific treatments.
Collapse
Affiliation(s)
- Serena Galosi
- Department Human Neuroscience, Sapienza University, Rome, Italy
- *Correspondence: Serena Galosi
| | - Luca Pollini
- Department Human Neuroscience, Sapienza University, Rome, Italy
| | - Maria Novelli
- Department Human Neuroscience, Sapienza University, Rome, Italy
| | | | - Martina Di Rocco
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Vincenzo Leuzzi
- Department Human Neuroscience, Sapienza University, Rome, Italy
| |
Collapse
|
24
|
Fung ELW, Mo CY, Fung STH, Chan AYY, Lau KY, Chan EKY, Chan DYC, Zhu XL, Chan DTM, Poon WS. Deep brain stimulation in a young child with GNAO1 mutation – Feasible and helpful. Surg Neurol Int 2022; 13:285. [PMID: 35855141 PMCID: PMC9282786 DOI: 10.25259/sni_166_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/16/2022] [Indexed: 11/04/2022] Open
Abstract
Background:
GNAO1 is an emerging disorder characterized with hypotonia, developmental delay, epilepsy, and movement disorder, which can be potentially life threatening during acute exacerbation. In the USA, deep brain stimulation (DBS) has been licensed for treating children with chronic, treatment-resistant primary dystonia, who are 7 years old or older.
Case Description:
A 4-year-old girl diagnosed to have GNAO1-related dyskinesia and severe global developmental delay. She had severe dyskinesia precipitated by intercurrent infection, requiring prolonged intensive care for heavy sedation and related complications. Her dyskinesia improved dramatically after DBS implantation. Technical difficulties and precautions of DBS in preschool children were discussed.
Conclusion:
DBS should be considered early in the treatment of drug-resistant movement disorders in young children with GNAO1, especially after dyskinetic crisis, as they tend to recur. Presurgical counseling to parents and close monitoring of complications is also important in the process.
Collapse
Affiliation(s)
- Eva Lai-wah Fung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong
| | - Chung-yin Mo
- Department of Paediatrics, Kwong Wah Hospital, Hong Kong
| | | | - Anne Yin-yan Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Ka-yee Lau
- Department of Surgery, Division of Neurosurgery, The Chinese University of Hong Kong, Hong Kong
| | - Emily Kit-ying Chan
- Department of Surgery, Division of Neurosurgery, The Chinese University of Hong Kong, Hong Kong
| | - David Yuen-chung Chan
- Department of Surgery, Division of Neurosurgery, The Chinese University of Hong Kong, Hong Kong
| | - Xian-lun Zhu
- Department of Surgery, Division of Neurosurgery, The Chinese University of Hong Kong, Hong Kong
| | - Danny Tat-ming Chan
- Department of Surgery, Division of Neurosurgery, The Chinese University of Hong Kong, Hong Kong
| | - Wai-sang Poon
- Department of Surgery, Division of Neurosurgery, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
25
|
Wirth T, Garone G, Kurian MA, Piton A, Millan F, Telegrafi A, Drouot N, Rudolf G, Chelly J, Marks W, Burglen L, Demailly D, Coubes P, Castro‐Jimenez M, Joriot S, Ghoumid J, Belin J, Faucheux J, Blumkin L, Hull M, Parnes M, Ravelli C, Poulen G, Calmels N, Nemeth AH, Smith M, Barnicoat A, Ewenczyk C, Méneret A, Roze E, Keren B, Mignot C, Beroud C, Acosta F, Nowak C, Wilson WG, Steel D, Capuano A, Vidailhet M, Lin J, Tranchant C, Cif L, Doummar D, Anheim M. Highlighting the Dystonic Phenotype Related to GNAO1. Mov Disord 2022; 37:1547-1554. [PMID: 35722775 PMCID: PMC9545634 DOI: 10.1002/mds.29074] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Most reported patients carrying GNAO1 mutations showed a severe phenotype characterized by early-onset epileptic encephalopathy and/or chorea. OBJECTIVE The aim was to characterize the clinical and genetic features of patients with mild GNAO1-related phenotype with prominent movement disorders. METHODS We included patients diagnosed with GNAO1-related movement disorders of delayed onset (>2 years). Patients experiencing either severe or profound intellectual disability or early-onset epileptic encephalopathy were excluded. RESULTS Twenty-four patients and 1 asymptomatic subject were included. All patients showed dystonia as prominent movement disorder. Dystonia was focal in 1, segmental in 6, multifocal in 4, and generalized in 13. Six patients showed adolescence or adulthood-onset dystonia. Seven patients presented with parkinsonism and 3 with myoclonus. Dysarthria was observed in 19 patients. Mild and moderate ID were present in 10 and 2 patients, respectively. CONCLUSION We highlighted a mild GNAO1-related phenotype, including adolescent-onset dystonia, broadening the clinical spectrum of this condition. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Thomas Wirth
- Département de Neurologie, Hôpital de HautepierreHôpitaux Universitaires de StrasbourgStrasbourg,Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance,Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| | - Giacomo Garone
- University Hospital Pediatric Department, IRCCS Bambino Gesù Children's HospitalUniversity of Rome Tor VergataRomeItaly,Movement Disorders Clinic, Department of NeurosciencesBambino Gesù Children's HospitalRomeItaly
| | - Manju A. Kurian
- Molecular Neurosciences, Developmental NeurosciencesUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Amélie Piton
- Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance,Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance,Laboratoire de diagnostic génétique, Nouvel Hôpital CivilHôpitaux universitaires de StrasbourgStrasbourgFrance
| | | | | | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| | - Gabrielle Rudolf
- Département de Neurologie, Hôpital de HautepierreHôpitaux Universitaires de StrasbourgStrasbourg,Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance,Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| | - Jamel Chelly
- Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance,Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance,Laboratoire de diagnostic génétique, Nouvel Hôpital CivilHôpitaux universitaires de StrasbourgStrasbourgFrance
| | - Warren Marks
- Cook Children's Medical CentreFort WorthTexasUSA
| | - Lydie Burglen
- Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Département de Génétique et Embryologie MédicaleAPHP, Hôpital TrousseauParisFrance
| | - Diane Demailly
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements AnormauxHôpital Gui de Chauliac, Centre Hospitalier Régional MontpellierMontpellierFrance
| | - Phillipe Coubes
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements AnormauxHôpital Gui de Chauliac, Centre Hospitalier Régional MontpellierMontpellierFrance
| | - Mayte Castro‐Jimenez
- Service de Neurologie, Department of Clinical NeurosciencesLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Sylvie Joriot
- Department of Paediatric NeurologyUniversity Hospital of LilleLilleFrance
| | - Jamal Ghoumid
- Univ. Lille, ULR7364 RADEME, CHU Lille, Clinique de Génétique Guy FontaineLilleFrance
| | | | | | - Lubov Blumkin
- Pediatric Movement Disorders Clinic, Pediatric Neurology Unit, Wolfson Medical Center, Holon, Sackler School of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Mariam Hull
- Pediatric Movement Disorders Clinic, Blue Bird Circle Clinic for Pediatric Neurology, Section of Pediatric Neurology and Developmental NeuroscienceTexas Children's HospitalHoustonTexasUSA
| | - Mered Parnes
- Pediatric Movement Disorders Clinic, Blue Bird Circle Clinic for Pediatric Neurology, Section of Pediatric Neurology and Developmental NeuroscienceTexas Children's HospitalHoustonTexasUSA
| | - Claudia Ravelli
- Sorbonne Université, Service de Neuropédiatrie‐Pathologie du développement, centre de référence neurogénétiqueHôpital Trousseau AP‐HP.SU, FHU I2D2ParisFrance
| | - Gaëtan Poulen
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements AnormauxHôpital Gui de Chauliac, Centre Hospitalier Régional MontpellierMontpellierFrance
| | - Nadège Calmels
- Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance,Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance,Laboratoire de diagnostic génétique, Nouvel Hôpital CivilHôpitaux universitaires de StrasbourgStrasbourgFrance
| | - Andrea H. Nemeth
- Oxford University Hospitals National Health Service Foundation Trust and University of OxfordOxfordUnited Kingdom
| | - Martin Smith
- Oxford University Hospitals National Health Service Foundation Trust and University of OxfordOxfordUnited Kingdom
| | - Angela Barnicoat
- Department of Clinical GeneticsGreat Ormond Street HospitalLondonUnited Kingdom
| | - Claire Ewenczyk
- Sorbonne Université/Inserm U1127/CNRS UMR 7225/Institut du CerveauParisFrance,Service de neurologie, Hôpital la Pitié SalpêtrièreSorbonne UniversitéParisFrance
| | - Aurélie Méneret
- Sorbonne Université/Inserm U1127/CNRS UMR 7225/Institut du CerveauParisFrance,Service de neurologie, Hôpital la Pitié SalpêtrièreSorbonne UniversitéParisFrance
| | - Emmanuel Roze
- Sorbonne Université/Inserm U1127/CNRS UMR 7225/Institut du CerveauParisFrance,Service de neurologie, Hôpital la Pitié SalpêtrièreSorbonne UniversitéParisFrance
| | - Boris Keren
- Sorbonne Université/Inserm U1127/CNRS UMR 7225/Institut du CerveauParisFrance,Service de neurologie, Hôpital la Pitié SalpêtrièreSorbonne UniversitéParisFrance
| | - Cyril Mignot
- Sorbonne Université/Inserm U1127/CNRS UMR 7225/Institut du CerveauParisFrance,Service de neurologie, Hôpital la Pitié SalpêtrièreSorbonne UniversitéParisFrance
| | - Christophe Beroud
