1
|
Asch RH, Abdallah CG, Carson RE, Esterlis I. Challenges and rewards of in vivo synaptic density imaging, and its application to the study of depression. Neuropsychopharmacology 2024; 50:153-163. [PMID: 39039139 PMCID: PMC11525584 DOI: 10.1038/s41386-024-01913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
The development of novel radiotracers for Positron Emission Tomography (PET) imaging agents targeting the synaptic vesicle glycoprotein 2 A (SV2A), an integral glycoprotein present in the membrane of all synaptic vesicles throughout the central nervous system, provides a method for the in vivo quantification of synaptic density. This is of particular interest in neuropsychiatric disorders given that synaptic alterations appear to underlie disease progression and symptom severity. In this review, we briefly describe the development of these SV2A tracers and the evaluation of quantification methods. Next, we discuss application of SV2A PET imaging to the study of depression, including a review of our findings demonstrating lower SV2A synaptic density in people with significant depressive symptoms and the use of a ketamine drug challenge to examine synaptogenesis in vivo. We then highlight the importance of performing translational PET imaging in animal models in conjunction with clinical imaging. We consider the ongoing challenges, possible solutions, and present preliminary findings from our lab demonstrating the translational benefit and potential of in vivo SV2A imaging in animal models of chronic stress. Finally, we discuss methodological improvements and future directions for SV2A imaging, potentially in conjunction with other neural markers.
Collapse
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Chadi G Abdallah
- Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering, New Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT, USA.
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
2
|
Howes O, Marcinkowska J, Turkheimer FE, Carr R. Synaptic changes in psychiatric and neurological disorders: state-of-the art of in vivo imaging. Neuropsychopharmacology 2024; 50:164-183. [PMID: 39134769 PMCID: PMC11525650 DOI: 10.1038/s41386-024-01943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 11/01/2024]
Abstract
Synapses are implicated in many neuropsychiatric illnesses. Here, we provide an overview of in vivo techniques to index synaptic markers in patients. Several positron emission tomography (PET) tracers for synaptic vesicle glycoprotein 2 A (SV2A) show good reliability and selectivity. We review over 50 clinical studies including over 1700 participants, and compare findings in healthy ageing and across disorders, including addiction, schizophrenia, depression, posttraumatic stress disorder, and neurodegenerative disorders, including tauopathies, Huntington's disease and α-synucleinopathies. These show lower SV2A measures in cortical brain regions across most of these disorders relative to healthy volunteers, with the most well-replicated findings in tauopathies, whilst changes in Huntington's chorea, Parkinson's disease, corticobasal degeneration and progressive supranuclear palsy are predominantly subcortical. SV2A PET measures are correlated with functional connectivity across brain networks, and a number of other measures of brain function, including glucose metabolism. However, the majority of studies found no relationship between grey matter volume measured with magnetic resonance imaging and SV2A PET measures. Cognitive dysfunction, in domains including working memory and executive function, show replicated inverse relationships with SV2A measures across diagnoses, and initial findings also suggest transdiagnostic relationships with mood and anxiety symptoms. This suggests that synaptic abnormalities could be a common pathophysiological substrate underlying cognitive and, potentially, affective symptoms. We consider limitations of evidence and future directions; highlighting the need to develop postsynaptic imaging markers and for longitudinal studies to test causal mechanisms.
Collapse
Affiliation(s)
- Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England.
- South London & the Maudsley NHS Trust, London, England.
- London Institute of Medical Sciences, London, England.
| | - Julia Marcinkowska
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Richard Carr
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
- South London & the Maudsley NHS Trust, London, England
- London Institute of Medical Sciences, London, England
| |
Collapse
|
3
|
Flaus A, Guedj E, Horowitz T, Semah F, Verger A, Hammers A. Brain PET Imaging in the Presurgical Evaluation of Drug-Resistant Focal Epilepsy. PET Clin 2024:S1556-8598(24)00079-8. [PMID: 39426849 DOI: 10.1016/j.cpet.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Presurgical evaluation aims to localize the seizure onset zone (SOZ) for a tailored resection. Interictal [18F]fluorodeoxyglucose PET is now an established test to lateralize and/or localize the SOZ, particularly if MR imaging is negative or if the noninvasive assessment shows discrepancies. PET can show hypometabolic areas associated with SOZ and the potential altered metabolic brain networks. It is very sensitive, and this is increased if images are read coregistered to the patient's MR imaging. PET hypometabolic intensity and pattern show prognostic value.
Collapse
Affiliation(s)
- Anthime Flaus
- Nuclear Medicine Department, Hospices Civils de Lyon, Medical Faculty of Lyon Est, University Claude Bernard Lyon 1, Lyon, France; Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR5292, Lyon, France.
| | - Eric Guedj
- Biophysics and Nuclear Medicine, Aix Marseille University; APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, Service de Médecine Nucléaire, CHU Timone, 264 Rue Sainte Pierre, Marseille 13005, France; CERIMED, Nuclear Medicine Department, Marseille, France
| | - Tatiana Horowitz
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, Service de Médecine Nucléaire, CHU Timone, 264 Rue Sainte Pierre, Marseille 13005, France; CERIMED, Nuclear Medicine Department, Marseille, France; Aix Marseille University
| | - Franck Semah
- Nuclear Medicine Department, University Hospital, Inserm, Service de Médecine Nucléaire, Hôpital Salengro, CHU de Lille, Lille Cedex 59037, France
| | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, rue du morvan, 54511 Vandoeuvre-les-Nancy, Nancy, France; Université de Lorraine, IADI, INSERM U1254, Nancy, France; Nuclear Medecine Department, Hôpitaux de Brabois, CHRU de Nancy, Rue du Morvan, Vandoeuvre les Nancy 54500, France
| | - Alexander Hammers
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, Office Suite 6, 4th Floor Lambeth Wing, London, UK; St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| |
Collapse
|
4
|
Matuskey D, Yang Y, Naganawa M, Koohsari S, Toyonaga T, Gravel P, Pittman B, Torres K, Pisani L, Finn C, Cramer-Benjamin S, Herman N, Rosenthal LH, Franke CJ, Walicki BM, Esterlis I, Skosnik P, Radhakrishnan R, Wolf JM, Nabulsi N, Ropchan J, Huang Y, Carson RE, Naples AJ, McPartland JC. 11C-UCB-J PET imaging is consistent with lower synaptic density in autistic adults. Mol Psychiatry 2024:10.1038/s41380-024-02776-2. [PMID: 39367053 DOI: 10.1038/s41380-024-02776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
The neural bases of autism are poorly understood at the molecular level, but evidence from animal models, genetics, post-mortem studies, and single-gene disorders implicate synaptopathology. Here, we use positron emission tomography (PET) to assess the density of synapses with synaptic vesicle glycoprotein 2A (SV2A) in autistic adults using 11C-UCB-J. Twelve autistic (mean (SD) age 25 (4) years; six males), and twenty demographically matched non-autistic individuals (26 (3) years; eleven males) participated in a 11C-UCB-J PET scan. Binding potential, BPND, was the primary outcome measure and computed with the centrum semiovale as the reference region. Partial volume correction with Iterative Yang was applied to control for possible volumetric differences. Mixed-model statistics were calculated for between-group differences. Relationships to clinical characteristics were evaluated based on clinician ratings of autistic features. Whole cortex synaptic density was 17% lower in the autism group (p = 0.01). All brain regions in autism had lower 11C-UCB-J BPND compared to non-autistic participants. This effect was evident in all brain regions implicated in autism. Significant differences were observed across multiple individual regions, including the prefrontal cortex (-15%, p = 0.02), with differences most pronounced in gray matter (p < 0.0001). Synaptic density was significantly associated with clinical measures across the whole cortex (r = 0.67, p = 0.02) and multiple regions (rs = -0.58 to -0.82, ps = 0.05 to <0.01). The first in vivo investigation of synaptic density in autism with PET reveals pervasive and large-scale lower density in the cortex and across multiple brain areas. Synaptic density also correlated with clinical features, such that a greater number of autistic features were associated with lower synaptic density. These results indicate that brain-wide synaptic density may represent an as-yet-undiscovered molecular basis for the clinical phenotype of autism and associated pervasive alterations across a diversity of neural processes.
Collapse
Affiliation(s)
- David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
- Department of Psychiatry, Yale University, New Haven, CT, USA.
- Department of Neurology, Yale University, New Haven, CT, USA.
- Center for Brain and Mind Health, Yale University, New Haven, CT, USA.
| | - Yanghong Yang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Sheida Koohsari
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Paul Gravel
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Brian Pittman
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Kristen Torres
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Lauren Pisani
- Child Study Center, Yale University, New Haven, CT, USA
| | - Caroline Finn
- Child Study Center, Yale University, New Haven, CT, USA
| | | | - Nicole Herman
- Child Study Center, Yale University, New Haven, CT, USA
| | | | | | | | - Irina Esterlis
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Patrick Skosnik
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Rajiv Radhakrishnan
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Julie M Wolf
- Child Study Center, Yale University, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Jim Ropchan
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Adam J Naples
- Center for Brain and Mind Health, Yale University, New Haven, CT, USA
- Child Study Center, Yale University, New Haven, CT, USA
| | - James C McPartland
- Center for Brain and Mind Health, Yale University, New Haven, CT, USA.
- Child Study Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
5
|
Nabizadeh F. Local molecular and connectomic contributions of tau-related neurodegeneration. GeroScience 2024:10.1007/s11357-024-01339-1. [PMID: 39343862 DOI: 10.1007/s11357-024-01339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024] Open
Abstract
Neurodegeneration in Alzheimer's disease (AD) is known to be mostly driven by tau neurofibrillary tangles. However, both tau and neurodegeneration exhibit variability in their distribution across the brain and among individuals, and the relationship between tau and neurodegeneration might be influenced by several factors. I aimed to map local molecular and connectivity characteristics that affect the association between tau pathology and neurodegeneration. The current study was conducted on the cross-sectional tau-PET and longitudinal T1-weighted MRI scan data of 186 participants from the ADNI dataset including 71 cognitively unimpaired (CU) and 115 mild cognitive impairment (MCI) individuals. Furthermore, the normative molecular profile of a region was defined using neurotransmitter receptor densities, gene expression, T1w/T2w ratio (myelination), FDG-PET (glycolytic index, glucose metabolism, and oxygen metabolism), and synaptic density. I found that the excitatory-inhibitory (E:I) ratio, myelination, synaptic density, glycolytic index, and functional connectivity are linked with deviation in the relationship between tau and neurodegeneration. Furthermore, there was spatial similarity between tau pathology and glycolytic index, synaptic density, and functional connectivity across brain regions. The current study demonstrates that the regional susceptibility to tau-related neurodegeneration is associated with specific molecular and connectomic characteristics of the affected neural systems. I found that the molecular and connectivity architecture of the human brain is linked to the different effects of tau pathology on downstream neurodegeneration.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Alzheimer's Disease Institute, Tehran, Iran.
| |
Collapse
|
6
|
Markicevic M, Mandino F, Toyonaga T, Cai Z, Fesharaki-Zadeh A, Shen X, Strittmatter SM, Lake EMR. Repetitive Mild Closed-Head Injury Induced Synapse Loss and Increased Local BOLD-fMRI Signal Homogeneity. J Neurotrauma 2024. [PMID: 39096127 DOI: 10.1089/neu.2024.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Repeated mild head injuries due to sports, or domestic violence and military service are increasingly linked to debilitating symptoms in the long term. Although symptoms may take decades to manifest, potentially treatable neurobiological alterations must begin shortly after injury. Better means to diagnose and treat traumatic brain injuries requires an improved understanding of the mechanisms underlying progression and means through which they can be measured. Here, we employ a repetitive mild traumatic brain injury (rmTBI) and chronic variable stress mouse model to investigate emergent structural and functional brain abnormalities. Brain imaging is achieved with [18F]SynVesT-1 positron emission tomography, with the synaptic vesicle glycoprotein 2A ligand marking synapse density and BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI). Animals were scanned six weeks after concluding rmTBI/Stress procedures. Injured mice showed widespread decreases in synaptic density coupled with an increase in local BOLD-fMRI synchrony detected as regional homogeneity. Injury-affected regions with higher synapse density showed a greater increase in fMRI regional homogeneity. Taken together, these observations may reflect compensatory mechanisms following injury. Multimodal studies are needed to provide deeper insights into these observations.
Collapse
Affiliation(s)
- Marija Markicevic
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Arman Fesharaki-Zadeh
- Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Stephen M Strittmatter
- Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience, School of Medicine, Yale University, New Haven, Connecticut, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Zhou E, Xiao X, Liu B, Tan Z, Zhong J. Characteristics of ear fullness and synaptic loss in ear fullness revealed by SV2A positron emission tomographycortical. Front Mol Neurosci 2024; 17:1451226. [PMID: 39309273 PMCID: PMC11412955 DOI: 10.3389/fnmol.2024.1451226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Objective Studies on feeling of ear fullness (FEF) related to sudden sensorineural hearing loss(SSNHL) are limited. The mechanisms of FEF are unclear. This study aimed to explore the characteristics and related brain activation of SSNHL with FEF. Methods A total of 269 SSNHL patients were prospectively observed and divided into two groups, with FEF and without FEF. Fifteen SSNHL patients with FEF and 20 healthy controls (HCs) were recruited and underwent 18F-SynVesT-1 static PET. Standardized uptake values ratios (SUVr) of 18F-SynVesT-1 were computed between regions of interest. Results The occurrence of FEF was not related to the audiogram type or severity of hearing loss. There was a positive correlation between the degree of FEF and the degree of hearing loss. Recovery from FEF was not related to the audiogram shape, the degree of hearing loss or recovery. Fifteen SSNHL patients with FEF had relatively low 18F-SynVesT-1 uptake in the right middle frontal gyrus, right inferior frontal gyrus, right middle temporal gyrus, bilateral parietal lobe sub-gyral and left medial frontal gyrus, as compared with HCs. There was no relatively high 18F-SynVesT-1 uptake in the cerebral cortex. Conclusion The occurrence and recovery of FEF in SSNHL patients are not related to the classification, degree and recovery of hearing loss. The 18F-SynVesT-1 uptake in the cerebral cortex of patients experiencing SSNHL and FEF has shown alterations. This indicates that FEF may be related to cortical reorganization after the sudden impairment of unilateral auditory input.
