1
|
Yu D, Lu Z, Chong Y. Integrins as a bridge between bacteria and cells: key targets for therapeutic wound healing. BURNS & TRAUMA 2024; 12:tkae022. [PMID: 39015251 PMCID: PMC11250365 DOI: 10.1093/burnst/tkae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/17/2023] [Accepted: 04/22/2024] [Indexed: 07/18/2024]
Abstract
Integrins are heterodimers composed of α and β subunits that are bonded through non-covalent interactions. Integrins mediate the dynamic connection between extracellular adhesion molecules and the intracellular actin cytoskeleton. Integrins are present in various tissues and organs where these heterodimers participate in diverse physiological and pathological responses at the molecular level in living organisms. Wound healing is a crucial process in the recovery from traumatic diseases and comprises three overlapping phases: inflammation, proliferation and remodeling. Integrins are regulated during the entire wound healing process to enhance processes such as inflammation, angiogenesis and re-epithelialization. Prolonged inflammation may result in failure of wound healing, leading to conditions such as chronic wounds. Bacterial colonization of a wound is one of the primary causes of chronic wounds. Integrins facilitate the infectious effects of bacteria on the host organism, leading to chronic inflammation, bacterial colonization, and ultimately, the failure of wound healing. The present study investigated the role of integrins as bridges for bacteria-cell interactions during wound healing, evaluated the role of integrins as nodes for bacterial inhibition during chronic wound formation, and discussed the challenges and prospects of using integrins as therapeutic targets in wound healing.
Collapse
Affiliation(s)
- Dong Yu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| | - Zhaoyu Lu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| | - Yang Chong
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| |
Collapse
|
2
|
Schmidt A, Singer D, Aden H, von Woedtke T, Bekeschus S. Gas Plasma Exposure Alters Microcirculation and Inflammation during Wound Healing in a Diabetic Mouse Model. Antioxidants (Basel) 2024; 13:68. [PMID: 38247492 PMCID: PMC10812527 DOI: 10.3390/antiox13010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
Diabetes can disrupt physiological wound healing, caused by decreased levels or impaired activity of angiogenic factors. This can contribute to chronic inflammation, poor formation of new blood vessels, and delayed re-epithelialization. The present study describes the preclinical application of medical gas plasma to treat a dermal, full-thickness ear wound in streptozotocin (STZ)-induced diabetic mice. Gas plasma-mediated effects occurred in both sexes but with gender-specific differences. Hyperspectral imaging demonstrated gas plasma therapy changing microcirculatory parameters, particularly oxygen saturation levels during wound healing, presumably due to the gas plasma's tissue delivery of reactive species and other bioactive components. In addition, gas plasma treatment significantly affected cell adhesion by regulating focal adhesion kinase and vinculin, which is important in maintaining skin barrier function by regulating syndecan expression and increasing re-epithelialization. An anticipated stimulation of blood vessel formation was detected via transcriptional and translational increase of angiogenic factors in gas plasma-exposed wound tissue. Moreover, gas plasma treatment significantly affected inflammation by modulating systemic growth factors and cytokine levels. The presented findings may help explain the mode of action of successful clinical plasma therapy of wounds of diabetic patients.