- Aix Marseille Université, INSERM, MMG, Bioinformatics & GeneticsMarseilleFrance
| | | | - Catherine Nowak
- The Feingold Center for Children, Division of Genetics and GenomicsBoston Children's HospitalBostonMassachusettsUSA
| | - William G. Wilson
- Department of PediatricsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Dora Steel
- Molecular Neurosciences, Developmental NeurosciencesUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Alessandro Capuano
- Movement Disorders Clinic, Department of NeurosciencesBambino Gesù Children's HospitalRomeItaly
| | - Marie Vidailhet
- Sorbonne Université/Inserm U1127/CNRS UMR 7225/Institut du CerveauParisFrance,Service de neurologie, Hôpital la Pitié SalpêtrièreSorbonne UniversitéParisFrance
| | - Jean‐Pierre Lin
- Children's Neurosciences Department, Evelina London Children's HospitalGuy's and St Thomas NHS Foundation TrustLondonUnited Kingdom
| | - Christine Tranchant
- Département de Neurologie, Hôpital de HautepierreHôpitaux Universitaires de StrasbourgStrasbourg,Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance,Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| | - Laura Cif
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements AnormauxHôpital Gui de Chauliac, Centre Hospitalier Régional MontpellierMontpellierFrance
| | - Diane Doummar
- Sorbonne Université, Service de Neuropédiatrie‐Pathologie du développement, centre de référence neurogénétiqueHôpital Trousseau AP‐HP.SU, FHU I2D2ParisFrance
| | - Mathieu Anheim
- Département de Neurologie, Hôpital de HautepierreHôpitaux Universitaires de StrasbourgStrasbourg,Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance,Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| |
Collapse
|
26
|
Liu Y, Zhang Q, Wang J, Liu J, Yang W, Yan X, Ouyang Y, Yang H. Both subthalamic and pallidal deep brain stimulation are effective for GNAO1-associated dystonia: three case reports and a literature review. Ther Adv Neurol Disord 2022; 15:17562864221093507. [PMID: 35509770 PMCID: PMC9058460 DOI: 10.1177/17562864221093507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background Mutations in the G-protein subunit alpha o1 (GNAO1) gene have recently been shown to be involved in the pathogenesis of early infantile epileptic encephalopathy and movement disorders. The clinical manifestations of GNAO1-associated movement disorders are highly heterogeneous. However, the genotype-phenotype correlations in this disease remain unclear, and the treatments for GNAO1-associated movement disorders are still limited. Objective The objective of this study was to explore diagnostic and therapeutic strategies for GNAO1-associated movement disorders. Methods This study describes the cases of three Chinese patients who had shown severe and progressive dystonia in the absence of epilepsy since early childhood. We performed genetic analyses in these patients. Patients 1 and 2 underwent globus pallidus internus (GPi) deep brain stimulation (DBS) implantation, and Patient 3 underwent subthalamic nucleus (STN) DBS implantation. In addition, on the basis of a literature review, we summarized and discussed the clinical characteristics and outcomes after DBS surgery for all reported patients with GNAO1-associated movement disorders. Results Whole-exome sequencing (WES) analysis revealed de novo variants in the GNAO1 gene for all three patients, including a splice-site variant (c.724-8G > A) in Patients 1 and 3 and a novel heterozygous missense variant (c.124G > A; p. Gly42Arg) in Patient 2. Both GPi and STN DBS were effective in improving the dystonia symptoms of all three patients. Conclusion DBS is effective in ameliorating motor symptoms in patients with GNAO1-associated movement disorders, and both STN DBS and GPi DBS should be considered promptly for patients with sustained refractory GNAO1-associated dystonia.
Collapse
Affiliation(s)
- Ye Liu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Qingping Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jun Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Jiyuan Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Wuyang Yang
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xuejing Yan
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Yi Ouyang
- Department of Neurology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Haibo Yang
- Department of Pediatric Surgery, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
27
|
Lange LM, Gonzalez-Latapi P, Rajalingam R, Tijssen MAJ, Ebrahimi-Fakhari D, Gabbert C, Ganos C, Ghosh R, Kumar KR, Lang AE, Rossi M, van der Veen S, van de Warrenburg B, Warner T, Lohmann K, Klein C, Marras C. Nomenclature of Genetic Movement Disorders: Recommendations of the International Parkinson and Movement Disorder Society Task Force - An Update. Mov Disord 2022; 37:905-935. [PMID: 35481685 DOI: 10.1002/mds.28982] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
In 2016, the Movement Disorder Society Task Force for the Nomenclature of Genetic Movement Disorders presented a new system for naming genetically determined movement disorders and provided a criterion-based list of confirmed monogenic movement disorders. Since then, a substantial number of novel disease-causing genes have been described, which warrant classification using this system. In addition, with this update, we further refined the system and propose dissolving the imaging-based categories of Primary Familial Brain Calcification and Neurodegeneration with Brain Iron Accumulation and reclassifying these genetic conditions according to their predominant phenotype. We also introduce the novel category of Mixed Movement Disorders (MxMD), which includes conditions linked to multiple equally prominent movement disorder phenotypes. In this article, we present updated lists of newly confirmed monogenic causes of movement disorders. We found a total of 89 different newly identified genes that warrant a prefix based on our criteria; 6 genes for parkinsonism, 21 for dystonia, 38 for dominant and recessive ataxia, 5 for chorea, 7 for myoclonus, 13 for spastic paraplegia, 3 for paroxysmal movement disorders, and 6 for mixed movement disorder phenotypes; 10 genes were linked to combined phenotypes and have been assigned two new prefixes. The updated lists represent a resource for clinicians and researchers alike and they have also been published on the website of the Task Force for the Nomenclature of Genetic Movement Disorders on the homepage of the International Parkinson and Movement Disorder Society (https://www.movementdisorders.org/MDS/About/Committees--Other-Groups/MDS-Task-Forces/Task-Force-on-Nomenclature-in-Movement-Disorders.htm). © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Paulina Gonzalez-Latapi
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada.,Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rajasumi Rajalingam
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Marina A J Tijssen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christos Ganos
- Department of Neurology, Charité University Hospital Berlin, Berlin, Germany
| | - Rhia Ghosh
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Anthony E Lang
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research (FLENI), Buenos Aires, Argentina
| | - Sterre van der Veen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom Warner
- Department of Clinical & Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Connie Marras
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | | |
Collapse
|
28
|
Hieu NLT, Thu NTM, Ngan LTA, Van LTK, Huy DP, Linh PTT, Mai NTQ, Hien HTD, Hang DTT. Genetic analysis using targeted exome sequencing of 53 Vietnamese children with developmental and epileptic encephalopathies. Am J Med Genet A 2022; 188:2048-2060. [PMID: 35365919 DOI: 10.1002/ajmg.a.62741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/14/2022] [Accepted: 03/13/2022] [Indexed: 11/07/2022]
Abstract
Developmental and epileptic encephalopathies (DEE) refers to a group of rare and severe neurodevelopmental disorders where genetic etiologies can play a major role. This study aimed to elucidate the genetic etiologies of a cohort of 53 Vietnamese patients with DEE. All patients were classified into known electroclinical syndromes where possible. Exome sequencing (ES) followed by a targeted analysis on 294 DEE-related genes was then performed. Patients with identified causative variants were followed for 6 months to determine the impact of genetic testing on their treatment. The diagnostic yield was 38.0% (20/53), which was significantly higher in the earlier onset group (<12 months) than in the later onset group (≥12 months). The 19 identified variants belonged to 11 genes with various cellular functions. Genes encoding ion channels especially sodium voltage-gated channel were the most frequently involved. Most variants were missense variants and located in key protein functional domains. Four variants were novel and four had been reported previously but in different phenotypes. Within 6 months of further follow-up, treatment changes were applied for six patients based on the identified disease-causing variants, with five patients showing a positive impact. This is the first study in Vietnam to analyze the genetics of DEE. This study confirms the strong involvement of genetic etiologies in DEE, especially early onset DEE. The study also contributes to clarify the genotype-phenotype correlations of DEE and highlights the efficacy of targeted ES in the diagnosis and treatment of DEE.
