1
|
Vessell M, Willett A, Ugiliweneza B, Sharma M, Mutchnick I, Boakye M, Chern J, Weiner H, Neimat J. National 22-year epilepsy surgery landscape shows increasing open and minimally invasive pediatric epilepsy surgery. Epilepsia 2024; 65:2423-2437. [PMID: 38943543 DOI: 10.1111/epi.18030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 07/01/2024]
Abstract
OBJECTIVES A surgical "treatment gap" in pediatric epilepsy persists despite the demonstrated safety and effectiveness of surgery. For this reason, the national surgical landscape should be investigated such that an updated assessment may more appropriately guide health care efforts. METHODS In our retrospective cross-sectional observational study, the National Inpatient Sample (NIS) database was queried for individuals 0 to <18 years of age who had an International Classification of Diseases (ICD) code for drug-resistant epilepsy (DRE). This cohort was then split into a medical group and a surgical group. The former was defined by ICD codes for -DRE without an accompanying surgical code, and the latter was defined by DRE and one of the following epilepsy surgeries: any open surgery; laser interstitial thermal therapy (LITT); vagus nerve stimulation; or responsive neurostimulation (RNS) from 1998 to 2020. Demographic variables of age, gender, race, insurance type, hospital charge, and hospital characteristics were analyzed between surgical options. Continuous variables were analyzed with weight-adjusted quantile regression analysis, and categorical variables were analyzed by weight-adjusted counts with percentages and compared with weight-adjusted chi-square test results. RESULTS These data indicate an increase in epilepsy surgeries over a 22-year period, primarily due to a statistically significant increase in open surgery and a non-significant increase in minimally invasive techniques, such as LITT and RNS. There are significant differences in age, race, gender, insurance type, median household income, Elixhauser index, hospital setting, and size between the medical and surgical groups, as well as the procedure performed. SIGNIFICANCE An increase in open surgery and minimally invasive surgeries (LITT and RNS) account for the overall rise in pediatric epilepsy surgery over the last 22 years. A positive inflection point in open surgery is seen in 2005. Socioeconomic disparities exist between medical and surgical groups. Patient and hospital sociodemographics show significant differences between the procedure performed. Further efforts are required to close the surgical "treatment gap."
Collapse
Affiliation(s)
- Meena Vessell
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Austin, Texas, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Andrew Willett
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Beatrice Ugiliweneza
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Mayur Sharma
- Department of Neurological Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ian Mutchnick
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Pediatric Neurosurgery, Norton Neuroscience Institute, Louisville, Kentucky, USA
| | - Maxwell Boakye
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Joshua Chern
- Pediatric Neurosurgery, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Howard Weiner
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Austin, Texas, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, Texas, USA
| | - Joseph Neimat
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
2
|
Yang Y, Luo S, Wang W, Gao X, Yao X, Wu T. From bench to bedside: Overview of magnetoencephalography in basic principle, signal processing, source localization and clinical applications. Neuroimage Clin 2024; 42:103608. [PMID: 38653131 PMCID: PMC11059345 DOI: 10.1016/j.nicl.2024.103608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Magnetoencephalography (MEG) is a non-invasive technique that can precisely capture the dynamic spatiotemporal patterns of the brain by measuring the magnetic fields arising from neuronal activity along the order of milliseconds. Observations of brain dynamics have been used in cognitive neuroscience, the diagnosis of neurological diseases, and the brain-computer interface (BCI). In this study, we outline the basic principle, signal processing, and source localization of MEG, and describe its clinical applications for cognitive assessment, the diagnoses of neurological diseases and mental disorders, preoperative evaluation, and the BCI. This review not only provides an overall perspective of MEG, ranging from practical techniques to clinical applications, but also enhances the prevalent understanding of neural mechanisms. The use of MEG is expected to lead to significant breakthroughs in neuroscience.
Collapse
Affiliation(s)
- Yanling Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Shichang Luo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wenjie Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiumin Gao
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xufeng Yao
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Tao Wu
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
3
|
Winter F, Krueger MT, Delev D, Theys T, Van Roost DMP, Fountas K, Schijns OE, Roessler K. Current state of the art of traditional and minimal invasive epilepsy surgery approaches. BRAIN & SPINE 2024; 4:102755. [PMID: 38510599 PMCID: PMC10951767 DOI: 10.1016/j.bas.2024.102755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 03/22/2024]
Abstract
Introduction Open resective surgery remains the main treatment modality for refractory epilepsy, but is often considered a last resort option due to its invasiveness. Research question This manuscript aims to provide an overview on traditional as well as minimally invasive surgical approaches in modern state of the art epilepsy surgery. Materials and methods This narrative review addresses both historical and contemporary as well as minimal invasive surgical approaches in epilepsy surgery. Peer-reviewed published articles were retrieved from PubMed and Scopus. Only articles written in English were considered for this work. A range of traditional and minimally invasive surgical approaches in epilepsy surgery were examined, and their respective advantages and disadvantages have been summarized. Results The following approaches and techniques are discussed: minimally invasive diagnostics in epilepsy surgery, anterior temporal lobectomy, functional temporal lobectomy, selective amygdalohippocampectomy through a transsylvian, transcortical, or subtemporal approach, insulo-opercular corticectomies compared to laser interstitial thermal therapy, radiofrequency thermocoagulation, stereotactic radiosurgery, neuromodulation, high intensity focused ultrasound, and disconnection surgery including callosotomy, hemispherotomy, and subpial transections. Discussion and conclusion Understanding the benefits and disadvantages of different surgical approaches and strategies in traditional and minimal invasive epilepsy surgery might improve the surgical decision tree, as not all procedures are appropriate for all patients.