Collapse
Affiliation(s)
- Anke Schmidt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Debora Singer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| | - Henrike Aden
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Institute of Hygiene and Environmental Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| |
Collapse
|
3
|
Tasneem S, Ghufran H, Azam M, Arif A, Bin Umair M, Yousaf MA, Shahzad K, Mehmood A, Malik K, Riazuddin S. Cassia Angustifolia Primed ASCs Accelerate Burn Wound Healing by Modulation of Inflammatory Response. Tissue Eng Regen Med 2024; 21:137-157. [PMID: 37847444 PMCID: PMC10764710 DOI: 10.1007/s13770-023-00594-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Thermal traumas impose a huge burden on healthcare systems. This merits the need for advanced but cost-effective remedies with clinical prospects. In this context, we prepared a regenerative 3D-construct comprising of Cassia angustifolia extract (SM) primed adipose-derived stem cells (ASCs) laden amniotic membrane for faster burn wound repair. METHODS ASCs were preconditioned with SM (30 µg/ml for 24 h), and subsequently exposed to in-vitro thermal injury (51 °C,10 min). In-vivo thermal injury was induced by placing pre-heated copper-disc (2 cm diameter) on dorsum of the Wistar rats. ASCs (2.0 × 105) pre-treated with SM (SM-ASCs), cultured on stromal side of amniotic membrane (AM) were transplanted in rat heat-injury model. Non-transplanted heat-injured rats and non-heat-injured rats were kept as controls. RESULTS The significantly upregulated expression of IGF1, SDF1A, TGFβ1, VEGF, GSS, GSR, IL4, BCL2 genes and downregulation of BAX, IL6, TNFα, and NFkB1 in SM-ASCs in in-vitro and in-vivo settings confirmed its potential in promoting cell-proliferation, migration, angiogenesis, antioxidant, cell-survival, anti-inflammatory, and wound healing activity. Moreover, SM-ASCs induced early wound closure, better architecture, normal epidermal thickness, orderly-arranged collagen fibers, and well-developed skin appendages in healed rat-skin transplanted with AM+SM-ASCs, additionally confirmed by increased expression of structural genes (Krt1, Krt8, Krt19, Desmin, Vimentin, α-Sma) in comparison to untreated-ASCs laden-AM transplanted in heat injured rats. CONCLUSION SM priming effectively enabled ASCs to counter thermal injury by significantly enhancing cell survival and reducing inflammation upon transplantation. This study provides bases for development of effective combinational therapies (natural scaffold, medicine, and stem cells) with clinical prospects for treating burn wounds.
Collapse
Affiliation(s)
- Saba Tasneem
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Hafiz Ghufran
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Maryam Azam
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Amna Arif
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Musab Bin Umair
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Muhammad Amin Yousaf
- Jinnah Burn & Reconstructive Surgery Centre, Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
- CosmoPlast, Lahore, Pakistan
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan.
| | - Kausar Malik
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan.
- Jinnah Burn & Reconstructive Surgery Centre, Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan.
| |
Collapse
|
4
|
Abdul Ghani N‘I, Razali RA, Chowdhury SR, Fauzi MB, Bin Saim A, Ruszymah BHI, Maarof M. Effect of Different Collection Times of Dermal Fibroblast Conditioned Medium (DFCM) on In Vitro Re-Epithelialisation Process. Biomedicines 2022; 10:biomedicines10123203. [PMID: 36551960 PMCID: PMC9775936 DOI: 10.3390/biomedicines10123203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
A key event in wound healing is re-epithelialisation, which is mainly regulated via paracrine signalling of cytokines, chemokines, and growth factors secreted by fibroblasts. Fibroblast-secreted factors can be collected from the used culture medium, known as dermal fibroblast conditioned medium (DFCM). The goal of this study was to optimise the culture condition to acquire DFCM and evaluate its effect on keratinocyte attachment, proliferation, migration, and differentiation. Confluent fibroblasts were cultured with serum-free keratinocyte-specific (DFCM-KM) and fibroblast-specific (DFCM-FM) medium at different incubation times (Days 1, 2, and 3). DFCM collected after 3 days of incubation (DFCM-KM-3 and DFCM-FM-3) contained a higher protein concentration compared to other days. Supplementation of DFCM-KM-3 enhanced keratinocyte attachment, while DFCM-FM-3 significantly increased the keratinocyte wound-healing rate, with an increment of keratinocyte area and collective cell migration, which was distinctly different from DFCM-KM-3 or control medium. Further analysis confirmed that the presence of calcium at higher concentrations in DFCM-FM facilitated the changes. The confluent dermal fibroblasts after 3 days of incubation with serum-free culture medium produced higher proteins in DFCM, resulting in enhanced in vitro re-epithelialisation. These results suggest that the delivery of DFCM could be a potential treatment strategy for wound healing.