Collapse
Affiliation(s)
- Nguyen Le Trung Hieu
- Neurology Department, Children Hospital 2, Ho Chi Minh City, Vietnam.,University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | | | - Le Tran Anh Ngan
- Neurology Department, Children Hospital 2, Ho Chi Minh City, Vietnam
| | - Le Thi Khanh Van
- Neurology Department, Children Hospital 2, Ho Chi Minh City, Vietnam
| | - Do Phuoc Huy
- Medical Genetics Institute, Ho Chi Minh City, Vietnam
| | - Pham Thi Truc Linh
- Functional Genomic Unit, DNA Medical Technology Company, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Quynh Mai
- Research Center for Genetics and Reproductive Health, School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Huynh Thi Dieu Hien
- Research Center for Genetics and Reproductive Health, School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Do Thi Thu Hang
- Research Center for Genetics and Reproductive Health, School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
29
|
An intronic GNAO1 variant leading to in-frame insertion cause movement disorder controlled by deep brain stimulation. Neurogenetics 2022; 23:129-135. [PMID: 35147852 DOI: 10.1007/s10048-022-00686-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/06/2022] [Indexed: 12/27/2022]
Abstract
GNAO1 variants are associated with a wide range of neurodevelopmental disorders including epileptic encephalopathies and movement disorders. It has been reported that some GNAO1 variants are associated with movement disorders, and the 207-246 amino acid region was proposed as a mutational hotspot. Here, we report an intronic variant (NM_020988.3:c.724-8G>A) in GNAO1 in a Japanese girl who showed mild developmental delay and movement disorders including dystonia and myoclonus. Her movement disorders were improved by deep brain stimulation treatment as previously reported. This variant has been recurrently reported in four patients and was transmitted from her mother who possessed the variant as low-prevalent mosaicism. Using RNA extracted from lymphoblastoid cells derived from the patient, we demonstrated that the variant caused abnormal splicing of in-frame 6-bp intronic retention, leading to 2 amino acid insertion (p.Thr241_Asn242insProGln). Immunoblotting and immunostaining using WT and mutant GNAO1 vectors showed no significant differences in protein expression levels, but the cellular localization pattern of this mutant was partially shifted to the cytoplasm whereas WT was exclusively localized in the cellular membrane. Our report first clarified abnormal splicing and resulting mutant protein caused by the c.724-8G>A variant.
Collapse
|
30
|
Silachev D, Koval A, Savitsky M, Padmasola G, Quairiaux C, Thorel F, Katanaev VL. Mouse models characterize GNAO1 encephalopathy as a neurodevelopmental disorder leading to motor anomalies: from a severe G203R to a milder C215Y mutation. Acta Neuropathol Commun 2022; 10:9. [PMID: 35090564 PMCID: PMC8796625 DOI: 10.1186/s40478-022-01312-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/08/2022] [Indexed: 02/07/2023] Open
Abstract
GNAO1 encephalopathy characterized by a wide spectrum of neurological deficiencies in pediatric patients originates from de novo heterozygous mutations in the gene encoding Gαo, the major neuronal G protein. Efficient treatments and even the proper understanding of the underlying etiology are currently lacking for this dominant disease. Adequate animal models of GNAO1 encephalopathy are urgently needed. Here we describe establishment and characterization of mouse models of the disease based on two point mutations in GNAO1 with different clinical manifestations. One of them is G203R leading to the early-onset epileptic seizures, motor dysfunction, developmental delay and intellectual disability. The other is C215Y producing much milder clinical outcomes, mostly-late-onset hyperkinetic movement disorder. The resultant mouse models show distinct phenotypes: severe neonatal lethality in GNAO1[G203R]/ + mice vs. normal vitality in GNAO1[C215Y]/ + . The latter model further revealed strong hyperactivity and hyperlocomotion in a panel of behavioral assays, without signs of epilepsy, recapitulating the patients' manifestations. Importantly, despite these differences the two models similarly revealed prenatal brain developmental anomalies, such as enlarged lateral ventricles and decreased numbers of neuronal precursor cells in the cortex. Thus, our work unveils GNAO1 encephalopathy as to a large extent neurodevelopmental malady. We expect that this understanding and the tools we established will be instrumental for future therapeutic developments.
Collapse
Affiliation(s)
- Denis Silachev
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992, Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva, 1211, Geneva, Switzerland
- School of Biomedicine, Far Eastern Federal University, 690090, Vladivostok, Russia
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva, 1211, Geneva, Switzerland
| | - Mikhail Savitsky
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva, 1211, Geneva, Switzerland
| | - Guru Padmasola
- Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Charles Quairiaux
- Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Fabrizio Thorel
- Transgenesis Core Facility, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva, 1211, Geneva, Switzerland.
- School of Biomedicine, Far Eastern Federal University, 690090, Vladivostok, Russia.
| |
Collapse
|
31
|
Feng H, Yuan Y, Williams MR, Roy AJ, Leipprandt JR, Neubig RR. MICE WITH GNAO1-ASSOCIATED MOVEMENT DISORDER EXHIBIT REDUCED INHIBITORY SYNAPTIC INPUT TO CEREBELLAR PURKINJE CELLS. J Neurophysiol 2022; 127:607-622. [PMID: 35080448 DOI: 10.1152/jn.00720.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GNAO1 encodes Gαo, a heterotrimeric G protein alpha subunit in the Gi/o family. In this report, we used a Gnao1 mouse model "G203R" previously described as a "gain-of-function" Gnao1 mutant with movement abnormalities and enhanced seizure susceptibility. Here, we report an unexpected second mutation resulting in a loss-of-function Gαo protein and describe alterations in central synaptic transmission. Whole cell patch clamp recordings from Purkinje cells (PCs) in acute cerebellar slices from Gnao1 mutant mice showed significantly lower frequencies of spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs) compared to WT mice. There was no significant change in sEPSCs or mEPSCs. Whereas mIPSC frequency was reduced, mIPSC amplitudes were not affected, suggesting a presynaptic mechanism of action. A modest decrease in the number of molecular layer interneurons was insufficient to explain the magnitude of IPSC suppression. Paradoxically, Gi/o inhibitors (pertussis toxin), enhanced the mutant-suppressed mIPSC frequency and eliminated the difference between WT and Gnao1 mice. While GABAB receptor regulates mIPSCs, neither agonists nor antagonists of this receptor altered function in the mutant mouse PCs. This study is the first electrophysiological investigation of the role of Gi/o proteinin cerebellar synaptic transmission using an animal model with a loss-of-function Gi/o protein.
Collapse
Affiliation(s)
- Huijie Feng
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Yukun Yuan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Michael R Williams
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI, United States
| | - Alex J Roy
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Jeffrey R Leipprandt
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
32
|
Di Rocco M, Galosi S, Lanza E, Tosato F, Caprini D, Folli V, Friedman J, Bocchinfuso G, Martire A, Di Schiavi E, Leuzzi V, Martinelli S. Caenorhabditis elegans provides an efficient drug screening platform for GNAO1-related disorders and highlights the potential role of caffeine in controlling dyskinesia. Hum Mol Genet 2021; 31:929-941. [PMID: 34622282 PMCID: PMC8947233 DOI: 10.1093/hmg/ddab296] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Dominant GNAO1 mutations cause an emerging group of childhood-onset neurological disorders characterized by developmental delay, intellectual disability, movement disorders, drug-resistant seizures and neurological deterioration. GNAO1 encodes the α-subunit of an inhibitory GTP/GDP-binding protein regulating ion channel activity and neurotransmitter release. The pathogenic mechanisms underlying GNAO1-related disorders remain largely elusive and there are no effective therapies. Here, we assessed the functional impact of two disease-causing variants associated with distinct clinical features, c.139A > G (p.S47G) and c.662C > A (p.A221D), using Caenorhabditis elegans as a model organism. The c.139A > G change was introduced into the orthologous position of the C. elegans gene via CRISPR/Cas9, whereas a knock-in strain carrying the p.A221D variant was already available. Like null mutants, homozygous knock-in animals showed increased egg laying and were hypersensitive to aldicarb, an inhibitor of acetylcholinesterase, suggesting excessive neurotransmitter release by different classes of motor neurons. Automated analysis of C. elegans locomotion indicated that goa-1 mutants move faster than control animals, with more frequent body bends and a higher reversal rate and display uncoordinated locomotion. Phenotypic profiling of heterozygous animals revealed a strong hypomorphic effect of both variants, with a partial dominant-negative activity for the p.A221D allele. Finally, caffeine was shown to rescue aberrant motor function in C. elegans harboring the goa-1 variants; this effect is mainly exerted through adenosine receptor antagonism. Overall, our findings establish a suitable platform for drug discovery, which may assist in accelerating the development of new therapies for this devastating condition, and highlight the potential role of caffeine in controlling GNAO1-related dyskinesia.