Collapse
Affiliation(s)
- Fabian Winter
- Department of Neurosurgery, Medical University of Vienna, Austria
| | - Marie T. Krueger
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, UK
- Department of Stereotactic and Functional Neurosurgery, Medical Center of the University of Freiburg, Freiburg, Germany
| | - Daniel Delev
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology, Universities Aachen, Bonn, Cologne, Düsseldorf (CIO ABCD), Germany
| | - Tom Theys
- Department of Neurosurgery, Universitair Ziekenhuis Leuven, UZ Leuven, Belgium
| | | | - Kostas Fountas
- Department of Neurosurgery, University of Thessaly, Greece
| | - Olaf E.M.G. Schijns
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience (MHeNS), University Maastricht, Maastricht, the Netherlands
- Academic Center for Epileptology, Maastricht University Medical Center & Kempenhaeghe, Maastricht, Heeze, the Netherlands
| | - Karl Roessler
- Department of Neurosurgery, Medical University of Vienna, Austria
| |
Collapse
|
4
|
Chen JS, Lamoureux AA, Shlobin NA, Elkaim LM, Wang A, Ibrahim GM, Obaid S, Harroud A, Guadagno E, Dimentberg E, Bouthillier A, Bernhardt BC, Nguyen DK, Fallah A, Weil AG. Magnetic resonance-guided laser interstitial thermal therapy for drug-resistant epilepsy: A systematic review and individual participant data meta-analysis. Epilepsia 2023; 64:1957-1974. [PMID: 36824029 DOI: 10.1111/epi.17560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/30/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) has emerged as a popular minimally invasive alternative to open resective surgery for drug-resistant epilepsy (DRE). We sought to perform a systematic review and individual participant data meta-analysis to identify independent predictors of seizure outcome and complications following MRgLITT for DRE. Eleven databases were searched from January 1, 2010 to February 6, 2021 using the terms "MR-guided ablation therapy" and "epilepsy". Multivariable mixed-effects Cox and logistic regression identified predictors of time to seizure recurrence, seizure freedom, operative complications, and postoperative neurological deficits. From 8705 citations, 46 studies reporting on 450 MRgLITT DRE patients (mean age = 29.5 ± 18.1 years, 49.6% female) were included. Median postoperative seizure freedom and follow-up duration were 15.5 and 19.0 months, respectively. Overall, 240 (57.8%) of 415 patients (excluding palliative corpus callosotomy) were seizure-free at last follow-up. Generalized seizure semiology (hazard ratio [HR] = 1.78, p = .020) and nonlesional magnetic resonance imaging (MRI) findings (HR = 1.50, p = .032) independently predicted shorter time to seizure recurrence. Cerebral cavernous malformation (CCM; odds ratio [OR] = 7.97, p < .001) and mesial temporal sclerosis/atrophy (MTS/A; OR = 2.21, p = .011) were independently associated with greater odds of seizure freedom at last follow-up. Operative complications occurred in 28 (8.5%) of 330 patients and were independently associated with extratemporal ablations (OR = 5.40, p = .012) and nonlesional MRI studies (OR = 3.25, p = .017). Postoperative neurological deficits were observed in 53 (15.1%) of 352 patients and were independently predicted by hypothalamic hamartoma etiology (OR = 5.93, p = .006) and invasive electroencephalographic monitoring (OR = 4.83, p = .003). Overall, MRgLITT is particularly effective in treating patients with well-circumscribed lesional DRE, such as CCM and MTS/A, but less effective in nonlesional cases or lesional cases with a more diffuse epileptogenic network associated with generalized seizures. This study identifies independent predictors of seizure freedom and complications following MRgLITT that may help further guide patient selection.
Collapse
Affiliation(s)
- Jia-Shu Chen
- Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Audrey-Anne Lamoureux
- Division of Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Nathan A Shlobin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lior M Elkaim
- Division of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Andrew Wang
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Sami Obaid
- Division of Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Montreal, Quebec, Canada
- Division of Neurosurgery, University of Montreal Hospital Center, Montreal, Quebec, Canada
| | - Adil Harroud
- Division of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Elena Guadagno
- Harvey E. Beardmore Division of Pediatric Surgery, McGill University Health Center, Montreal, Quebec, Canada
| | - Evan Dimentberg
- Division of Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Montreal, Quebec, Canada
- Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Alain Bouthillier
- Division of Neurosurgery, University of Montreal Hospital Center, Montreal, Quebec, Canada
| | - Boris C Bernhardt
- McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Quebec, Canada
| | - Dang K Nguyen
- Division of Neurology, University of Montreal Medical Center, Montreal, Quebec, Canada
| | - Aria Fallah
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Alexander G Weil
- Division of Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Montreal, Quebec, Canada
- Division of Neurosurgery, University of Montreal Hospital Center, Montreal, Quebec, Canada
- Brain and Child Development Axis, Sainte Justine Research Center, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Velnar T, Kocivnik N, Bosnjak R. Clinical infections in neurosurgical oncology: An overview. World J Clin Cases 2023; 11:3418-3433. [PMID: 37383906 PMCID: PMC10294202 DOI: 10.12998/wjcc.v11.i15.3418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/05/2023] [Accepted: 04/13/2023] [Indexed: 05/25/2023] Open
Abstract
Central nervous system (CNS) infections are urgent conditions with high morbidity and mortality. Bacteria, viruses, parasites or fungi can cause them. Intracranial infections after craniotomies are an important complication of treatment, especially in oncological patients that are already immunologically compromised due to the disease and treatment. The consequence of CNS infections in oncological patients includes longer treatment with antibiotics, additional surgical procedures, higher treatment costs and poorer treatment outcomes. Additionally, the management of primary pathology may be prolonged or postponed as a result of the active infection. By introducing new and improved protocols, tightening controls on their implementation, constantly educating the entire team involved in patient treatment and educating both patients and relatives, the incidence of infections can be reduced effectively.