Collapse
Affiliation(s)
- En Zhou
- Department of Otolaryngology Head and Neck Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xuping Xiao
- Department of Otolaryngology Head and Neck Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Bin Liu
- Department of Otolaryngology Head and Neck Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zhiqiang Tan
- Department of Otolaryngology Head and Neck Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - JiaYu Zhong
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Marstrand-Joergensen MR, Laurell GL, Herrmann S, Nasser A, Johansen A, Lund A, Andersen TL, Knudsen GM, Pinborg LH. Assessment of cerebral drug occupancy in humans using a single PET-scan: A [ 11C]UCB-J PET study. Eur J Nucl Med Mol Imaging 2024; 51:3292-3304. [PMID: 38758370 PMCID: PMC11369007 DOI: 10.1007/s00259-024-06759-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
PURPOSE Here, we evaluate a PET displacement model with a Single-step and Numerical solution in healthy individuals using the synaptic vesicle glycoprotein (SV2A) PET-tracer [11C]UCB-J and the anti-seizure medication levetiracetam (LEV). We aimed to (1) validate the displacement model by comparing the brain LEV-SV2A occupancy from a single PET scan with the occupancy derived from two PET scans and the Lassen plot and (2) determine the plasma LEV concentration-SV2A occupancy curve in healthy individuals. METHODS Eleven healthy individuals (five females, mean age 35.5 [range: 25-47] years) underwent two 120-min [11C]UCB-J PET scans where an LEV dose (5-30 mg/kg) was administered intravenously halfway through the first PET scan to partially displace radioligand binding to SV2A. Five individuals were scanned twice on the same day; the remaining six were scanned once on two separate days, receiving two identical LEV doses. Arterial blood samples were acquired to determine the arterial input function and plasma LEV concentrations. Using the displacement model, the SV2A-LEV target engagement was calculated and compared with the Lassen plot method. The resulting data were fitted with a single-site binding model. RESULTS SV2A occupancies and VND estimates derived from the displacement model were not significantly different from the Lassen plot (p = 0.55 and 0.13, respectively). The coefficient of variation was 14.6% vs. 17.3% for the Numerical and the Single-step solution in Bland-Altman comparisons with the Lassen plot. The average half maximal inhibitory concentration (IC50), as estimated from the area under the curve of the plasma LEV concentration, was 12.5 µg/mL (95% CI: 5-25) for the Single-Step solution, 11.8 µg/mL (95% CI: 4-25) for the Numerical solution, and 6.3 µg/mL (95% CI: 0.08-21) for the Lassen plot. Constraining Emax to 100% did not significantly improve model fits. CONCLUSION Plasma LEV concentration vs. SV2A occupancy can be determined in humans using a single PET scan displacement model. The average concentration of the three computed IC50 values ranges between 6.3 and 12.5 µg/mL. The next step is to use the displacement model to evaluate LEV occupancy and corresponding plasma concentrations in relation to treatment efficacy. CLINICAL TRIAL REGISTRATION NCT05450822. Retrospectively registered 5 July 2022 https://clinicaltrials.gov/ct2/results? term=NCT05450822&Search=Search.
Collapse
Affiliation(s)
- Maja R Marstrand-Joergensen
- Epilepsy Clinic, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, Copenhagen O, 2100, Denmark
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Rigshospitalet, Building 8057, Blegdamsvej 9, Copenhagen, 8057, DK-2100, Denmark
- Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, 2100, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gjertrud L Laurell
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Rigshospitalet, Building 8057, Blegdamsvej 9, Copenhagen, 8057, DK-2100, Denmark
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Susan Herrmann
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Arafat Nasser
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Rigshospitalet, Building 8057, Blegdamsvej 9, Copenhagen, 8057, DK-2100, Denmark
| | - Annette Johansen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Rigshospitalet, Building 8057, Blegdamsvej 9, Copenhagen, 8057, DK-2100, Denmark
- Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, 2100, Denmark
| | - Anton Lund
- Department of Neuroanaesthesiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, 2100, Denmark
| | - Thomas L Andersen
- Department of Clinical Physiology & Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Rigshospitalet, Building 8057, Blegdamsvej 9, Copenhagen, 8057, DK-2100, Denmark
- Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lars H Pinborg
- Epilepsy Clinic, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, Copenhagen O, 2100, Denmark.
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Rigshospitalet, Building 8057, Blegdamsvej 9, Copenhagen, 8057, DK-2100, Denmark.
- Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, 2100, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Xiao L, Xiang S, Chen C, Zhu H, Zhou M, Tang Y, Feng L, Hu S. Association of synaptic density and cognitive performance in temporal lobe epilepsy: Humans and animals PET imaging study with [ 18F]SynVesT-1. Psychiatry Clin Neurosci 2024; 78:456-467. [PMID: 38804583 DOI: 10.1111/pcn.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
AIM Cognitive impairment is a common comorbidity in individuals with temporal lobe epilepsy (TLE), yet the underlying mechanisms remain unknown. This study explored the putative association between in vivo synaptic loss and cognitive outcomes in TLE patients by PET imaging of synaptic vesicle glycoprotein 2A (SV2A). METHODS We enrolled 16 TLE patients and 10 cognitively normal controls. All participants underwent SV2A PET imaging using [18F]SynVesT-1 and cognitive assessment. Lithium chloride-pilocarpine-induced rats with status epilepticus (n = 20) and controls (n = 6) rats received levetiracetam (LEV, specifically binds to SV2A), valproic acid (VPA), or saline for 14 days. Then, synaptic density was quantified by [18F]SynVesT-1 micro-PET/CT. The novel object recognition and Morris water maze tests evaluated TLE-related cognitive function. SV2A expression was examined and confirmed by immunohistochemistry. RESULTS Temporal lobe epilepsy patients showed significantly reduced synaptic density in hippocampus, which was associated with cognitive performance. In the rat model of TLE, the expression of SV2A and synaptic density decreased consistently in a wider range of brain regions, including the entorhinal cortex, insula, hippocampus, amygdala, thalamus, and cortex. We treated TLE animal models with LEV or VPA to explore whether synaptic loss contributes to cognitive deficits. It was found that LEV significantly exerted protective effects against brain synaptic deficits and cognitive impairment. CONCLUSION This is the first study to link synaptic loss to cognitive deficits in TLE, suggesting [18F]SynVesT-1 PET could be a promising biomarker for monitoring synaptic loss and cognitive dysfunction. LEV might help reverse synaptic deficits and ameliorate learning and memory impairments in TLE patients.
Collapse
Affiliation(s)
- Ling Xiao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Shijun Xiang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Chen Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Haoyue Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhou
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Xiong M, Lubberink M, Appel L, Fang XT, Danfors T, Kumlien E, Antoni G. Evaluation of [ 11C]UCB-A positron emission tomography in human brains. EJNMMI Res 2024; 14:56. [PMID: 38884834 PMCID: PMC11183037 DOI: 10.1186/s13550-024-01117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND In preclinical studies, the positron emission tomography (PET) imaging with [11C]UCB-A provided promising results for imaging synaptic vesicle protein 2A (SV2A) as a proxy for synaptic density. This paper reports the first-in-human [11C]UCB-A PET study to characterise its kinetics in healthy subjects and further evaluate SV2A-specific binding. RESULTS Twelve healthy subjects underwent 90-min baseline [11C]UCB-A scans with PET/MRI, with two subjects participating in an additional blocking scan with the same scanning procedure after a single dose of levetiracetam (1500 mg). Our results indicated abundant [11C]UCB-A brain uptake across all cortical regions, with slow elimination. Kinetic modelling of [11C]UCB-A PET using various compartment models suggested that the irreversible two-tissue compartment model best describes the kinetics of the radioactive tracer. Accordingly, the Patlak graphical analysis was used to simplify the analysis. The estimated SV2A occupancy determined by the Lassen plot was around 66%. Significant specific binding at baseline and comparable binding reduction as grey matter precludes the use of centrum semiovale as reference tissue. CONCLUSIONS [11C]UCB-A PET imaging enables quantifying SV2A in vivo. However, its slow kinetics require a long scan duration, which is impractical with the short half-life of carbon-11. Consequently, the slow kinetics and complicated quantification methods may restrict its use in humans.
Collapse
Affiliation(s)
- Mengfei Xiong
- Molecular Imaging and Medical Physics, Department of Surgical Sciences, Uppsala University, Entrance 70, 75185, Uppsala, Sweden.
| | - Mark Lubberink
- Molecular Imaging and Medical Physics, Department of Surgical Sciences, Uppsala University, Entrance 70, 75185, Uppsala, Sweden
| | - Lieuwe Appel
- Molecular Imaging and Medical Physics, Department of Surgical Sciences, Uppsala University, Entrance 70, 75185, Uppsala, Sweden
| | - Xiaotian Tsong Fang
- Molecular Imaging and Medical Physics, Department of Surgical Sciences, Uppsala University, Entrance 70, 75185, Uppsala, Sweden
- Julius Clinical BV, Zeist, The Netherlands
| | - Torsten Danfors
- Molecular Imaging and Medical Physics, Department of Surgical Sciences, Uppsala University, Entrance 70, 75185, Uppsala, Sweden
| | - Eva Kumlien
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Gunnar Antoni
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Traub-Weidinger T, Arbizu J, Barthel H, Boellaard R, Borgwardt L, Brendel M, Cecchin D, Chassoux F, Fraioli F, Garibotto V, Guedj E, Hammers A, Law I, Morbelli S, Tolboom N, Van Weehaeghe D, Verger A, Van Paesschen W, von Oertzen TJ, Zucchetta P, Semah F. EANM practice guidelines for an appropriate use of PET and SPECT for patients with epilepsy. Eur J Nucl Med Mol Imaging 2024; 51:1891-1908. [PMID: 38393374 PMCID: PMC11139752 DOI: 10.1007/s00259-024-06656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Epilepsy is one of the most frequent neurological conditions with an estimated prevalence of more than 50 million people worldwide and an annual incidence of two million. Although pharmacotherapy with anti-seizure medication (ASM) is the treatment of choice, ~30% of patients with epilepsy do not respond to ASM and become drug resistant. Focal epilepsy is the most frequent form of epilepsy. In patients with drug-resistant focal epilepsy, epilepsy surgery is a treatment option depending on the localisation of the seizure focus for seizure relief or seizure freedom with consecutive improvement in quality of life. Beside examinations such as scalp video/electroencephalography (EEG) telemetry, structural, and functional magnetic resonance imaging (MRI), which are primary standard tools for the diagnostic work-up and therapy management of epilepsy patients, molecular neuroimaging using different radiopharmaceuticals with single-photon emission computed tomography (SPECT) and positron emission tomography (PET) influences and impacts on therapy decisions. To date, there are no literature-based praxis recommendations for the use of Nuclear Medicine (NM) imaging procedures in epilepsy. The aims of these guidelines are to assist in understanding the role and challenges of radiotracer imaging for epilepsy; to provide practical information for performing different molecular imaging procedures for epilepsy; and to provide an algorithm for selecting the most appropriate imaging procedures in specific clinical situations based on current literature. These guidelines are written and authorized by the European Association of Nuclear Medicine (EANM) to promote optimal epilepsy imaging, especially in the presurgical setting in children, adolescents, and adults with focal epilepsy. They will assist NM healthcare professionals and also specialists such as Neurologists, Neurophysiologists, Neurosurgeons, Psychiatrists, Psychologists, and others involved in epilepsy management in the detection and interpretation of epileptic seizure onset zone (SOZ) for further treatment decision. The information provided should be applied according to local laws and regulations as well as the availability of various radiopharmaceuticals and imaging modalities.