Collapse
Affiliation(s)
- Martina Di Rocco
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy.,Department of Human Neuroscience, "Sapienza" University of Rome, Rome 00185, Italy
| | - Serena Galosi
- Department of Human Neuroscience, "Sapienza" University of Rome, Rome 00185, Italy
| | - Enrico Lanza
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome 00161, Italy
| | - Federica Tosato
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Davide Caprini
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome 00161, Italy
| | - Viola Folli
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome 00161, Italy
| | - Jennifer Friedman
- UCSD Department of Neuroscience and Pediatrics, Rady Children's Hospital Division of Neurology; Rady Children's Institute for Genomic Medicine, San Diego, USA
| | - Gianfranco Bocchinfuso
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Alberto Martire
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, National Research Council, Naples 80131, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, "Sapienza" University of Rome, Rome 00185, Italy
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| |
Collapse
|
33
|
Wang D, Dao M, Muntean BS, Giles AC, Martemyanov KA, Grill B. Genetic modeling of GNAO1 disorder delineates mechanisms of Gαo dysfunction. Hum Mol Genet 2021; 31:510-522. [PMID: 34508586 PMCID: PMC8863422 DOI: 10.1093/hmg/ddab235] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
GNAO1 encephalopathy is a neurodevelopmental disorder with a spectrum of symptoms that include dystonic movements, seizures and developmental delay. While numerous GNAO1 mutations are associated with this disorder, the functional consequences of pathological variants are not completely understood. Here, we deployed the invertebrate C. elegans as a whole-animal behavioral model to study the functional effects of GNAO1 disorder-associated mutations. We tested several pathological GNAO1 mutations for effects on locomotor behaviors using a combination of CRISPR/Cas9 gene editing and transgenic overexpression in vivo. We report that all three mutations tested (G42R, G203R and R209C) result in strong loss of function defects when evaluated as homozygous CRISPR alleles. In addition, mutations produced dominant negative effects assessed using both heterozygous CRISPR alleles and transgenic overexpression. Experiments in mice confirmed dominant negative effects of GNAO1 G42R, which impaired numerous motor behaviors. Thus, GNAO1 pathological mutations result in conserved functional outcomes across animal models. Our study further establishes the molecular genetic basis of GNAO1 encephalopathy, and develops a CRISPR-based pipeline for functionally evaluating mutations associated with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Dandan Wang
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Maria Dao
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Brian S Muntean
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Andrew C Giles
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.,Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
34
|
Graziola F, Garone G, Grasso M, Capuano A. Cognitive Assessment in GNAO1 Neurodevelopmental Disorder Using an Eye Tracking System. J Clin Med 2021; 10:jcm10163541. [PMID: 34441836 PMCID: PMC8397136 DOI: 10.3390/jcm10163541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
GNAO1 gene mutations are associated with a neurodevelopmental disorder characterized by developmental delay, epilepsy, and movement disorder. Eye tracking and eye movement analysis are an intriguing method to assess cognitive and language function and, to the best of our knowledge, it has never been tested in a standardized way in GNAO1. GNAO1 children are usually wheelchair-bound and with numerous motor constrains, including dystonic movements and postures, heterotropia, and hypotonia, making the cognitive assessment arduous. These contribute to the burden and disability, with a high level of frustration of caregivers and patients. We have herein demonstrated that, through an eye tracking system, six GNAO1 patients evaluated showed variable degrees of communicative intent through intentionally directed gaze. Moreover, three of these were able to complete a cognitive evaluation, and showed normal fluid intelligence and lexical comprehension. In conclusion, in GNAO1-related disorders, the degree of cognitive development is underestimated; eye tracking technologies may help in overcome these boundaries.
Collapse
Affiliation(s)
- Federica Graziola
- Neurology Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital, 00146 Rome, Italy; (G.G.); (M.G.); (A.C.)
- Department of System Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence:
| | - Giacomo Garone
- Neurology Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital, 00146 Rome, Italy; (G.G.); (M.G.); (A.C.)
- University Department of Pediatrics, Bambino Gesù Children’s Hospital, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Melissa Grasso
- Neurology Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital, 00146 Rome, Italy; (G.G.); (M.G.); (A.C.)
| | - Alessandro Capuano
- Neurology Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital, 00146 Rome, Italy; (G.G.); (M.G.); (A.C.)
| |
Collapse
|
35
|
Axeen E, Bell E, Robichaux Viehoever A, Schreiber JM, Sidiropoulos C, Goodkin HP. Results of the First GNAO1-Related Neurodevelopmental Disorders Caregiver Survey. Pediatr Neurol 2021; 121:28-32. [PMID: 34139551 DOI: 10.1016/j.pediatrneurol.2021.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/13/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND We sought to expand our knowledge of the clinical spectrum of GNAO1-related neurodevelopmental disorders through a caregiver survey reviewing medical and developmental history and development of epilepsy and movement disorders. METHODS An online survey was administered to caregivers of individuals diagnosed with GNAO1 pathogenic variants. RESULTS Eighty-two surveys were completed. Nearly all (99%) reported the first symptom of concern by age one year with the most frequently identified concerns as hypotonia (68%), developmental delay (67%), seizures (29%), difficulty feeding (23%), and abnormal movements (20%). All caregivers reported developmental delays with a spectrum of severity. Movement disorders (76%) were more common than epilepsy (52%), although 33% reported both. The onset of seizures tended to be earlier than abnormal movements. Nearly half (48%) of those with any seizures, reported they were no longer having recurrent seizures. No single most effective medication for movement disorders or epilepsy was noted. Ten participants have had deep brain stimulator for their movement disorder, and all indicated positive effects. CONCLUSIONS GNAO1-related neurodevelopmental disorders most often present within the first year of life with nonspecific symptoms of hypotonia or developmental delay. Although associated epilepsy and movement disorders can be severe, GNAO1-associated epilepsy may not always be medically refractory or lifelong.
Collapse
Affiliation(s)
- Erika Axeen
- Department of Neurology, University of Virginia, Charlottesville, Virginia.
| | - Emily Bell
- The Bow Foundation, Springfield, Virginia
| | | | - John M Schreiber
- Department of Neurology, Children's National Medical Center, Washington, District of Columbia
| | | | - Howard P Goodkin
- Department of Neurology and Pediatrics, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
36
|
Motelow JE, Povysil G, Dhindsa RS, Stanley KE, Allen AS, Feng YCA, Howrigan DP, Abbott LE, Tashman K, Cerrato F, Cusick C, Singh T, Heyne H, Byrnes AE, Churchhouse C, Watts N, Solomonson M, Lal D, Gupta N, Neale BM, Cavalleri GL, Cossette P, Cotsapas C, De Jonghe P, Dixon-Salazar T, Guerrini R, Hakonarson H, Heinzen EL, Helbig I, Kwan P, Marson AG, Petrovski S, Kamalakaran S, Sisodiya SM, Stewart R, Weckhuysen S, Depondt C, Dlugos DJ, Scheffer IE, Striano P, Freyer C, Krause R, May P, McKenna K, Regan BM, Bennett CA, Leu C, Leech SL, O’Brien TJ, Todaro M, Stamberger H, Andrade DM, Ali QZ, Sadoway TR, Krestel H, Schaller A, Papacostas SS, Kousiappa I, Tanteles GA, Christou Y, Štěrbová K, Vlčková M, Sedláčková L, Laššuthová P, Klein KM, Rosenow F, Reif PS, Knake S, Neubauer BA, Zimprich F, Feucht M, Reinthaler EM, Kunz WS, Zsurka G, Surges R, Baumgartner T, von Wrede R, Pendziwiat M, Muhle H, Rademacher A, van Baalen A, von Spiczak S, Stephani U, Afawi Z, Korczyn AD, Kanaan M, Canavati C, Kurlemann G, Müller-Schlüter K, Kluger G, Häusler M, Blatt I, Lemke JR, Krey I, Weber YG, Wolking S, Becker F, Lauxmann S, Boßelmann C, Kegele J, et alMotelow JE, Povysil G, Dhindsa RS, Stanley KE, Allen AS, Feng YCA, Howrigan DP, Abbott LE, Tashman K, Cerrato F, Cusick C, Singh T, Heyne H, Byrnes AE, Churchhouse C, Watts N, Solomonson M, Lal D, Gupta N, Neale BM, Cavalleri GL, Cossette P, Cotsapas C, De Jonghe P, Dixon-Salazar T, Guerrini R, Hakonarson H, Heinzen EL, Helbig I, Kwan P, Marson AG, Petrovski S, Kamalakaran S, Sisodiya SM, Stewart R, Weckhuysen S, Depondt C, Dlugos DJ, Scheffer IE, Striano P, Freyer C, Krause R, May P, McKenna K, Regan BM, Bennett CA, Leu C, Leech SL, O’Brien TJ, Todaro M, Stamberger H, Andrade DM, Ali QZ, Sadoway TR, Krestel H, Schaller A, Papacostas SS, Kousiappa I, Tanteles GA, Christou Y, Štěrbová K, Vlčková M, Sedláčková L, Laššuthová P, Klein KM, Rosenow F, Reif PS, Knake S, Neubauer BA, Zimprich F, Feucht M, Reinthaler EM, Kunz WS, Zsurka G, Surges R, Baumgartner T, von Wrede R, Pendziwiat M, Muhle H, Rademacher A, van Baalen A, von Spiczak S, Stephani U, Afawi Z, Korczyn AD, Kanaan M, Canavati C, Kurlemann