Collapse
Affiliation(s)
- Tomaz Velnar
- Department of Neurosurgery, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
- Alma Mater Europaea - ECM Maribor, Maribor 2000, Slovenia
| | - Nina Kocivnik
- Faculty of Pharmacy, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Roman Bosnjak
- Department of Neurosurgery, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
6
|
Bex A, Bex V, Carpentier A, Mathon B. Therapeutic ultrasound: The future of epilepsy surgery? Rev Neurol (Paris) 2022; 178:1055-1065. [PMID: 35853776 DOI: 10.1016/j.neurol.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 02/08/2023]
Abstract
Epilepsy is one of the leading neurological diseases in both adults and children and in spite of advancement in medical treatment, 20 to 30% of patients remain refractory to current medical treatment. Medically intractable epilepsy has a real impact on a patient's quality of life, neurologic morbidity and even mortality. Actual therapy options are an increase in drug dosage, radiosurgery, resective surgery and non-resective neuromodulatory treatments (deep brain stimulation, vagus nerve stimulation). Resective, thermoablative or neuromodulatory surgery in the treatment of epilepsy are invasive procedures, sometimes requiring long stay-in for the patients, risks of permanent neurological deficit, general anesthesia and other potential surgery-related complications such as a hemorrhage or an infection. Radiosurgical approaches can trigger radiation necrosis, brain oedema and transient worsening of epilepsy. With technology-driven developments and pursuit of minimally invasive neurosurgery, transcranial MR-guided focused ultrasound has become a valuable treatment for neurological diseases. In this critical review, we aim to give the reader a better understanding of current advancement for ultrasound in the treatment of epilepsy. By outlining the current understanding gained from both preclinical and clinical studies, this article explores the different mechanisms and potential applications (thermoablation, blood brain barrier disruption for drug delivery, neuromodulation and cortical stimulation) of high and low intensity ultrasound and compares the various possibilities available to patients with intractable epilepsy. Technical limitations of therapeutic ultrasound for epilepsy surgery are also detailed and discussed.
Collapse
Affiliation(s)
- A Bex
- Department of Neurosurgery, CHR Citadelle, Liege, Belgium; Department of Neurosurgery, Sorbonne University, AP-HP, La Pitié-Salpêtrière Hospital, 75013, Paris, France
| | - V Bex
- Department of Neurosurgery, CHR Citadelle, Liege, Belgium
| | - A Carpentier
- Department of Neurosurgery, Sorbonne University, AP-HP, La Pitié-Salpêtrière Hospital, 75013, Paris, France; Sorbonne University, GRC 23, Brain Machine Interface, AP-HP, La Pitié-Salpêtrière Hospital, 75013 Paris, France; Sorbonne University, Advanced Surgical Research Technology Lab, Paris, France
| | - B Mathon
- Department of Neurosurgery, Sorbonne University, AP-HP, La Pitié-Salpêtrière Hospital, 75013, Paris, France; Sorbonne University, GRC 23, Brain Machine Interface, AP-HP, La Pitié-Salpêtrière Hospital, 75013 Paris, France; Sorbonne University, Advanced Surgical Research Technology Lab, Paris, France; Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne University, UMRS, 1127 Paris, France.
| |
Collapse
|
7
|
Samanta D. Recent developments in stereo electroencephalography monitoring for epilepsy surgery. Epilepsy Behav 2022; 135:108914. [PMID: 36116362 DOI: 10.1016/j.yebeh.2022.108914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/03/2022]
Abstract
Recently the utilization of the stereo electroencephalography (SEEG) method has exploded globally. It is now the preferred method of intracranial monitoring for epilepsy. Since its inception, the basic tenet of the SEEG method remains the same: strategic implantation of intracerebral electrodes based on a hypothesis grounded on anatomo-electroclinical correlation, interpretation of interictal and ictal abnormalities, and formation of a surgical plan based on these data. However, there are recent advancements in all these domains-electrodes implantations, data interpretation, and therapeutic strategy- that can make the SEEG a more accessible and effective approach. In this narrative review, these newer developments are discussed and summarized. Regarding implantation, efficient commercial robotic systems are now increasingly available, which are also more accurate in implanting electrodes. In terms of ictal and interictal abnormalities, newer studies focused on correlating these abnormalities with pathological substrates and surgical outcomes and analyzing high-frequency oscillations and cortical-subcortical connectivity. These abnormalities can now be further quantified using advanced tools (spectrum, spatiotemporal, connectivity analysis, and machine learning algorithms) for objective and efficient interpretation. Another aspect of recent development is renewed interest in SEEG-based electrical stimulation mapping (ESM). The SEEG-ESM has been used in defining epileptogenic networks, mapping eloquent cortex (primarily language), and analyzing cortico-cortical evoked potential. Regarding SEEG-guided direct therapeutic strategy, several clinical studies evaluated the use of radiofrequency thermocoagulation. As the emerging SEEG-based diagnosis and therapeutics are better evolved, treatments aimed at specific epileptogenic networks without compromising the eloquent cortex will become more easily accessible to improve the lives of individuals with drug-resistant epilepsy (DRE).
