1
|
Gonsisko CB, Cai Z, Jiang X, Duque Lopez AM, Worrell GA, He B. Electroencephalographic source imaging of spikes with concurrent high-frequency oscillations is concordant with the clinical ground truth. Epilepsia 2024; 65:3571-3582. [PMID: 39388291 DOI: 10.1111/epi.18141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
OBJECTIVE Epilepsy raises critical challenges to accurately localize the epileptogenic zone (EZ) to guide presurgical planning. Previous research has suggested that interictal spikes overlapping with high-frequency oscillations, referred to here as pSpikes, serve as a reliable biomarker for EZ estimation, but there remains a question as to whether and to how pSpikes perform as compared to other types of epileptic spikes. This study aims to address this question by investigating the source imaging capabilities of pSpikes alongside other spike types. METHODS A total of 2819 interictal spikes from 76-channel scalp electroencephalography (EEG) were analyzed in a cohort of 24 drug-resistant focal epilepsy patients. All patients received surgical resection, and 16 were declared seizure-free based on at least 1 year of postoperative follow-up. A recently developed electrophysiological source imaging algorithm-fast spatiotemporal iteratively reweighted edge sparsity (FAST-IRES)-was used for source imaging of the detected interictal spikes. The performance of 217 pSpikes was compared with 772 nSpikes (spikes with irregular high-frequency activations), 1830 rSpikes (spikes with no high-frequency activity), and all 2819 aSpikes (all interictal spikes). RESULTS The localization and extent estimation using pSpikes are concordant with the clinical ground truth; using pSpikes yields the best performance compared with nSpikes, rSpikes, and conventional spike imaging (aSpikes). For multiple spike type seizure-free patients, the mean localization error for pSpike imaging was 6.8 mm, compared with 15.0 mm for aSpikes. The sensitivity, precision, and specificity were .41, .67, and .93 for pSpikes compared with .32, .48, and .93 for aSpikes. SIGNIFICANCE These results demonstrate the merits of noninvasive EEG source localization, and that (1) pSpike is a superior biomarker, outperforming conventional spike imaging for the localization of epileptic sources, and especially those with multiple irritative zones; and (2) FAST-IRES provides accurate source estimation that is highly concordant with clinical ground truth, even in situations of single spike analysis with low signal-to-noise ratio.
Collapse
Affiliation(s)
- Colton B Gonsisko
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Zhengxiang Cai
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Xiyuan Jiang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | | | | | - Bin He
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Andrews JP, Geng J, Voitiuk K, Elliott MAT, Shin D, Robbins A, Spaeth A, Wang A, Li L, Solis D, Keefe MG, Sevetson JL, Rivera de Jesús JA, Donohue KC, Larson HH, Ehrlich D, Auguste KI, Salama S, Sohal V, Sharf T, Haussler D, Cadwell CR, Schaffer DV, Chang EF, Teodorescu M, Nowakowski TJ. Multimodal evaluation of network activity and optogenetic interventions in human hippocampal slices. Nat Neurosci 2024; 27:2487-2499. [PMID: 39548326 DOI: 10.1038/s41593-024-01782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/30/2024] [Indexed: 11/17/2024]
Abstract
Seizures are made up of the coordinated activity of networks of neurons, suggesting that control of neurons in the pathologic circuits of epilepsy could allow for control of the disease. Optogenetics has been effective at stopping seizure-like activity in non-human disease models by increasing inhibitory tone or decreasing excitation, although this effect has not been shown in human brain tissue. Many of the genetic means for achieving channelrhodopsin expression in non-human models are not possible in humans, and vector-mediated methods are susceptible to species-specific tropism that may affect translational potential. Here we demonstrate adeno-associated virus-mediated, optogenetic reductions in network firing rates of human hippocampal slices recorded on high-density microelectrode arrays under several hyperactivity-provoking conditions. This platform can serve to bridge the gap between human and animal studies by exploring genetic interventions on network activity in human brain tissue.
Collapse
Affiliation(s)
- John P Andrews
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jinghui Geng
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Kateryna Voitiuk
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Matthew A T Elliott
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - David Shin
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Ash Robbins
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Alex Spaeth
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Albert Wang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Lin Li
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Daniel Solis
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Matthew G Keefe
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jessica L Sevetson
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, USA
| | | | - Kevin C Donohue
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - H Hanh Larson
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Drew Ehrlich
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Department of Computational Media, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Kurtis I Auguste
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Sofie Salama
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, USA
| | - Vikaas Sohal
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Tal Sharf
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - David Haussler
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Cathryn R Cadwell
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - David V Schaffer
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, California, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute (IGI), University of California, Berkeley, Berkeley, CA, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Mircea Teodorescu
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA.
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA.
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA.
| | - Tomasz Jan Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Samanta D, Haneef Z, Albert GW, Naik S, Reeders PC, Jain P, Abel TJ, Al-Ramadhani R, Ibrahim GM, Warren AEL. Neuromodulation strategies in developmental and epileptic encephalopathies. Epilepsy Behav 2024; 160:110067. [PMID: 39393142 DOI: 10.1016/j.yebeh.2024.110067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/19/2024] [Accepted: 09/28/2024] [Indexed: 10/13/2024]
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of childhood-onset epilepsy syndromes characterized by frequent seizures, severe cognitive and behavioral impairments, and poor long-term outcomes. These conditions are typically refractory to currently available medical therapies, prompting recent exploration of neuromodulation treatments such as deep brain stimulation (DBS) and responsive neurostimulation (RNS), which aim to modulate epileptic networks spanning cortical and subcortical regions. These advances have occurred alongside an improved understanding of syndrome-specific and interictal epileptiform discharge/seizure-specific brain networks. By targeting key nodes within these networks, DBS and RNS hold promise for influencing seizures and associated cognitive and behavioral comorbidities. Initial experiences with centromedian (CM) thalamic DBS for Lennox-Gastaut syndrome (LGS) have shown modest efficacy across multiple seizure types. Reports also indicate the application of DBS and RNS across various genetic and structural etiologies commonly associated with DEEs, with mixed success. Although DBS and RNS are increasingly used in LGS and other DEEs, their mixed efficacy highlights a knowledge gap in understanding why some patients with LGS do not respond and which neuromodulation approach is most effective for other DEEs. To address these issues, this review first discusses recent neuroimaging studies showing similarities and differences in the epileptic brain networks underlying various DEEs, revealing the common involvement of the thalamus and the default-mode network (DMN) across multiple DEEs. We then examine thalamic DBS for LGS to illustrate how such network insights may be used to optimize neuromodulation. Although network-based neuromodulation is still in its infancy, the LGS model may serve as a framework for other DEEs, where optimal treatment necessitates consideration of the underlying epileptic networks. Lastly, the review suggests future research directions, including individualized connectivity assessment and biomarker identification through collaborative efforts, which may enhance the therapeutic potential of neuromodulation for individuals living with DEEs.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Neurology Care Line, Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| | - Gregory W Albert
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sunil Naik
- Department of Pediatrics and Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Puck C Reeders
- Brain Institute, Nicklaus Children's Hospital, Miami, FL, USA
| | - Puneet Jain
- Epilepsy Program, Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Taylor J Abel
- Departmen of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ruba Al-Ramadhani
- Division of Child Neurology, University of Pittsburgh, Department of Pediatrics, Pittsburgh, PA, USA
| | - George M Ibrahim
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Aaron E L Warren
- Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Herbozo Contreras LF, Truong ND, Eshraghian JK, Xu Z, Huang Z, Bersani–Veroni TV, Aguilar I, Leung WH, Nikpour A, Kavehei O. Neuromorphic neuromodulation: Towards the next generation of closed-loop neurostimulation. PNAS NEXUS 2024; 3:pgae488. [PMID: 39554511 PMCID: PMC11565243 DOI: 10.1093/pnasnexus/pgae488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/02/2024] [Indexed: 11/19/2024]
Abstract
Neuromodulation techniques have emerged as promising approaches for treating a wide range of neurological disorders, precisely delivering electrical stimulation to modulate abnormal neuronal activity. While leveraging the unique capabilities of AI holds immense potential for responsive neurostimulation, it appears as an extremely challenging proposition where real-time (low-latency) processing, low-power consumption, and heat constraints are limiting factors. The use of sophisticated AI-driven models for personalized neurostimulation depends on the back-telemetry of data to external systems (e.g. cloud-based medical mesosystems and ecosystems). While this can be a solution, integrating continuous learning within implantable neuromodulation devices for several applications, such as seizure prediction in epilepsy, is an open question. We believe neuromorphic architectures hold an outstanding potential to open new avenues for sophisticated on-chip analysis of neural signals and AI-driven personalized treatments. With more than three orders of magnitude reduction in the total data required for data processing and feature extraction, the high power- and memory-efficiency of neuromorphic computing to hardware-firmware co-design can be considered as the solution-in-the-making to resource-constraint implantable neuromodulation systems. This perspective introduces the concept of Neuromorphic Neuromodulation, a new breed of closed-loop responsive feedback system. It highlights its potential to revolutionize implantable brain-machine microsystems for patient-specific treatment.
Collapse
Affiliation(s)
| | - Nhan Duy Truong
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jason K Eshraghian
- Department of Electrical and Computer Engineering, University of California, Santa Cruz 95064, USA
| | - Zhangyu Xu
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Zhaojing Huang
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Isabelle Aguilar
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Wing Hang Leung
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Armin Nikpour
- Central Clinical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Omid Kavehei
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Lopez Ramos CG, Shahin MN, Shafie B, Tan H, Yamamoto E, Rockhill AP, Fecker A, Ismail M, Cleary DR, Raslan A, Ernst LD. Combination Resective or Ablative Epilepsy Surgery with Neurostimulation for Complex Epilepsy Networks: A Case Series. Stereotact Funct Neurosurg 2024:1-10. [PMID: 39433043 DOI: 10.1159/000541350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/27/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION Complex epilepsy networks with multifocal onset zones that overlap with eloquent cortex may benefit from combined surgical approaches. However, limited data exist on outcomes associated with performing these therapies in tandem. In this case series, we report on 6 patients who underwent combination surgery with either resection or laser interstitial thermal therapy (LITT) and neuromodulation with responsive neurostimulation (RNS) or deep brain stimulation (DBS). METHODS We performed a retrospective review of adult patients with medically refractory epilepsy who underwent staged combination epilepsy surgeries during the same admission at our institution. Six cases treated between 2019 and 2023 were identified. All patients underwent a presurgical work-up including invasive intracranial monitoring and underwent a combined approach with either surgical resection, LITT, RNS, or DBS. We extracted data on demographic, clinical, and surgical characteristics. The primary outcome was change in seizure frequency from baseline. RESULTS The mean age was 42.7 years old (4 female). All patients had at least one epileptogenic zone in the temporal lobe, two in extratemporal neocortex, two in periventricular nodular heterotopia. For the staged combination approach, 3 patients underwent LITT followed by RNS, two underwent resection and RNS, and one received LITT and DBS. The mean reduction in seizure frequency per month at last follow-up was 90%. Postoperatively, 1 patient experienced superior visual field deficits related to LITT, and another had postoperative deep vein thrombosis. CONCLUSION All patients experienced at least an 83% reduction in seizures. This case series demonstrates the potential benefits of a combined surgical approach in patients with multifocal seizures and at least one lesion that can be safely resected or ablated. Future prospective studies are warranted.