G, Müller-Schlüter K, Kluger G, Häusler M, Blatt I, Lemke JR, Krey I, Weber YG, Wolking S, Becker F, Lauxmann S, Boßelmann C, Kegele J, Hengsbach C, Rau S, Steinhoff BJ, Schulze-Bonhage A, Borggräfe I, Schankin CJ, Schubert-Bast S, Schreiber H, Mayer T, Korinthenberg R, Brockmann K, Wolff M, Dennig D, Madeleyn R, Kälviäinen R, Saarela A, Timonen O, Linnankivi T, Lehesjoki AE, Rheims S, Lesca G, Ryvlin P, Maillard L, Valton L, Derambure P, Bartolomei F, Hirsch E, Michel V, Chassoux F, Rees MI, Chung SK, Pickrell WO, Powell R, Baker MD, Fonferko-Shadrach B, Lawthom C, Anderson J, Schneider N, Balestrini S, Zagaglia S, Braatz V, Johnson MR, Auce P, Sills GJ, Baum LW, Sham PC, Cherny SS, Lui CH, Delanty N, Doherty CP, Shukralla A, El-Naggar H, Widdess-Walsh P, Barišić N, Canafoglia L, Franceschetti S, Castellotti B, Granata T, Ragona F, Zara F, Iacomino M, Riva A, Madia F, Vari MS, Salpietro V, Scala M, Mancardi MM, Nobili L, Amadori E, Giacomini T, Bisulli F, Pippucci T, Licchetta L, Minardi R, Tinuper P, Muccioli L, Mostacci B, Gambardella A, Labate A, Annesi G, Manna L, Gagliardi M, Parrini E, Mei D, Vetro A, Bianchini C, Montomoli M, Doccini V, Barba C, Hirose S, Ishii A, Suzuki T, Inoue Y, Yamakawa K, Beydoun A, Nasreddine W, Khoueiry Zgheib N, Tumiene B, Utkus A, Sadleir LG, King C, Caglayan SH, Arslan M, Yapıcı Z, Topaloglu P, Kara B, Yis U, Turkdogan D, Gundogdu-Eken A, Bebek N, Uğur-İşeri S, Baykan B, Salman B, Haryanyan G, Yücesan E, Kesim Y, Özkara Y, Tsai MH, Ho CJ, Lin CH, Lin KL, Chou IJ, Poduri A, Shiedley BR, Shain C, Noebels JL, Goldman A, Busch RM, Jehi L, Najm IM, Ferguson L, Khoury J, Glauser TA, Clark PO, Buono RJ, Ferraro TN, Sperling MR, Lo W, Privitera M, French JA, Schachter S, Kuzniecky RI, Devinsky O, Hegde M, Greenberg DA, Ellis CA, Goldberg E, Helbig KL, Cosico M, Vaidiswaran P, Fitch E, Berkovic SF, Lerche H, Lowenstein DH, Goldstein DB. Sub-genic intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study of 29,165 individuals. Am J Hum Genet 2021; 108:965-982. [PMID: 33932343 PMCID: PMC8206159 DOI: 10.1016/j.ajhg.2021.04.009] [Show More Authors] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we performed a whole-exome sequencing analysis of 13,487 epilepsy-affected individuals and 15,678 control individuals. While prior Epi25 studies focused on gene-based collapsing analyses, we asked how the pattern of variation within genes differs by epilepsy type. Specifically, we compared the genetic architectures of severe developmental and epileptic encephalopathies (DEEs) and two generally less severe epilepsies, genetic generalized epilepsy and non-acquired focal epilepsy (NAFE). Our gene-based rare variant collapsing analysis used geographic ancestry-based clustering that included broader ancestries than previously possible and revealed novel associations. Using the missense intolerance ratio (MTR), we found that variants in DEE-affected individuals are in significantly more intolerant genic sub-regions than those in NAFE-affected individuals. Only previously reported pathogenic variants absent in available genomic datasets showed a significant burden in epilepsy-affected individuals compared with control individuals, and the ultra-rare pathogenic variants associated with DEE were located in more intolerant genic sub-regions than variants associated with non-DEE epilepsies. MTR filtering improved the yield of ultra-rare pathogenic variants in affected individuals compared with control individuals. Finally, analysis of variants in genes without a disease association revealed a significant burden of loss-of-function variants in the genes most intolerant to such variation, indicating additional epilepsy-risk genes yet to be discovered. Taken together, our study suggests that genic and sub-genic intolerance are critical characteristics for interpreting the effects of variation in genes that influence epilepsy.
Collapse
|
37
|
Yang X, Niu X, Yang Y, Cheng M, Zhang J, Chen J, Yang Z, Zhang Y. Phenotypes of GNAO1 Variants in a Chinese Cohort. Front Neurol 2021; 12:662162. [PMID: 34122306 PMCID: PMC8193119 DOI: 10.3389/fneur.2021.662162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
This study aimed to analyze the genotypes and phenotypes of GNAO1 variants in a Chinese cohort. Seven male and four female patients with GNAO1 variants were enrolled, including siblings of brothers. Ten different GNAO1 variants (nine missense and one splicing site) were identified, among which six were novel. All the variants were confirmed to be de novo in peripheral blood DNA. Eight (73%, 8/11) patients had epilepsy; the seizure onset age ranged from 6 h after birth to 4 months (median age, 2.5 months). Focal seizures were observed in all eight patients, epileptic spasms occurred in six (75%, 6/8), tonic spasm in four (50%, 4/8), tonic seizures in two, atypical absence in one, and generalized tonic–clonic seizures in one. Seven patients had multiple seizure types. Eight (73%, 8/11) patients had movement disorders, seven of them having only dystonia, and one having dystonia with choreoathetosis. Varying degrees of developmental delay (DD) were present in all 11 patients. The phenotypes were diagnosed as early infantile epileptic encephalopathy (EIEE) in two (18%) patients, which were further diagnosed as West syndrome. Movement disorders (MD) with developmental delay were diagnosed in two (18%) brothers. EIEE and MD were overlapped in six (55%) patients, among which two were diagnosed with West syndrome, one with Ohtahara syndrome, and the other three with non-specific EIEE. One (9%) patient was diagnosed as DD alone. The onset age of GNAO1-related disorders was early infancy. The phenotypic spectrum of GNAO1 included EIEE, MD with DD, and DD alone.
Collapse
Affiliation(s)
- Xiaoling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xueyang Niu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ying Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Miaomiao Cheng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jing Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jiaoyang Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
38
|
Genetic Neonatal-Onset Epilepsies and Developmental/Epileptic Encephalopathies with Movement Disorders: A Systematic Review. Int J Mol Sci 2021; 22:ijms22084202. [PMID: 33919646 PMCID: PMC8072943 DOI: 10.3390/ijms22084202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Despite expanding next generation sequencing technologies and increasing clinical interest into complex neurologic phenotypes associating epilepsies and developmental/epileptic encephalopathies (DE/EE) with movement disorders (MD), these monogenic conditions have been less extensively investigated in the neonatal period compared to infancy. We reviewed the medical literature in the study period 2000–2020 to report on monogenic conditions characterized by neonatal onset epilepsy and/or DE/EE and development of an MD, and described their electroclinical, genetic and neuroimaging spectra. In accordance with a PRISMA statement, we created a data collection sheet and a protocol specifying inclusion and exclusion criteria. A total of 28 different genes (from 49 papers) leading to neonatal-onset DE/EE with multiple seizure types, mainly featuring tonic and myoclonic, but also focal motor seizures and a hyperkinetic MD in 89% of conditions, with neonatal onset in 22%, were identified. Neonatal seizure semiology, or MD age of onset, were not always available. The rate of hypokinetic MD was low, and was described from the neonatal period only, with WW domain containing oxidoreductase (WWOX) pathogenic variants. The outcome is characterized by high rates of associated neurodevelopmental disorders and microcephaly. Brain MRI findings are either normal or nonspecific in most conditions, but serial imaging can be necessary in order to detect progressive abnormalities. We found high genetic heterogeneity and low numbers of described patients. Neurological phenotypes are complex, reflecting the involvement of genes necessary for early brain development. Future studies should focus on accurate neonatal epileptic phenotyping, and detailed description of semiology and time-course, of the associated MD, especially for the rarest conditions.
Collapse
|
39
|
Akasaka M, Kamei A, Tanifuji S, Asami M, Ito J, Mizuma K, Oyama K, Tokutomi T, Yamamoto K, Fukushima A, Takenouchi T, Uehara T, Suzuki H, Kosaki K. GNAO1 mutation-related severe involuntary movements treated with gabapentin. Brain Dev 2021; 43:576-579. [PMID: 33358199 DOI: 10.1016/j.braindev.2020.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Mutations in GNAO1 typically result in neurodevelopmental disorders, including involuntary movements. They may be improved using calcium-channel modulators. CASE The patient visited our hospital at age 2 years because of moderate global developmental delay. Her intermittent, generalized involuntary movements started at age 8 years. A de novo GNAO1 mutation, NM_020988.2:c.626G > A, (p.Arg209Cys), was identified by whole exome sequencing. At age 9 years, she experienced severe, intermittent involuntary movements, which led to rhabdomyolysis. She needed intensive care with administration of midazolam, dantrolene sodium hydrate, and plasma exchange. We started treating her with gabapentin (GBP), after which she recovered completely. At age 11 years, she developed continuous, generalized involuntary movements. This prompted us to increase the GBP dose, which again resolved the involuntary movements completely. CONCLUSION In the case of movement disorders associated with GNAO1 mutations, GBP treatment may be attempted before more invasive procedures are performed.