Collapse
Affiliation(s)
- Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Javier Arbizu
- Department of Nuclear Medicine, University of Navarra Clinic, Pamplona, Spain
| | - Henryk Barthel
- Department of Nuclear Medicine, Leipzig University Medical Centre, Leipzig, Germany
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Lise Borgwardt
- Department of Clinical Physiology and Nuclear Medicine, University of Copenhagen, Blegdamsvej 9, DK-2100, RigshospitaletCopenhagen, Denmark
| | - Matthias Brendel
- Department of Nuclear Medicine, Ludwig Maximilian-University of Munich, Munich, Germany
- DZNE-German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine-DIMED, University-Hospital of Padova, Padova, Italy
| | - Francine Chassoux
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, 91401, Orsay, France
| | - Francesco Fraioli
- Institute of Nuclear Medicine, University College London (UCL), London, UK
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
- NIMTLab, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Geneva, Switzerland
| | - Eric Guedj
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix Marseille Univ, Marseille, France
| | - Alexander Hammers
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London & Guy's and St Thomas' PET Centre, King's College London, London, UK
| | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Silvia Morbelli
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, Université de Lorraine, IADI, INSERM U1254, Nancy, France
| | - Wim Van Paesschen
- Laboratory for Epilepsy Research, KU Leuven and Department of Neurology, University Hospitals, Leuven, Belgium
| | - Tim J von Oertzen
- Depts of Neurology 1&2, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Pietro Zucchetta
- Nuclear Medicine Unit, Department of Medicine-DIMED, University-Hospital of Padova, Padova, Italy
| | - Franck Semah
- Nuclear Medicine Department, University Hospital, Inserm, CHU Lille, U1172-LilNCog-Lille, F-59000, Lille, France.
| |
Collapse
|
12
|
Markicevic M, Mandino F, Toyonaga T, Cai Z, Fesharaki-Zadeh A, Shen X, Strittmatter SM, Lake E. Repetitive mild closed-head injury induced synapse loss and increased local BOLD-fMRI signal homogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595651. [PMID: 38826468 PMCID: PMC11142233 DOI: 10.1101/2024.05.24.595651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Repeated mild head injuries due to sports, or domestic violence and military service are increasingly linked to debilitating symptoms in the long term. Although symptoms may take decades to manifest, potentially treatable neurobiological alterations must begin shortly after injury. Better means to diagnose and treat traumatic brain injuries, requires an improved understanding of the mechanisms underlying progression and means through which they can be measured. Here, we employ a repetitive mild closed-head injury (rmTBI) and chronic variable stress (CVS) mouse model to investigate emergent structural and functional brain abnormalities. Brain imaging is achieved with [ 18 F]SynVesT-1 positron emission tomography, with the synaptic vesicle glycoprotein 2A ligand marking synapse density and BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI). Animals were scanned six weeks after concluding rmTBI/Stress procedures. Injured mice showed widespread decreases in synaptic density coupled with an i ncrease in local BOLD-fMRI synchrony detected as regional homogeneity. Injury-affected regions with higher synapse density showed a greater increase in fMRI regional homogeneity. Taken together, these observations may reflect compensatory mechanisms following injury. Multimodal studies are needed to provide deeper insights into these observations.
Collapse
|
13
|
Li C, Wang Z, Ren M, Ren S, Wu G, Wang L. Synaptic vesicle protein 2A mitigates parthanatos via apoptosis-inducing factor in a rat model of pharmacoresistant epilepsy. CNS Neurosci Ther 2024; 30:e14778. [PMID: 38801174 PMCID: PMC11129553 DOI: 10.1111/cns.14778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
AIMS Synaptic vesicle protein 2A (SV2A) is a unique therapeutic target for pharmacoresistant epilepsy (PRE). As seizure-induced neuronal programmed death, parthanatos was rarely reported in PRE. Apoptosis-inducing factor (AIF), which has been implicated in parthanatos, shares a common cytoprotective function with SV2A. We aimed to investigate whether parthanatos participates in PRE and is mitigated by SV2A via AIF. METHODS An intraperitoneal injection of lithium chloride-pilocarpine was used to establish an epileptic rat model, and phenytoin and phenobarbital sodium were utilized to select PRE and pharmacosensitive rats. The expression of SV2A was manipulated via lentivirus delivery into the hippocampus. Video surveillance was used to assess epileptic ethology. Biochemical tests were employed to test hippocampal tissues following a successful SV2A infection. Molecular dynamic calculations were used to simulate the interaction between SV2A and AIF. RESULTS Parthanatos core index, PARP1, PAR, nuclear AIF and MIF, γ-H2AX, and TUNEL staining were all increased in PRE. SV2A is bound to AIF to form a stable complex, successfully inhibiting AIF and MIF nuclear translocation and parthanatos and consequently mitigating spontaneous recurrent seizures in PRE. Moreover, parthanatos deteriorated after the SV2A reduction. SIGNIFICANCE SV2A protected hippocampal neurons and mitigated epileptic seizures by inhibiting parthanatos via binding to AIF in PRE.
Collapse
Affiliation(s)
- Chen Li
- School of Clinical MedicineGuizhou Medical UniversityGuiyangGuizhouChina
| | - Ziqi Wang
- School of Clinical MedicineGuizhou Medical UniversityGuiyangGuizhouChina
| | - Mianmian Ren
- School of Clinical MedicineGuizhou Medical UniversityGuiyangGuizhouChina
| | - Siying Ren
- The Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Guofeng Wu
- The Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Likun Wang
- The Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| |
Collapse
|
14
|
Toyonaga T, Khattar N, Wu Y, Lu Y, Naganawa M, Gallezot JD, Matuskey D, Mecca AP, Pittman B, Dias M, Nabulsi NB, Finnema SJ, Chen MK, Arnsten A, Radhakrishnan R, Skosnik PD, D'Souza DC, Esterlis I, Huang Y, van Dyck CH, Carson RE. The regional pattern of age-related synaptic loss in the human brain differs from gray matter volume loss: in vivo PET measurement with [ 11C]UCB-J. Eur J Nucl Med Mol Imaging 2024; 51:1012-1022. [PMID: 37955791 DOI: 10.1007/s00259-023-06487-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/21/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE Aging is a major societal concern due to age-related functional losses. Synapses are crucial components of neural circuits, and synaptic density could be a sensitive biomarker to evaluate brain function. [11C]UCB-J is a positron emission tomography (PET) ligand targeting synaptic vesicle glycoprotein 2A (SV2A), which can be used to evaluate brain synaptic density in vivo. METHODS We evaluated age-related changes in gray matter synaptic density, volume, and blood flow using [11C]UCB-J PET and magnetic resonance imaging (MRI) in a wide age range of 80 cognitive normal subjects (21-83 years old). Partial volume correction was applied to the PET data. RESULTS Significant age-related decreases were found in 13, two, and nine brain regions for volume, synaptic density, and blood flow, respectively. The prefrontal cortex showed the largest volume decline (4.9% reduction per decade: RPD), while the synaptic density loss was largest in the caudate (3.6% RPD) and medial occipital cortex (3.4% RPD). The reductions in caudate are consistent with previous SV2A PET studies and likely reflect that caudate is the site of nerve terminals for multiple major tracts that undergo substantial age-related neurodegeneration. There was a non-significant negative relationship between volume and synaptic density reductions in 16 gray matter regions. CONCLUSION MRI and [11]C-UCB-J PET showed age-related decreases of gray matter volume, synaptic density, and blood flow; however, the regional patterns of the reductions in volume and SV2A binding were different. Those patterns suggest that MR-based measures of GM volume may not be directly representative of synaptic density.
Collapse
Affiliation(s)
- Takuya Toyonaga
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Nikkita Khattar
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yanjun Wu
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yihuan Lu
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Mika Naganawa
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jean-Dominique Gallezot
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - David Matuskey
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Adam P Mecca
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
| | - Brian Pittman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Mark Dias
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Nabeel B Nabulsi
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sjoerd J Finnema
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ming-Kai Chen
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Amy Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University School of Medicine, New Haven, CT, USA
| | - Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Patrick D Skosnik
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Bouvé College of Health Sciences, Northeastern University Schools of Nursing & Pharmacy/Pharmaceutical Sciences, Boston, MA, USA
| | - Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Irina Esterlis
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Christopher H van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Richard E Carson
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
15
|
DiFilippo A, Jonaitis E, Makuch R, Gambetti B, Fleming V, Ennis G, Barnhart T, Engle J, Bendlin B, Johnson S, Handen B, Krinsky-McHale S, Hartley S, Christian B. Measurement of synaptic density in Down syndrome using PET imaging: a pilot study. Sci Rep 2024; 14:4676. [PMID: 38409349 PMCID: PMC10897336 DOI: 10.1038/s41598-024-54669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
Down syndrome (DS) is the most prevalent genetic cause of intellectual disability, resulting from trisomy 21. Recently, positron emission tomography (PET) imaging has been used to image synapses in vivo. The motivation for this pilot study was to investigate whether synaptic density in low functioning adults with DS can be evaluated using the PET radiotracer [11C]UCB-J. Data were acquired from low functioning adults with DS (n = 4) and older neurotypical (NT) adults (n = 37). Motion during the scans required the use of a 10-minute acquisition window for the calculation of synaptic density using SUVR50-60,CS which was determined to be a suitable approximation for specific binding in this analysis using dynamic data from the NT group. Of the regions analyzed a large effect was observed when comparing DS and NT hippocampus and cerebral cortex synaptic density as well as hippocampus and cerebellum volumes. In this pilot study, PET imaging of [11C]UCB-J was successfully completed and synaptic density measured in low functioning DS adults. This work provides the basis for studies where synaptic density may be compared between larger groups of NT adults and adults with DS who have varying degrees of baseline cognitive status.
Collapse
Affiliation(s)
- Alexandra DiFilippo
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| | - Erin Jonaitis
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Renee Makuch
- University of Wisconsin-Madison Waisman Center, Madison, WI, USA
| | - Brianna Gambetti
- University of Wisconsin-Madison Waisman Center, Madison, WI, USA
| | - Victoria Fleming
- University of Wisconsin-Madison Waisman Center, Madison, WI, USA
| | - Gilda Ennis
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Todd Barnhart
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Jonathan Engle
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Barbara Bendlin
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Sterling Johnson
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Benjamin Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sharon Krinsky-McHale
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Sigan Hartley
- University of Wisconsin-Madison Waisman Center, Madison, WI, USA
| | - Bradley Christian
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin-Madison Waisman Center, Madison, WI, USA
| |
Collapse
|
16
|
Drake LR, Wu Y, Naganawa M, Asch R, Zheng C, Najafzadeh S, Pracitto R, Lindemann M, Li S, Ropchan J, Labaree D, Emery PR, Dias M, Henry S, Nabulsi N, Matuskey D, Hillmer AT, Gallezot JD, Carson RE, Cai Z, Huang Y. First-in-Human Study of 18F-SynVesT-2: An SV2A PET Imaging Probe with Fast Brain Kinetics and High Specific Binding. J Nucl Med 2024; 65:jnumed.123.266470. [PMID: 38360052 PMCID: PMC10924160 DOI: 10.2967/jnumed.123.266470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 02/17/2024] Open
Abstract
PET imaging of synaptic vesicle glycoprotein 2A allows for noninvasive quantification of synapses. This first-in-human study aimed to evaluate the kinetics, test-retest reproducibility, and extent of specific binding of a recently developed synaptic vesicle glycoprotein 2A PET ligand, (R)-4-(3-(18F-fluoro)phenyl)-1-((3-methylpyridin-4-yl)methyl)pyrrolidine-2-one (18F-SynVesT-2), with fast brain kinetics. Methods: Nine healthy volunteers participated in this study and were scanned on a High Resolution Research Tomograph scanner with 18F-SynVesT-2. Five volunteers were scanned twice on 2 different days. Five volunteers were rescanned with preinjected levetiracetam (20 mg/kg, intravenously). Arterial blood was collected to calculate the plasma free fraction and generate the arterial input function. Individual MR images were coregistered to a brain atlas to define regions of interest for generating time-activity curves, which were fitted with 1- and 2-tissue-compartment (1TC and 2TC) models to derive the regional distribution volume (V T). The regional nondisplaceable binding potential (BP ND) was calculated from 1TC V T, using the centrum semiovale (CS) as the reference region. Results: 18F-SynVesT-2 was synthesized with high molar activity (187 ± 69 MBq/nmol, n = 19). The parent fraction of 18F-SynVesT-2 in plasma was 28% ± 8% at 30 min after injection, and the plasma free fraction was high (0.29 ± 0.04). 18F-SynVesT-2 entered the brain quickly, with an SUVpeak of 8 within 10 min after injection. Regional time-activity curves fitted well with both the 1TC and the 2TC models; however, V T was estimated more reliably using the 1TC model. The 1TC V T ranged from 1.9 ± 0.2 mL/cm3 in CS to 7.6 ± 0.8 mL/cm3 in the putamen, with low absolute test-retest variability (6.0% ± 3.6%). Regional BP ND ranged from 1.76 ± 0.21 in the hippocampus to 3.06 ± 0.29 in the putamen. A 20-min scan was sufficient to provide reliable V T and BP ND Conclusion: 18F-SynVesT-2 has fast kinetics, high specific uptake, and low nonspecific uptake in the brain. Consistent with the nonhuman primate results, the kinetics of 18F-SynVesT-2 is faster than the kinetics of 11C-UCB-J and 18F-SynVesT-1 in the human brain and enables a shorter dynamic scan to derive physiologic information on cerebral blood flow and synapse density.