Collapse
Affiliation(s)
- Christian G Lopez Ramos
- Departments of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Maryam N Shahin
- Departments of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Beck Shafie
- Departments of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Hao Tan
- Departments of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Erin Yamamoto
- Departments of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Alexander P Rockhill
- Departments of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Adeline Fecker
- Departments of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Mostafa Ismail
- Departments of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Daniel R Cleary
- Departments of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Ahmed Raslan
- Departments of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Lia D Ernst
- Departments of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
6
|
Liu T, Li H, Kuang S, Yuan L, Feng W, Li H, Ding P, Wei Z, Liang S. Exploratory study of short-term treatment with adaptive neurostimulation in children with drug-resistant epilepsy. Brain Stimul 2024; 17:1167-1169. [PMID: 39396799 DOI: 10.1016/j.brs.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024] Open
Affiliation(s)
- Tinghong Liu
- Functional Neurosurgery Department, National Children's Health Center of China, Beijing Children's Hospital, Capital Medical University, Beijing, China; Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.
| | - Hanlei Li
- Neuracle Technology (Changzhou) Co. Ltd., Changzhou, China.
| | - Suhui Kuang
- Department of Functional Neurosurgery, National Children's Health Center of China, Beijing Children's Hospital, Capital Medical University, Beijing, China; Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.
| | - Liu Yuan
- Functional Neurosurgery Department, National Children's Health Center of China, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Weixing Feng
- Neurology Department, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Hua Li
- Neurology Department, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Ping Ding
- Department of Functional Neurosurgery, National Children's Health Center of China, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Zhirong Wei
- Functional Neurosurgery Department, National Children's Health Center of China, Beijing Children's Hospital, Capital Medical University, Beijing, China; Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.
| | - Shuli Liang
- Functional Neurosurgery Department, National Children's Health Center of China, Beijing Children's Hospital, Capital Medical University, Beijing, China; Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.
| |
Collapse
|
7
|
Song S, Dai Y, Yao Y, Liu J, Yao D, Cao Y, Lin B, Zheng Y, Xu R, Cui Y, Guo D. The high frequency oscillations in the amygdala, hippocampus, and temporal cortex during mesial temporal lobe epilepsy. Cogn Neurodyn 2024; 18:1627-1639. [PMID: 39104697 PMCID: PMC11297867 DOI: 10.1007/s11571-023-10059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/18/2023] [Accepted: 12/18/2023] [Indexed: 08/07/2024] Open
Abstract
The mesial temporal lobe epilepsy (MTLE) seizures are believed to originate from medial temporal structures, including the amygdala, hippocampus, and temporal cortex. Thus, the seizures onset zones (SOZs) of MTLE locate in these regions. However, whether the neural features of SOZs are specific to different medial temporal structures are still unclear and need more investigation. To address this question, the present study tracked the features of two different high frequency oscillations (HFOs) in the SOZs of these regions during MTLE seizures from 10 drug-resistant MTLE patients, who received the stereo electroencephalography (SEEG) electrodes implantation surgery in the medial temporal structures. Remarkable difference of HFOs features, including the proportions of HFOs contacts, percentages of HFOs contacts with significant coupling and firing rates of HFOs, could be observed in the SOZs among three medial temporal structures during seizures. Specifically, we found that the amygdala might contribute to the generation of MTLE seizures, while the hippocampus plays a critical role for the propagation of MTLE seizures. In addition, the HFOs firing rates in SOZ regions were significantly larger than those in NonSOZ regions, suggesting the potential biomarkers of HFOs for MTLE seizure. Moreover, there existed higher percentages of SOZs contacts in the HFOs contacts than in all SEEG contacts, especially those with significant coupling to slow oscillations, implying that specific HFOs features would help identify the SOZ regions. Taken together, our results displayed the features of HFOs in different medial temporal structures during MTLE seizures, and could deepen our understanding concerning the neural mechanism of MTLE.
Collapse
Affiliation(s)
- Shiwei Song
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian China
| | - Yihai Dai
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian China
| | - Yutong Yao
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 China
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, 610072 China
| | - Jie Liu
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, 610072 China
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 China
| | - Dezhong Yao
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, 610072 China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Yifei Cao
- Fujian Medical University, Fuzhou, 350004 Fujian China
| | - Bingling Lin
- Fujian Medical University, Fuzhou, 350004 Fujian China
| | - Yuetong Zheng
- Fujian Medical University, Fuzhou, 350004 Fujian China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 China
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, 610072 China
| | - Yan Cui
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 China
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, 610072 China
| | - Daqing Guo
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731 China
| |
Collapse
|
8
|
Bustros S, Kaur M, Ritchey E, Szaflarski JP, McGwin GJ, Riley KO, Bentley JN, Memon AA, Jaisani Z. Non-lesional epilepsy does not necessarily convey poor outcomes after invasive monitoring followed by resection or thermal ablation. Neurol Res 2024; 46:653-661. [PMID: 38602305 DOI: 10.1080/01616412.2024.2340879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVE We aimed to compare outcomes including seizure-free status at the last follow-up in adult patients with medically refractory focal epilepsy identified as lesional vs. non-lesional based on their magnetic resonance imaging (MRI) findings who underwent invasive evaluation followed by subsequent resection or thermal ablation (LiTT). METHODS We identified 88 adult patients who underwent intracranial monitoring between 2014 and 2021. Of those, 40 received resection or LiTT, and they were dichotomized based on MRI findings, as lesional (N = 28) and non-lesional (N = 12). Patient demographics, seizure characteristics, non-invasive interventions, intracranial monitoring, and surgical variables were compared between the groups. Postsurgical seizure outcome at the last follow-up was rated according to the Engel classification, and postoperative seizure freedom was determined by Kaplan-Meyer survival analysis. Statistical analyses employed Fisher's exact test to compare categorical variables, while a t-test was used for continuous variables. RESULTS There were no differences in baseline characteristics between groups except for more often noted PET abnormality in the lesional group (p = 0.0003). 64% of the lesional group and 57% of the non-lesional group received surgical resection or LiTT (p = 0.78). At the last follow-up, 78.5% of the patients with lesional MRI findings achieved Engel I outcomes compared to 66.7% of non-lesional patients (p = 0.45). Kaplan-Meier curves did not show a significant difference in seizure-free duration between both groups after surgical intervention (p = 0.49). SIGNIFICANCE In our sample, the absence of lesion on brain MRI was not associated with worse seizure outcomes in adult patients who underwent invasive intracranial monitoring followed by resection or thermal ablation.
Collapse
Affiliation(s)
- Stephanie Bustros
- Division of Epilepsy, Department of Neurology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Manmeet Kaur
- Division of Neurocritical Care, Department of Neurology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Elizabeth Ritchey
- Division of Epilepsy, Department of Neurology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Jerzy P Szaflarski
- Division of Epilepsy, Department of Neurology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- Division of Neurocritical Care, Department of Neurology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Gerald Jr McGwin
- Department of Epidemiology, School of Public Health, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristen O Riley
- Department of Neurosurgery, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - J Nicole Bentley
- Department of Neurosurgery, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Adeel A Memon
- Department of Neurology, West Virginia University, Morgantown, WV, USA
| | - Zeenat Jaisani
- Division of Epilepsy, Department of Neurology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| |
Collapse
|
9
|
Wang K, Shan Y, Wei P, Ren L, Chen L, Zhu J, Zhao G. Safety and efficacy of a novel responsive neurostimulation system in China for drug-refractory focal epilepsy: The first-in-man study. Chin Med J (Engl) 2024; 137:1486-1488. [PMID: 37612262 PMCID: PMC11188855 DOI: 10.1097/cm9.0000000000002821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 08/25/2023] Open
Affiliation(s)
- Kailiang Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- International Neuroscience Institute (China-INI), Clinical Research Center for Epilepsy, Capital Medical University, Beijing 100053, China
- China National Medical Center for Neurological Diseases, Beijing 100053, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- International Neuroscience Institute (China-INI), Clinical Research Center for Epilepsy, Capital Medical University, Beijing 100053, China
- China National Medical Center for Neurological Diseases, Beijing 100053, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- International Neuroscience Institute (China-INI), Clinical Research Center for Epilepsy, Capital Medical University, Beijing 100053, China
- China National Medical Center for Neurological Diseases, Beijing 100053, China
| | - Liankun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Junming Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- International Neuroscience Institute (China-INI), Clinical Research Center for Epilepsy, Capital Medical University, Beijing 100053, China
- China National Medical Center for Neurological Diseases, Beijing 100053, China
| |
Collapse
|
10
|
Charlebois CM, Anderson DN, Smith EH, Davis TS, Newman BJ, Peters AY, Arain AM, Dorval AD, Rolston JD, Butson CR. Circadian changes in aperiodic activity are correlated with seizure reduction in patients with mesial temporal lobe epilepsy treated with responsive neurostimulation. Epilepsia 2024; 65:1360-1373. [PMID: 38517356 PMCID: PMC11138949 DOI: 10.1111/epi.17938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVES Responsive neurostimulation (RNS) is an established therapy for drug-resistant epilepsy that delivers direct electrical brain stimulation in response to detected epileptiform activity. However, despite an overall reduction in seizure frequency, clinical outcomes are variable, and few patients become seizure-free. The aim of this retrospective study was to evaluate aperiodic electrophysiological activity, associated with excitation/inhibition balance, as a novel electrographic biomarker of seizure reduction to aid early prognostication of the clinical response to RNS. METHODS We identified patients with intractable mesial temporal lobe epilepsy who were implanted with the RNS System between 2015 and 2021 at the University of Utah. We parameterized the neural power spectra from intracranial RNS System recordings during the first 3 months following implantation into aperiodic and periodic components. We then correlated circadian changes in aperiodic and periodic parameters of baseline neural recordings with seizure reduction at the most recent follow-up. RESULTS Seizure reduction was correlated significantly with a patient's average change in the day/night aperiodic exponent (r = .50, p = .016, n = 23 patients) and oscillatory alpha power (r = .45, p = .042, n = 23 patients) across patients for baseline neural recordings. The aperiodic exponent reached its maximum during nighttime hours (12 a.m. to 6 a.m.) for most responders (i.e., patients with at least a 50% reduction in seizures). SIGNIFICANCE These findings suggest that circadian modulation of baseline broadband activity is a biomarker of response to RNS early during therapy. This marker has the potential to identify patients who are likely to respond to mesial temporal RNS. Furthermore, we propose that less day/night modulation of the aperiodic exponent may be related to dysfunction in excitation/inhibition balance and its interconnected role in epilepsy, sleep, and memory.
Collapse
Affiliation(s)
- Chantel M. Charlebois
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
- Scientific Computing & Imaging Institute, University of Utah, Salt Lake City, Utah, USA
| | - Daria Nesterovich Anderson
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, Utah, USA
- School of Biomedical Engineering, University of Sydney, Darlington, NSW, Australia
| | - Elliot H. Smith
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | - Tyler S. Davis
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | - Blake J. Newman
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Angela Y. Peters
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Amir M. Arain
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Alan D. Dorval
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
- Scientific Computing & Imaging Institute, University of Utah, Salt Lake City, Utah, USA
| | - John D. Rolston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
- Department of Neurosurgery, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher R. Butson
- Scientific Computing & Imaging Institute, University of Utah, Salt Lake City, Utah, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Qiu Z, Nguyen AT, Su K, Yang Z, Xu J. A High Precision, Wide Dynamic Range Closed-Loop Neuromodulation IC With Rapid Stimulation Artifact Recovery. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:274-287. [PMID: 37782620 DOI: 10.1109/tbcas.2023.3321295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
This article presents a high precision, wide dynamic range (DR) closed-loop neuromodulation (CLNM) system that can completely reject stimulation artifacts (SA) and achieve rapid SA recovery. In the recorder, a novel SA quick-blanking scheme is proposed for rail-to-rail SA rejection while minimizing SA recovery time. Besides, a new analog front-end (AFE) architecture based on a frequency-shaping (FS) technique is developed to extend DR intrinsically. In the stimulator, a stimulation driver implemented with a proposed redundant crossfire (RXF) technique is incorporated to improve the effective resolution of the stimulation current. The designed CLNM system is implemented in a 180 nm Bipolar-CMOS-DMOS (BCD) process. Measurement results show that the system is capable of tolerating rail-to-rail (5 V) SA and reducing the SA recovery time from 12 ms to 0.15 ms. The FS recorder extends the DR at low frequencies (LF) to 17.5 bits to enhance tolerance to LF interferences. The proposed stimulator adopting the 4-way RXF topology improves the effective resolution to 12.75 bits without consuming much extra area and power. Animal experiments demonstrate that the designed system can acquire high-fidelity neural signals immediately after stimulation onsets, thus supporting concurrent recording and stimulation.
Collapse
|
12
|
Schulze-Bonhage A, Nitsche MA, Rotter S, Focke NK, Rao VR. Neurostimulation targeting the epileptic focus: Current understanding and perspectives for treatment. Seizure 2024; 117:183-192. [PMID: 38452614 DOI: 10.1016/j.seizure.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/09/2024] Open
Abstract
For the one third of people with epilepsy whose seizures are not controlled with medications, targeting the seizure focus with neurostimulation can be an effective therapeutic strategy. In this focused review, we summarize a discussion of targeted neurostimulation modalities during a workshop held in Frankfurt, Germany in September 2023. Topics covered include: available devices for seizure focus stimulation; alternating current (AC) and direct current (DC) stimulation to reduce focal cortical excitability; modeling approaches to simulate DC stimulation; reconciling the efficacy of focal stimulation with the network theory of epilepsy; and the emerging concept of 'neurostimulation zones,' which are defined as cortical regions where focal stimulation is most effective for reducing seizures and which may or may not directly involve the seizure onset zone. By combining experimental data, modeling results, and clinical outcome analysis, rational selection of target regions and stimulation parameters is increasingly feasible, paving the way for a broader use of neurostimulation for epilepsy in the future.