Collapse
Affiliation(s)
- Manami Akasaka
- Department of Pediatrics, School of Medicine, Iwate Medical University, Japan.
| | - Atsushi Kamei
- Department of Pediatrics, School of Medicine, Iwate Medical University, Japan
| | - Sachiko Tanifuji
- Department of Pediatrics, School of Medicine, Iwate Medical University, Japan
| | - Maya Asami
- Department of Pediatrics, School of Medicine, Iwate Medical University, Japan
| | - Jun Ito
- Department of Pediatrics, School of Medicine, Iwate Medical University, Japan
| | - Kanako Mizuma
- Department of Pediatrics, School of Medicine, Iwate Medical University, Japan
| | - Kotaro Oyama
- Department of Pediatrics, School of Medicine, Iwate Medical University, Japan
| | - Tomoharu Tokutomi
- Department of Clinical Genetics, School of Medicine, Iwate Medical University, Japan
| | - Kayono Yamamoto
- Department of Clinical Genetics, School of Medicine, Iwate Medical University, Japan
| | - Akimune Fukushima
- Department of Clinical Genetics, School of Medicine, Iwate Medical University, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Uehara
- Department of Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hisato Suzuki
- Department of Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Department of Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
40
|
Heron SE, Regan BM, Harris RV, Gardner AE, Coleman MJ, Bennett MF, Grinton BE, Helbig KL, Sperling MR, Haut S, Geller EB, Widdess-Walsh P, Pelekanos JT, Bahlo M, Petrovski S, Heinzen EL, Hildebrand MS, Corbett MA, Scheffer IE, Gécz J, Berkovic SF. Association of SLC32A1 Missense Variants With Genetic Epilepsy With Febrile Seizures Plus. Neurology 2021; 96:e2251-e2260. [PMID: 34038384 DOI: 10.1212/wnl.0000000000011855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/05/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To identify the causative gene in a large unsolved family with genetic epilepsy with febrile seizures plus (GEFS+), we sequenced the genomes of family members, and then determined the contribution of the identified gene to the pathogenicity of epilepsies by examining sequencing data from 2,772 additional patients. METHODS We performed whole genome sequencing of 3 members of a GEFS+ family. Subsequently, whole exome sequencing data from 1,165 patients with epilepsy from the Epi4K dataset and 1,329 Australian patients with epilepsy from the Epi25 dataset were interrogated. Targeted resequencing was performed on 278 patients with febrile seizures or GEFS+ phenotypes. Variants were validated and familial segregation examined by Sanger sequencing. RESULTS Eight previously unreported missense variants were identified in SLC32A1, coding for the vesicular inhibitory amino acid cotransporter VGAT. Two variants cosegregated with the phenotype in 2 large GEFS+ families containing 8 and 10 affected individuals, respectively. Six further variants were identified in smaller families with GEFS+ or idiopathic generalized epilepsy (IGE). CONCLUSION Missense variants in SLC32A1 cause GEFS+ and IGE. These variants are predicted to alter γ-aminobutyric acid (GABA) transport into synaptic vesicles, leading to altered neuronal inhibition. Examination of further epilepsy cohorts will determine the full genotype-phenotype spectrum associated with SLC32A1 variants.
Collapse
Affiliation(s)
- Sarah E Heron
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Brigid M Regan
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Rebekah V Harris
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Alison E Gardner
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Matthew J Coleman
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Mark F Bennett
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Bronwyn E Grinton
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Katherine L Helbig
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Michael R Sperling
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Sheryl Haut
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Eric B Geller
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Peter Widdess-Walsh
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - James T Pelekanos
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Melanie Bahlo
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Slavé Petrovski
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Erin L Heinzen
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Michael S Hildebrand
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Mark A Corbett
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Ingrid E Scheffer
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jozef Gécz
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia.
| | - Samuel F Berkovic
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
41
|
Morrison-Levy N, Borlot F, Jain P, Whitney R. Early-Onset Developmental and Epileptic Encephalopathies of Infancy: An Overview of the Genetic Basis and Clinical Features. Pediatr Neurol 2021; 116:85-94. [PMID: 33515866 DOI: 10.1016/j.pediatrneurol.2020.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022]
Abstract
Our current knowledge of genetically determined forms of epilepsy has shortened the diagnostic pathway usually experienced by the families of infants diagnosed with early-onset developmental and epileptic encephalopathies. Genetic causes can be found in up to 80% of infants presenting with early-onset developmental and epileptic encephalopathies, often in the context of an uneventful perinatal history and with no clear underlying brain abnormalities. Although current disease-specific therapies remain limited and patient outcomes are often guarded, a genetic diagnosis may lead to early therapeutic intervention using new and/or repurposed therapies. In this review, an overview of epilepsy genetics, the indications for genetic testing in infants, the advantages and limitations of each test, and the challenges and ethical implications of genetic testing are discussed. In addition, the following causative genes associated with early-onset developmental and epileptic encephalopathies are discussed in detail: KCNT1, KCNQ2, KCNA2, SCN2A, SCN8A, STXBP1, CDKL5, PIGA, SPTAN1, and GNAO1. The epilepsy phenotypes, comorbidities, electroencephalgraphic findings, neuroimaging findings, and potential targeted therapies for each gene are reviewed.
Collapse
Affiliation(s)
| | - Felippe Borlot
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Puneet Jain
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Robyn Whitney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
42
|
Gαo is a major determinant of cAMP signaling in the pathophysiology of movement disorders. Cell Rep 2021; 34:108718. [PMID: 33535037 PMCID: PMC7903328 DOI: 10.1016/j.celrep.2021.108718] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/07/2020] [Accepted: 01/11/2021] [Indexed: 01/20/2023] Open
Abstract
The G protein alpha subunit o (Gαo) is one of the most abundant proteins in the nervous system, and pathogenic mutations in its gene (GNAO1) cause movement disorder. However, the function of Gαo is ill defined mechanistically. Here, we show that Gαo dictates neuromodulatory responsiveness of striatal neurons and is required for movement control. Using in vivo optical sensors and enzymatic assays, we determine that Gαo provides a separate transduction channel that modulates coupling of both inhibitory and stimulatory dopamine receptors to the cyclic AMP (cAMP)-generating enzyme adenylyl cyclase. Through a combination of cell-based assays and rodent models, we demonstrate that GNAO1-associated mutations alter Gαo function in a neuron-type-specific fashion via a combination of a dominant-negative and loss-of-function mechanisms. Overall, our findings suggest that Gαo and its pathological variants function in specific circuits to regulate neuromodulatory signals essential for executing motor programs. Muntean et al. describe biochemical, cellular, and physiological mechanisms by which the heterotrimeric G protein subunit Gαo controls neuromodulatory signaling in the striatum and elucidate mechanisms by which Gαo mutations compromise movements in GNAO1 disorder.
Collapse
|
43
|
Tedesco MG, Lonardo F, Ceccarini C, Cesarano C, Digilio MC, Magliozzi M, Rogaia D, Mencarelli A, Leoni C, Piscopo C, Imperatore V, Falco MT, Fontana P, Nardone AM, Novelli A, Troiani S, Seri M, Prontera P. Clinical and molecular characterizations of 11 new patients with type 1 Feingold syndrome: Proposal for selecting diagnostic criteria and further genetic testing in patients with severe phenotype. Am J Med Genet A 2021; 185:1204-1210. [PMID: 33442900 DOI: 10.1002/ajmg.a.62068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 11/07/2022]
Abstract
Feingold Syndrome type 1 (FS1) is an autosomal dominant disorder due to a loss of function mutations in the MYCN gene. FS1 is generally clinically characterized by mild learning disability, microcephaly, short palpebral fissures, short stature, brachymesophalangy, hypoplastic thumbs, as well as syndactyly of toes, variably associated with organ abnormalities, the most common being gastrointestinal atresia. In current literature, more than 120 FS1 patients have been described, but diagnostic criteria are not well agreed upon, likewise the genotype-phenotype correlations are not well understood. Here, we describe 11 FS1 patients, belonging to six distinct families, where we have identified three novel MYCN mutations along with three pathogenetic variants, the latter which have already been reported. Several patients presented a mild phenotype of the condition and they have been diagnosed as being affected only after segregation analyses of the MYCN mutation identified in the propositus. We also describe here the first ever FS1 patient with severe intellectual disability having a maternally inherited MYCN variant together with an additional GNAO1 mutation inherited paternally. Mutations in the GNAO1 gene are associated with a specific form of intellectual disability and epilepsy, thus the finding of two different rare diseases in the same patient could explain his severe phenotype. Therein, a thorough investigation is merited into the possibility that additional variants in patients with a MYCN mutation and severe phenotype do exist. Finally, in order to guarantee a more reliable diagnosis of FS1, we suggest using both major and minor clinical-molecular diagnostic criteria.