Collapse
Affiliation(s)
| | - Yanjun Wu
- Yale PET Center, New Haven, Connecticut
| | | | - Ruth Asch
- Yale PET Center, New Haven, Connecticut
| | | | | | | | | | - Songye Li
- Yale PET Center, New Haven, Connecticut
| | | | | | | | - Mark Dias
- Yale PET Center, New Haven, Connecticut
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tang Y, Xiao L, Deng C, Zhu H, Gao X, Li J, Yang Z, Liu D, Feng L, Hu S. [ 18F]FDG PET metabolic patterns in mesial temporal lobe epilepsy with different pathological types. Eur Radiol 2024; 34:887-898. [PMID: 37581655 DOI: 10.1007/s00330-023-10089-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 08/16/2023]
Abstract
OBJECTIVES To investigate [18F]FDG PET patterns of mesial temporal lobe epilepsy (MTLE) patients with distinct pathologic types and provide possible guidance for predicting long-term prognoses of patients undergoing epilepsy surgery. METHODS This was a retrospective review of MTLE patients who underwent anterior temporal lobectomy between 2016 and 2021. Patients were classified as having chronic inflammation and gliosis (gliosis, n = 44), hippocampal sclerosis (HS, n = 43), or focal cortical dysplasia plus HS (FCD-HS, n = 13) based on the postoperative pathological diagnosis. Metabolic patterns and the severity of metabolic abnormalities were investigated among MTLE patients and healthy controls (HCs). The standardized uptake value (SUV), SUV ratio (SUVr), and asymmetry index (AI) of regions of interest were applied to evaluate the severity of metabolic abnormalities. Imaging processing was performed with statistical parametric mapping (SPM12). RESULTS With a mean follow-up of 2.8 years, the seizure freedom (Engel class IA) rates of gliosis, HS, and FCD-HS were 54.55%, 62.79%, and 69.23%, respectively. The patients in the gliosis group presented a metabolic pattern with a larger involvement of extratemporal areas, including the ipsilateral insula. SUV, SUVr, and AI in ROIs were decreased for patients in all three MTLE groups compared with those of HCs, but the differences among all three MTLE groups were not significant. CONCLUSIONS MTLE patients with isolated gliosis had the worst prognosis and hypometabolism in the insula, but the degree of metabolic decrease did not differ from the other two groups. Hypometabolic regions should be prioritized for [18F]FDG PET presurgical evaluation rather than [18F]FDG uptake values. CLINICAL RELEVANCE STATEMENT This study proposes guidance for optimizing the operation scheme in patients with refractory MTLE and emphasizes the potential of molecular neuroimaging with PET using selected tracers to predict the postsurgical histology of patients with refractory MTLE epilepsy. KEY POINTS • MTLE patients with gliosis had poor surgical outcomes and showed a distinct pattern of decreased metabolism in the ipsilateral insula. • In the preoperative assessment of MTLE, it is recommended to prioritize the evaluation of glucose hypometabolism areas over [18F]FDG uptake values. • The degree of glucose hypometabolism in the epileptogenic focus was not associated with the surgical outcomes of MTLE.
Collapse
Affiliation(s)
- Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Ling Xiao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Chijun Deng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Haoyue Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaomei Gao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University (Jiangxi Branch), Nanchang, Jiangxi, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Key Laboratory of Biological, Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
18
|
Visser M, O'Brien JT, Mak E. In vivo imaging of synaptic density in neurodegenerative disorders with positron emission tomography: A systematic review. Ageing Res Rev 2024; 94:102197. [PMID: 38266660 DOI: 10.1016/j.arr.2024.102197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Positron emission tomography (PET) with radiotracers that bind to synaptic vesicle glycoprotein 2 A (SV2A) enables quantification of synaptic density in the living human brain. Assessing the regional distribution and severity of synaptic density loss will contribute to our understanding of the pathological processes that precede atrophy in neurodegeneration. In this systematic review, we provide a discussion of in vivo SV2A PET imaging research for quantitative assessment of synaptic density in various dementia conditions: amnestic Mild Cognitive Impairment and Alzheimer's disease, Frontotemporal dementia, Progressive supranuclear palsy and Corticobasal degeneration, Parkinson's disease and Dementia with Lewy bodies, Huntington's disease, and Spinocerebellar Ataxia. We discuss the main findings concerning group differences and clinical-cognitive correlations, and explore relations between SV2A PET and other markers of pathology. Additionally, we touch upon synaptic density in healthy ageing and outcomes of radiotracer validation studies. Studies were identified on PubMed and Embase between 2018 and 2023; last searched on the 3rd of July 2023. A total of 36 studies were included, comprising 5 on normal ageing, 21 clinical studies, and 10 validation studies. Extracted study characteristics were participant details, methodological aspects, and critical findings. In summary, the small but growing literature on in vivo SV2A PET has revealed different spatial patterns of synaptic density loss among various neurodegenerative disorders that correlate with cognitive functioning, supporting the potential role of SV2A PET imaging for differential diagnosis. SV2A PET imaging shows tremendous capability to provide novel insights into the aetiology of neurodegenerative disorders and great promise as a biomarker for synaptic density reduction. Novel directions for future synaptic density research are proposed, including (a) longitudinal imaging in larger patient cohorts of preclinical dementias, (b) multi-modal mapping of synaptic density loss onto other pathological processes, and (c) monitoring therapeutic responses and assessing drug efficacy in clinical trials.
Collapse
Affiliation(s)
- Malouke Visser
- Department of Psychiatry, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, United Kingdom; Neuropsychology and Rehabilitation Psychology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - John T O'Brien
- Department of Psychiatry, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Elijah Mak
- Department of Psychiatry, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, United Kingdom.
| |
Collapse
|
19
|
Belete TM. Recent Progress in the Development of New Antiepileptic Drugs with Novel Targets. Ann Neurosci 2023; 30:262-276. [PMID: 38020406 PMCID: PMC10662271 DOI: 10.1177/09727531231185991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/12/2023] [Indexed: 12/01/2023] Open
Abstract
Background Epilepsy is a chronic neurological disorder that affects approximately 50-70 million people worldwide. Epilepsy has a significant economic and social burden on patients as well as on the country. The recurrent, spontaneous seizure activity caused by abnormal neuronal firing in the brain is a hallmark of epilepsy. The current antiepileptic drugs provide symptomatic relief by restoring the balance of excitatory and inhibitory neurotransmitters. Besides, about 30% of epileptic patients do not achieve seizure control. The prevalence of adverse drug reactions, including aggression, agitation, irritability, and associated comorbidities, is also prevalent. Therefore, researchers should focus on developing more effective, safe, and disease-modifying agents based on new molecular targets and signaling cascades. Summary This review overviews several clinical trials that help identify promising new targets like lactate dehydrogenase inhibitors, c-jun n-terminal kinases, high mobility group box-1 antibodies, astrocyte reactivity inhibitors, cholesterol 24-hydroxylase inhibitors, glycogen synthase kinase-3 beta inhibitors, and glycolytic inhibitors to develop a new antiepileptic drug. Key messages Approximately 30% of epileptic patients do not achieve seizure control. The current anti-seizure drugs are not disease modifying, cure or prevent epilepsy. Lactate dehydrogenase inhibitor, cholesterol 24-hydroxylase inhibitor, glycogen synthase kinase-3 beta inhibitors, and mTOR inhibitors have a promising antiepileptogenic effect.
Collapse
Affiliation(s)
- Tafere Mulaw Belete
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia, Africa
| |
Collapse
|
20
|
Shafiei G, Fulcher BD, Voytek B, Satterthwaite TD, Baillet S, Misic B. Neurophysiological signatures of cortical micro-architecture. Nat Commun 2023; 14:6000. [PMID: 37752115 PMCID: PMC10522715 DOI: 10.1038/s41467-023-41689-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Systematic spatial variation in micro-architecture is observed across the cortex. These micro-architectural gradients are reflected in neural activity, which can be captured by neurophysiological time-series. How spontaneous neurophysiological dynamics are organized across the cortex and how they arise from heterogeneous cortical micro-architecture remains unknown. Here we extensively profile regional neurophysiological dynamics across the human brain by estimating over 6800 time-series features from the resting state magnetoencephalography (MEG) signal. We then map regional time-series profiles to a comprehensive multi-modal, multi-scale atlas of cortical micro-architecture, including microstructure, metabolism, neurotransmitter receptors, cell types and laminar differentiation. We find that the dominant axis of neurophysiological dynamics reflects characteristics of power spectrum density and linear correlation structure of the signal, emphasizing the importance of conventional features of electromagnetic dynamics while identifying additional informative features that have traditionally received less attention. Moreover, spatial variation in neurophysiological dynamics is co-localized with multiple micro-architectural features, including gene expression gradients, intracortical myelin, neurotransmitter receptors and transporters, and oxygen and glucose metabolism. Collectively, this work opens new avenues for studying the anatomical basis of neural activity.
Collapse
Affiliation(s)
- Golia Shafiei
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ben D Fulcher
- School of Physics, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Bradley Voytek
- Department of Cognitive Science, Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
| |
Collapse
|
21
|
Miranda A, Bertoglio D, De Weerdt C, Staelens S, Verhaeghe J. Isoflurane and ketamine-xylazine modify pharmacokinetics of [ 18F]SynVesT-1 in the mouse brain. J Cereb Blood Flow Metab 2023; 43:1612-1624. [PMID: 37113068 PMCID: PMC10414002 DOI: 10.1177/0271678x231173185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/15/2023] [Accepted: 03/26/2023] [Indexed: 04/29/2023]
Abstract
We investigated the effect of isoflurane and ketamine-xylazine anesthesia on the positron emission tomography (PET) tracer [18F]SynVesT-1 in the mouse brain. [18F]SynVesT-1 PET scans were performed in C57BL/6J mice in five conditions: isoflurane anesthesia (ANISO), ketamine-xylazine (ANKX), awake freely moving (AW), awake followed by isoflurane administration (AW/ANISO) or followed by ketamine-xylazine (AW/ANKX) 20 min post tracer injection. ANISO, ANKX and AW scans were also performed in mice administered with levetiracetam (LEV, 200 mg/kg) to assess non-displaceable binding. Metabolite analysis was performed in ANISO, ANKX and AW mice. Finally, in vivo autoradiography in ANISO, ANKX and AW mice at 30 min post-injection was performed for validation. Kinetic modeling, with a metabolite corrected image derived input function, was performed to calculate total and non-displaceable volume of distribution (VT(IDIF)). VT(IDIF) was higher in ANISO compared to AW (p < 0.0001) while VT(IDIF) in ANKX was lower compared with AW (p < 0.0001). Non-displaceable VT(IDIF) was significantly different between ANISO and AW, but not between ANKX and AW. Change in the TAC washout was observed after administration of either isoflurane or ketamine-xylazine. Observed changes in tracer kinetics and volume of distribution might be explained by physiological changes due to anesthesia, as well as by induced cellular effects.
Collapse
Affiliation(s)
- Alan Miranda
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Daniele Bertoglio
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Caro De Weerdt
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
22
|
Shafiei G, Fulcher BD, Voytek B, Satterthwaite TD, Baillet S, Misic B. Neurophysiological signatures of cortical micro-architecture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525101. [PMID: 36747831 PMCID: PMC9900796 DOI: 10.1101/2023.01.23.525101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Systematic spatial variation in micro-architecture is observed across the cortex. These micro-architectural gradients are reflected in neural activity, which can be captured by neurophysiological time-series. How spontaneous neurophysiological dynamics are organized across the cortex and how they arise from heterogeneous cortical micro-architecture remains unknown. Here we extensively profile regional neurophysiological dynamics across the human brain by estimating over 6 800 timeseries features from the resting state magnetoencephalography (MEG) signal. We then map regional time-series profiles to a comprehensive multi-modal, multi-scale atlas of cortical micro-architecture, including microstructure, metabolism, neurotransmitter receptors, cell types and laminar differentiation. We find that the dominant axis of neurophysiological dynamics reflects characteristics of power spectrum density and linear correlation structure of the signal, emphasizing the importance of conventional features of electromagnetic dynamics while identifying additional informative features that have traditionally received less attention. Moreover, spatial variation in neurophysiological dynamics is colocalized with multiple micro-architectural features, including genomic gradients, intracortical myelin, neurotransmitter receptors and transporters, and oxygen and glucose metabolism. Collectively, this work opens new avenues for studying the anatomical basis of neural activity.
Collapse
Affiliation(s)
- Golia Shafiei
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben D. Fulcher
- School of Physics, The University of Sydney, NSW 2006, Australia
| | - Bradley Voytek
- Department of Cognitive Science, Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA
| | - Theodore D. Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| |
Collapse
|
23
|
Howes OD, Cummings C, Chapman GE, Shatalina E. Neuroimaging in schizophrenia: an overview of findings and their implications for synaptic changes. Neuropsychopharmacology 2023; 48:151-167. [PMID: 36056106 PMCID: PMC9700830 DOI: 10.1038/s41386-022-01426-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022]
Abstract
Over the last five decades, a large body of evidence has accrued for structural and metabolic brain alterations in schizophrenia. Here we provide an overview of these findings, focusing on measures that have traditionally been thought to reflect synaptic spine density or synaptic activity and that are relevant for understanding if there is lower synaptic density in the disorder. We conducted literature searches to identify meta-analyses or other relevant studies in patients with chronic or first-episode schizophrenia, or in people at high genetic or clinical risk for psychosis. We identified 18 meta-analyses including over 50,000 subjects in total, covering: structural MRI measures of gyrification index, grey matter volume, grey matter density and cortical thickness, neurite orientation dispersion and density imaging, PET imaging of regional glucose metabolism and magnetic resonance spectroscopy measures of N-acetylaspartate. We also review preclinical evidence on the relationship between ex vivo synaptic measures and structural MRI imaging, and PET imaging of synaptic protein 2A (SV2A). These studies show that schizophrenia is associated with lower grey matter volumes and cortical thickness, accelerated grey matter loss over time, abnormal gyrification patterns, and lower regional SV2A levels and metabolic markers in comparison to controls (effect sizes from ~ -0.11 to -1.0). Key regions affected include frontal, anterior cingulate and temporal cortices and the hippocampi. We identify several limitations for the interpretation of these findings in terms of understanding synaptic alterations. Nevertheless, taken with post-mortem findings, they suggest that schizophrenia is associated with lower synaptic density in some brain regions. However, there are several gaps in evidence, in particular whether SV2A findings generalise to other cohorts.