Collapse
Affiliation(s)
- Andreas Schulze-Bonhage
- Epilepsy Center, University Medical Center, University of Freiburg, Germany; European Reference Network EpiCare, Belgium; NeuroModul Basic, University of Freiburg, Freiburg, Germany.
| | - Michael A Nitsche
- Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, Germany; German Center for Mental Health (DZPG), Germany
| | - Stefan Rotter
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Germany
| | - Niels K Focke
- Epilepsy Center, Clinic for Neurology, University Medical Center Göttingen, Germany
| | - Vikram R Rao
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, USA
| |
Collapse
|
13
|
Kobayashi K, Taylor KN, Shahabi H, Krishnan B, Joshi A, Mackow MJ, Feldman L, Zamzam O, Medani T, Bulacio J, Alexopoulos AV, Najm I, Bingaman W, Leahy RM, Nair DR. Effective connectivity relates seizure outcome to electrode placement in responsive neurostimulation. Brain Commun 2024; 6:fcae035. [PMID: 38390255 PMCID: PMC10882982 DOI: 10.1093/braincomms/fcae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/06/2023] [Accepted: 02/19/2024] [Indexed: 02/24/2024] Open
Abstract
Responsive neurostimulation is a closed-loop neuromodulation therapy for drug resistant focal epilepsy. Responsive neurostimulation electrodes are placed near ictal onset zones so as to enable detection of epileptiform activity and deliver electrical stimulation. There is no standard approach for determining the optimal placement of responsive neurostimulation electrodes. Clinicians make this determination based on presurgical tests, such as MRI, EEG, magnetoencephalography, ictal single-photon emission computed tomography and intracranial EEG. Currently functional connectivity measures are not being used in determining the placement of responsive neurostimulation electrodes. Cortico-cortical evoked potentials are a measure of effective functional connectivity. Cortico-cortical evoked potentials are generated by direct single-pulse electrical stimulation and can be used to investigate cortico-cortical connections in vivo. We hypothesized that the presence of high amplitude cortico-cortical evoked potentials, recorded during intracranial EEG monitoring, near the eventual responsive neurostimulation contact sites is predictive of better outcomes from its therapy. We retrospectively reviewed 12 patients in whom cortico-cortical evoked potentials were obtained during stereoelectroencephalography evaluation and subsequently underwent responsive neurostimulation therapy. We studied the relationship between cortico-cortical evoked potentials, the eventual responsive neurostimulation electrode locations and seizure reduction. Directional connectivity indicated by cortico-cortical evoked potentials can categorize stereoelectroencephalography electrodes as either receiver nodes/in-degree (an area of greater inward connectivity) or projection nodes/out-degree (greater outward connectivity). The follow-up period for seizure reduction ranged from 1.3-4.8 years (median 2.7) after responsive neurostimulation therapy started. Stereoelectroencephalography electrodes closest to the eventual responsive neurostimulation contact site tended to show larger in-degree cortico-cortical evoked potentials, especially for the early latency cortico-cortical evoked potentials period (10-60 ms period) in six out of 12 patients. Stereoelectroencephalography electrodes closest to the responsive neurostimulation contacts (≤5 mm) also had greater significant out-degree in the early cortico-cortical evoked potentials latency period than those further away (≥10 mm) (P < 0.05). Additionally, significant correlation was noted between in-degree cortico-cortical evoked potentials and greater seizure reduction with responsive neurostimulation therapy at its most effective period (P < 0.05). These findings suggest that functional connectivity determined by cortico-cortical evoked potentials may provide additional information that could help guide the optimal placement of responsive neurostimulation electrodes.
Collapse
Affiliation(s)
- Katsuya Kobayashi
- Charles Shor Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Kenneth N Taylor
- Charles Shor Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Hossein Shahabi
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90007, USA
| | - Balu Krishnan
- Charles Shor Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Anand Joshi
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90007, USA
| | - Michael J Mackow
- Charles Shor Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Lauren Feldman
- Charles Shor Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Omar Zamzam
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90007, USA
| | - Takfarinas Medani
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90007, USA
| | - Juan Bulacio
- Charles Shor Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | - Imad Najm
- Charles Shor Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - William Bingaman
- Charles Shor Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Richard M Leahy
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90007, USA
| | - Dileep R Nair
- Charles Shor Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
14
|
Chai X, Cao T, He Q, Wang N, Zhang X, Shan X, Lv Z, Tu W, Yang Y, Zhao J. Brain-computer interface digital prescription for neurological disorders. CNS Neurosci Ther 2024; 30:e14615. [PMID: 38358054 PMCID: PMC10867871 DOI: 10.1111/cns.14615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Neurological and psychiatric diseases can lead to motor, language, emotional disorder, and cognitive, hearing or visual impairment By decoding the intention of the brain in real time, the Brain-computer interface (BCI) can first assist in the diagnosis of diseases, and can also compensate for its damaged function by directly interacting with the environment; In addition, provide output signals in various forms, such as actual motion, tactile or visual feedback, to assist in rehabilitation training; Further intervention in brain disorders is achieved by close-looped neural modulation. In this article, we envision the future BCI digital prescription system for patients with different functional disorders and discuss the key contents in the prescription the brain signals, coding and decoding protocols and interaction paradigms, and assistive technology. Then, we discuss the details that need to be specially included in the digital prescription for different intervention technologies. The third part summarizes previous examples of intervention, focusing on how to select appropriate interaction paradigms for patients with different functional impairments. For the last part, we discussed the indicators and influencing factors in evaluating the therapeutic effect of BCI as intervention.
Collapse
Affiliation(s)
- Xiaoke Chai
- Brain Computer Interface Transitional Research Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Center for Neurological DisordersBeijingChina
- Translation Laboratory of Clinical MedicineChinese Institute for Brain Research & Beijing Tiantan HospitalBeijingChina
| | - Tianqing Cao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Nan Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Xuemin Zhang
- National Research Center for Rehabilitation Technical AidsBeijingChina
| | - Xinying Shan
- National Research Center for Rehabilitation Technical AidsBeijingChina
| | - Zeping Lv
- National Research Center for Rehabilitation Technical AidsBeijingChina
| | - Wenjun Tu
- Translation Laboratory of Clinical MedicineChinese Institute for Brain Research & Beijing Tiantan HospitalBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yi Yang
- Brain Computer Interface Transitional Research Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Center for Neurological DisordersBeijingChina
- Translation Laboratory of Clinical MedicineChinese Institute for Brain Research & Beijing Tiantan HospitalBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- National Research Center for Rehabilitation Technical AidsBeijingChina
- Beijing Institute of Brain DisordersBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| | - Jizong Zhao
- Brain Computer Interface Transitional Research Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Center for Neurological DisordersBeijingChina
- Translation Laboratory of Clinical MedicineChinese Institute for Brain Research & Beijing Tiantan HospitalBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| |
Collapse
|
15
|
Fields MC, Marsh C, Eka O, Johnson EA, Marcuse LV, Kwon CS, Young JJ, LaVega-Talbott M, Kurukumbi M, Von Allmen G, Zempel J, Friedman D, Jette N, Singh A, Yoo JY, Blank L, Panov F, Ghatan S. Responsive Neurostimulation for People With Drug-Resistant Epilepsy and Autism Spectrum Disorder. J Clin Neurophysiol 2024; 41:64-71. [PMID: 35512185 PMCID: PMC10756699 DOI: 10.1097/wnp.0000000000000939] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Individuals with autism spectrum disorder (ASD) have comorbid epilepsy at much higher rates than the general population, and about 30% will be refractory to medication. Patients with drug-resistant epilepsy (DRE) should be referred for surgical evaluation, yet many with ASD and DRE are not resective surgical candidates. The aim of this study was to examine the response of this population to the responsive neurostimulator (RNS) System. METHODS This multicenter study evaluated patients with ASD and DRE who underwent RNS System placement. Patients were included if they had the RNS System placed for 1 year or more. Seizure reduction and behavioral outcomes were reported. Descriptive statistics were used for analysis. RESULTS Nineteen patients with ASD and DRE had the RNS System placed at 5 centers. Patients were between the ages of 11 and 29 (median 20) years. Fourteen patients were male, whereas five were female. The device was implanted from 1 to 5 years. Sixty-three percent of all patients experienced a >50% seizure reduction, with 21% of those patients being classified as super responders (seizure reduction >90%). For the super responders, two of the four patients had the device implanted for >2 years. The response rate was 70% for those in whom the device was implanted for >2 years. Improvements in behaviors as measured by the Clinical Global Impression Scale-Improvement scale were noted in 79%. No complications from the surgery were reported. CONCLUSIONS Based on the authors' experience in this small cohort of patients, the RNS System seems to be a promising surgical option in people with ASD-DRE.
Collapse
Affiliation(s)
- Madeline C. Fields
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A.
| | - Christina Marsh
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A.
| | - Onome Eka
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A.
| | - Emily A. Johnson
- Washington University School of Medicine, St. Louis, Missouri, U.S.A.
| | - Lara V. Marcuse
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A.
| | - Churl-Su Kwon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A.
| | - James J. Young
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A.
| | - Maite LaVega-Talbott
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A.
| | | | - Gretchen Von Allmen
- Division of Pediatric Epilepsy, McGovern Medical School, UTHealth, Houston, Texas, U.S.A.
| | - John Zempel
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, U.S.A.; and
| | - Daniel Friedman
- Department of Neurology, New York University Langone Medical Center, New York, New York, U.S.A.
| | - Nathalie Jette
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A.
| | - Anuradha Singh
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A.
| | - Ji Yeoun Yoo
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A.
| | - Leah Blank
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A.
| | - Fedor Panov
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A.
| | - Saadi Ghatan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A.
| |
Collapse
|
16
|
Rao VR, Rolston JD. Unearthing the mechanisms of responsive neurostimulation for epilepsy. COMMUNICATIONS MEDICINE 2023; 3:166. [PMID: 37974025 PMCID: PMC10654422 DOI: 10.1038/s43856-023-00401-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Responsive neurostimulation (RNS) is an effective therapy for people with drug-resistant focal epilepsy. In clinical trials, RNS therapy results in a meaningful reduction in median seizure frequency, but the response is highly variable across individuals, with many receiving minimal or no benefit. Understanding why this variability occurs will help improve use of RNS therapy. Here we advocate for a reexamination of the assumptions made about how RNS reduces seizures. This is now possible due to large patient cohorts having used this device, some long-term. Two foundational assumptions have been that the device's intracranial leads should target the seizure focus/foci directly, and that stimulation should be triggered only in response to detected epileptiform activity. Recent studies have called into question both hypotheses. Here, we discuss these exciting new studies and suggest future approaches to patient selection, lead placement, and device programming that could improve clinical outcomes.
Collapse
Affiliation(s)
- Vikram R Rao
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| | - John D Rolston
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Levy AS, Bystrom LL, Brown EC, Fajardo M, Wang S. Responsive neurostimulation for treatment of pediatric refractory epilepsy: A pooled analysis of the literature. Clin Neurol Neurosurg 2023; 234:108012. [PMID: 37839147 DOI: 10.1016/j.clineuro.2023.108012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Drug-resistant epilepsy (DRE) is a complex medical condition often requiring resective surgery and/or some form of neurostimulation. In recent years responsive neurostimulation (RNS) has shown promising results in adult DRE, however there is a paucity of information regarding outcomes of RNS among pediatric patients treated with DRE. In this individual patient data meta-analysis (IPDMA) we seek to elucidate the effects RNS has on the pediatric population. METHODS Literature regarding management of pediatric DRE via RNS was reviewed in accordance with individual patient data meta-analysis guidelines. Four databases were searched with keywords ((Responsive neurostimulation) AND (epilepsy)) through December of 2022. From 1624 retrieved full text studies, 15 were ultimately included affording a pool of 98 individual participants. RESULTS The median age at implantation was 14 years (n = 95) with 42% of patients having undergone prior resective epilepsy surgery, 18% with prior vagus nerve stimulation (VNS), and 1% with prior RNS. At a median follow up time 12 months, median percent seizure reduction was 75% with 57% of patients achieving Engel Class < 2 outcome, 9.7% of which achieved seizure freedom. We report a postoperative complication rate of 8.4%, half of which were device-related infections. Magnetic resonance imaging (MRI)-negative cases were negatively associated with magnitude of seizure reduction, and direct targeting techniques were associated with stronger treatment response when compared to other methods. CONCLUSIONS This review suggests RNS to be an effective treatment modality for pediatric patients with a postoperative complication rate comparable to that of RNS in adults. Investigation of prognostic clinical variables should be undertaken to augment patient selection. Last, multi-institutional prospective study of long-term effects of RNS on pediatric patients would stand to benefit clinicians in the management of pediatric DRE.