Collapse
Affiliation(s)
- Nurul ‘Izzah Abdul Ghani
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Rabiatul Adawiyah Razali
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Shiplu Roy Chowdhury
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | | | - Binti Haji Idrus Ruszymah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Correspondence: or ; Tel.: +603-91457685; Fax: +603-91457678
| |
Collapse
|
5
|
Roth LA, Bastos MF, Melo MA, Barão VAR, Costa RC, Giro G, Souza JGS, Grzech-Leśniak K, Shibli JA. The Potential Role of a Surface-Modified Additive-Manufactured Healing Abutment on the Expression of Integrins α2, β1, αv, and β6 in the Peri-Implant Mucosa: A Preliminary Human Study. Life (Basel) 2022; 12:life12070937. [PMID: 35888027 PMCID: PMC9316083 DOI: 10.3390/life12070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
The stability of peri-implant soft tissues is essential for long-term success. Integrins play a vital role in biological processes through developing and maintaining cell interactions; however, few studies have evaluated the effects of modifications to abutment surfaces on cell adhesion across integrin expression. Therefore, this pilot study assessed the influence of different surface topographies of titanium healing abutments prepared by additive manufacturing (AM) on the gene expression levels of the integrin subunits α2, β1, αv, and β6 in the human peri-implant mucosa. Thirteen healthy adults were included. Depending on the number of required implants, the subjects were distributed in different groups as a function of healing abutment topography: group 1 (fully rough surface); group 2 (upper machined + lower rough); group 3 (rough upper surface + lower machined); group 4 (fully machined). A total of 40 samples (n = 10/group) of the peri-implant mucosa around the abutments were collected 30 days after implant placement, and subsequently, the gene expression levels were evaluated using real-time PCR. The levels of gene expression of β1-subunit integrin were upregulated for individuals receiving fully rough surface abutments compared with the other surface topographies (p < 0.05). However, the healing abutment topography did not affect the gene expression levels of the α2, αv, and β6 integrin subunits in the human peri-implant mucosa (p > 0.05). This preliminary study suggested that controlled modifications of the surface topography of titanium healing abutments produced by AM may influence the quality of the peri-implant mucosa in the early stages of the soft tissue healing process.
Collapse
Affiliation(s)
- Leandro Amadeu Roth
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (L.A.R.); (M.A.M.); (G.G.); (J.G.S.S.); or (J.A.S.)
| | - Marta Ferreira Bastos
- Postgraduate Program in Aging Sciences, Universidade São Judas Tadeu, Rua. Taquari, 546, São Paulo 03166-000, SP, Brazil;
| | - Marcelo A. Melo
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (L.A.R.); (M.A.M.); (G.G.); (J.G.S.S.); or (J.A.S.)
| | - Valentim A. R. Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas—UNICAMP, Piracicaba 13414-903, SP, Brazil; (V.A.R.B.); (R.C.C.)
| | - Raphael C. Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas—UNICAMP, Piracicaba 13414-903, SP, Brazil; (V.A.R.B.); (R.C.C.)
| | - Gabriela Giro
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (L.A.R.); (M.A.M.); (G.G.); (J.G.S.S.); or (J.A.S.)
| | - João Gabriel Silva Souza
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (L.A.R.); (M.A.M.); (G.G.); (J.G.S.S.); or (J.A.S.)