Collapse
Affiliation(s)
- Debopam Samanta
- Neurology Division, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
8
|
Jehi L, Jette N, Kwon CS, Josephson CB, Burneo JG, Cendes F, Sperling MR, Baxendale S, Busch RM, Triki CC, Cross JH, Ekstein D, Englot DJ, Luan G, Palmini A, Rios L, Wang X, Roessler K, Rydenhag B, Ramantani G, Schuele S, Wilmshurst JM, Wilson S, Wiebe S. Timing of referral to evaluate for epilepsy surgery: Expert Consensus Recommendations from the Surgical Therapies Commission of the International League Against Epilepsy. Epilepsia 2022; 63:2491-2506. [PMID: 35842919 PMCID: PMC9562030 DOI: 10.1111/epi.17350] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022]
Abstract
Epilepsy surgery is the treatment of choice for patients with drug-resistant seizures. A timely evaluation for surgical candidacy can be life-saving for patients who are identified as appropriate surgical candidates, and may also enhance the care of nonsurgical candidates through improvement in diagnosis, optimization of therapy, and treatment of comorbidities. Yet, referral for surgical evaluations is often delayed while palliative options are pursued, with significant adverse consequences due to increased morbidity and mortality associated with intractable epilepsy. The Surgical Therapies Commission of the International League Against Epilepsy (ILAE) sought to address these clinical gaps and clarify when to initiate a surgical evaluation. We conducted a Delphi consensus process with 61 epileptologists, epilepsy neurosurgeons, neurologists, neuropsychiatrists, and neuropsychologists with a median of 22 years in practice, from 28 countries in all six ILAE world regions. After three rounds of Delphi surveys, evaluating 51 unique scenarios, we reached the following Expert Consensus Recommendations: (1) Referral for a surgical evaluation should be offered to every patient with drug-resistant epilepsy (up to 70 years of age), as soon as drug resistance is ascertained, regardless of epilepsy duration, sex, socioeconomic status, seizure type, epilepsy type (including epileptic encephalopathies), localization, and comorbidities (including severe psychiatric comorbidity like psychogenic nonepileptic seizures [PNES] or substance abuse) if patients are cooperative with management; (2) A surgical referral should be considered for older patients with drug-resistant epilepsy who have no surgical contraindication, and for patients (adults and children) who are seizure-free on 1-2 antiseizure medications (ASMs) but have a brain lesion in noneloquent cortex; and (3) referral for surgery should not be offered to patients with active substance abuse who are noncooperative with management. We present the Delphi consensus results leading up to these Expert Consensus Recommendations and discuss the data supporting our conclusions. High level evidence will be required to permit creation of clinical practice guidelines.
Collapse
Affiliation(s)
- Lara Jehi
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Nathalie Jette
- Department of Neurology and Department of Population Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Churl-Su Kwon
- Department of Neurology, Epidemiology, Neurosurgery and the Gertrude H. Sergievsky Center, Columbia University, New York, USA
| | - Colin B Josephson
- Department of Clinical Neurosciences and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Jorge G. Burneo
- Department of Clinical Neurological Sciences and NeuroEpidemiology Unit, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Fernando Cendes
- Department of Neurology, University of Campinas, Campinas, Brazil
| | | | - Sallie Baxendale
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - Robyn M. Busch
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Chahnez Charfi Triki
- Department of Child Neurology, Hedi Chaker Hospital, LR19ES15 Sfax University, Sfax, Tunisia
| | - J Helen Cross
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Dana Ekstein
- Department of Neurology, Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Organization, Jerusalem, Israel
| | - Dario J Englot
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Guoming Luan
- Department of Neurosurgery, Comprehensive Epilepsy Center, Sanbo Brain Hospital, Capital Medical University; Beijing Key Laboratory of Epilepsy; Epilepsy Institution, Beijing Institute for Brain Disorders, Beijing, China
| | - Andre Palmini
- Neurosciences and Surgical Departments, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Loreto Rios
- Clínica Integral de Epilepsia, Campus Clínico Facultad de Medicina Universidad Finis Terrae, Santiago, Chile
| | - Xiongfei Wang
- Department of Neurosurgery, Comprehensive Epilepsy Center, Sanbo Brain Hospital, Capital Medical University; Beijing Key Laboratory of Epilepsy; Epilepsy Institution, Beijing Institute for Brain Disorders, Beijing, China
| | - Karl Roessler
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Bertil Rydenhag
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Georgia Ramantani
- Department of Neuropediatrics, and University Children’s Hospital Zurich, Switzerland, University of Zurich, Switzerland