Collapse
Affiliation(s)
- Adam S Levy
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA.
| | - Lauren L Bystrom
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA
| | - Erik C Brown
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA
| | - Marytery Fajardo
- Division of Neurology, Brain Institute, Nicklaus Children's Hospital, 3200 SW 60th Ct Ste 302, Miami, FL, 33155, USA
| | - Shelly Wang
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA; Division of Neurosurgery, Brain Institute, Nicklaus Children's Hospital, 3200 SW 60th Ct Ste 302, Miami, FL, 33155, USA
| |
Collapse
|
18
|
Rusheen AE, Jensen MA, Gregg NM, Kaufmann TJ, VanGompel JJ, Lee KH, Klassen BT, Miller KJ. Preliminary Experience with a Four-Lead Implantable Pulse Generator for Deep Brain Stimulation. Stereotact Funct Neurosurg 2023; 101:254-264. [PMID: 37454656 DOI: 10.1159/000530782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/07/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Implantable pulse generators (IPGs) store energy and deliver electrical impulses for deep brain stimulation (DBS) to treat neurological and psychiatric disorders. IPGs have evolved over time to meet the demands of expanding clinical indications and more nuanced therapeutic approaches. OBJECTIVES The aim of this study was to examine the workflow of the first 4-lead IPG for DBS in patients with complex disease. METHOD The engineering capabilities, clinical use cases, and surgical technique are described in a cohort of 12 patients with epilepsy, essential tremor, Parkinson's disease, mixed tremor, and Tourette's syndrome with comorbid obsessive-compulsive disorder between July 2021 and July 2022. RESULTS This system is a rechargeable 32-channel, 4-port system with independent current control that can be connected to 8 contact linear or directionally segmented leads. The system is ideal for patients with mixed disease or those with multiple severe symptoms amenable to >2 lead implantations. A multidisciplinary team including neurologists, radiologists, and neurosurgeons is necessary to safely plan the procedure. There were no serious intraoperative or postoperative adverse events. One patient required revision surgery for bowstringing. CONCLUSIONS This new 4-lead IPG represents an important new tool for DBS surgery with the ability to expand lead implantation paradigms for patients with complex disease.
Collapse
Affiliation(s)
- Aaron Elliott Rusheen
- Medical Scientist Training Program, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael A Jensen
- Medical Scientist Training Program, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Jamie J VanGompel
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Kendall H Lee
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Bryan T Klassen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kai Joshua Miller
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
19
|
Skrehot HC, Englot DJ, Haneef Z. Neuro-stimulation in focal epilepsy: A systematic review and meta-analysis. Epilepsy Behav 2023; 142:109182. [PMID: 36972642 DOI: 10.1016/j.yebeh.2023.109182] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVES Different neurostimulation modalities are available to treat drug-resistant focal epilepsy when surgery is not an option including vagus nerve stimulation (VNS), responsive neurostimulation (RNS), and deep brain stimulation (DBS). Head-to-head comparisons of efficacy do not exist between them nor are likely to be available in the future. We performed a meta-analysis on VNS, RNS, and DBS outcomes to compare seizure reduction efficacy for focal epilepsy. METHODS We systematically reviewed the literature for reported seizure outcomes following implantation with VNS, RNS, and DBS in focal-onset seizures and performed a meta-analysis. Prospective or retrospective clinical studies were included. RESULTS Sufficient data were available at years one (n = 642, two (n = 480), and three (n = 385) for comparing the three modalities with each other. Seizure reduction for the devices at years one, two, and three respectively were: RNS: 66.3%, 56.0%, 68.4%; DBS- 58.4%, 57.5%, 63.8%; VNS 32.9%, 44.4%, 53.5%. Seizure reduction at year one was greater for RNS (p < 0.01) and DBS (p < 0.01) compared to VNS. CONCLUSIONS Our findings indicate the seizure reduction efficacy of RNS is similar to DBS, and both had greater seizure reductions compared to VNS in the first-year post-implantation, with the differences diminishing with longer-term follow-up. SIGNIFICANCE The results help guide neuromodulation treatment in eligible patients with drug-resistant focal epilepsy.
Collapse
Affiliation(s)
- Henry C Skrehot
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dario J Englot
- Departments of Neurological Surgery, Neurology, Radiology, Electrical Engineering, and Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Neurology Care Line, VA Medical Center, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Weiss SA, Eliashiv D, Stern J, Rubinstein D, Fried I, Wu C, Sharan A, Engel J, Staba R, Sperling MR. Stimulation better targets fast-ripple generating networks in super responders to the responsive neurostimulator system. Epilepsia 2023; 64:e48-e55. [PMID: 36906958 DOI: 10.1111/epi.17582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
How responsive neurostimulation (RNS) decreases seizure frequency is unclear. Stimulation may alter epileptic networks during inter-ictal epochs. Definitions of the epileptic network vary but fast ripples (FRs) may be an important substrate. We, therefore, examined whether stimulation of FR-generating networks differed in RNS super responders and intermediate responders. In 10 patients, with subsequent RNS placement, we detected FRs from stereo-electroencephalography (SEEG) contacts during pre-surgical evaluation. The normalized coordinates of the SEEG contacts were compared with those of the eight RNS contacts, and RNS-stimulated SEEG contacts were defined as those within 1.5 cm3 of the RNS contacts. We compared the post-RNS placement seizure outcome to (1) the ratio of stimulated SEEG contacts in the seizure-onset zone (SOZ stimulation ratio [SR]); (2) the ratio of FR events on stimulated contacts (FR SR); and (3) the global efficiency of the FR temporal correlational network on stimulated contacts (FR SGe). We found that the SOZ SR (p = .18) and FR SR (p = .06) did not differ in the RNS super responders and intermediate responders, but the FR SGe did (p = .02). In super responders, highly active desynchronous sites of the FR network were stimulated. RNS that better targets FR networks, as compared to the SOZ, may reduce epileptogenicity more.
Collapse
Affiliation(s)
- Shennan Aibel Weiss
- Department Of Neurology, State University of New York Downstate, Brooklyn, New York, 11203, USA.,Department of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, New York, 11203, USA.,Department of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, New York, USA
| | - Dawn Eliashiv
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - John Stern
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Daniel Rubinstein
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Itzhak Fried
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Chengyuan Wu
- Department of Neuroradiology, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA.,Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Ashwini Sharan
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Jerome Engel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA.,Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA.,Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA.,Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Richard Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| |
Collapse
|
21
|
Haeusermann T, Lechner CR, Fong KC, Sideman AB, Jaworska A, Chiong W, Dohan D. Closed-Loop Neuromodulation and Self-Perception in Clinical Treatment of Refractory Epilepsy. AJOB Neurosci 2023; 14:32-44. [PMID: 34473932 PMCID: PMC9007331 DOI: 10.1080/21507740.2021.1958100] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: Newer "closed-loop" neurostimulation devices in development could, in theory, induce changes to patients' personalities and self-perceptions. Empirically, however, only limited data of patient and family experiences exist. Responsive neurostimulation (RNS) as a treatment for refractory epilepsy is the first approved and commercially available closed-loop brain stimulation system in clinical practice, presenting an opportunity to observe how conceptual neuroethical concerns manifest in clinical treatment.Methods: We conducted ethnographic research at a single academic medical center with an active RNS treatment program and collected data via direct observation of clinic visits and in-depth interviews with 12 patients and their caregivers. We used deductive and inductive analyses to identify the relationship between these devices and patient changes in personality and self-perception.Results: Participants generally did not attribute changes in patients' personalities or self-perception to implantation of or stimulation using RNS. They did report that RNS affected patients' experiences and conceptions of illness. In particular, the capacity to store and display electrophysiological data produced a common frame of reference and a shared vocabulary among patients and clinicians.Discussion: Empirical experiences of a clinical population being treated with closed-loop neuromodulation do not corroborate theoretical concerns about RNS devices described by neuroethicists and technology developers. However, closed-loop devices demonstrated an ability to change illness experiences. Even without altering identify and self-perception, they provided new cultural tools and metaphors for conceiving of epilepsy as an illness and of the process of diagnosis and treatment. These findings call attention to the need to situate neuroethical concerns in the broader contexts of patients' illness experiences and social circumstances.
Collapse
|
22
|
Kusyk DM, Meinert J, Stabingas KC, Yin Y, Whiting AC. Systematic Review and Meta-Analysis of Responsive Neurostimulation in Epilepsy. World Neurosurg 2022; 167:e70-e78. [PMID: 35948217 DOI: 10.1016/j.wneu.2022.07.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Neuromodulatory implants provide promising alternatives for patients with drug-resistant epilepsy (DRE) in whom resective or ablative surgery is not an option. Responsive neurostimulation (RNS) operates a unique "closed-loop" system of electrocorticography-triggered stimulation for seizure control. A comprehensive review of the current literature would be valuable to guide clinical decision-making regarding RNS. METHODS Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocols, a systematic PubMed literature review was performed to identify appropriate studies involving patients undergoing RNS for DRE. Full texts of included studies were analyzed and extracted data regarding demographics, seizure reduction rate, responder rate (defined as patients with >50% seizure reduction), and complications were compiled for comprehensive statistical analysis. RESULTS A total of 313 studies were screened, and 17 studies were included in the final review, representative of 541 patients. Mean seizure reduction rate was 68% (95% confidence interval 61%-76%), and the mean responder rate was 68% (95% confidence interval 60%-75%). Complications occurred in 102 of 541 patients, for a complication rate of 18.9%. A strong publication bias toward greater seizure reduction rate and increased responder rate was demonstrated among included literature. CONCLUSIONS A meta-analysis of recent RNS for DRE literature demonstrates seizure reduction and responder rates comparable with other neuromodulatory implants for epilepsy, demonstrating both the value of this intervention and the need for further research to delineate the optimal patient populations. This analysis also demonstrates a strong publication bias toward positive primary outcomes, highlighting the limitations of current literature. Currently, RNS data are optimistic for the treatment of DRE but should be interpreted cautiously.
Collapse
Affiliation(s)
- Dorian M Kusyk
- Department of Neurosurgery, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Justin Meinert
- College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | | | - Yue Yin
- Allegheny-Singer Research Institute, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Alexander C Whiting
- Department of Neurosurgery, Allegheny Health Network, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
23
|
Restrepo AF, Zillgitt A, Burdette DE, Ali R. Deep Brain Stimulation and Responsive Neurostimulation Implantation for Medically Refractory Epilepsy: A Case Report Study of a Single-Center's Experience. NEUROSURGERY OPEN 2022. [DOI: 10.1227/neuopn.0000000000000020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
24
|
Simpson HD, Schulze-Bonhage A, Cascino GD, Fisher RS, Jobst BC, Sperling MR, Lundstrom BN. Practical considerations in epilepsy neurostimulation. Epilepsia 2022; 63:2445-2460. [PMID: 35700144 PMCID: PMC9888395 DOI: 10.1111/epi.17329] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/02/2023]
Abstract
Neuromodulation is a key therapeutic tool for clinicians managing patients with drug-resistant epilepsy. Multiple devices are available with long-term follow-up and real-world experience. The aim of this review is to give a practical summary of available neuromodulation techniques to guide the selection of modalities, focusing on patient selection for devices, common approaches and techniques for initiation of programming, and outpatient management issues. Vagus nerve stimulation (VNS), deep brain stimulation of the anterior nucleus of the thalamus (DBS-ANT), and responsive neurostimulation (RNS) are all supported by randomized controlled trials that show safety and a significant impact on seizure reduction, as well as a suggestion of reduction in the risk of sudden unexplained death in epilepsy (SUDEP). Significant seizure reductions are observed after 3 months for DBS, RNS, and VNS in randomized controlled trials, and efficacy appears to improve with time out to 7 to 10 years of follow-up for all modalities, albeit in uncontrolled follow-up or retrospective studies. A significant number of patients experience seizure-free intervals of 6 months or more with all three modalities. Number and location of epileptogenic foci are important factors affecting efficacy, and together with comorbidities such as severe mood or sleep disorders, may influence the choice of modality. Programming has evolved-DBS is typically initiated at lower current/voltage than used in the pivotal trial, whereas target charge density is lower with RNS, however generalizable optimal parameters are yet to be defined. Noninvasive brain stimulation is an emerging stimulation modality, although it is currently not used widely. In summary, clinical practice has evolved from those established in pivotal trials. Guidance is now available for clinicians who wish to expand their approach, and choice of neuromodulation technique may be tailored to individual patients based on their epilepsy characteristics, risk tolerance, and preferences.