- Dental Science School (Faculdade de Ciências Odontológicas—FCO), Av. Waldomiro Marcondes Oliveira, 20-Ibituruna, Montes Claros 39401-303, MG, Brazil
| | - Kinga Grzech-Leśniak
- Department of Oral Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence:
| | - Jamil Awad Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (L.A.R.); (M.A.M.); (G.G.); (J.G.S.S.); or (J.A.S.)
| |
Collapse
|
6
|
Tang F, Li J, Xie W, Mo Y, Ouyang L, Zhao F, Fu X, Chen X. Bioactive glass promotes the barrier functional behaviors of keratinocytes and improves the Re-epithelialization in wound healing in diabetic rats. Bioact Mater 2021; 6:3496-3506. [PMID: 33817423 PMCID: PMC7988492 DOI: 10.1016/j.bioactmat.2021.02.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 01/24/2023] Open
Abstract
Upon skin injury, re-epithelialization must be triggered promptly to restore the integrity and barrier function of the epidermis. However, this process is often delayed or interrupted in chronic wounds like diabetic foot ulcers. Considering that BG particles can activate multiple genes in various cells, herein, we hypothesized that bioactive glass (BG) might be able to modulate the barrier functional behaviors of keratinocytes. By measuring the transepithelial electrical resistance (TEER) and the paracellular tracer flux, we found the 58S-BG extracts substantially enhanced the barrier function of keratinocyte monolayers. The BG extracts might exert such effects by promoting the keratinocyte differentiation and the formation of tight junctions, as evidenced by the increased expression of critical differentiation markers (K10 and involucrin) and TJ protein claudin-1, as well as the altered subcellular location of four major TJ proteins (claudin-1, occludin, JAM-A, and ZO-1). Besides, the cell scratch assay showed that BG extracts induced the collective migration of keratinocytes, though they did not accelerate the migration rate compared to the control. The in vivo study using a diabetic rat wound model demonstrated that the BG extracts accelerated the process of re-epithelialization, stimulated keratinocyte differentiation, and promoted the formation of tight junctions in the newly regenerated epidermis. Our findings revealed the crucial effects of BGs on keratinocytes and highlighted its potential application for chronic wound healing by restoring the barrier function of the wounded skin effectively.
Collapse
Affiliation(s)
- Fengling Tang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Junliang Li
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Weihan Xie
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
| | - Yunfei Mo
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Lu Ouyang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Fujian Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, PR China
| | - Xiaoling Fu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaofeng Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
7
|
Di Russo J, Young JL, Wegner JW, Steins T, Kessler H, Spatz JP. Integrin α5β1 nano-presentation regulates collective keratinocyte migration independent of substrate rigidity. eLife 2021; 10:69861. [PMID: 34554089 PMCID: PMC8460267 DOI: 10.7554/elife.69861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/13/2021] [Indexed: 01/01/2023] Open
Abstract
Nanometer-scale properties of the extracellular matrix influence many biological processes, including cell motility. While much information is available for single-cell migration, to date, no knowledge exists on how the nanoscale presentation of extracellular matrix receptors influences collective cell migration. In wound healing, basal keratinocytes collectively migrate on a fibronectin-rich provisional basement membrane to re-epithelialize the injured skin. Among other receptors, the fibronectin receptor integrin α5β1 plays a pivotal role in this process. Using a highly specific integrin α5β1 peptidomimetic combined with nanopatterned hydrogels, we show that keratinocyte sheets regulate their migration ability at an optimal integrin α5β1 nanospacing. This efficiency relies on the effective propagation of stresses within the cell monolayer independent of substrate stiffness. For the first time, this work highlights the importance of extracellular matrix receptor nanoscale organization required for efficient tissue regeneration.