| | - Stephan Schuele
- Department of Neurology, Northwestern University, Chicago, Illinois, USA
| | - Jo M Wilmshurst
- Department of Pediatric Neurology, Red Cross War Memorial Children’s Hospital, Cape Town, South Africa; Institute of Neurosciences, University of Cape Town, South Africa
| | - Sarah Wilson
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Vic., Australia
| | - Samuel Wiebe
- Department of Clinical Neurosciences and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Hagemann A, Bien CG, Kalbhenn T, Hopf JL, Grewe P. Epilepsy Surgery in Extratemporal vs Temporal Lobe Epilepsy: Changes in Surgical Volumes and Seizure Outcome Between 1990 and 2017. Neurology 2022; 98:e1902-e1912. [DOI: 10.1212/wnl.0000000000200194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/27/2022] [Indexed: 11/15/2022] Open
Abstract
Objective:Seizure outcome after extratemporal lobe epilepsy (exTLE) surgery has often been poorer than after temporal lobe epilepsy (TLE) surgery, but recent improvements in diagnostics and surgery may have changed this. Our aim was to analyze the changes in presurgical and surgical volumes and seizure outcome two years after surgery for patients with exTLE compared to those with TLE.Methods:We performed a retrospective, single-center cohort study including patients from the Bethel presurgical-surgical-postsurgical database from 1990 to 2017. We used logistic regression to analyze factors influencing the odds for surgery and the odds for seizure freedom after surgery.Results:We included 3822 patients with presurgical evaluation, 2404 of whom had subsequently undergone surgery. The proportion of exTLE patients in presurgical evaluation increased from 41% between 1990-1993 to 64% in 2014-2017. The odds for surgery decreased over time (2003-2011: OR=0.50 [95%CI 0.36-0.70]; 2012-2017: OR=0.24 [CI 0.17-0.35]; reference: 1990-2002), and patients with exTLE had lower odds for surgery than TLE patients, but this difference diminished over time (exTLE vs. TLE 1990-2002: OR=0.14 [CI 0.09-0.20]; 2003-2011: OR=0.32 [CI 0.24-0.44]; 2012-2017: OR=0.46 [CI 0.34-0.63]). Etiology, the side of the epileptogenic lesion and invasive recordings additionally influenced the odds for surgery. The most frequent reasons for not undergoing surgery were the missing identification of a circumscribed epileptogenic zone or an unacceptable risk of postsurgical deficits in exTLE patients and the patient’s decision in TLE patients. Compared to TLE patients, the odds for seizure freedom after surgery started lower for patients with exTLE in earlier years, but increased (≤2 lobes 1990-2002: OR=0.47 [CI 0.33-0.68]; 2003-2011: OR=0.62 [CI 0.44-0.87]; 2012-2017: OR=0.78 [CI 0.53-1.15]; ≥3 lobes 1990-2002: OR=0.37 [CI 0.22-0.62]; 2003-2011: OR=0.73 [CI 0.43-1.23]; 2012-2017: OR=1.46 [CI 0.91-2.42]). Etiology, age at surgery and invasive recordings were further predictors for the odds for seizure freedom.Conclusion:Over the past 28 years, the success of resective surgery for patients with exTLE has improved. At the same time, the number of exTLE patients being evaluated for surgery increased as well as their odds for undergoing surgery.
Collapse
|
10
|
Liu X, Han F, Fu R, Wang Q, Luan G. Epileptogenic Zone Location of Temporal Lobe Epilepsy by Cross-Frequency Coupling Analysis. Front Neurol 2021; 12:764821. [PMID: 34867749 PMCID: PMC8636749 DOI: 10.3389/fneur.2021.764821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/12/2021] [Indexed: 12/02/2022] Open
Abstract
Epilepsy is a chronic brain disease with dysfunctional brain networks, and electroencephalography (EEG) is an important tool for epileptogenic zone (EZ) identification, with rich information about frequencies. Different frequency oscillations have different contributions to brain function, and cross-frequency coupling (CFC) has been found to exist within brain regions. Cross-channel and inter-channel analysis should be both focused because they help to analyze how epilepsy networks change and also localize the EZ. In this paper, we analyzed long-term stereo-electroencephalography (SEEG) data from 17 patients with temporal lobe epilepsy. Single-channel and cross-channel CFC features were combined to establish functional brain networks, and the network characteristics under different periods and the localization of EZ were analyzed. It was observed that theta–gamma phase amplitude coupling (PAC) within the electrodes in the seizure region increased during the ictal (p < 0.05). Theta–gamma and delta–gamma PAC of cross-channel were enhanced in the early and mid-late ictal, respectively. It was also found that there was a strong cross-frequency coupling state between channels of EZ in the functional network during the ictal, along with a more regular network than interictal. The accuracy rate of EZ localization was 82.4%. Overall, the combination of single-channel and multi-channel cross-band coupling analysis can help identify seizures and localize EZ for temporal lobe epilepsy. Rhythmic coupling reveals a relationship between the functional network and the seizure status of epilepsy.