Collapse
Affiliation(s)
- Oliver D Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| | - Connor Cummings
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Clare Hall (College), University of Cambridge, Cambridge, UK
| | - George E Chapman
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Ekaterina Shatalina
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
| |
Collapse
|
24
|
Sukprakun C, Tepmongkol S. Nuclear imaging for localization and surgical outcome prediction in epilepsy: A review of latest discoveries and future perspectives. Front Neurol 2022; 13:1083775. [PMID: 36588897 PMCID: PMC9800996 DOI: 10.3389/fneur.2022.1083775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Background Epilepsy is one of the most common neurological disorders. Approximately, one-third of patients with epilepsy have seizures refractory to antiepileptic drugs and further require surgical removal of the epileptogenic region. In the last decade, there have been many recent developments in radiopharmaceuticals, novel image analysis techniques, and new software for an epileptogenic zone (EZ) localization. Objectives Recently, we provided the latest discoveries, current challenges, and future perspectives in the field of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) in epilepsy. Methods We searched for relevant articles published in MEDLINE and CENTRAL from July 2012 to July 2022. A systematic literature review based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis was conducted using the keywords "Epilepsy" and "PET or SPECT." We included both prospective and retrospective studies. Studies with preclinical subjects or not focusing on EZ localization or surgical outcome prediction using recently developed PET radiopharmaceuticals, novel image analysis techniques, and new software were excluded from the review. The remaining 162 articles were reviewed. Results We first present recent findings and developments in PET radiopharmaceuticals. Second, we present novel image analysis techniques and new software in the last decade for EZ localization. Finally, we summarize the overall findings and discuss future perspectives in the field of PET and SPECT in epilepsy. Conclusion Combining new radiopharmaceutical development, new indications, new techniques, and software improves EZ localization and provides a better understanding of epilepsy. These have proven not to only predict prognosis but also to improve the outcome of epilepsy surgery.
Collapse
Affiliation(s)
- Chanan Sukprakun
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supatporn Tepmongkol
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,Chulalongkorn University Biomedical Imaging Group (CUBIG), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand,Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,*Correspondence: Supatporn Tepmongkol ✉
| |
Collapse
|
25
|
Akkermans J, Zajicek F, Miranda A, Adhikari MH, Bertoglio D. Identification of pre-synaptic density networks using [ 11C]UCB-J PET imaging and ICA in mice. Neuroimage 2022; 264:119771. [PMID: 36436710 DOI: 10.1016/j.neuroimage.2022.119771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Synaptic vesicle glycoprotein 2A (SV2A) is a vesicle glycoprotein involved in neurotransmitter release. SV2A is located on the pre-synaptic terminals of neurons and visualized using the radioligand [11C]UCB-J and positron emission tomography (PET) imaging. Thus, SV2A PET imaging can provide a proxy for pre-synaptic density in health and disease. This study aims to apply independent component analysis (ICA) to SV2A PET data acquired in mice to identify pre-synaptic density networks (pSDNs), explore how ageing affects these pSDNs, and determine the impact of a neurological disorder on these networks. METHODS We used [11C]UCB-J PET imaging data (n = 135) available at different ages (3, 7, 10, and 16 months) in wild-type (WT) C57BL/6J mice and in diseased mice (mouse model of Huntington's disease, HD) with reported synaptic deficits. First, ICA was performed on a healthy dataset after it was split into two equal-sized samples (n = 36 each) and the analysis was repeated 50 times in different partitions. We tested different model orders (8, 12, and 16) and identified the pSDNs. Next, we investigated the effect of age on the loading weights of the identified pSDNs. Additionally, the identified pSDNs were compared to those of diseased mice to assess the impact of disease on each pSDNs. RESULTS Model order 12 resulted in the preferred choice to provide six reliable and reproducible independent components (ICs) as supported by the cluster-quality index (IQ) and regression coefficients (β) values. Temporal analysis showed age-related statistically significant changes on the loading weights in four ICs. ICA in an HD model revealed a statistically significant disease-related effect on the loading weights in several pSDNs in line with the progression of the disease. CONCLUSION This study validated the use of ICA on SV2A PET data acquired with [11C]UCB-J for the identification of cerebral pre-synaptic density networks in mice in a rigorous and reproducible manner. Furthermore, we showed that different pSDNs change with age and are affected in a disease condition. These findings highlight the potential value of ICA in understanding pre-synaptic density networks in the mouse brain.
Collapse
Affiliation(s)
- Jordy Akkermans
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Belgium
| | - Franziska Zajicek
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Belgium
| | - Alan Miranda
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Belgium
| | | | - Daniele Bertoglio
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Belgium; Bio-Imaging Lab, University of Antwerp, Belgium.
| |
Collapse
|
26
|
Bertoglio D, Zajicek F, Lombaerde SD, Miranda A, Stroobants S, Wang Y, Dominguez C, Munoz-Sanjuan I, Bard J, Liu L, Verhaeghe J, Staelens S. Validation, kinetic modeling, and test-retest reproducibility of [ 18F]SynVesT-1 for PET imaging of synaptic vesicle glycoprotein 2A in mice. J Cereb Blood Flow Metab 2022; 42:1867-1878. [PMID: 35570828 PMCID: PMC9536120 DOI: 10.1177/0271678x221101648] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alterations in synaptic vesicle glycoprotein 2 A (SV2A) have been associated with several neuropsychiatric and neurodegenerative disorders. Therefore, SV2A positron emission tomography (PET) imaging may provide a unique tool to investigate synaptic density dynamics during disease progression and after therapeutic intervention. This study aims to extensively characterize the novel radioligand [18F]SynVesT-1 for preclinical applications. In C57Bl/6J mice (n = 39), we assessed the plasma profile of [18F]SynVesT-1, validated the use of a noninvasive image-derived input function (IDIF) compared to an arterial input function (AIF), performed a blocking study with levetiracetam (50 and 200 mg/kg, i.p.) to verify the specificity towards SV2A, examined kinetic models for volume of distribution (VT) quantification, and explored test-retest reproducibility of [18F]SynVesT-1 in the central nervous system (CNS). Plasma availability of [18F]SynVesT-1 decreased rapidly (13.4 ± 1.5% at 30 min post-injection). VT based on AIF and IDIF showed excellent agreement (r2 = 0.95, p < 0.0001) and could be reliably estimated with a 60-min acquisition. The blocking study resulted in a complete blockade with no suitable reference region. Test-retest analysis indicated good reproducibility (mean absolute variability <10%). In conclusion, [18F]SynVesT-1 is selective for SV2A with optimal kinetics representing a candidate tool to quantify CNS synaptic density non-invasively.
Collapse
Affiliation(s)
- Daniele Bertoglio
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp, Belgium
| | - Franziska Zajicek
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp, Belgium
| | - Stef De Lombaerde
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Alan Miranda
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Yuchuan Wang
- CHDI Management/CHDI Foundation, Los Angeles, California, USA
| | - Celia Dominguez
- CHDI Management/CHDI Foundation, Los Angeles, California, USA
| | | | - Jonathan Bard
- CHDI Management/CHDI Foundation, Los Angeles, California, USA
| | - Longbin Liu
- CHDI Management/CHDI Foundation, Los Angeles, California, USA
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
27
|
Rossano S, Toyonaga T, Berg E, Lorence I, Fowles K, Nabulsi N, Ropchan J, Li S, Ye Y, Felchner Z, Kukis D, Huang Y, Benveniste H, Tarantal AF, Groman S, Carson RE. Imaging the fetal nonhuman primate brain with SV2A positron emission tomography (PET). Eur J Nucl Med Mol Imaging 2022; 49:3679-3691. [PMID: 35633376 PMCID: PMC9826644 DOI: 10.1007/s00259-022-05825-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/26/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Exploring synaptic density changes during brain growth is crucial to understanding brain development. Previous studies in nonhuman primates report a rapid increase in synapse number between the late gestational period and the early neonatal period, such that synaptic density approaches adult levels by birth. Prenatal synaptic development may have an enduring impact on postnatal brain development, but precisely how synaptic density changes in utero are unknown because current methods to quantify synaptic density are invasive and require post-mortem brain tissue. METHODS We used synaptic vesicle glycoprotein 2A (SV2A) positron emission tomography (PET) radioligands [11C]UCB-J and [18F]Syn-VesT-1 to conduct the first assessment of synaptic density in the developing fetal brain in gravid rhesus monkeys. Eight pregnant monkeys were scanned twice during the third trimester at two imaging sites. Fetal post-mortem samples were collected near term in a subset of subjects to quantify SV2A density by Western blot. RESULTS Image-derived fetal brain SV2A measures increased during the third trimester. SV2A concentrations were greater in subcortical regions than in cortical regions at both gestational ages. Near term, SV2A density was higher in primary motor and visual areas than respective associative regions. Post-mortem quantification of SV2A density was significantly correlated with regional SV2A PET measures. CONCLUSION While further study is needed to determine the exact relationship of SV2A and synaptic density, the imaging paradigm developed in the current study allows for the effective in vivo study of SV2A development in the fetal brain.
Collapse
Affiliation(s)
- Samantha Rossano
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Eric Berg
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Isabella Lorence
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Krista Fowles
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Jim Ropchan
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Songye Li
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Yunpeng Ye
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Zachary Felchner
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | - David Kukis
- Center for Molecular and Genomic Imaging, University of California, Davis, CA, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Alice F Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, and California National Primate Research Center, University of California, Davis, CA, USA
| | - Stephanie Groman
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
28
|
Juengling FD, Wuest F, Kalra S, Agosta F, Schirrmacher R, Thiel A, Thaiss W, Müller HP, Kassubek J. Simultaneous PET/MRI: The future gold standard for characterizing motor neuron disease-A clinico-radiological and neuroscientific perspective. Front Neurol 2022; 13:890425. [PMID: 36061999 PMCID: PMC9428135 DOI: 10.3389/fneur.2022.890425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/20/2022] [Indexed: 01/18/2023] Open
Abstract
Neuroimaging assessment of motor neuron disease has turned into a cornerstone of its clinical workup. Amyotrophic lateral sclerosis (ALS), as a paradigmatic motor neuron disease, has been extensively studied by advanced neuroimaging methods, including molecular imaging by MRI and PET, furthering finer and more specific details of the cascade of ALS neurodegeneration and symptoms, facilitated by multicentric studies implementing novel methodologies. With an increase in multimodal neuroimaging data on ALS and an exponential improvement in neuroimaging technology, the need for harmonization of protocols and integration of their respective findings into a consistent model becomes mandatory. Integration of multimodal data into a model of a continuing cascade of functional loss also calls for the best attempt to correlate the different molecular imaging measurements as performed at the shortest inter-modality time intervals possible. As outlined in this perspective article, simultaneous PET/MRI, nowadays available at many neuroimaging research sites, offers the perspective of a one-stop shop for reproducible imaging biomarkers on neuronal damage and has the potential to become the new gold standard for characterizing motor neuron disease from the clinico-radiological and neuroscientific perspectives.
Collapse
Affiliation(s)
- Freimut D. Juengling
- Division of Oncologic Imaging, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine, University Bern, Bern, Switzerland
| | - Frank Wuest
- Division of Oncologic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Sanjay Kalra
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Federica Agosta
- Division of Neuroscience, San Raffaele Scientific Institute, University Vita Salute San Raffaele, Milan, Italy
| | - Ralf Schirrmacher
- Division of Oncologic Imaging, University of Alberta, Edmonton, AB, Canada
- Medical Isotope and Cyclotron Facility, University of Alberta, Edmonton, AB, Canada
| | - Alexander Thiel
- Lady Davis Institute for Medical Research, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Wolfgang Thaiss
- Department of Nuclear Medicine, University of Ulm Medical Center, Ulm, Germany
- Department of Diagnostic and Interventional Radiology, University of Ulm Medical Center, Ulm, Germany
| | - Hans-Peter Müller
- Department of Neurology, Ulm University Medical Center, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
29
|
Hansen JY, Shafiei G, Vogel JW, Smart K, Bearden CE, Hoogman M, Franke B, van Rooij D, Buitelaar J, McDonald CR, Sisodiya SM, Schmaal L, Veltman DJ, van den Heuvel OA, Stein DJ, van Erp TGM, Ching CRK, Andreassen OA, Hajek T, Opel N, Modinos G, Aleman A, van der Werf Y, Jahanshad N, Thomopoulos SI, Thompson PM, Carson RE, Dagher A, Misic B. Local molecular and global connectomic contributions to cross-disorder cortical abnormalities. Nat Commun 2022; 13:4682. [PMID: 35948562 PMCID: PMC9365855 DOI: 10.1038/s41467-022-32420-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/28/2022] [Indexed: 12/21/2022] Open
Abstract
Numerous brain disorders demonstrate structural brain abnormalities, which are thought to arise from molecular perturbations or connectome miswiring. The unique and shared contributions of these molecular and connectomic vulnerabilities to brain disorders remain unknown, and has yet to be studied in a single multi-disorder framework. Using MRI morphometry from the ENIGMA consortium, we construct maps of cortical abnormalities for thirteen neurodevelopmental, neurological, and psychiatric disorders from N = 21,000 participants and N = 26,000 controls, collected using a harmonised processing protocol. We systematically compare cortical maps to multiple micro-architectural measures, including gene expression, neurotransmitter density, metabolism, and myelination (molecular vulnerability), as well as global connectomic measures including number of connections, centrality, and connection diversity (connectomic vulnerability). We find a relationship between molecular vulnerability and white-matter architecture that drives cortical disorder profiles. Local attributes, particularly neurotransmitter receptor profiles, constitute the best predictors of both disorder-specific cortical morphology and cross-disorder similarity. Finally, we find that cross-disorder abnormalities are consistently subtended by a small subset of network epicentres in bilateral sensory-motor, inferior temporal lobe, precuneus, and superior parietal cortex. Collectively, our results highlight how local molecular attributes and global connectivity jointly shape cross-disorder cortical abnormalities.