Collapse
Affiliation(s)
- Jacopo Di Russo
- Max Planck Institute for Medical Research, Heidelberg, Germany.,Interdisciplinary Centre for Clinical Research, Aachen, Germany.,DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse, Aachen, Germany.,Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Jennifer L Young
- Max Planck Institute for Medical Research, Heidelberg, Germany.,Mechanobiology Institute, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | | | - Timmy Steins
- Interdisciplinary Centre for Clinical Research, Aachen, Germany.,Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Horst Kessler
- Institute for Advance Study, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Joachim P Spatz
- Max Planck Institute for Medical Research, Heidelberg, Germany.,Institute for Molecular System Engineering - IMSE - Heidelberg University, Heidelberg, Germany.,Max Planck School Matter to Life, Heidelberg, Germany
| |
Collapse
|
8
|
Risueño I, Valencia L, Jorcano JL, Velasco D. Skin-on-a-chip models: General overview and future perspectives. APL Bioeng 2021; 5:030901. [PMID: 34258497 PMCID: PMC8270645 DOI: 10.1063/5.0046376] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/10/2021] [Indexed: 01/13/2023] Open
Abstract
Over the last few years, several advances have been made toward the development and production of in vitro human skin models for the analysis and testing of cosmetic and pharmaceutical products. However, these skin models are cultured under static conditions that make them unable to accurately represent normal human physiology. Recent interest has focused on the generation of in vitro 3D vascularized skin models with dynamic perfusion and microfluidic devices known as skin-on-a-chip. These platforms have been widely described in the literature as good candidates for tissue modeling, as they enable a more physiological transport of nutrients and permit a high-throughput and less expensive evaluation of drug candidates in terms of toxicity, efficacy, and delivery. In this Perspective, recent advances in these novel platforms for the generation of human skin models under dynamic conditions for in vitro testing are reported. Advances in vascularized human skin equivalents (HSEs), transferred skin-on-a-chip (introduction of a skin biopsy or a HSE in the chip), and in situ skin-on-a-chip (generation of the skin model directly in the chip) are critically reviewed, and currently used methods for the introduction of skin cells in the microfluidic chips are discussed. An outlook on current applications and future directions in this field of research are also presented.
Collapse
Affiliation(s)
- I Risueño
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28911 Leganés (Madrid), Spain
| | - L Valencia
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28911 Leganés (Madrid), Spain
| | - J L Jorcano
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28911 Leganés (Madrid), Spain
| | | |
Collapse
|
9
|
Vu HM, Hammers DE, Liang Z, Nguyen GL, Benz ME, Moran TE, Higashi DL, Park CJ, Ayinuola YA, Donahue DL, Flores-Mireles AL, Ploplis VA, Castellino FJ, Lee SW. Group A Streptococcus-Induced Activation of Human Plasminogen Is Required for Keratinocyte Wound Retraction and Rapid Clot Dissolution. Front Cardiovasc Med 2021; 8:667554. [PMID: 34179133 PMCID: PMC8230121 DOI: 10.3389/fcvm.2021.667554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023] Open
Abstract
Invasive outcomes of Group A Streptococcus (GAS) infections that involve damage to skin and other tissues are initiated when these bacteria colonize and disseminate via an open wound to gain access to blood and deeper tissues. Two critical GAS virulence factors, Plasminogen-Associated M-Protein (PAM) and streptokinase (SK), work in concert to bind and activate host human plasminogen (hPg) in order to create a localized proteolytic environment that alters wound-site architecture. Using a wound scratch assay with immortalized epithelial cells, real-time live imaging (RTLI) was used to examine dynamic effects of hPg activation by a PAM-containing skin-trophic GAS isolate (AP53R+S-) during the course of infection. RTLI of these wound models revealed that retraction of the epithelial wound required both GAS and hPg. Isogenic AP53R+S- mutants lacking SK or PAM highly attenuated the time course of retraction of the keratinocyte wound. We also found that relocalization of integrin β1 from the membrane to the cytoplasm occurred during the wound retraction event. We devised a combined in situ-based cellular model of fibrin clot-in epithelial wound to visualize the progress of GAS pathogenesis by RTLI. Our findings showed GAS AP53R+S- hierarchically dissolved the fibrin clot prior to the retraction of keratinocyte monolayers at the leading edge of the wound. Overall, our studies reveal that localized activation of hPg by AP53R+S- via SK and PAM during infection plays a critical role in dissemination of bacteria at the wound site through both rapid dissolution of the fibrin clot and retraction of the keratinocyte wound layer.