Collapse
Affiliation(s)
- Hugh D. Simpson
- Division of Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Gregory D. Cascino
- Division of Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Robert S. Fisher
- Department of Neurology, Stanford Neuroscience Health Center, Palo Alto, CA, USA
| | - Barbara C. Jobst
- Geisel School of Medicine at Dartmouth, Department of Neurology, Dartmouth-Hitchcock Medical Center, NH, USA
| | - Michael R. Sperling
- Division of Epilepsy, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Brian N. Lundstrom
- Division of Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
25
|
Shlobin NA, Wang A, Phillips HW, Yan H, Ibrahim GM, Elkaim LM, Wang S, Liu X, Cai L, Nguyen DK, Fallah A, Weil AG. Sensorimotor outcomes after resection for perirolandic drug-resistant epilepsy: a systematic review and individual patient data meta-analysis. J Neurosurg Pediatr 2022; 30:410-427. [PMID: 35932272 DOI: 10.3171/2022.6.peds22160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The prevalence of long-term postoperative sensorimotor deficits in children undergoing perirolandic resective epilepsy surgery is unclear. The risk of developing these deficits must be weighed against the potential reduction in seizure frequency after surgery. In this study, the authors investigated the prevalence of sensorimotor deficits after resective surgery at ≥ 1 year postoperatively. METHODS A systematic review and individual patient data meta-analysis was conducted using PubMed, Embase, and Scopus databases. Subgroups of patients were identified and categorized according to their outcomes as follows: group A patients were denoted as seizure free with no postoperative sensorimotor deficits; group B patients experienced seizure recurrence with no deficit; group C patients were seizure free with deficits; and group D patients were not seizure free and with deficits. Rates of sensory deficits were examined in patients undergoing postcentral gyrus resection, and rates of motor deficits were aggregated in patients undergoing precentral gyrus resection. RESULTS Of 797 articles resulting from the database searches, 6 articles including 164 pediatric patients at a mean age of 7.7 ± 5.2 years with resection for drug-resistant perirolandic epilepsy were included in the study. Seizure freedom was observed in 118 (72.9%) patients at a mean follow-up of 3.4 ± 1.8 years. In total, 109 (66.5%) patients did not develop sensorimotor deficits at last follow-up, while 55 (33.5%) had permanent deficits. Ten (14.3%) of 70 patients with postcentral gyrus resection had permanent sensory deficits. Of the postcentral gyrus resection patients, 41 (58.6%) patients were included in group A, 19 (27.1%) in group B, 7 (10.0%) in group C, and 3 (4.3%) in group D. Forty (37.7%) of 106 patients with precentral resections had permanent motor deficits. Of the precentral gyrus resection patients, 50 (47.2%) patients were in group A, 16 (15.1%) in group B, 24 (22.6%) in group C, and 16 (15.1%) in group D. Patients without focal cortical dysplasia were more likely to have permanent motor deficits relative to those with focal cortical dysplasia in the precentral surgery cohort (p = 0.02). CONCLUSIONS In total, 58.6% of patients were seizure free without deficit, 27.1% were not seizure free and without deficit, 10.0% were seizure free but with deficit, and 4.3% were not seizure free and with deficit. Future studies with functional and quality-of-life data, particularly for patients who experience seizure recurrence with no deficits (as in group B in the present study) and those who are seizure free with deficits (as in group C) after treatment, are necessary to guide surgical decision-making.
Collapse
Affiliation(s)
- Nathan A Shlobin
- 1Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Andrew Wang
- 2Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California
| | - H Westley Phillips
- 2Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Han Yan
- 3Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario
| | - George M Ibrahim
- 3Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario
| | - Lior M Elkaim
- 4Division of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Shuang Wang
- 5Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Xiaoyan Liu
- 5Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Lixin Cai
- 5Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Dang K Nguyen
- 6Division of Neurology, University of Montreal Hospital Centre (CHUM), Montreal
- 7CHUM Research Centre, Montreal
- 9Department of Neuroscience, University of Montreal; and
| | - Aria Fallah
- 2Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Alexander G Weil
- 8Division of Neurosurgery, Sainte-Justine University Hospital and University of Montreal Hospital Centre (CHUM), Montreal
- 9Department of Neuroscience, University of Montreal; and
- 10Sainte-Justine Research Centre, University of Montreal, Quebec, Canada
| |
Collapse
|
26
|
Kerezoudis P, Lundstrom BN, Meyer FB, Worrell GA, Van Gompel JJ. Surgical approaches to refractory central lobule epilepsy: a systematic review on the role of resection, ablation, and stimulation in the contemporary era. J Neurosurg 2022; 137:735-746. [PMID: 35171813 DOI: 10.3171/2021.10.jns211875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/16/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Epilepsy originating from the central lobule (i.e., the primary sensorimotor cortex) is a challenging entity to treat given its involvement of eloquent cortex. The objective of this study was to review available evidence on treatment options for central lobule epilepsy. METHODS A comprehensive literature search (PubMed/Medline, EMBASE, and Scopus) was conducted for studies (1990 to date) investigating postoperative outcomes for central lobule epilepsy. The primary and secondary endpoints were seizure freedom at last follow-up and postoperative neurological deficit, respectively. The following procedures were included: open resection, multiple subpial transections (MSTs), laser and radiofrequency ablation, deep brain stimulation (DBS), responsive neurostimulation (RNS), and continuous subthreshold cortical stimulation (CSCS). RESULTS A total of 52 studies and 504 patients were analyzed. Most evidence was based on open resection, yielding a total of 400 patients (24 studies), of whom 62% achieved seizure freedom at a mean follow-up of 48 months. A new or worsened motor deficit occurred in 44% (permanent in 19%). Forty-six patients underwent MSTs, of whom 16% achieved seizure freedom and 30% had a neurological deficit (permanent in 12%). There were 6 laser ablation cases (cavernomas in 50%) with seizure freedom in 4 patients and 1 patient with temporary motor deficit. There were 5 radiofrequency ablation cases, with 1 patient achieving seizure freedom, 2 patients each with Engel class III and IV outcomes, and 2 patients with motor deficit. The mean seizure frequency reduction at the last follow-up was 79% for RNS (28 patients), 90% for CSCS (15 patients), and 73% for DBS (4 patients). There were no cases of temporary or permanent neurological deficit in the CSCS or DBS group. CONCLUSIONS This review highlights the safety and efficacy profile of resection, ablation, and stimulation for refractory central lobe epilepsy. Resection of localized regions of epilepsy onset zones results in good rates of seizure freedom (62%); however, nearly 20% of patients had permanent motor deficits. The authors hope that this review will be useful to providers and patients when tailoring decision-making for this intricate pathology.
Collapse
Affiliation(s)
| | | | - Fredric B Meyer
- 1Department of Neurologic Surgery, Mayo Clinic, Rochester; and
| | | | | |
Collapse
|
27
|
Charlebois CM, Anderson DN, Johnson KA, Philip BJ, Davis TS, Newman BJ, Peters AY, Arain AM, Dorval AD, Rolston JD, Butson CR. Patient-specific structural connectivity informs outcomes of responsive neurostimulation for temporal lobe epilepsy. Epilepsia 2022; 63:2037-2055. [PMID: 35560062 PMCID: PMC11265293 DOI: 10.1111/epi.17298] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Responsive neurostimulation is an effective therapy for patients with refractory mesial temporal lobe epilepsy. However, clinical outcomes are variable, few patients become seizure-free, and the optimal stimulation location is currently undefined. The aim of this study was to quantify responsive neurostimulation in the mesial temporal lobe, identify stimulation-dependent networks associated with seizure reduction, and determine if stimulation location or stimulation-dependent networks inform outcomes. METHODS We modeled patient-specific volumes of tissue activated and created probabilistic stimulation maps of local regions of stimulation across a retrospective cohort of 22 patients with mesial temporal lobe epilepsy. We then mapped the network stimulation effects by seeding tractography from the volume of tissue activated with both patient-specific and normative diffusion-weighted imaging. We identified networks associated with seizure reduction across patients using the patient-specific tractography maps and then predicted seizure reduction across the cohort. RESULTS Patient-specific stimulation-dependent connectivity was correlated with responsive neurostimulation effectiveness after cross-validation (p = .03); however, normative connectivity derived from healthy subjects was not (p = .44). Increased connectivity from the volume of tissue activated to the medial prefrontal cortex, cingulate cortex, and precuneus was associated with greater seizure reduction. SIGNIFICANCE Overall, our results suggest that the therapeutic effect of responsive neurostimulation may be mediated by specific networks connected to the volume of tissue activated. In addition, patient-specific tractography was required to identify structural networks correlated with outcomes. It is therefore likely that altered connectivity in patients with epilepsy may be associated with the therapeutic effect and that utilizing patient-specific imaging could be important for future studies. The structural networks identified here may be utilized to target stimulation in the mesial temporal lobe and to improve seizure reduction for patients treated with responsive neurostimulation.
Collapse
Affiliation(s)
- Chantel M. Charlebois
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Scientific Computing & Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | - Daria Nesterovich Anderson
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Kara A. Johnson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Brian J. Philip
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Tyler. S. Davis
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Blake J. Newman
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Angela Y. Peters
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Amir M. Arain
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Alan D. Dorval
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - John D. Rolston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Scientific Computing & Imaging Institute, University of Utah, Salt Lake City, UT, USA
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Christopher R. Butson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
28
|
Ho VM, Dewar S, Salamon N, Fried I, Eliashiv D. Strategic targeting of the temporal lobe with orthogonal placement of RNS leads. Epilepsia 2022; 63:e112-e118. [PMID: 35815824 DOI: 10.1111/epi.17362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
Responsive neurostimulation (RNS) is an effective treatment modality for refractory temporal lobe epilepsy (TLE). However, the optimal placement of RNS leads is not known. We use an orthogonal approach to lead placement instead of the more common longitudinal approach to target the entorhinal cortex (EC) given its potential for modulating activity entering and leaving the hippocampus. An orthogonal approach allows for coverage of the EC as well as the anterior lateral temporal cortex, which may be particularly beneficial for patients with mesial-lateral TLE and may also enable greater modulation of the limbic network. The objective of this study was to determine treatment outcomes for orthogonally placed RNS depth leads targeting the entorhinal cortex. We performed a retrospective analysis of prospectively collected data on a cohort of 13 patients. Mean follow-up duration was 57.3 months and the 50% responder rate was 76.9%. These results show that orthogonally placed RNS leads are safe and effective for the treatment of refractory TLE. Larger cohorts are needed to further delineate the clinical utility of this novel targeting strategy.
Collapse
Affiliation(s)
- Victoria M Ho
- Department of Neurology, University of California at Los Angeles, CA, USA
| | - Sandra Dewar
- Department of Neurology, University of California at Los Angeles, CA, USA.,current affiliation: Department of Neurology, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Noriko Salamon
- Department of Radiological Sciences, University of California at Los Angeles, CA, USA
| | - Itzhak Fried
- Department of Neurosurgery, University of California at Los Angeles, CA, USA
| | - Dawn Eliashiv
- Department of Neurology, University of California at Los Angeles, CA, USA
| |
Collapse
|
29
|
Chung YG, Jeon Y, Yoo S, Kim H, Hwang H. Big data analysis and artificial intelligence in epilepsy - common data model analysis and machine learning-based seizure detection and forecasting. Clin Exp Pediatr 2022; 65:272-282. [PMID: 34844397 PMCID: PMC9171464 DOI: 10.3345/cep.2021.00766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/27/2021] [Indexed: 11/27/2022] Open
Abstract
There has been significant interest in big data analysis and artificial intelligence (AI) in medicine. Ever-increasing medical data and advanced computing power have enabled the number of big data analyses and AI studies to increase rapidly. Here we briefly introduce epilepsy, big data, and AI and review big data analysis using a common data model. Studies in which AI has been actively applied, such as those of electroencephalography epileptiform discharge detection, seizure detection, and forecasting, will be reviewed. We will also provide practical suggestions for pediatricians to understand and interpret big data analysis and AI research and work together with technical expertise.
Collapse
Affiliation(s)
- Yoon Gi Chung
- Division of Pediatric Neurology, Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Korea
| | | | - Sooyoung Yoo
- Office of eHealth Research and Business, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hunmin Kim
- Division of Pediatric Neurology, Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Hwang
- Division of Pediatric Neurology, Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW More than 20 new antiseizure medications have been approved by the US Food and Drug Administration (FDA) in the past 3 decades; however, outcomes in newly diagnosed epilepsy have not improved, and epilepsy remains drug resistant in up to 40% of patients. Evidence supports improved seizure outcomes and quality of life in those who have undergone epilepsy surgery, but epilepsy surgery remains underutilized. This article outlines indications for epilepsy surgery, describes the presurgical workup, and summarizes current available surgical approaches. RECENT FINDINGS Class I evidence has demonstrated the superiority of resective surgery compared to medical therapy for seizure control and quality of life in patients with drug-resistant epilepsy. The use of minimally invasive options, such as laser interstitial thermal therapy and stereotactic radiosurgery, are alternatives to resective surgery in well-selected patients. Neuromodulation techniques, such as responsive neurostimulation, deep brain stimulation, and vagus nerve stimulation, offer a suitable alternative, especially in those where resective surgery is contraindicated or where patients prefer nonresective surgery. Although neuromodulation approaches reduce seizure frequency, they are less likely to be associated with seizure freedom than resective surgery. SUMMARY Appropriate patients with drug-resistant epilepsy benefit from epilepsy surgery. If two well-chosen and tolerated medication trials do not achieve seizure control, referral to a comprehensive epilepsy center for a thorough presurgical workup and discussion of surgical options is appropriate. Mounting Class I evidence supports a significantly higher chance of stopping disabling seizures with surgery than with further medication trials.