Collapse
Affiliation(s)
- Justine Y Hansen
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Golia Shafiei
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Jacob W Vogel
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Smart
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Martine Hoogman
- Departments of Psychiatry and Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Barbara Franke
- Departments of Psychiatry and Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Daan van Rooij
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Jan Buitelaar
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Carrie R McDonald
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Lianne Schmaal
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Anatomy & Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Dan J Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Dept of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, & Center for the Neurobiology of Leaning and Memory, University of California Irvine, 309 Qureshey Research Lab, Irvine, CA, USA
| | - Christopher R K Ching
- Keck School of Medicine, Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Nils Opel
- Institute of Translational Psychiatry, University of Münster, Münster, Germany & Department of Psychiatry, Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
| | - Gemma Modinos
- Department of Psychosis Studies & MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, Groningen, The Netherlands
| | - Ysbrand van der Werf
- Department of Anatomy & Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Neda Jahanshad
- Keck School of Medicine, Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Sophia I Thomopoulos
- Keck School of Medicine, Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Paul M Thompson
- Keck School of Medicine, Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada.
| |
Collapse
|
30
|
Tang Y, Yu J, Zhou M, Li J, Long T, Li Y, Feng L, Chen D, Yang Z, Huang Y, Hu S. Cortical abnormalities of synaptic vesicle protein 2A in focal cortical dysplasia type II identified in vivo with 18F-SynVesT-1 positron emission tomography imaging. Eur J Nucl Med Mol Imaging 2022; 49:3482-3491. [PMID: 34978594 PMCID: PMC9308579 DOI: 10.1007/s00259-021-05665-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 12/19/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE The loss of synaptic vesicle glycoprotein 2A (SV2A) is well established as the major correlate of epileptogenesis in focal cortical dysplasia type II (FCD II), but this has not been directly tested in vivo. In this positron emission tomography (PET) study with the new tracer 18F-SynVesT-1, we evaluated SV2A abnormalities in patients with FCD II and compared the pattern to 18F-fluorodeoxyglucose (18F-FDG). METHODS Sixteen patients with proven FCD II and 16 healthy controls were recruited. All FCD II patients underwent magnetic resonance imaging (MRI) and static PET imaging with both 18F-SynVesT-1 and 18F-FDG, while the controls underwent MRI and PET with only 18F-SynVesT-1. Visual assessment of PET images was undertaken. The standardized uptake values (SUVs) of 18F-SynVesT-1 were computed for regions of interest (ROIs), along with SUV ratio (SUVr) between ROI and centrum semiovale (white matter). Asymmetry indices (AIs) were analyzed between the lesion and the contralateral hemisphere for intersubject comparisons. RESULTS Lesions in the brains of FCD II patients had significantly reduced 18F-SynVesT-1 uptake compared with contralateral regions, and brains of the controls. 18F-SynVesT-1 PET indicated low lesion uptake in 14 patients (87.5%), corresponding to hypometabolism detected by 18F-FDG PET, with higher accuracy for lesion localization than MRI (43.8%) (P < 0.05). AI analyses demonstrated that in the lesions, SUVr for each of the radiotracers were not significantly different (P > 0.05), and 18F-SynVesT-1 SUVr correlated with that of 18F-FDG across subjects (R2 = 0.41, P = 0.008). Subsequent visual ratings indicated that 18F-SynVesT-1 uptake had a more restricted pattern of reduction than 18F-FDG uptake in FCD II lesions (P < 0.05). CONCLUSION SV2A PET with 18F-SynVesT-1 shows a higher accuracy for the localization of FCD II lesions than MRI and a more restricted pattern of abnormality than 18F-FDG PET.
Collapse
Affiliation(s)
- Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Jie Yu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Ming Zhou
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Jian Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Tingting Long
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yulai Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dengming Chen
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Ave, P.O. Box 208048, New Haven, CT, 06520-8048, USA.
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya), Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
31
|
Tang Y, Yu J, Zhou M, Chen C, Hu S. 18 F-SynVesT-1 PET in Focal Cortical Dysplasia Type II With Thickening Cortex. Clin Nucl Med 2022; 47:741-743. [PMID: 35384870 DOI: 10.1097/rlu.0000000000004214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT A case of 2-year-old girl with intractable seizures underwent 18 F-FDG PET and MRI for seizure focus localization. MRI demonstrated cortical thickening and blurring of the gray-white matter interface in the right postcentral gyrus with focal hypometabolism in 18 F-FDG PET. The patient subsequently was enrolled in clinical trial of 18 F-SynVesT-1 PET study in epilepsy; a more restricted area of reduced 18 F-SynVesT-1 uptake was noted in the thickened postcentral gyrus. The surgical limits of resection were defined based on ictal semiology, electroencephalography, and imagings. The patient is seizure-free after epilepsy surgery, with histopathology of focal cortical dysplasia type IIb.
Collapse
Affiliation(s)
- Yongxiang Tang
- From the Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan
| | - Jie Yu
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Zhuhai, Guangdong
| | - Ming Zhou
- From the Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan
| | | | | |
Collapse
|
32
|
Spatio-Temporal Alterations in Synaptic Density During Epileptogenesis in the Rat Brain. Neuroscience 2022; 499:142-151. [PMID: 35878719 DOI: 10.1016/j.neuroscience.2022.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022]
Abstract
Synaptic vesicle glycoprotein 2A (SV2A) is a transmembrane protein that binds levetiracetam and is involved in neurotransmission via an unknown mechanism. SV2A-immunoreactivity is reduced in animal models of epilepsy, and in postmortem hippocampi from patients with temporal lobe epilepsy. It is not known if other regions outside the hippocampus are affected in epilepsy, and whether SV2A is expression permanently reduced or regulated over time. In this study, we induced a generalized status epilepticus (SE) by systemic administration of lithium-pilocarpine to adult female rats. The brains from all animals experiencing SE were collected at different time points after the treatment. The radiotracer, [11C]-UCB-J, binds to SV2A with high affinity, and has been used for in vivo imaging as an a-proxy marker for synaptic density. Here we determined the level of tritiated UCB-J binding by semiquantitative autoradiography in the cerebral cortex, hippocampus, thalamus, and hypothalamus, and in subregions of these. A prominent and highly significant reduction in SV2A binding capacity was observed over the first days after SE in the cerebral cortex and the hippocampus, but not in the thalamus and hypothalamus. The magnitude in reduction was larger and occurred earlier in the hippocampus and the piriform cortex, than in other cortical subregions. Interestingly, in all areas examined, the binding capacity returned to control levels 12 weeks after the SE comparable to the chronic phase. These data show that lithium-pilocarpine-induced epileptogenesis involves both loss and gain of synapses in the in a time-dependent manner.
Collapse
|
33
|
Tang Y, Liu P, Li W, Liu Z, Zhou M, Li J, Yuan Y, Fang L, Wang M, Shen L, Huang Y, Tang B, Wang J, Hu S. Detection of changes in synaptic density in amyotrophic lateral sclerosis patients using 18 F-SynVesT-1 positron-emission tomography. Eur J Neurol 2022; 29:2934-2943. [PMID: 35708508 DOI: 10.1111/ene.15451] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Synaptic loss is well established as the major correlate of characteristic and consistent pathology in amyotrophic lateral sclerosis (ALS). We aimed to assess the possible discriminant diagnostic value of 18 F-SynVesT-1 positron-emission tomography (PET) as a marker of ALS pathology and investigate whether specific synaptic density signatures are present in ALS with different subtypes. METHODS Twenty-one patients with ALS and 25 healthy controls (HCs) were recruited. All participants underwent 18 F-SynVesT-1-PET. Synaptic density between ALS and HCs and between different ALS subgroups were compared. Correlation between synaptic density and clinical features in ALS was also performed. RESULTS Low uptake distribution was found in the group comprising 21 ALS patients as compared with HCs in the right temporal lobe and the bilateral inferior frontal gyrus, anterior cingulate, and hippocampus-insula region. We also found a low uptake in the bilateral superior temporal gyrus, hippocampus-insula, anterior cingulate and left inferior frontal gyrus in ALS patients with cognitive impairment compared to HCs. Furthermore, compared to spinal-onset ALS, bulbar-onset ALS showed low uptake in the bilateral cingulate gyrus and high uptake in the bilateral superior temporal gyrus and left occipital lobe. No significant result was found in correlation analysis. CONCLUSION This approach may provide a direct measure of synaptic density, and it therefore might represent a potentially useful biomarker for ALS diagnosis, as well as for estimating the cognitive decline and site of onset in ALS. 18 F-SynVesT-1-PET is presently not justified as a routine investigation to detect evidence of brain dysfunction justifying progression in ALS.
Collapse
Affiliation(s)
- Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Pan Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Wanzhen Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Zhen Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Ming Zhou
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Jian Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Yanchun Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Liangjuan Fang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Mengli Wang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, P. R. China.,Center for Medical Genetics, School of Life Sciences, Central South University
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, P. R. China.,Center for Medical Genetics, School of Life Sciences, Central South University
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, P. R. China.,Center for Medical Genetics, School of Life Sciences, Central South University.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
34
|
Carson RE, Naganawa M, Toyonaga T, Koohsari S, Yang Y, Chen MK, Matuskey D, Finnema SJ. Imaging of Synaptic Density in Neurodegenerative Disorders. J Nucl Med 2022; 63:60S-67S. [PMID: 35649655 DOI: 10.2967/jnumed.121.263201] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
PET technology has produced many radiopharmaceuticals that target specific brain proteins and other measures of brain function. Recently, a new approach has emerged to image synaptic density by targeting the synaptic vesicle protein 2A (SV2A), an integral glycoprotein in the membrane of synaptic vesicles and widely distributed throughout the brain. Multiple SV2A ligands have been developed and translated to human use. The most successful of these to date is 11C-UCB-J, because of its high uptake, moderate metabolism, and effective quantification with a 1-tissue-compartment model. Further, since SV2A is the target of the antiepileptic drug levetiracetam, human blocking studies have characterized specific binding and potential reference regions. Regional brain SV2A levels were shown to correlate with those of synaptophysin, another commonly used marker of synaptic density, providing the basis for SV2A PET imaging to have broad utility across neuropathologic diseases. In this review, we highlight the development of SV2A tracers and the evaluation of quantification methods, including compartment modeling and simple tissue ratios. Mouse and rat models of neurodegenerative diseases have been studied with small-animal PET, providing validation by comparison to direct tissue measures. Next, we review human PET imaging results in multiple neurodegenerative disorders. Studies on Parkinson disease and Alzheimer disease have progressed most rapidly at multiple centers, with generally consistent results of patterns of SV2A or synaptic loss. In Alzheimer disease, the synaptic loss patterns differ from those of amyloid, tau, and 18F-FDG, although intertracer and interregional correlations have been found. Smaller studies have been reported in other disorders, including Lewy body dementia, frontotemporal dementia, Huntington disease, progressive supranuclear palsy, and corticobasal degeneration. In conclusion, PET imaging of SV2A has rapidly developed, and qualified radioligands are available. PET studies on humans indicate that SV2A loss might be specific to disease-associated brain regions and consistent with synaptic density loss. The recent availability of new 18F tracers, 18F-SynVesT-1 and 18F-SynVesT-2, will substantially broaden the application of SV2A PET. Future studies are needed in larger patient cohorts to establish the clinical value of SV2A PET and its potential for diagnosis and progression monitoring of neurodegenerative diseases, as well as efficacy assessment of disease-modifying therapies.