Collapse
Affiliation(s)
- Henry M. Vu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Daniel E. Hammers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Gabrielle L. Nguyen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Mary E. Benz
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Thomas E. Moran
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Dustin L. Higashi
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, United States
| | - Claudia J. Park
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Yetunde A. Ayinuola
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Deborah L. Donahue
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Ana L. Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Victoria A. Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Francis J. Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
10
|
Kim J, Cho M, Kim KI, Min EY, Lim J, Hong S. Transcriptome profiling in head kidney of rainbow trout (Oncorhynchus mykiss) after infection with the low-virulent Nagano genotype of infectious hematopoietic necrosis virus. Arch Virol 2021; 166:1057-1070. [PMID: 33532870 DOI: 10.1007/s00705-021-04980-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/15/2021] [Indexed: 12/30/2022]
Abstract
Infectious hematopoietic necrosis virus (IHNV) causes clinical diseases and mortality in a wide variety of salmonid species. Here, we studied transcriptional responses in rainbow trout infected by the IHNV-Nagano strain isolated in Korea. RNA-seq-based transcriptome analysis of head kidney tissues cataloged differentially expressed genes. Enrichment analysis of gene ontology annotations was performed, and a total of fifteen biological process terms were commonly identified at all time points. In the Kyoto Encyclopedia of Genes and Genomes pathway analysis, pathogen recognition receptor (PRR) signaling pathways such as the retinoic-acid-inducible gene-I-like receptor signaling pathway and the Toll-like receptor signaling pathway were identified at all time points. The nucleotide-binding oligomerization-domain-like receptor signaling pathway and cytosolic DNA-sensing pathway were identified at days 1 and 3. Protein-protein interaction network and centrality analyses revealed that the immune system, signaling molecules, and interaction pathways were upregulated at days 1 and 3, with the highest centrality of tumor necrosis factor. Cancer, cellular community, and endocrine system pathways were downregulated, with the highest centrality of fibronectin 1 at day 5. STAT1 was upregulated from days 1 to 5 with a high centrality. The reproducibility and repeatability of the transcriptome analysis were validated by RT-qPCR. IHNV-Nagano infection dynamically changed the transcriptome profiles in the head kidney of rainbow trout and induced a defense mechanism by regulating the immune and inflammatory pathways through PRR signaling at an early stage. Downregulated pathways involved in extracellular matrix formation and focal adhesion at day 5 indicated the possible failure of wound healing, which is important in the pathogenesis of IHNV infection.
Collapse
Affiliation(s)
- Jinwoo Kim
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, 210-702, Korea
| | - Miyoung Cho
- Pathology Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Kwang Il Kim
- Pathology Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Eun Young Min
- Pathology Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Jongwon Lim
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, 210-702, Korea
| | - Suhee Hong
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, 210-702, Korea.
| |
Collapse
|
11
|
Kozyrina AN, Piskova T, Di Russo J. Mechanobiology of Epithelia From the Perspective of Extracellular Matrix Heterogeneity. Front Bioeng Biotechnol 2020; 8:596599. [PMID: 33330427 PMCID: PMC7717998 DOI: 10.3389/fbioe.2020.596599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/06/2020] [Indexed: 11/13/2022] Open
Abstract
Understanding the complexity of the extracellular matrix (ECM) and its variability is a necessary step on the way to engineering functional (bio)materials that serve their respective purposes while relying on cell adhesion. Upon adhesion, cells receive messages which contain both biochemical and mechanical information. The main focus of mechanobiology lies in investigating the role of this mechanical coordination in regulating cellular behavior. In recent years, this focus has been additionally shifted toward cell collectives and the understanding of their behavior as a whole mechanical continuum. Collective cell phenomena very much apply to epithelia which are either simple cell-sheets or more complex three-dimensional structures. Researchers have been mostly using the organization of monolayers to observe their collective behavior in well-defined experimental setups in vitro. Nevertheless, recent studies have also reported the impact of ECM remodeling on epithelial morphogenesis in vivo. These new concepts, combined with the knowledge of ECM biochemical complexity are of key importance for engineering new interactive materials to support both epithelial remodeling and homeostasis. In this review, we summarize the structure and heterogeneity of the ECM before discussing its impact on the epithelial mechanobiology.