Collapse
Affiliation(s)
- Xiaotong Liu
- Department of Dynamics and Control, Beihang University, Beijing, China
| | - Fang Han
- College of Information Science and Technology, Donghua University, Shanghai, China
| | - Rui Fu
- Department of Dynamics and Control, Beihang University, Beijing, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, China
| | - Guoming Luan
- Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Gradišnik L, Bošnjak R, Bunc G, Ravnik J, Maver T, Velnar T. Neurosurgical Approaches to Brain Tissue Harvesting for the Establishment of Cell Cultures in Neural Experimental Cell Models. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6857. [PMID: 34832259 PMCID: PMC8624371 DOI: 10.3390/ma14226857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/30/2022]
Abstract
In recent decades, cell biology has made rapid progress. Cell isolation and cultivation techniques, supported by modern laboratory procedures and experimental capabilities, provide a wide range of opportunities for in vitro research to study physiological and pathophysiological processes in health and disease. They can also be used very efficiently for the analysis of biomaterials. Before a new biomaterial is ready for implantation into tissues and widespread use in clinical practice, it must be extensively tested. Experimental cell models, which are a suitable testing ground and the first line of empirical exploration of new biomaterials, must contain suitable cells that form the basis of biomaterial testing. To isolate a stable and suitable cell culture, many steps are required. The first and one of the most important steps is the collection of donor tissue, usually during a surgical procedure. Thus, the collection is the foundation for the success of cell isolation. This article explains the sources and neurosurgical procedures for obtaining brain tissue samples for cell isolation techniques, which are essential for biomaterial testing procedures.
Collapse
Affiliation(s)
- Lidija Gradišnik
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska 8, 2000 Maribor, Slovenia;
- Alma Mater Europaea ECM, Slovenska 17, 2000 Maribor, Slovenia
| | - Roman Bošnjak
- Department of Neurosurgery, University Medical Centre Ljubljana, Zaloska 7, 1000 Ljubljana, Slovenia;
| | - Gorazd Bunc
- Department of Neurosurgery, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (G.B.); (J.R.)
| | - Janez Ravnik
- Department of Neurosurgery, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (G.B.); (J.R.)
| | - Tina Maver
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska 8, 2000 Maribor, Slovenia;
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Tomaž Velnar
- Alma Mater Europaea ECM, Slovenska 17, 2000 Maribor, Slovenia
- Department of Neurosurgery, University Medical Centre Ljubljana, Zaloska 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
12
|
Guglielmi G, Eschbach KL, Alexander AL. Smaller Knife, Fewer Seizures? Recent Advances in Minimally Invasive Techniques in Pediatric Epilepsy Surgery. Semin Pediatr Neurol 2021; 39:100913. [PMID: 34620456 DOI: 10.1016/j.spen.2021.100913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 02/02/2023]
Abstract
Children with drug-resistant epilepsy are at high risk for developmental delay, increased mortality, psychiatric comorbidities, and requiring assistance with activities of daily living. Despite the advent of new and effective pharmacologic therapies, about one in 5 children will develop drug-resistant epilepsy, and most of these children continue to have seizures despite trials of other medication. Epilepsy surgery is often a safe and effective option which may offer seizure freedom or at least a significant reduction in seizure burden in many children. However, despite published evidence of safety and efficacy, epilepsy surgery remains underutilized in the pediatric population. Patient and family fears about the risks of surgery may contribute to this gap. Less invasive surgical techniques may be more palatable to children with epilepsy and their caregivers. In this review, we present recent advances in minimally invasive techniques for the surgical treatment of epilepsy as well as intriguing possibilities for the future. We describe the indications for, benefits of, and limits to minimally-invasive techniques including Stereo-encephalography, laser interstitial thermal ablation, deep brain stimulation, focused ultrasound, stereo-encephalography-guided radiofrequency ablation, endoscopic disconnections, and responsive neurostimulation.
Collapse
Affiliation(s)
- Gina Guglielmi
- Graduate Medical Education, Neurological Surgery Residency, Carle BroMenn Medical Center, Normal IL; Section of Pediatric Neurology, Children's Hospital Colorado, Aurora CO; Department of Pediatrics, University of Colorado Anschutz School of Medicine, Aurora CO; Division of Pediatric Neurosurgery, Children's Hospital Colorado, Aurora CO; Department of Neurosurgery, University of Colorado Anschutz School of Medicine, Aurora CO
| | - Krista L Eschbach
- Graduate Medical Education, Neurological Surgery Residency, Carle BroMenn Medical Center, Normal IL; Section of Pediatric Neurology, Children's Hospital Colorado, Aurora CO; Department of Pediatrics, University of Colorado Anschutz School of Medicine, Aurora CO; Division of Pediatric Neurosurgery, Children's Hospital Colorado, Aurora CO; Department of Neurosurgery, University of Colorado Anschutz School of Medicine, Aurora CO
| | - Allyson L Alexander
- Graduate Medical Education, Neurological Surgery Residency, Carle BroMenn Medical Center, Normal IL; Section of Pediatric Neurology, Children's Hospital Colorado, Aurora CO; Department of Pediatrics, University of Colorado Anschutz School of Medicine, Aurora CO; Division of Pediatric Neurosurgery, Children's Hospital Colorado, Aurora CO; Department of Neurosurgery, University of Colorado Anschutz School of Medicine, Aurora CO.