Collapse
|
31
|
Richardson RM. Closed-Loop Brain Stimulation and Paradigm Shifts in Epilepsy Surgery. Neurol Clin 2022; 40:355-373. [PMID: 35465880 PMCID: PMC9271409 DOI: 10.1016/j.ncl.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Advances in device technology have created greater flexibility in treating seizures as emergent properties of networks that exist on a local to global continuum. All patients with drug-resistant epilepsy are potential surgical candidates, given that intracranial neuromodulation through deep brain stimulation and responsive neurostimulation can reduce seizures and improve quality of life, even in multifocal and generalized epilepsies. To achieve this goal, indications and strategies for diagnostic epilepsy surgery are evolving. This article describes the state-of-the-art in epilepsy surgery and related changes in how we define indications for diagnostic and therapeutic surgical intervention.
Collapse
|
32
|
Abstract
Temporal lobe epilepsy (TLE) is the most common cause of refractory epilepsy amenable for surgical treatment and seizure control. Surgery for TLE is a safe and effective strategy. The seizure-free rate after surgical resection in patients with mesial or neocortical TLE is about 70%. Resective surgery has an advantage over stereotactic radiosurgery in terms of seizure outcomes for mesial TLE patients. Both techniques have similar results for safety, cognitive outcomes, and associated costs. Stereotactic radiosurgery should therefore be seen as an alternative to open surgery for patients with contraindications for or with reluctance to undergo open surgery. Laser interstitial thermal therapy (LITT) has also shown promising results as a curative technique in mesial TLE but needs to be more deeply evaluated. Brain-responsive stimulation represents a palliative treatment option for patients with unilateral or bilateral MTLE who are not candidates for temporal lobectomy or who have failed a prior mesial temporal lobe resection. Overall, despite the expansion of innovative techniques in recent years, resective surgery remains the reference treatment for TLE and should be proposed as the first-line surgical modality. In the future, ultrasound therapies could become a credible therapeutic option for refractory TLE patients.
Collapse
Affiliation(s)
- Bertrand Mathon
- Department of Neurosurgery, La Pitié-Salpêtrière University Hospital, Paris, France; Sorbonne University, Paris, France; Paris Brain Institute, Paris, France
| | - Stéphane Clemenceau
- Department of Neurosurgery, La Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|
33
|
Fan JM, Lee AT, Kudo K, Ranasinghe KG, Morise H, Findlay AM, Kirsch HE, Chang EF, Nagarajan SS, Rao VR. Network connectivity predicts effectiveness of responsive neurostimulation in focal epilepsy. Brain Commun 2022; 4:fcac104. [PMID: 35611310 PMCID: PMC9123848 DOI: 10.1093/braincomms/fcac104] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/23/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Responsive neurostimulation is a promising treatment for drug-resistant focal epilepsy; however, clinical outcomes are highly variable across individuals. The therapeutic mechanism of responsive neurostimulation likely involves modulatory effects on brain networks; however, with no known biomarkers that predict clinical response, patient selection remains empiric. This study aimed to determine whether functional brain connectivity measured non-invasively prior to device implantation predicts clinical response to responsive neurostimulation therapy. Resting-state magnetoencephalography was obtained in 31 participants with subsequent responsive neurostimulation device implantation between 15 August 2014 and 1 October 2020. Functional connectivity was computed across multiple spatial scales (global, hemispheric, and lobar) using pre-implantation magnetoencephalography and normalized to maps of healthy controls. Normalized functional connectivity was investigated as a predictor of clinical response, defined as percent change in self-reported seizure frequency in the most recent year of clinic visits relative to pre-responsive neurostimulation baseline. Area under the receiver operating characteristic curve quantified the performance of functional connectivity in predicting responders (≥50% reduction in seizure frequency) and non-responders (<50%). Leave-one-out cross-validation was furthermore performed to characterize model performance. The relationship between seizure frequency reduction and frequency-specific functional connectivity was further assessed as a continuous measure. Across participants, stimulation was enabled for a median duration of 52.2 (interquartile range, 27.0-62.3) months. Demographics, seizure characteristics, and responsive neurostimulation lead configurations were matched across 22 responders and 9 non-responders. Global functional connectivity in the alpha and beta bands were lower in non-responders as compared with responders (alpha, pfdr < 0.001; beta, pfdr < 0.001). The classification of responsive neurostimulation outcome was improved by combining feature inputs; the best model incorporated four features (i.e. mean and dispersion of alpha and beta bands) and yielded an area under the receiver operating characteristic curve of 0.970 (0.919-1.00). The leave-one-out cross-validation analysis of this four-feature model yielded a sensitivity of 86.3%, specificity of 77.8%, positive predictive value of 90.5%, and negative predictive value of 70%. Global functional connectivity in alpha band correlated with seizure frequency reduction (alpha, P = 0.010). Global functional connectivity predicted responder status more strongly, as compared with hemispheric predictors. Lobar functional connectivity was not a predictor. These findings suggest that non-invasive functional connectivity may be a candidate personalized biomarker that has the potential to predict responsive neurostimulation effectiveness and to identify patients most likely to benefit from responsive neurostimulation therapy. Follow-up large-cohort, prospective studies are required to validate this biomarker. These findings furthermore support an emerging view that the therapeutic mechanism of responsive neurostimulation involves network-level effects in the brain.
Collapse
Affiliation(s)
- Joline M Fan
- Department of Neurology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Anthony T Lee
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
| | - Kiwamu Kudo
- Medical Imaging Center, Ricoh Company, Ltd., Kanazawa, Japan.,Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Kamalini G Ranasinghe
- Department of Neurology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Hirofumi Morise
- Medical Imaging Center, Ricoh Company, Ltd., Kanazawa, Japan.,Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Anne M Findlay
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Heidi E Kirsch
- Department of Neurology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.,Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Edward F Chang
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Vikram R Rao
- Department of Neurology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
34
|
Rao VR. Chronic electroencephalography in epilepsy with a responsive neurostimulation device: current status and future prospects. Expert Rev Med Devices 2021; 18:1093-1105. [PMID: 34696676 DOI: 10.1080/17434440.2021.1994388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Implanted neurostimulation devices are gaining traction as therapeutic options for people with certain forms of drug-resistant focal epilepsy. Some of these devices enable chronic electroencephalography (cEEG), which offers views of the dynamics of brain activity in epilepsy over unprecedented time horizons. AREAS COVERED This review focuses on clinical insights and basic neuroscience discoveries enabled by analyses of cEEG from an exemplar device, the NeuroPace RNS® System. Applications of RNS cEEG covered here include counting and lateralizing seizures, quantifying medication response, characterizing spells, forecasting seizures, and exploring mechanisms of cognition. Limitations of the RNS System are discussed in the context of next-generation devices in development. EXPERT OPINION The wide temporal lens of cEEG helps capture the dynamism of epilepsy, revealing phenomena that cannot be appreciated with short duration recordings. The RNS System is a vanguard device whose diagnostic utility rivals its therapeutic benefits, but emerging minimally invasive devices, including those with subscalp recording electrodes, promise to be more applicable within a broad population of people with epilepsy. Epileptology is on the precipice of a paradigm shift in which cEEG is a standard part of diagnostic evaluations and clinical management is predicated on quantitative observations integrated over long timescales.
Collapse
Affiliation(s)
- Vikram R Rao
- Associate Professor of Clinical Neurology, Chief, Epilepsy Division, Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| |
Collapse
|
35
|
Fasano A, Eliashiv D, Herman ST, Lundstrom BN, Polnerow D, Henderson JM, Fisher RS. Experience and consensus on stimulation of the anterior nucleus of thalamus for epilepsy. Epilepsia 2021; 62:2883-2898. [PMID: 34697794 DOI: 10.1111/epi.17094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Deep brain stimulation of the anterior nuclei of thalamus (ANT-DBS) is effective for reduction of seizures, but little evidence is available to guide practitioners in the practical use of this therapy. In an attempt to fill this gap, a questionnaire with 37 questions was circulated to 578 clinicians who were either engaged in clinical trials of or known users of DBS for epilepsy, with responses from 141, of whom 58.2% were epileptologists and 28.4% neurosurgeons. Multiple regions of the world were represented. The survey found that the best candidates for DBS were considered those with temporal or frontal seizures, refractory to at least two medicines. Motivations for renewing therapy upon battery depletion were reduced convulsive, impaired awareness, and severe seizures and improved quality of life. Targeting of leads mainly was by magnetic resonance imaging, sometimes with intraoperative imaging or microelectrode recording. The majority used transventricular approaches. Stimulation parameters mostly imitated the SANTE study parameters, except for initial stimulation amplitudes in the 2-3-V or -mA range, versus 5 V in the SANTE study. Stimulation intensity was most often increased or reduced, respectively, for lack of efficacy or side effects, but changes in active contacts, cycle time, and pulse duration were also employed. Mood or memory problems or paresthesias were the side effects most responsible for adjustments. Off-label sites stimulated included centromedian thalamus, hippocampus, neocortex, and a few others. Several physicians used DBS in conjunction with vagus nerve stimulation or responsive neurostimulation, although our study did not track efficacy for combined use. Experienced users varied more from published parameters than did inexperienced users. In conclusion, surveys of experts can provide Class IV evidence for the most prevalent practical use of ANT-DBS. We present a flowchart for one protocol combining common practices. Controlled comparisons will be needed to choose the best approach.
Collapse
Affiliation(s)
- Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada.,Center for Advancing Neurotechnological Innovation to Application, Toronto, Ontario, Canada
| | - Dawn Eliashiv
- Department of Neurology, UCLA Seizure Disorders Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Susan T Herman
- Epilepsy Program, Department of Neurology at Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | | | - Jaimie M Henderson
- Department of Neurosurgery and, by courtesy, Neurology and Neurological Sciences, Wu Tsai Neurosciences Institute and Bio-X Institute, Stanford University, Stanford, California, USA
| | - Robert S Fisher
- Department of Neurology & Neurological Sciences and, by courtesy, Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
36
|
Zawar I, Krishnan B, Mackow M, Alexopoulos A, Nair D, Punia V. The Efficacy, Safety, and Outcomes of Brain-responsive Neurostimulation (RNS® System) therapy in older adults. Epilepsia Open 2021; 6:781-787. [PMID: 34543516 PMCID: PMC8633477 DOI: 10.1002/epi4.12541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022] Open
Abstract
Objectives The gold standard for the management of drug‐resistant focal epilepsy (DRE) is resection of epileptogenic zone. However, some patients may not be candidates for resection. Responsive neurostimulation is approved in patients above 18 years of age for such patients. We aimed to investigate whether RNS outcomes and safety varied based on age. Methods We performed a single‐center retrospective cohort study of patients with DRE who were treated with RNS between May 2008 and February 2020. We included patients who had been implanted with RNS for >6 months (N = 55), dividing them into older (N = 11) and younger adults (N = 44) depending on implantation age (≥50 and <50 years, respectively). Results Mean age at implantation in older adults was 54.9 ± 3.5 years. Seizure onset age, epilepsy duration, and comorbidities were significantly higher in older adults ( P < .01). Stimulation parameters, treatment duration, and median seizure frequency reduction (76% in older vs 50% in younger adults) were statistically comparable between the two cohorts. Posttreatment, antiseizure medication burden was significantly decreased in older compared with younger adults (P = .048). Postoperative and delayed adverse events among older adults were mild. Compared with three younger adults, none of the older adults required device explantation due to surgical site infection. Conclusion Our study suggests that older adults treated with the RNS System achieve seizure outcomes comparable to younger adults with the additional benefit of a significant postimplantation medication reduction. With efficacy and safety similar to younger adults, brain‐responsive neurostimulation was well‐tolerated in older adults.
Collapse
Affiliation(s)
- Ifrah Zawar
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Balu Krishnan
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Michael Mackow
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andreas Alexopoulos
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dileep Nair
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vineet Punia
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
37
|
Foutz T, Wong M. Brain Stimulation Treatments in Epilepsy: Basic Mechanisms and Clinical Advances. Biomed J 2021; 45:27-37. [PMID: 34482013 PMCID: PMC9133258 DOI: 10.1016/j.bj.2021.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/28/2022] Open
Abstract
Drug-resistant epilepsy, characterized by ongoing seizures despite appropriate trials of anti-seizure medications, affects approximately one-third of people with epilepsy. Brain stimulation has recently become available as an alternative treatment option to reduce symptomatic seizures in short and long-term follow-up studies. Several questions remain on how to optimally develop patient-specific treatments and manage therapy over the long term. This review aims to discuss the clinical use and mechanisms of action of Responsive Neural Stimulation and Deep Brain Stimulation in the treatment of epilepsy and highlight recent advances that may both improve outcomes and present new challenges. Finally, a rational approach to device selection is presented based on current mechanistic understanding, clinical evidence, and device features.