Collapse
Affiliation(s)
- Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut;
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - Sheida Koohsari
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - Yanghong Yang
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - Ming-Kai Chen
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut; and
| | - Sjoerd J Finnema
- Neuroscience Discovery Research, Translational Imaging, AbbVie, North Chicago, Illinois
| |
Collapse
|
35
|
Rossi R, Arjmand S, Bærentzen SL, Gjedde A, Landau AM. Synaptic Vesicle Glycoprotein 2A: Features and Functions. Front Neurosci 2022; 16:864514. [PMID: 35573314 PMCID: PMC9096842 DOI: 10.3389/fnins.2022.864514] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/05/2022] [Indexed: 01/05/2023] Open
Abstract
In recent years, the field of neuroimaging dramatically moved forward by means of the expeditious development of specific radioligands of novel targets. Among these targets, the synaptic vesicle glycoprotein 2A (SV2A) is a transmembrane protein of synaptic vesicles, present in all synaptic terminals, irrespective of neurotransmitter content. It is involved in key functions of neurons, focused on the regulation of neurotransmitter release. The ubiquitous expression in gray matter regions of the brain is the basis of its candidacy as a marker of synaptic density. Following the development of molecules derived from the structure of the anti-epileptic drug levetiracetam, which selectively binds to SV2A, several radiolabeled markers have been synthetized to allow the study of SV2A distribution with positron emission tomography (PET). These radioligands permit the evaluation of in vivo changes of SV2A distribution held to be a potential measure of synaptic density in physiological and pathological conditions. The use of SV2A as a biomarker of synaptic density raises important questions. Despite numerous studies over the last decades, the biological function and the expressional properties of SV2A remain poorly understood. Some functions of SV2A were claimed, but have not been fully elucidated. While the expression of SV2A is ubiquitous, stronger associations between SV2A and Υ amino butyric acid (GABA)-ergic rather than glutamatergic synapses were observed in some brain structures. A further issue is the unclear interaction between SV2A and its tracers, which reflects a need to clarify what really is detected with neuroimaging tools. Here, we summarize the current knowledge of the SV2A protein and we discuss uncertain aspects of SV2A biology and physiology. As SV2A expression is ubiquitous, but likely more strongly related to a certain type of neurotransmission in particular circumstances, a more extensive knowledge of the protein would greatly facilitate the analysis and interpretation of neuroimaging results by allowing the evaluation not only of an increase or decrease of the protein level, but also of the type of neurotransmission involved.
Collapse
Affiliation(s)
- Rachele Rossi
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simone Larsen Bærentzen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Albert Gjedde
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
36
|
Pazarlar BA, Aripaka SS, Petukhov V, Pinborg L, Khodosevich K, Mikkelsen JD. Expression profile of synaptic vesicle glycoprotein 2A, B, and C paralogues in temporal neocortex tissue from patients with temporal lobe epilepsy (TLE). Mol Brain 2022; 15:45. [PMID: 35578248 PMCID: PMC9109314 DOI: 10.1186/s13041-022-00931-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractSynaptic vesicle glycoprotein-2 (SV2) is a family of proteins consisting of SV2A, SV2B, and SV2C. This protein family has attracted attention in recent years after SV2A was shown to be an epileptic drug target and a perhaps a biomarker of synaptic density. So far, the anatomical localization of these proteins in the rodent and human brain have been reported, but co-expression of SV2 genes on a cellular level, their expressions in the human brain, comparison to radioligand binding, any possible regulation in epilepsy are not known. We have here analyzed the expression of SV2 genes in neuronal subtypes in the temporal neocortex in selected specimens by using single nucleus-RNA sequencing, and performed quantitative PCR in populations of temporal lobe epilepsy (TLE) patients and healthy controls. [3H]-UCB-J autoradiography was performed to analyze the correlation between the mRNA transcript and binding capacity to SV2A. Our data showed that the SV2A transcript is expressed in all glutamatergic and GABAergic cortical subtypes, while SV2B expression is restricted to only the glutamatergic neurons and SV2C has very limited expression in a small subgroup of GABAergic interneurons. The level of [3H]-UCB-J binding and the concentration of SV2A mRNA is strongly correlated in each patient, and the expression is lower in the TLE patients. There is no relationship between SV2A expression and age, sex, seizure frequency, duration of epilepsy, or whether patients were recently treated with levetiracetam or not. Collectively, these findings point out a neuronal subtype-specific distribution of the expression of the three SV2 genes, and the lower levels of both radioligand binding and expression further emphasize the significance of these proteins in this disease.
Collapse
|
37
|
Rossano S, Toyonaga T, Bini J, Nabulsi N, Ropchan J, Cai Z, Huang Y, Carson RE. Feasibility of imaging synaptic density in the human spinal cord using [ 11C]UCB-J PET. EJNMMI Phys 2022; 9:32. [PMID: 35503134 PMCID: PMC9065222 DOI: 10.1186/s40658-022-00464-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Neuronal damage and synapse loss in the spinal cord (SC) have been implicated in spinal cord injury (SCI) and neurodegenerative disorders such as Amyotrophic Lateral Sclerosis (ALS). Current standards of diagnosis for SCI include CT or MRI imaging to evaluate injury severity. The current study explores the use of PET imaging with [11C]UCB-J, which targets the synaptic vesicle protein 2A (SV2A), in the human spinal cord, as a way to visualize synaptic density and integrity in vivo. RESULTS First, simulations of baseline and blocking [11C]UCB-J HRRT scans were performed, based on SC dimensions and SV2A distribution to predict VT, VND, and VS values. Next, human baseline and blocking [11C]UCB-J HRRT images were used to estimate these values in the cervical SC (cSC). Simulation results had excellent agreement with observed values of VT, VND, and VS from the real human data, with baseline VT, VND, and VS of 3.07, 2.15, and 0.92 mL/cm3, respectively, with a BPND of 0.43. Lastly, we explored full SC imaging with whole-body images. Using automated SC regions of interest (ROIs) for the full SC, cSC, and thoracic SC (tSC), the distribution volume ratio (DVR) was estimated using the brain gray matter as a reference region to evaluate SC SV2A density relative to the brain. In full body imaging, DVR values of full SC, cSC, and tSC were 0.115, 0.145, and 0.112, respectively. Therefore, measured [11C]UCB-J uptake, and thus SV2A density, is much lower in the SC than in the brain. CONCLUSIONS The results presented here provide evidence for the feasibility of SV2A PET imaging in the human SC, however, specific binding of [11C]UCB-J is low. Ongoing and future work include further classification of SV2A distribution in the SC as well as exploring higher-affinity PET radioligands for SC imaging.
Collapse
Affiliation(s)
- Samantha Rossano
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, P.O. Box 208048, New Haven, CT, 06520, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, P.O. Box 208048, New Haven, CT, 06520, USA
| | - Jason Bini
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, P.O. Box 208048, New Haven, CT, 06520, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, P.O. Box 208048, New Haven, CT, 06520, USA
| | - Jim Ropchan
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, P.O. Box 208048, New Haven, CT, 06520, USA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, P.O. Box 208048, New Haven, CT, 06520, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, P.O. Box 208048, New Haven, CT, 06520, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, P.O. Box 208048, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
38
|
Serrano ME, Kim E, Petrinovic MM, Turkheimer F, Cash D. Imaging Synaptic Density: The Next Holy Grail of Neuroscience? Front Neurosci 2022; 16:796129. [PMID: 35401097 PMCID: PMC8990757 DOI: 10.3389/fnins.2022.796129] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
The brain is the central and most complex organ in the nervous system, comprising billions of neurons that constantly communicate through trillions of connections called synapses. Despite being formed mainly during prenatal and early postnatal development, synapses are continually refined and eliminated throughout life via complicated and hitherto incompletely understood mechanisms. Failure to correctly regulate the numbers and distribution of synapses has been associated with many neurological and psychiatric disorders, including autism, epilepsy, Alzheimer’s disease, and schizophrenia. Therefore, measurements of brain synaptic density, as well as early detection of synaptic dysfunction, are essential for understanding normal and abnormal brain development. To date, multiple synaptic density markers have been proposed and investigated in experimental models of brain disorders. The majority of the gold standard methodologies (e.g., electron microscopy or immunohistochemistry) visualize synapses or measure changes in pre- and postsynaptic proteins ex vivo. However, the invasive nature of these classic methodologies precludes their use in living organisms. The recent development of positron emission tomography (PET) tracers [such as (18F)UCB-H or (11C)UCB-J] that bind to a putative synaptic density marker, the synaptic vesicle 2A (SV2A) protein, is heralding a likely paradigm shift in detecting synaptic alterations in patients. Despite their limited specificity, novel, non-invasive magnetic resonance (MR)-based methods also show promise in inferring synaptic information by linking to glutamate neurotransmission. Although promising, all these methods entail various advantages and limitations that must be addressed before becoming part of routine clinical practice. In this review, we summarize and discuss current ex vivo and in vivo methods of quantifying synaptic density, including an evaluation of their reliability and experimental utility. We conclude with a critical assessment of challenges that need to be overcome before successfully employing synaptic density biomarkers as diagnostic and/or prognostic tools in the study of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maria Elisa Serrano
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Eugene Kim
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Marija M Petrinovic
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| |
Collapse
|
39
|
Longitudinal [18]UCB-H/[18F]FDG imaging depicts complex patterns of structural and functional neuroplasticity following bilateral vestibular loss in the rat. Sci Rep 2022; 12:6049. [PMID: 35411002 PMCID: PMC9001652 DOI: 10.1038/s41598-022-09936-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
Neuronal lesions trigger mechanisms of structural and functional neuroplasticity, which can support recovery. However, the temporal and spatial appearance of structure–function changes and their interrelation remain unclear. The current study aimed to directly compare serial whole-brain in vivo measurements of functional plasticity (by [18F]FDG-PET) and structural synaptic plasticity (by [18F]UCB-H-PET) before and after bilateral labyrinthectomy in rats and investigate the effect of locomotor training. Complex structure–function changes were found after bilateral labyrinthectomy: in brainstem-cerebellar circuits, regional cerebral glucose metabolism (rCGM) decreased early, followed by reduced synaptic density. In the thalamus, increased [18F]UCB-H binding preceded a higher rCGM uptake. In frontal-basal ganglia loops, an increase in synaptic density was paralleled by a decrease in rCGM. In the group with locomotor training, thalamic rCGM and [18F]UCB-H binding increased following bilateral labyrinthectomy compared to the no training group. Rats with training had considerably fewer body rotations. In conclusion, combined [18F]FDG/[18F]UCB-H dual tracer imaging reveals that adaptive neuroplasticity after bilateral vestibular loss is not a uniform process but is composed of complex spatial and temporal patterns of structure–function coupling in networks for vestibular, multisensory, and motor control, which can be modulated by early physical training.
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW We review significant advances in epilepsy imaging in recent years. RECENT FINDINGS Structural MRI at 7T with optimization of acquisition and postacquisition image processing increases the diagnostic yield but artefactual findings remain a challenge. MRI analysis from multiple sites indicates different atrophy patterns and white matter diffusion abnormalities in temporal lobe and generalized epilepsies, with greater abnormalities close to the presumed seizure source. Structural and functional connectivity relate to seizure spread and generalization; longitudinal studies are needed to clarify the causal relationship of these associations. Diffusion MRI may help predict surgical outcome and network abnormalities extending beyond the epileptogenic zone. Three-dimensional multimodal imaging can increase the precision of epilepsy surgery, improve seizure outcome and reduce complications. Language and memory fMRI are useful predictors of postoperative deficits, and lead to risk minimization. FDG PET is useful for clinical studies and specific ligands probe the pathophysiology of neurochemical fluxes and receptor abnormalities. SUMMARY Improved structural MRI increases detection of abnormalities that may underlie epilepsy. Diffusion, structural and functional MRI indicate the widespread associations of epilepsy syndromes. These can assist stratification of surgical outcome and minimize risk. PET has continued utility clinically and for research into the pathophysiology of epilepsies.
Collapse
Affiliation(s)
- John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London
- MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Karin Trimmel
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London
- MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, UK
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Pazarlar BA, Madsen CA, Oyar EÖ, Eğilmez CB, Mikkelsen JD. Temporal and Spatial Changes in Synaptic Vesicle Glycoprotein 2 A (SV2A) under Kainic Acid Induced Epileptogenesis: An Autoradiographic Study. Epilepsy Res 2022; 183:106926. [DOI: 10.1016/j.eplepsyres.2022.106926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 11/03/2022]
|
42
|
Toyonaga T, Fesharaki-Zadeh A, Strittmatter SM, Carson RE, Cai Z. PET Imaging of Synaptic Density: Challenges and Opportunities of Synaptic Vesicle Glycoprotein 2A PET in Small Animal Imaging. Front Neurosci 2022; 16:787404. [PMID: 35345546 PMCID: PMC8957200 DOI: 10.3389/fnins.2022.787404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/14/2022] [Indexed: 12/02/2022] Open
Abstract
The development of novel PET imaging agents for synaptic vesicle glycoprotein 2A (SV2A) allowed for the in vivo detection of synaptic density changes, which are correlated with the progression and severity of a variety of neuropsychiatric diseases. While multiple ongoing clinical investigations using SV2A PET are expanding its applications rapidly, preclinical SV2A PET imaging in animal models is an integral component of the translation research and provides supporting and complementary information. Herein, we overview preclinical SV2A PET studies in animal models of neurodegenerative disorders and discuss the opportunities and practical challenges in small animal SV2A PET imaging. At the Yale PET Center, we have conducted SV2A PET imaging studies in animal models of multiple diseases and longitudinal SV2A PET allowed us to evaluate synaptic density dynamics in the brains of disease animal models and to assess pharmacological effects of novel interventions. In this article, we discuss key considerations when designing preclinical SV2A PET imaging studies and strategies for data analysis. Specifically, we compare the brain imaging characteristics of available SV2A tracers, i.e., [11C]UCB-J, [18F]SynVesT-1, [18F]SynVesT-2, and [18F]SDM-16, in rodent brains. We also discuss the limited spatial resolution of PET scanners for small brains and challenges of kinetic modeling. We then compare different injection routes and estimate the maximum throughput (i.e., number of animals) per radiotracer synthesis by taking into account the injectable volume for each injection method, injected mass, and radioactivity half-lives. In summary, this article provides a perspective for designing and analyzing SV2A PET imaging studies in small animals.