| |
Collapse
|
13
|
Partnership for solving omnipresent "local" problems with video-EEG monitoring systems effectively. Clin Neurophysiol 2021; 132:2261-2263. [PMID: 34284975 DOI: 10.1016/j.clinph.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 11/22/2022]
|
14
|
Parihar J, Agrawal M, Samala R, Chandra PS, Tripathi M. Role of Neuromodulation for Treatment of Drug-Resistant Epilepsy. Neurol India 2021; 68:S249-S258. [PMID: 33318359 DOI: 10.4103/0028-3886.302476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The choice of neuromodulation techniques has greatly increased over the past two decades. While vagal nerve stimulation (VNS) has become established, newer variations of VNS have been introduced. Following the SANTE's trial, deep brain stimulation (DBS) is now approved for clinical use. In addition, responsive neurostimulation (RNS) has provided exciting new opportunities for treatment of drug-resistant epilepsy. While neuromodulation mostly offers only a 'palliative' measure, it still provides a significant reduction of frequency and intensity of epilepsy. We provide an overview of all the techniques of neuromodulation which are available, along with long-term outcomes. Further research is required to delineate the exact mechanism of action, the indications and the stimulation parameters to extract the maximum clinical benefit from these techniques.
Collapse
Affiliation(s)
- Jasmine Parihar
- Department of Neurology, Lady Harding Medical College, New Delhi, India
| | | | - Raghu Samala
- Department of Neurosurgery, AIIMS, New Delhi, India
| | | | | |
Collapse
|
15
|
Ahmed SN. Covid, AI, and Robotics-A Neurologist's Perspective. Front Robot AI 2021; 8:617426. [PMID: 33842556 PMCID: PMC8027242 DOI: 10.3389/frobt.2021.617426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/03/2021] [Indexed: 11/25/2022] Open
Abstract
Two of the major revolutions of this century are the Artificial Intelligence and Robotics. These technologies are penetrating through all disciplines and faculties at a very rapid pace. The application of these technologies in medicine, specifically in the context of Covid 19 is paramount. This article briefly reviews the commonly applied protocols in the Health Care System and provides a perspective in improving the efficiency and effectiveness of the current system. This article is not meant to provide a literature review of the current technology but rather provides a personal perspective of the author regarding what could happen in the ideal situation.
Collapse
Affiliation(s)
- Syed Nizamuddin Ahmed
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Stereotactic EEG Practices: A Survey of United States Tertiary Referral Epilepsy Centers. J Clin Neurophysiol 2020; 39:474-480. [PMID: 33181594 DOI: 10.1097/wnp.0000000000000794] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Stereotactic EEG (SEEG) is being increasingly used in the intracranial evaluation of refractory epilepsy in the United States. In this study, the authors describe current practice of SEEG among National Association of Epilepsy Centers tertiary referral (level IV) centers. METHODS Using the Survey Monkey platform, a survey was sent to all National Association of Epilepsy Centers level IV center directors. RESULTS Of 192 centers polled, 104 directors completed the survey (54% response rate). Ninety-two percent currently perform SEEG. Of these, 55% of institutions reported that greater than 75% of their invasive electrode cases used SEEG. Stereotactic EEG was commonly used over subdural electrodes in cases of suspected mesial temporal lobe epilepsy (87%), nonlesional frontal lobe epilepsy (79%), insular epilepsy (100%), and individuals with prior epilepsy surgery (74%). Most centers (72%) used single-lead electrocardiogram monitoring concurrently with SEEG, but less than half used continuous pulse oximetry (47%) and only a few used respiratory belts (3%). Other significant intercenter technical variabilities included electrode nomenclature and choice of reference electrode. Patient care protocols varied among centers in patient-to-nurse ratio and allowed patient activity. Half of all centers had personnel who had prior experience in SEEG (50.5%); 20% of centers had adopted SEEG without any formal training. CONCLUSIONS Stereotactic EEG has become the principal method for intracranial EEG monitoring in the majority of epilepsy surgery centers in the United States. Most report similar indications for use of SEEG, though significant variability exists in the utilization of concurrent cardiopulmonary monitoring as well as several technical and patient care practices. There is significant variability in level of background training in SEEG among practitioners. The study highlights the need for consensus statements and guidelines to benchmark SEEG practice and develop uniform standards in the United States.
Collapse
|
17
|
Drees C, McDermott D, Sillau S, Abosch A, Ojemann S, Schwarz S, Brown MG. Seizure outcome with responsive neurostimulation (RNS) comparing strip versus depth leads. Epilepsy Behav 2020; 112:107402. [PMID: 32911300 DOI: 10.1016/j.yebeh.2020.107402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/02/2020] [Accepted: 08/02/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVE This study aimed to compare seizure outcomes and complication rates in patients treated with only responsive neurostimulation (RNS) strip leads with those treated with only RNS depth leads. METHODS A retrospective cohort study was performed using the institutional epilepsy surgery database. Included was any patient implanted with the RNS system between August 2015 and May 2018 with either two depth (2D) or two strip (2S) leads connected to the device and at least 6 months follow-up. Excluded were those with a combination of active depth and strip leads. Data extracted from the charts comprised demographic information, duration of epilepsy, presence of a magnetic resonance imaging (MRI) lesion, prior resective surgery, clinically disabling seizures at baseline and follow-up, prior invasive monitoring, location (mesial temporal or neocortical) and number of seizure foci, unilateral or bilateral RNS lead placement, and postoperative complications. RESULTS Of 48 screened patients, 34 met study inclusion criteria. Of these, 15 were treated with 2D leads and 19 with 2S leads. Groups 2D and 2S were comparable with respect to age at onset, duration of epilepsy, baseline seizure frequency, and exposure time to RNS. After adjustment for patient age and duration of epilepsy, seizure frequency in 2S patients was noted to be decreased by 83% (p = 0.046), while it was reduced by 51% (p = 0.080) in 2D patients. The complication rate was not significantly different between the two groups. CONCLUSION In our small retrospective population, patients with RNS strip leads experienced a significantly greater seizure reduction than patients with RNS depth leads, without a difference in complication rate.