Collapse
Affiliation(s)
- Thomas Foutz
- Department of Neurology, Washington University in St. Louis, USA.
| | - Michael Wong
- Department of Neurology, Washington University in St. Louis, USA.
| |
Collapse
|
38
|
Khambhati AN, Shafi A, Rao VR, Chang EF. Long-term brain network reorganization predicts responsive neurostimulation outcomes for focal epilepsy. Sci Transl Med 2021; 13:13/608/eabf6588. [PMID: 34433640 DOI: 10.1126/scitranslmed.abf6588] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/12/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022]
Abstract
Responsive neurostimulation (RNS) devices, able to detect imminent seizures and to rapidly deliver electrical stimulation to the brain, are effective in reducing seizures in some patients with focal epilepsy. However, therapeutic response to RNS is often slow, is highly variable, and defies prognostication based on clinical factors. A prevailing view holds that RNS efficacy is primarily mediated by acute seizure termination; yet, stimulations greatly outnumber seizures and occur mostly in the interictal state, suggesting chronic modulation of brain networks that generate seizures. Here, using years-long intracranial neural recordings collected during RNS therapy, we found that patients with the greatest therapeutic benefit undergo progressive, frequency-dependent reorganization of interictal functional connectivity. The extent of this reorganization scales directly with seizure reduction and emerges within the first year of RNS treatment, enabling potential early prediction of therapeutic response. Our findings reveal a mechanism for RNS that involves network plasticity and may inform development of next-generation devices for epilepsy.
Collapse
Affiliation(s)
- Ankit N Khambhati
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alia Shafi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vikram R Rao
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA. .,Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA. .,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
39
|
Guidetti M, Marceglia S, Loh A, Harmsen IE, Meoni S, Foffani G, Lozano AM, Moro E, Volkmann J, Priori A. Clinical perspectives of adaptive deep brain stimulation. Brain Stimul 2021; 14:1238-1247. [PMID: 34371211 DOI: 10.1016/j.brs.2021.07.063] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/01/2021] [Accepted: 07/31/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The application of stimulators implanted directly over deep brain structures (i.e., deep brain stimulation, DBS) was developed in the late 1980s and has since become a mainstream option to treat several neurological conditions. Conventional DBS involves the continuous stimulation of the target structure, which is an approach that cannot adapt to patients' changing symptoms or functional status in real-time. At the beginning of 2000, a more sophisticated form of stimulation was conceived to overcome these limitations. Adaptive deep brain stimulation (aDBS) employs on-demand, contingency-based stimulation to stimulate only when needed. So far, aDBS has been tested in several pathological conditions in animal and human models. OBJECTIVE To review the current findings obtained from application of aDBS to animal and human models that highlights effects on motor, cognitive and psychiatric behaviors. FINDINGS while aDBS has shown promising results in the treatment of Parkinson's disease and essential tremor, the possibility of its use in less common DBS indications, such as cognitive and psychiatric disorders (Alzheimer's disease, obsessive-compulsive disorder, post-traumatic stress disorder) is still challenging. CONCLUSIONS While aDBS seems to be effective to treat movement disorders (Parkinson's disease and essential tremor), its role in cognitive and psychiatric disorders is to be determined, although neurophysiological assumptions are promising.
Collapse
Affiliation(s)
- Matteo Guidetti
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì, 8, 20142, Milan, Italy; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy.
| | - Sara Marceglia
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy.
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
| | - Irene E Harmsen
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
| | - Sara Meoni
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì, 8, 20142, Milan, Italy; Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France; Grenoble Institute of Neurosciences, INSERM U1216, University Grenoble Alpes, Grenoble, France.
| | - Guglielmo Foffani
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain.
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
| | - Elena Moro
- Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France; Grenoble Institute of Neurosciences, INSERM U1216, University Grenoble Alpes, Grenoble, France.
| | - Jens Volkmann
- Department of Neurology, University of Wurzburg, Germany.
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì, 8, 20142, Milan, Italy; ASST Santi Paolo e Carlo, Milan, Italy.
| |
Collapse
|
40
|
Burdette D, Mirro EA, Lawrence M, Patra SE. Brain-responsive corticothalamic stimulation in the pulvinar nucleus for the treatment of regional neocortical epilepsy: A case series. Epilepsia Open 2021; 6:611-617. [PMID: 34268893 PMCID: PMC8408587 DOI: 10.1002/epi4.12524] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/16/2022] Open
Abstract
Drug‐resistant focal epilepsy with regional neocortical seizure onsets originating from the posterior quadrant can be particularly difficult to treat with resective surgery due to the overlap with eloquent cortex. Published reports indicate that corticothalamic treatment targeting the anterior or centromedian nucleus of the thalamus with direct brain‐responsive stimulation may be an effective approach to treat regional neocortical epilepsy. The pulvinar has remained largely unstudied as a neurostimulation target to treat refractory epilepsy. Because the pulvinar has connections with the posterior quadrant, neurostimulation may be effective if applied to seizures originating in this area. We performed a retrospective chart review of patients with regional neocortical seizure onsets in the posterior quadrant treated with the RNS System. Demographics, epilepsy history, clinical seizure frequencies, and neuropsychological testing results were obtained from the chart. Electrocorticogram (ECoG) records stored by the RNS System were reviewed to evaluate electrographic seizure onset patterns. Our patients were followed for 10, 12.5, and 15 months. All patients were responders (≥50% seizure reduction), and two of the three patients experienced a ≥90% reduction in seizures at the last follow‐up. Pre‐ and postsurgical neuropsychological evaluations were compared for two of the patients, and there was no evidence of cognitive decline found in either patient. Interestingly, mild cognitive improvements were reported. The third patient had only postimplant neuropsychological testing data available. Findings for this patient suggested executive dysfunction that was present prior to the RNS System which did not worsen with surgery. A visual inspection of ECoGs revealed near‐simultaneous seizure onsets in neocortical and pulvinar leads in two patients. Seizure onsets in the third patient were more variable. This is the first published report of brain‐responsive neurostimulation targeting the pulvinar to treat refractory regional onset epilepsy of posterior quadrant origin.
Collapse
|
41
|
Whiting AC, Bulacio J, Whiting BB, Jehi L, Bingaman W. Difficult-to-Localize Epilepsy After Stereoelectroencephalography: Technique, Safety, and Efficacy of Placing Additional Electrodes During the Same Admission. Oper Neurosurg (Hagerstown) 2021; 20:55-60. [PMID: 33316815 DOI: 10.1093/ons/opaa323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Stereoelectroencephalography (SEEG) is used to identify the epileptogenic zone (EZ) in patients with epilepsy for potential surgical intervention. Occasionally, the EZ is difficult to localize even after an SEEG implantation. OBJECTIVE To demonstrate a safe technique for placing additional electrodes in ongoing SEEG evaluations. Describe efficacy, complications, and surgical outcomes. METHODS An operative technique which involves maintaining previously placed electrodes and sterilely placing new electrodes was developed and implemented. All patients who underwent placement of additional SEEG electrodes during the same admission were retrospectively reviewed. RESULTS A total of 14 patients met criteria and had undergone SEEG evaluation with 198 electrodes implanted. A total 93% of patients (13/14) had nonlesional epilepsy. After unsuccessful localization of the EZ after a mean of 9.6 d of monitoring, each patient underwent additional placement of electrodes (5.5 average electrodes per patient) to augment the original implantation. At no point did any patients develop new hemorrhage, infection, wound breakdown, or require any kind of additional antimicrobial treatment. A total 64% (9/14) of patients were able to undergo surgery aimed at removing the EZ guided by the additional SEEG electrodes. A total 44% (4/9) of surgical patients had Engel class I outcomes at an average follow-up time of 11 mo. CONCLUSION Placing additional SEEG electrodes, while maintaining the previously placed electrodes, appears to be safe, effective, and had no infectious complications. When confronted with difficult-to-localize epilepsy even after invasive monitoring, it appears to be safe and potentially clinically effective to place additional electrodes during the same admission.
Collapse
Affiliation(s)
- Alexander C Whiting
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Juan Bulacio
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Benjamin B Whiting
- Cleveland Clinic Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Lara Jehi
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio
| | - William Bingaman
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
42
|
Krucoff MO, Wozny TA, Lee AT, Rao VR, Chang EF. Operative Technique and Lessons Learned From Surgical Implantation of the NeuroPace Responsive Neurostimulation® System in 57 Consecutive Patients. Oper Neurosurg (Hagerstown) 2021; 20:E98-E109. [PMID: 33074294 DOI: 10.1093/ons/opaa300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/13/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The Responsive Neurostimulation (RNS)® System (NeuroPace, Inc) is an implantable device designed to improve seizure control in patients with medically refractory focal epilepsy. Because it is relatively new, surgical pearls and operative techniques optimized from experience beyond a small case series have yet to be described. OBJECTIVE To provide a detailed description of our operative technique and surgical pearls learned from implantation of the RNS System in 57 patients at our institution. We describe our method for frame-based placement of amygdalo-hippocampal depth leads, open implantation of cortical strip leads, and open installation of the neurostimulator. METHODS We outline considerations for patient selection, preoperative planning, surgical positioning, incision planning, stereotactic depth lead implantation, cortical strip lead implantation, craniotomy for neurostimulator implantation, device testing, closure, and intraoperative imaging. RESULTS The median reduction in clinical seizure frequency was 60% (standard deviation 63.1) with 27% of patients achieving seizure freedom at last follow up (median 23.1 mo). No infections, intracerebral hemorrhages, or lead migrations were encountered. Two patients experienced lead fractures, and four lead exchanges have been performed. CONCLUSION The techniques set forth here will help with the safe and efficient implantation of these new devices.
Collapse
Affiliation(s)
- Max O Krucoff
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California.,Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Thomas A Wozny
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California
| | - Anthony T Lee
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California
| | - Vikram R Rao
- Department of Neurology and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, California
| | - Edward F Chang
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California
| |
Collapse
|
43
|
Parker JJ, Jamiolkowski RM, Grant GA, Le S, Halpern CH. Hybrid Fluoroscopic and Neurophysiological Targeting of Responsive Neurostimulation of the Rolandic Cortex. Oper Neurosurg (Hagerstown) 2021; 21:E180-E186. [PMID: 34133746 DOI: 10.1093/ons/opab182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/04/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Precise targeting of cortical surface electrodes to epileptogenic regions defined by anatomic and electrophysiological guideposts remains a surgical challenge during implantation of responsive neurostimulation (RNS) devices. OBJECTIVE To describe a hybrid fluoroscopic and neurophysiological technique for targeting of subdural cortical surface electrodes to anatomic regions with limited direct visualization, such as the interhemispheric fissure. METHODS Intraoperative two-dimensional (2D) fluoroscopy was used to colocalize and align an electrode for permanent device implantation with a temporary in Situ electrode placed for extraoperative seizure mapping. Intraoperative phase reversal mapping technique was performed to distinguish primary somatosensory and motor cortex. RESULTS We applied these techniques to optimize placement of an interhemispheric strip electrode connected to a responsive neurostimulator system for detection and treatment of seizures arising from a large perirolandic cortical malformation. Intraoperative neuromonitoring (IONM) phase reversal technique facilitated neuroanatomic mapping and electrode placement. CONCLUSION In challenging-to-access anatomic regions, fluoroscopy and intraoperative neurophysiology can be employed to augment targeting of neuromodulation electrodes to the site of seizure onset zone or specific neurophysiological biomarkers of clinical interest while minimizing brain retraction.
Collapse
Affiliation(s)
- Jonathon J Parker
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Ryan M Jamiolkowski
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Gerald A Grant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Scheherazade Le
- Department of Neurology, Stanford University School of Medicine, Stanford, California, USA
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
44
|
Shan W, Mao X, Wang X, Hogan RE, Wang Q. Potential surgical therapies for drug-resistant focal epilepsy. CNS Neurosci Ther 2021; 27:994-1011. [PMID: 34101365 PMCID: PMC8339538 DOI: 10.1111/cns.13690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Drug-resistant focal epilepsy (DRFE), defined by failure of two antiepileptic drugs, affects 30% of epileptic patients. Epilepsy surgeries are alternative options for this population. Preoperative evaluation is critical to include potential candidates, and to choose the most appropriate procedure to maximize efficacy and simultaneously minimize side effects. Traditional procedures involve open skull surgeries and epileptic focus resection. Alternatively, neuromodulation surgeries use peripheral nerve or deep brain stimulation to reduce the activities of epileptogenic focus. With the advanced improvement of laser-induced thermal therapy (LITT) technique and its utilization in neurosurgery, magnetic resonance-guided LITT (MRgLITT) emerges as a minimal invasive approach for drug-resistant focal epilepsy. In the present review, we first introduce drug-resistant focal epilepsy and summarize the indications, pros and cons of traditional surgical procedures and neuromodulation procedures. And then, focusing on MRgLITT, we thoroughly discuss its history, its technical details, its safety issues, and current evidence on its clinical applications. A case report on MRgLITT is also included to illustrate the preoperational evaluation. We believe that MRgLITT is a promising approach in selected patients with drug-resistant focal epilepsy, although large prospective studies are required to evaluate its efficacy and side effects, as well as to implement a standardized protocol for its application.