Collapse
Affiliation(s)
- Maria Giovanna Tedesco
- Medical Genetics Unit, Santa Maria della Misericordia Hospital and University of Perugia, Perugia, Italy.,Genetics Unit, "Mauro Baschirotto" Institute for Rare Diseases (B.I.R.D.), Vicenza, Italy
| | | | - Caterina Ceccarini
- Cytogenetics Unit, Policlinico Riuniti, University Hospitals Foggia, Foggia, Italy
| | - Carla Cesarano
- Cytogenetics Unit, Policlinico Riuniti, University Hospitals Foggia, Foggia, Italy
| | - Maria Cristina Digilio
- Laboratory of Medical Genetics, Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Monia Magliozzi
- Laboratory of Medical Genetics, Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daniela Rogaia
- Medical Genetics Unit, Santa Maria della Misericordia Hospital and University of Perugia, Perugia, Italy
| | - Amedea Mencarelli
- Medical Genetics Unit, Santa Maria della Misericordia Hospital and University of Perugia, Perugia, Italy
| | - Chiara Leoni
- Department of Woman and Child Health and Public Health, Center for Rare Diseases and Birth Defects, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Carmelo Piscopo
- U.O.S.C. Medical Genetics, A.O.R.N. "A. Cardarelli", Naples, Italy
| | - Valentina Imperatore
- Medical Genetics Unit, Santa Maria della Misericordia Hospital and University of Perugia, Perugia, Italy
| | | | - Paolo Fontana
- Medical Genetics Unit, "San Pio" Hospital, Benevento, Italy
| | - Anna Maria Nardone
- Medical Genetics Laboratory, "Policlinico Tor Vergata" Hospital, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefania Troiani
- Medical Genetics Unit, Santa Maria della Misericordia Hospital and University of Perugia, Perugia, Italy.,Division of Neonatology and Neonatal Intensive Care Unit, Santa Maria della Misericordia Hospital of Perugia, Perugia, Italy
| | - Marco Seri
- Medical Genetics Unit, Policlinico S. Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Paolo Prontera
- Medical Genetics Unit, Santa Maria della Misericordia Hospital and University of Perugia, Perugia, Italy
| |
Collapse
|
44
|
El Achkar CM, Harrer M, Smith L, Kelly M, Iqbal S, Maljevic S, Niturad CE, Vissers LELM, Poduri A, Yang E, Lal D, Lerche H, Møller RS, Olson HE. Characterization of the GABRB2-Associated Neurodevelopmental Disorders. Ann Neurol 2020; 89:573-586. [PMID: 33325057 DOI: 10.1002/ana.25985] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/09/2022]
Abstract
OBJECTIVE We aimed to characterize the phenotypic spectrum and functional consequences associated with variants in the gene GABRB2, coding for the γ-aminobutyric acid type A (GABAA ) receptor subunit β2. METHODS We recruited and systematically evaluated 25 individuals with variants in GABRB2, 17 of whom are newly described and 8 previously reported with additional clinical data. Functional analysis was performed using a Xenopus laevis oocyte model system. RESULTS Our cohort of 25 individuals from 22 families with variants in GABRB2 demonstrated a range of epilepsy phenotypes from genetic generalized epilepsy to developmental and epileptic encephalopathy. Fifty-eight percent of individuals had pharmacoresistant epilepsy; response to medications targeting the GABAergic pathway was inconsistent. Developmental disability (present in 84%) ranged from mild intellectual disability to severe global disability; movement disorders (present in 44%) included choreoathetosis, dystonia, and ataxia. Disease-associated variants cluster in the extracellular N-terminus and transmembrane domains 1-3, with more severe phenotypes seen in association with variants in transmembrane domains 1 and 2 and the allosteric binding site between transmembrane domains 2 and 3. Functional analysis of 4 variants in transmembrane domains 1 or 2 (p.Ile246Thr, p.Pro252Leu, p.Ile288Ser, p.Val282Ala) revealed strongly reduced amplitudes of GABA-evoked anionic currents. INTERPRETATION GABRB2-related epilepsy ranges broadly in severity from genetic generalized epilepsy to developmental and epileptic encephalopathies. Developmental disability and movement disorder are key features. The phenotypic spectrum is comparable to other GABAA receptor-encoding genes. Phenotypic severity varies by protein domain. Experimental evidence supports loss of GABAergic inhibition as the mechanism underlying GABRB2-associated neurodevelopmental disorders. ANN NEUROL 2021;89:573-586.
Collapse
Affiliation(s)
- Christelle M El Achkar
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA.,Department of Neurology, Harvard Medical School, Boston, MA
| | - Merle Harrer
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Lacey Smith
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA
| | - McKenna Kelly
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA.,Dartmouth Geisel School of Medicine, Hanover, NH
| | - Sumaiya Iqbal
- Center for Development of Therapeutics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Snezana Maljevic
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Cristina E Niturad
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Lisenka E L M Vissers
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Annapurna Poduri
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA.,Department of Neurology, Harvard Medical School, Boston, MA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Boston, MA
| | - Dennis Lal
- Cleveland Clinic Genomic Medicine Institute and Neurological Institute, Cleveland, OH
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Center Filadelfia, Dianalund, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Heather E Olson
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA.,Department of Neurology, Harvard Medical School, Boston, MA
| | | |
Collapse
|
45
|
Larrivee CL, Feng H, Quinn JA, Shaw VS, Leipprandt JR, Demireva EY, Xie H, Neubig RR. Mice with GNAO1 R209H Movement Disorder Variant Display Hyperlocomotion Alleviated by Risperidone. J Pharmacol Exp Ther 2020; 373:24-33. [PMID: 31907305 DOI: 10.1124/jpet.119.262733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/27/2019] [Indexed: 11/22/2022] Open
Abstract
Neurodevelopmental disorder with involuntary movements (Online Mendelian Inheritance in Man: 617493) is a severe, early onset neurologic condition characterized by a delay in psychomotor development, hypotonia, and hyperkinetic involuntary movements. Heterozygous de novo mutations in the GNAO1 gene cause neurodevelopmental disorder with involuntary movements. Gα o, the gene product of GNAO1, is the alpha subunit of Go, a member of the heterotrimeric Gi/o family of G proteins. Go is found abundantly throughout the brain, but the pathophysiological mechanisms linking Gα o functions to clinical manifestations of GNAO1-related disorders are still poorly understood. One of the most common mutant alleles among the GNAO1 encephalopathies is the c.626G>A or p.Arg209His (R209H) mutation. We developed heterozygous knock-in Gnao1 +/R209H mutant mice using CRISPR/Cas9 methodology to assess whether a mouse model could replicate aspects of the neurodevelopmental disorder with involuntary movements clinical pattern. Mice carrying the R209H mutation exhibited increased locomotor activity and a modest gait abnormality at 8-12 weeks. In contrast to mice carrying other mutations in Gnao1, the Gnao1 +/R209H mice did not show enhanced seizure susceptibility. Levels of protein expression in multiple brain regions were unchanged from wild-type (WT) mice, but the nucleotide exchange rate of mutant R209H Gα o was 6.2× faster than WT. The atypical neuroleptic risperidone has shown efficacy in a patient with the R209H mutation. It also alleviated the hyperlocomotion phenotype observed in our mouse model but suppressed locomotion in WT mice as well. In this study, we show that Gnao1 +/R209H mice mirror elements of the patient phenotype and respond to an approved pharmacological agent. SIGNIFICANCE STATEMENT: Children with de novo mutations in the GNAO1 gene may present with movement disorders with limited effective therapeutic options. The most common mutant variant seen in children with GNAO1-associated movement disorder is R209H. Here we show, using a novel Gnao1 +/R209H mouse, that there is a clear behavioral phenotype that is suppressed by risperidone. However, risperidone also affects wild-type mouse activity, so its effects are not selective for the GNAO1-associated movement disorder.