Collapse
Affiliation(s)
- Cornelia Drees
- Department of Neurology, University of Colorado Anschutz, Research Complex II, 12700 East 19th Avenue, 5018, Aurora, CO 80045, United States.
| | - Danielle McDermott
- Department of Neurology, University of Colorado Anschutz, Research Complex II, 12700 East 19th Avenue, 5018, Aurora, CO 80045, United States
| | - Stefan Sillau
- Department of Neurology, University of Colorado Anschutz, Research Complex II, 12700 East 19th Avenue, 5018, Aurora, CO 80045, United States
| | - Aviva Abosch
- Department of Neurosurgery, University of Nebraska Medical Center, 988437 Nebraska Medical Center, Omaha, NE 68198-8437, United States
| | - Steven Ojemann
- Department of Neurosurgery, University of Colorado Anschutz, Academic Office One, 12631 East 17th Avenue, 5001, Aurora, CO 80045, United States
| | - Saul Schwarz
- Department of Neurosurgery, Colorado Kaiser Permanente, Medical Office Building, 2045 Franklin St, Ste 200, Denver, CO 80205, United States
| | - Mesha-Gay Brown
- Department of Neurology, University of Colorado Anschutz, Research Complex II, 12700 East 19th Avenue, 5018, Aurora, CO 80045, United States
| |
Collapse
|
18
|
Dorfer C, Rydenhag B, Baltuch G, Buch V, Blount J, Bollo R, Gerrard J, Nilsson D, Roessler K, Rutka J, Sharan A, Spencer D, Cukiert A. How technology is driving the landscape of epilepsy surgery. Epilepsia 2020; 61:841-855. [PMID: 32227349 PMCID: PMC7317716 DOI: 10.1111/epi.16489] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/24/2022]
Abstract
This article emphasizes the role of the technological progress in changing the landscape of epilepsy surgery and provides a critical appraisal of robotic applications, laser interstitial thermal therapy, intraoperative imaging, wireless recording, new neuromodulation techniques, and high-intensity focused ultrasound. Specifically, (a) it relativizes the current hype in using robots for stereo-electroencephalography (SEEG) to increase the accuracy of depth electrode placement and save operating time; (b) discusses the drawback of laser interstitial thermal therapy (LITT) when it comes to the need for adequate histopathologic specimen and the fact that the concept of stereotactic disconnection is not new; (c) addresses the ratio between the benefits and expenditure of using intraoperative magnetic resonance imaging (MRI), that is, the high technical and personnel expertise needed that might restrict its use to centers with a high case load, including those unrelated to epilepsy; (d) soberly reviews the advantages, disadvantages, and future potentials of neuromodulation techniques with special emphasis on the differences between closed and open-loop systems; and (e) provides a critical outlook on the clinical implications of focused ultrasound, wireless recording, and multipurpose electrodes that are already on the horizon. This outlook shows that although current ultrasonic systems do have some limitations in delivering the acoustic energy, further advance of this technique may lead to novel treatment paradigms. Furthermore, it highlights that new data streams from multipurpose electrodes and wireless transmission of intracranial recordings will become available soon once some critical developments will be achieved such as electrode fidelity, data processing and storage, heat conduction as well as rechargeable technology. A better understanding of modern epilepsy surgery will help to demystify epilepsy surgery for the patients and the treating physicians and thereby reduce the surgical treatment gap.
Collapse
Affiliation(s)
- Christian Dorfer
- Department of NeurosurgeryMedical University of ViennaViennaAustria
| | - Bertil Rydenhag
- Department of Clinical NeuroscienceInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of NeurosurgerySahlgrenska University HospitalGothenburgSweden
| | - Gordon Baltuch
- Center for Functional and Restorative NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Vivek Buch
- Center for Functional and Restorative NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jeffrey Blount
- Division of NeurosurgeryUniversity of Alabama at Birmingham School of MedicineBirminghamALUSA
| | - Robert Bollo
- Department of NeurosurgeryUniversity of Utah School of MedicineSalt Lake CityUTUSA
| | - Jason Gerrard
- Department of NeurosurgeryYale University School of MedicineNew HavenCTUSA
| | - Daniel Nilsson
- Department of Clinical NeuroscienceInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of NeurosurgerySahlgrenska University HospitalGothenburgSweden
| | - Karl Roessler
- Department of NeurosurgeryMedical University of ViennaViennaAustria
- Department of NeurosurgeryUniversity of ErlangenErlangenGermany
| | - James Rutka
- Division of Pediatric NeurosurgeryThe Hospital for Sick ChildrenUniversity of TorontoTorontoOntarioCanada
| | - Ashwini Sharan
- Department of Neurosurgery and NeurologyThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Dennis Spencer
- Department of NeurosurgeryYale University School of MedicineNew HavenCTUSA
| | - Arthur Cukiert
- Neurology and Neurosurgery Clinic Sao PauloClinica Neurologica CukiertSao PauloBrazil
| |
Collapse
|