Collapse
Affiliation(s)
- Wei Shan
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- National Center for Clinical Medicine of Neurological DiseasesBeijingChina
- Beijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Neuro‐modulationBeijingChina
| | - Xuewei Mao
- Shandong Key Laboratory of Industrial Control TechnologySchool of AutomationQingdao UniversityQingdaoChina
| | - Xiu Wang
- National Center for Clinical Medicine of Neurological DiseasesBeijingChina
| | - Robert E. Hogan
- Departments of Neurology and NeurosurgerySchool of MedicineWashington University in St. LouisSt. LouisMOUSA
| | - Qun Wang
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- National Center for Clinical Medicine of Neurological DiseasesBeijingChina
- Beijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Neuro‐modulationBeijingChina
| |
Collapse
|
45
|
Jobst BC, Conner KR, Coulter D, Fried I, Guilfoyle S, Hirsch LJ, Hogan RE, Hopp JL, Naritoku D, Plueger M, Schevon C, Smith G, Valencia I, Gaillard WD. Highlights From AES2020, a Virtual American Epilepsy Society Experience. Epilepsy Curr 2021; 21:15357597211018219. [PMID: 33998298 PMCID: PMC8512915 DOI: 10.1177/15357597211018219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Due to COVID-19 a live, in-person meeting was not possible for the American Epilepsy Society in 2020. An alternative, virtual event, the AES2020, was held instead. AES2020 was a great success with 4679 attendees from 70 countries. The educational content was outstanding and spanned the causes, treatments, and outcomes from epileptic encephalopathy to the iatrogenicity of epilepsy interventions to neurocognitive disabilities to the approach to neocortical epilepsies. New gene therapy approaches such as antisense oligonucleotide treatment for Dravet syndrome were introduced and neuromodulation devices were discussed. There were many other topics discussed in special interest groups and investigators' workshops. A highlight was having a Nobel prize winner speak about memory processing. Human intracranial electrophysiology contributes insights into memory processing and complements animal work. In a special COVID symposium, the impact of COVID on patients with epilepsy was reviewed. Telehealth has been expanded rapidly and may be well suited for some parts of epilepsy care. In summary, the epilepsy community was alive and engaged despite being limited to a virtual platform.
Collapse
Affiliation(s)
| | | | | | | | - Shanna Guilfoyle
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yang JC, Harid NM, Nascimento FA, Kokkinos V, Shaughnessy A, Lam AD, Westover MB, Leslie-Mazwi TM, Hochberg LR, Rosenthal ES, Cole AJ, Richardson RM, Cash SS. Responsive neurostimulation for focal motor status epilepticus. Ann Clin Transl Neurol 2021; 8:1353-1361. [PMID: 33955717 PMCID: PMC8164849 DOI: 10.1002/acn3.51318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
No clear evidence‐based treatment paradigm currently exists for refractory and super‐refractory status epilepticus, which can result in significant mortality and morbidity. While patients are typically treated with antiepileptic drugs and anesthetics, neurosurgical neuromodulation techniques can also be considered. We present a novel case in which responsive neurostimulation was used to effectively treat a patient who had developed super‐refractory status epilepticus, later consistent with epilepsia partialis continua, that was refractory to antiepileptic drugs, immunomodulatory therapies, and transcranial magnetic stimulation. This case demonstrates how regional therapy provided by responsive neurostimulation can be effective in treating super‐refractory status epilepticus through neuromodulation of seizure networks.
Collapse
Affiliation(s)
- Jimmy C Yang
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nitish M Harid
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fábio A Nascimento
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vasileios Kokkinos
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Abigail Shaughnessy
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alice D Lam
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thabele M Leslie-Mazwi
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Leigh R Hochberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrew J Cole
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert M Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Kleen JK, Speidel BA, Baud MO, Rao VR, Ammanuel SG, Hamilton LS, Chang EF, Knowlton RC. Accuracy of omni-planar and surface casting of epileptiform activity for intracranial seizure localization. Epilepsia 2021; 62:947-959. [PMID: 33634855 PMCID: PMC8276628 DOI: 10.1111/epi.16841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/23/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Intracranial electroencephalography (ICEEG) recordings are performed for seizure localization in medically refractory epilepsy. Signal quantifications such as frequency power can be projected as heatmaps on personalized three-dimensional (3D) reconstructed cortical surfaces to distill these complex recordings into intuitive cinematic visualizations. However, simultaneously reconciling deep recording locations and reliably tracking evolving ictal patterns remain significant challenges. METHODS We fused oblique magnetic resonance imaging (MRI) slices along depth probe trajectories with cortical surface reconstructions and projected dynamic heatmaps using a simple mathematical metric of epileptiform activity (line-length). This omni-planar and surface casting of epileptiform activity approach (OPSCEA) thus illustrated seizure onset and spread among both deep and superficial locations simultaneously with minimal need for signal processing supervision. We utilized the approach on 41 patients at our center implanted with grid, strip, and/or depth electrodes for localizing medically refractory seizures. Peri-ictal data were converted into OPSCEA videos with multiple 3D brain views illustrating all electrode locations. Five people of varying expertise in epilepsy (medical student through epilepsy attending level) attempted to localize the seizure-onset zones. RESULTS We retrospectively compared this approach with the original ICEEG study reports for validation. Accuracy ranged from 73.2% to 97.6% for complete or overlapping onset lobe(s), respectively, and ~56.1% to 95.1% for the specific focus (or foci). Higher answer certainty for a given case predicted better accuracy, and scorers had similar accuracy across different training levels. SIGNIFICANCE In an era of increasing stereo-EEG use, cinematic visualizations fusing omni-planar and surface functional projections appear to provide a useful adjunct for interpreting complex intracranial recordings and subsequent surgery planning.
Collapse
Affiliation(s)
- Jonathan K Kleen
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Benjamin A Speidel
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Maxime O Baud
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Vikram R Rao
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Simon G Ammanuel
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Liberty S Hamilton
- Department of Speech, Language, and Hearing Sciences and Department of Neurology, The University of Texas at Austin, Austin, Texas, USA
| | - Edward F Chang
- Department of Neurological Surgery and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Robert C Knowlton
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| |
Collapse
|
48
|
McDermott DS, Mirro EA, Fetrow K, Burdette DE, Chen S, Hopp J, Masel T, Johnson EA, Elefant FMK, Le S, Patra SE, Brown MG, Haneef Z. Brain-Responsive Neurostimulation for the treatment of adults with epilepsy in tuberous sclerosis complex: A case series. Epilepsia Open 2021; 6:419-424. [PMID: 34033253 PMCID: PMC8166788 DOI: 10.1002/epi4.12481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Tuberous sclerosis complex (TSC) is a genetic disorder primarily characterized by the development of multisystem benign tumors. Epilepsy is the most common neurologic manifestation, affecting 80%-90% of TSC patients. The diffuse structural brain abnormalities and the multifocal nature of epilepsy in TSC pose diagnostic challenges when evaluating patients for epilepsy surgery. METHODS We retrospectively reviewed the safety experience and efficacy outcomes of five adult TSC patients who were treated with direct brain-responsive neurostimulation (RNS System, NeuroPace, Inc). RESULTS The average follow-up duration was 20 months. All five patients were responders (≥50% disabling seizure reduction) at last follow-up. The median reduction in disabling seizures was 58% at 1 year and 88% at last follow-up. Three of the five patients experienced some period of seizure freedom ranging from 3 months to over 1 year. SIGNIFICANCE In this small case series, we report the first safety experience and efficacy outcomes in patients with TSC-associated drug-resistant focal epilepsy treated with direct brain-responsive neurostimulation.
Collapse
Affiliation(s)
| | | | - Kirsten Fetrow
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Stephanie Chen
- University of Maryland Medical Center, Baltimore, MD, USA
| | - Jennifer Hopp
- University of Maryland Medical Center, Baltimore, MD, USA
| | - Todd Masel
- University of Texas Medical Branch, Galveston, TX, USA
| | - Emily A Johnson
- Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | - Mesha-Gay Brown
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | |
Collapse
|
49
|
Chiang S, Khambhati AN, Wang ET, Vannucci M, Chang EF, Rao VR. Evidence of state-dependence in the effectiveness of responsive neurostimulation for seizure modulation. Brain Stimul 2021; 14:366-375. [PMID: 33556620 PMCID: PMC8083819 DOI: 10.1016/j.brs.2021.01.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 11/28/2022] Open
Abstract
Background: An implanted device for brain-responsive neurostimulation (RNS® System) is approved as an effective treatment to reduce seizures in adults with medically-refractory focal epilepsy. Clinical trials of the RNS System demonstrate population-level reduction in average seizure frequency, but therapeutic response is highly variable. Hypothesis: Recent evidence links seizures to cyclical fluctuations in underlying risk. We tested the hypothesis that effectiveness of responsive neurostimulation varies based on current state within cyclical risk fluctuations. Methods: We analyzed retrospective data from 25 adults with medically-refractory focal epilepsy implanted with the RNS System. Chronic electrocorticography was used to record electrographic seizures, and hidden Markov models decoded seizures into fluctuations in underlying risk. State-dependent associations of RNS System stimulation parameters with changes in risk were estimated. Results: Higher charge density was associated with improved outcomes, both for remaining in a low seizure risk state and for transitioning from a high to a low seizure risk state. The effect of stimulation frequency depended on initial seizure risk state: when starting in a low risk state, higher stimulation frequencies were associated with remaining in a low risk state, but when starting in a high risk state, lower stimulation frequencies were associated with transition to a low risk state. Findings were consistent across bipolar and monopolar stimulation configurations. Conclusion: The impact of RNS on seizure frequency exhibits state-dependence, such that stimulation parameters which are effective in one seizure risk state may not be effective in another. These findings represent conceptual advances in understanding the therapeutic mechanism of RNS, and directly inform current practices of RNS tuning and the development of next-generation neurostimulation systems.
Collapse
Affiliation(s)
- Sharon Chiang
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States.
| | - Ankit N Khambhati
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Emily T Wang
- Department of Statistics, Rice University, Houston, TX, United States
| | - Marina Vannucci
- Department of Statistics, Rice University, Houston, TX, United States
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Vikram R Rao
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
50
|
Chung YG, Jeon Y, Choi SA, Cho A, Kim H, Hwang H, Kim KJ. Deep Convolutional Neural Network Based Interictal-Preictal Electroencephalography Prediction: Application to Focal Cortical Dysplasia Type-II. Front Neurol 2020; 11:594679. [PMID: 33250854 PMCID: PMC7674929 DOI: 10.3389/fneur.2020.594679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
We aimed to differentiate between the interictal and preictal states in epilepsy patients with focal cortical dysplasia (FCD) type-II using deep learning-based classifiers based on intracranial electroencephalography (EEG). We also investigated the practical conditions for high interictal-preictal discriminability in terms of spatiotemporal EEG characteristics and data size efficiency. Intracranial EEG recordings of nine epilepsy patients with FCD type-II (four female, five male; mean age: 10.7 years) were analyzed. Seizure onset and channel ranking were annotated by two epileptologists. We performed three consecutive interictal-preictal classification steps by varying the preictal length, number of electrodes, and sampling frequency with convolutional neural networks (CNN) using 30 s time-frequency data matrices. Classification performances were evaluated based on accuracy, F1 score, precision, and recall with respect to the above-mentioned three parameters. We found that (1) a 5 min preictal length provided the best classification performance, showing a remarkable enhancement of >13% on average compared to that with the 120 min preictal length; (2) four electrodes provided considerably high classification performance with a decrease of only approximately 1% on average compared to that with all channels; and (3) there was minimal performance change when quadrupling the sampling frequency from 128 Hz. Patient-specific performance variations were noticeable with respect to the preictal length, and three patients showed above-average performance enhancements of >28%. However, performance enhancements were low with respect to both the number of electrodes and sampling frequencies, and some patients showed at most 1–2% performance change. CNN-based classifiers from intracranial EEG recordings using a small number of electrodes and efficient sampling frequency are feasible for predicting the interictal-preictal state transition preceding seizures in epilepsy patients with FCD type-II. Preictal lengths affect the predictability in a patient-specific manner; therefore, pre-examinations for optimal preictal length will be helpful in seizure prediction.
Collapse
Affiliation(s)
- Yoon Gi Chung
- Healthcare ICT Research Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Yonghoon Jeon
- Healthcare ICT Research Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Sun Ah Choi
- Department of Pediatrics, Ewha Womans University Medical Center, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Anna Cho
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Hunmin Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Hee Hwang
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Ki Joong Kim
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|