Collapse
Affiliation(s)
- Takuya Toyonaga
- Positron Emission Tomography (PET) Center, Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Arman Fesharaki-Zadeh
- Psychiatry, Yale School of Medicine, New Haven, CT, United States
- Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Stephen M. Strittmatter
- Neurology, Yale School of Medicine, New Haven, CT, United States
- Neuroscience, Yale School of Medicine, New Haven, CT, United States
| | - Richard E. Carson
- Positron Emission Tomography (PET) Center, Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Zhengxin Cai
- Positron Emission Tomography (PET) Center, Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
43
|
DiFrancesco JC, Labate A, Romoli M, Chipi E, Salvadori N, Galimberti CA, Perani D, Ferrarese C, Costa C. Clinical and Instrumental Characterization of Patients With Late-Onset Epilepsy. Front Neurol 2022; 13:851897. [PMID: 35359649 PMCID: PMC8963711 DOI: 10.3389/fneur.2022.851897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is classically considered a childhood disease. However, it represents the third most frequent neurological condition in the elderly, following stroke, and dementia. With the progressive aging of the general population, the number of patients with Late-Onset Epilepsy (LOE) is constantly growing, with important economic and social consequences, in particular for the more developed countries where the percentage of elderly people is higher. The most common causes of LOE are structural, mainly secondary to cerebrovascular or infectious diseases, brain tumors, trauma, and metabolic or toxic conditions. Moreover, there is a growing body of evidence linking LOE with neurodegenerative diseases, particularly Alzheimer's disease (AD). However, despite a thorough characterization, the causes of LOE remain unknown in a considerable portion of patients, thus termed as Late-Onset Epilepsy of Unknown origin (LOEU). In order to identify the possible causes of the disease, with an important impact in terms of treatment and prognosis, LOE patients should always undergo an exhaustive phenotypic characterization. In this work, we provide a detailed review of the main clinical and instrumental techniques for the adequate characterization of LOE patients in the clinical practice. This work aims to provide an easy and effective tool that supports routine activity of the clinicians facing LOE.
Collapse
Affiliation(s)
- Jacopo C. DiFrancesco
- Department of Neurology, ASST S. Gerardo Hospital, School of Medicine and Surgery and Milan Center for Neuroscience, University of Milano - Bicocca, Monza, Italy
- *Correspondence: Jacopo C. DiFrancesco
| | - Angelo Labate
- Neurophysiopathology Unit, Department of Biomedical and Dental Sciences, Morphological and Functional Images (BIOMORF), University of Messina, Messina, Italy
| | - Michele Romoli
- Section of Neurology, S. Maria della Misericordia Hospital, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Chipi
- Section of Neurology, S. Maria della Misericordia Hospital, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Nicola Salvadori
- Section of Neurology, S. Maria della Misericordia Hospital, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Daniela Perani
- Nuclear Medicine Unit and Division of Neuroscience, San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Carlo Ferrarese
- Department of Neurology, ASST S. Gerardo Hospital, School of Medicine and Surgery and Milan Center for Neuroscience, University of Milano - Bicocca, Monza, Italy
| | - Cinzia Costa
- Section of Neurology, S. Maria della Misericordia Hospital, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Cinzia Costa
| |
Collapse
|
44
|
Michiels L, Mertens N, Thijs L, Radwan A, Sunaert S, Vandenbulcke M, Verheyden G, Koole M, Van Laere K, Lemmens R. Changes in synaptic density in the subacute phase after ischemic stroke: A 11C-UCB-J PET/MR study. J Cereb Blood Flow Metab 2022; 42:303-314. [PMID: 34550834 PMCID: PMC9122519 DOI: 10.1177/0271678x211047759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Functional alterations after ischemic stroke have been described with Magnetic Resonance Imaging (MRI) and perfusion Positron Emission Tomography (PET), but no data on in vivo synaptic changes exist. Recently, imaging of synaptic density became available by targeting synaptic vesicle protein 2 A, a protein ubiquitously expressed in all presynaptic nerve terminals. We hypothesized that in subacute ischemic stroke loss of synaptic density can be evaluated with 11C-UCB-J PET in the ischemic tissue and that alterations in synaptic density can be present in brain regions beyond the ischemic core. We recruited ischemic stroke patients to undergo 11C-UCB-J PET/MR imaging 21 ± 8 days after stroke onset to investigate regional 11C-UCB-J SUVR (standardized uptake value ratio). There was a decrease (but residual signal) of 11C-UCB-J SUVR within the lesion of 16 stroke patients compared to 40 healthy controls (ratiolesion/controls = 0.67 ± 0.28, p = 0.00023). Moreover, 11C-UCB-J SUVR was lower in the non-lesioned tissue of the affected hemisphere compared to the unaffected hemisphere (ΔSUVR = -0.17, p = 0.0035). The contralesional cerebellar hemisphere showed a lower 11C-UCB-J SUVR compared to the ipsilesional cerebellar hemisphere (ΔSUVR = -0.14, p = 0.0048). In 8 out of 16 patients, the asymmetry index suggested crossed cerebellar diaschisis. Future research is required to longitudinally study these changes in synaptic density and their association with outcome.
Collapse
Affiliation(s)
- Laura Michiels
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Nathalie Mertens
- Nuclear Medicine and Molecular Imaging, 26657KU Leuven, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Liselot Thijs
- Department of Rehabilitation Sciences, 26657KU Leuven, KU Leuven, Leuven, Belgium
| | - Ahmed Radwan
- Translational MRI, 26657KU Leuven, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Translational MRI, 26657KU Leuven, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Mathieu Vandenbulcke
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,Department of Geriatric Psychiatry, University Psychiatric Centre, KU Leuven, Leuven, Belgium
| | - Geert Verheyden
- Department of Rehabilitation Sciences, 26657KU Leuven, KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, 26657KU Leuven, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, 26657KU Leuven, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Robin Lemmens
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
45
|
Brumberg J, Varrone A. New PET radiopharmaceuticals for imaging CNS diseases. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
46
|
The Role of Molecular Imaging as a Marker of Remyelination and Repair in Multiple Sclerosis. Int J Mol Sci 2021; 23:ijms23010474. [PMID: 35008899 PMCID: PMC8745199 DOI: 10.3390/ijms23010474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
The appearance of new disease-modifying therapies in multiple sclerosis (MS) has revolutionized our ability to fight inflammatory relapses and has immensely improved patients’ quality of life. Although remarkable, this achievement has not carried over into reducing long-term disability. In MS, clinical disability progression can continue relentlessly irrespective of acute inflammation. This “silent” disease progression is the main contributor to long-term clinical disability in MS and results from chronic inflammation, neurodegeneration, and repair failure. Investigating silent disease progression and its underlying mechanisms is a challenge. Standard MRI excels in depicting acute inflammation but lacks the pathophysiological lens required for a more targeted exploration of molecular-based processes. Novel modalities that utilize nuclear magnetic resonance’s ability to display in vivo information on imaging look to bridge this gap. Displaying the CNS through a molecular prism is becoming an undeniable reality. This review will focus on “molecular imaging biomarkers” of disease progression, modalities that can harmoniously depict anatomy and pathophysiology, making them attractive candidates to become the first valid biomarkers of neuroprotection and remyelination.
Collapse
|
47
|
Möck EEA, Honkonen E, Airas L. Synaptic Loss in Multiple Sclerosis: A Systematic Review of Human Post-mortem Studies. Front Neurol 2021; 12:782599. [PMID: 34912290 PMCID: PMC8666414 DOI: 10.3389/fneur.2021.782599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Gray matter pathology plays a central role in the progression of multiple sclerosis (MS). The occurrence of synaptic loss appears to be important but, to date, still poorly investigated aspect of MS pathology. In this systematic review, we drew from the recent knowledge about synaptic loss in human post-mortem studies. Methods: We conducted a systematic search with PubMed to identify relevant publications. Publications available from15 June 2021 were taken into account. We selected human post-mortem studies that quantitatively assessed the synapse number in MS tissue. Results: We identified 14 relevant publications out of which 9 reported synaptic loss in at least one investigated subregion. The most commonly used synaptic marker was synaptophysin; non-etheless, we found substantial differences in the methodology and the selection of reference tissue. Investigated regions included the cortex, the hippocampus, the cerebellum, the thalamus, and the spinal cord. Conclusion: Synaptic loss seems to take place throughout the entire central nervous system. However, the results are inconsistent, probably due to differences in the methodology. Moreover, synaptic loss appears to be a dynamic process, and thus the nature of this pathology might be captured using in vivo synaptic density measurements.
Collapse
Affiliation(s)
- E E Amelie Möck
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Eveliina Honkonen
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Laura Airas
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
48
|
In vivo evidence of lower synaptic vesicle density in schizophrenia. Mol Psychiatry 2021; 26:7690-7698. [PMID: 34135473 DOI: 10.1038/s41380-021-01184-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 02/05/2023]
Abstract
Decreased synaptic spine density has been the most consistently reported postmortem finding in schizophrenia (SCZ). A recently developed in vivo measure of synaptic vesicle density estimated using the novel positron emission tomography (PET) ligand [11C]UCB-J is a proxy measure of synaptic density. In this study we determined whether [11C]UCB-J binding, an in vivo measure of synaptic vesicle density, is altered in SCZ. SCZ patients (n = 13, 3 F) and age-, gender-matched healthy controls (HCs) (n = 15, 3 F) underwent PET imaging using [11C]UCB-J and high-resolution research tomography (HRRT). [11C]UCB-J distribution volume (VT) and binding potential (BPND) were estimated using a 1T model with centrum-semiovale as the reference region. Relative to HCs, SCZ patients, showed significantly lower [11C]UCB-J BPND with significant differences in the frontal cortex (-10%, Cohen's d = 1.01), anterior cingulate (-11%, Cohen's d = 1.24), hippocampus (-15%, Cohen's d = 1.29), occipital cortex (-14%, Cohen's d = 1.34), parietal cortex (-10%, p = 0.03, Cohen's d = 0.85) and temporal cortex (-11%, Cohen's d = 1.23). These differences remained significant after partial volume correction. [11C]UCB-J BPND did not correlate with cumulative antipsychotic exposure or gray-matter volume. Consistent with the postmortem and in vivo findings, synaptic vesicle density is lower across several brain regions in SCZ. Frontal synaptic vesicle density correlated with psychosis symptom severity and cognitive performance on social cognition and processing speed. These findings indicate that [11C]UCB-J PET is a sensitive tool to detect lower synaptic density in SCZ and holds promise for future studies of early detection and disease progression.
Collapse
|
49
|
Kong Y, Zhang S, Huang L, Zhang C, Xie F, Zhang Z, Huang Q, Jiang D, Li J, Zhou W, Hua T, Sun B, Wang J, Guan Y. Positron Emission Computed Tomography Imaging of Synaptic Vesicle Glycoprotein 2A in Alzheimer's Disease. Front Aging Neurosci 2021; 13:731114. [PMID: 34795573 PMCID: PMC8593388 DOI: 10.3389/fnagi.2021.731114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder seen in age-dependent dementia. There is currently no effective treatment for AD, which may be attributed in part to lack of a clear underlying mechanism. Early diagnosis of AD is of great significance to control the development of the disease. Synaptic loss is an important pathology in the early stage of AD, therefore the measurement of synaptic density using molecular imaging technology may be an effective way to early diagnosis of AD. Synaptic vesicle glycoprotein 2A (SV2A) is located in the presynaptic vesicle membrane of virtually all synapses. SV2A Positron Emission Computed Tomography (PET) could provide a way to measure synaptic density quantitatively in living humans and to track changes in synaptic density in AD. In view of the fact that synaptic loss is the pathology of both epilepsy and AD, this review summarizes the potential role of SV2A in the pathogenesis of AD, and suggests that SV2A should be used as an important target molecule of PET imaging agent for the early diagnosis of AD.
Collapse
Affiliation(s)
- Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Shibo Zhang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Lin Huang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhengwei Zhang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Qi Huang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Donglang Jiang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Junpeng Li
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiyan Zhou
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Tao Hua
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
50
|
Positron emission tomography in multiple sclerosis - straight to the target. Nat Rev Neurol 2021; 17:663-675. [PMID: 34545219 DOI: 10.1038/s41582-021-00537-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 02/08/2023]
Abstract
Following the impressive progress in the treatment of relapsing-remitting multiple sclerosis (MS), the major challenge ahead is the development of treatments to prevent or delay the irreversible accumulation of clinical disability in progressive forms of the disease. The substrate of clinical progression is neuro-axonal degeneration, and a deep understanding of the mechanisms that underlie this process is a precondition for the development of therapies for progressive MS. PET imaging involves the use of radiolabelled compounds that bind to specific cellular and metabolic targets, thereby enabling direct in vivo measurement of several pathological processes. This approach can provide key insights into the clinical relevance of these processes and their chronological sequence during the disease course. In this Review, we focus on the contribution that PET is making to our understanding of extraneuronal and intraneuronal mechanisms that are involved in the pathogenesis of irreversible neuro-axonal damage in MS. We consider the major challenges with the use of PET in MS and the steps necessary to realize clinical benefits of the technique. In addition, we discuss the potential of emerging PET tracers and future applications of existing compounds to facilitate the identification of effective neuroprotective treatments for patients with MS.
Collapse
|