Collapse
Affiliation(s)
- Casandra L Larrivee
- Department of Comparative Medicine and Integrative Biology (C.L.L.), Department of Pharmacology and Toxicology (C.L.L., H.F., J.A.Q., V.S.S., J.R.L., R.R.N.), Transgenic and Genome Editing Facility, Institute for Quantitative Health Science and Engineering (E.Y.D., H.X.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan
| | - Huijie Feng
- Department of Comparative Medicine and Integrative Biology (C.L.L.), Department of Pharmacology and Toxicology (C.L.L., H.F., J.A.Q., V.S.S., J.R.L., R.R.N.), Transgenic and Genome Editing Facility, Institute for Quantitative Health Science and Engineering (E.Y.D., H.X.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan
| | - Josiah A Quinn
- Department of Comparative Medicine and Integrative Biology (C.L.L.), Department of Pharmacology and Toxicology (C.L.L., H.F., J.A.Q., V.S.S., J.R.L., R.R.N.), Transgenic and Genome Editing Facility, Institute for Quantitative Health Science and Engineering (E.Y.D., H.X.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan
| | - Vincent S Shaw
- Department of Comparative Medicine and Integrative Biology (C.L.L.), Department of Pharmacology and Toxicology (C.L.L., H.F., J.A.Q., V.S.S., J.R.L., R.R.N.), Transgenic and Genome Editing Facility, Institute for Quantitative Health Science and Engineering (E.Y.D., H.X.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan
| | - Jeffrey R Leipprandt
- Department of Comparative Medicine and Integrative Biology (C.L.L.), Department of Pharmacology and Toxicology (C.L.L., H.F., J.A.Q., V.S.S., J.R.L., R.R.N.), Transgenic and Genome Editing Facility, Institute for Quantitative Health Science and Engineering (E.Y.D., H.X.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan
| | - Elena Y Demireva
- Department of Comparative Medicine and Integrative Biology (C.L.L.), Department of Pharmacology and Toxicology (C.L.L., H.F., J.A.Q., V.S.S., J.R.L., R.R.N.), Transgenic and Genome Editing Facility, Institute for Quantitative Health Science and Engineering (E.Y.D., H.X.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan
| | - Huirong Xie
- Department of Comparative Medicine and Integrative Biology (C.L.L.), Department of Pharmacology and Toxicology (C.L.L., H.F., J.A.Q., V.S.S., J.R.L., R.R.N.), Transgenic and Genome Editing Facility, Institute for Quantitative Health Science and Engineering (E.Y.D., H.X.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan
| | - Richard R Neubig
- Department of Comparative Medicine and Integrative Biology (C.L.L.), Department of Pharmacology and Toxicology (C.L.L., H.F., J.A.Q., V.S.S., J.R.L., R.R.N.), Transgenic and Genome Editing Facility, Institute for Quantitative Health Science and Engineering (E.Y.D., H.X.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan
| |
Collapse
|
46
|
Rochtus A, Olson HE, Smith L, Keith LG, El Achkar C, Taylor A, Mahida S, Park M, Kelly M, Shain C, Rockowitz S, Sheidley BR, Poduri A. Genetic diagnoses in epilepsy: The impact of dynamic exome analysis in a pediatric cohort. Epilepsia 2020; 61:249-258. [PMID: 31957018 PMCID: PMC7404709 DOI: 10.1111/epi.16427] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVE We evaluated the yield of systematic analysis and/or reanalysis of whole exome sequencing (WES) data from a cohort of well-phenotyped pediatric patients with epilepsy and suspected but previously undetermined genetic etiology. METHODS We identified and phenotyped 125 participants with pediatric epilepsy. Etiology was unexplained at the time of enrollment despite clinical testing, which included chromosomal microarray (57 patients), epilepsy gene panel (n = 48), both (n = 28), or WES (n = 8). Clinical epilepsy diagnoses included developmental and epileptic encephalopathy (DEE), febrile infection-related epilepsy syndrome, Rasmussen encephalitis, and other focal and generalized epilepsies. We analyzed WES data and compared the yield in participants with and without prior clinical genetic testing. RESULTS Overall, we identified pathogenic or likely pathogenic variants in 40% (50/125) of our study participants. Nine patients with DEE had genetic variants in recently published genes that had not been recognized as epilepsy-related at the time of clinical testing (FGF12, GABBR1, GABBR2, ITPA, KAT6A, PTPN23, RHOBTB2, SATB2), and eight patients had genetic variants in candidate epilepsy genes (CAMTA1, FAT3, GABRA6, HUWE1, PTCHD1). Ninety participants had concomitant or subsequent clinical genetic testing, which was ultimately explanatory for 26% (23/90). Of the 67 participants whose molecular diagnoses were "unsolved" through clinical genetic testing, we identified pathogenic or likely pathogenic variants in 17 (25%). SIGNIFICANCE Our data argue for early consideration of WES with iterative reanalysis for patients with epilepsy, particularly those with DEE or epilepsy with intellectual disability. Rigorous analysis of WES data of well-phenotyped patients with epilepsy leads to a broader understanding of gene-specific phenotypic spectra as well as candidate disease gene identification. We illustrate the dynamic nature of genetic diagnosis over time, with analysis and in some cases reanalysis of exome data leading to the identification of disease-associated variants among participants with previously nondiagnostic results from a variety of clinical testing strategies.
Collapse
Affiliation(s)
- Anne Rochtus
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, University of Leuven, Leuven, Belgium
| | - Heather E. Olson
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Lacey Smith
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Louisa G. Keith
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Christelle El Achkar
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alan Taylor
- Department of Genomics, Al Jalila Children’s Specialty Hospital, Dubai, UAE
| | - Sonal Mahida
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Meredith Park
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - McKenna Kelly
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Catherine Shain
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Shira Rockowitz
- Information Services Department, Boston Children’s Hospital, Boston, MA, USA
| | - Beth Rosen Sheidley
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Yamashita Y, Ogawa T, Ogaki K, Kamo H, Sukigara T, Kitahara E, Izawa N, Iwamuro H, Oyama G, Kamagata K, Hatano T, Umemura A, Kosaki R, Kubota M, Shimo Y, Hattori N. Neuroimaging evaluation and successful treatment by using directional deep brain stimulation and levodopa in a patient with GNAO1-associated movement disorder: A case report. J Neurol Sci 2020; 411:116710. [PMID: 32044685 DOI: 10.1016/j.jns.2020.116710] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Yuri Yamashita
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Aging Biology in Health and Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Takashi Ogawa
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kotaro Ogaki
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hikaru Kamo
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Tomomi Sukigara
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Eriko Kitahara
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Nana Izawa
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hirokazu Iwamuro
- Department of Research and Therapeutics for Movement Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Genko Oyama
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Neurodegenerative and Demented Disorders, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Atsushi Umemura
- Department of Research and Therapeutics for Movement Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Rika Kosaki
- Division of Medical Genetics, National Center for Child Health and Development, Tokyo 155-8535, Japan
| | - Masaya Kubota
- Division of Neurology, National Center for Child Health and Development, Tokyo 155-8535, Japan
| | - Yasushi Shimo
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
48
|
Graziola F, Garone G, Stregapede F, Bosco L, Vigevano F, Curatolo P, Bertini E, Travaglini L, Capuano A. Diagnostic Yield of a Targeted Next-Generation Sequencing Gene Panel for Pediatric-Onset Movement Disorders: A 3-Year Cohort Study. Front Genet 2019; 10:1026. [PMID: 31737037 PMCID: PMC6828958 DOI: 10.3389/fgene.2019.01026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/24/2019] [Indexed: 11/17/2022] Open
Abstract
In recent years, genetic techniques of diagnosis have shown rapid development, resulting in a modified clinical approach to many diseases, including neurological disorders. Movement disorders, in particular those arising in childhood, pose a diagnostic challenge. First, from a purely phenomenological point of view, the correct clinical classification of signs and symptoms may be difficult and require expert evaluation. This is because the clinical picture is often a mixture of hyperkinetic and hypokinetic disorders, and within hyperkinetic movement disorders, combined phenotypes are not unusual. Second, although several genes that cause movement disorders in children are now well-known, many of them have only been described in adult populations or discovered in patients after many years of disease. Furthermore, diseases that alter their mechanisms from childhood to adulthood are still little known, and many phenotypes in children are the result of a disruption of normal neurodevelopment. High-throughput gene screening addresses these difficulties and has modified the approach to genetic diagnosis. In the exome-sequencing era, customized genetic panels now offer the ability to perform fast and low-cost screening of the genes commonly involved in the pathogenesis of the disease. Here, we describe a 3-year study using a customized gene panel for pediatric-onset movement disorders in a selected cohort of children and adolescents. We report a satisfying diagnostic yield, further confirming the usefulness of gene panel analysis.
Collapse
Affiliation(s)
- Federica Graziola
- Movement Disorders Clinic, Department of Neurosciences, Bambino Gesù Children’s Hospital, Rome, Italy
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giacomo Garone
- Movement Disorders Clinic, Department of Neurosciences, Bambino Gesù Children’s Hospital, Rome, Italy
- University Hospital Pediatric Department, Bambino Gesù Children’s Hospital, University of Rome Tor Vergata, Rome, Italy
| | - Fabrizia Stregapede
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Disease, Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Sciences, Roma Tre University, Rome, Italy
| | - Luca Bosco
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Disease, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Federico Vigevano
- Movement Disorders Clinic, Department of Neurosciences, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Paolo Curatolo
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Enrico Bertini
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Disease, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Lorena Travaglini
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Disease, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Alessandro Capuano
- Movement Disorders Clinic, Department of Neurosciences, Bambino Gesù Children’s Hospital, Rome, Italy
| |
Collapse
|
49
|
Genetic intolerance analysis as a tool for protein science. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183058. [PMID: 31494120 DOI: 10.1016/j.bbamem.2019.183058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 01/04/2023]
Abstract
Recent advances in whole genome and exome sequencing have dramatically increased the database of human gene variations. There are now enough sequenced human exomes and genomes to begin to identify gene variations that are notable because they are NOT observed in sequenced human genomes, apparently because they are subject to "purifying selection", exemplifying genetic intolerance. Such "dysprocreative" gene variations are embryonic lethal or prevent reproduction through any one of a number of possible mechanisms. Here we review an emerging quantitative approach, "Missense Tolerance Ratio" (MTR) analysis, that is used to assess protein-encoding gene (cDNA) sequence intolerance to missense mutations based on analysis of the >100 K and growing number of currently available human genome and exome sequences. This approach is already useful for analyzing intolerance to mutations in cDNA segments with a resolution on the order of 90 bases. Moreover, as the number of sequenced genomes/exomes increases by orders of magnitude it may eventually be possible to assess mutational tolerance in a statistically robust manner at or near single site resolution. Here we focus on how cDNA intolerance analysis complements other bioinformatic methods to illuminate structure-folding-function relationships for the encoded proteins. A set of disease-linked membrane proteins is employed to provide examples.
Collapse
|