Collapse
Affiliation(s)
- Aleksandra N. Kozyrina
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Teodora Piskova
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Jacopo Di Russo
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
- DWI – Leibniz-Institute for Interactive Materials, Aachen, Germany
| |
Collapse
|
12
|
Ghufran H, Mehmood A, Azam M, Butt H, Ramzan A, Yousaf MA, Ejaz A, Tarar MN, Riazuddin S. Curcumin preconditioned human adipose derived stem cells co-transplanted with platelet rich plasma improve wound healing in diabetic rats. Life Sci 2020; 257:118091. [PMID: 32668325 DOI: 10.1016/j.lfs.2020.118091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/23/2020] [Accepted: 07/09/2020] [Indexed: 01/20/2023]
Abstract
AIM Inflammatory and oxidative microenvironment at diabetic' wound site hinder the therapeutic efficacy of cell-based therapies in diabetic patients. The purpose of this study is to explore the competence of curcumin preconditioned human adipose derived cells (hASCs) in combination with platelet rich plasma (PRP) for the repair of wounds in diabetic rats. MAIN METHODS The cytoprotective effect of curcumin preconditioning for hASCs against hyperglycemic stress was evaluated through analysis of cell morphology, viability, cytotoxicity, senescence, and scratch wound healing assays. Subsequently, the healing capacity of curcumin preconditioned hASCs (Cur-hASCs) added to PRP was examined in excisional wounded diabetic rat model. Healed skin biopsies were excised to analyze gene and protein expression of wound healing markers by qPCR and western blotting. Histopathological changes were observed through hematoxylin and eosin staining. KEY FINDINGS We found that Cur-hASCs counteract the glucose stress much better than non-preconditioned hASCs by maintaining their cellular morphology and viability as well as metabolic potential. Further in vivo results revealed that, Cur-hASCs co-injected with PRP resulted in faster wound closure, improved fibroblast proliferation, increased neovascularization, marked reduction in inflammatory cells, and compact extracellular matrix with completely covered thick epithelium. Moreover, Cur-hASCs + PRP treatment significantly improved the expression of key healing markers such as pro-angiogenic (Vegf), dermal matrix deposition (Col1α1), cell migration (bFgf) and cell proliferation (Pcna) at wound site. SIGNIFICANCE Our findings propose a combinatorial therapy (Cur-hASCs + PRP) as a novel modality to improve the efficacy of hASCs-based therapy for diabetic wounds.
Collapse
Affiliation(s)
- Hafiz Ghufran
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Maryam Azam
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Hira Butt
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Amna Ramzan
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | | | - Asim Ejaz
- Adipose Stem Cells Center, Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, USA
| | - Moazzam N Tarar
- Jinnah Burn and Reconstructive Surgery Centre, Lahore, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan; Jinnah Burn and Reconstructive Surgery Centre, Lahore, Pakistan.
| |
Collapse
|
13
|
Chaushu L, Rahmanov Gavrielov M, Chaushu G, Zar K, Vered M. Curcumin Promotes Primary Oral Wound Healing in a Rat Model. J Med Food 2020; 24:422-430. [PMID: 32808857 DOI: 10.1089/jmf.2020.0093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Curcumin is known as an anti-tumor, anti-aging, and wound healing promoter. The aim this study was to examine the effect of 2% curcumin paste application on primary wound healing in a palatal rat model. A mid-crestal incision was initiated on the maxillary alveolar ridge. A full thickness flap was raised on either side of the incision and was then repositioned and sutured. Experimental groups consisted of 2% curcumin (Cur), orabase (O), cut only (C), and intact control-no incision, no paste (N). Curcumin 2% and orabase were applied postoperatively every 12 h for 3 consecutive days. Rats were equally killed after 1 and 2 weeks. Histological data included-epithelial gap, inflammatory infiltrate, myofibroblasts, epithelial and connective tissue stem cell-related markers. Data were collected at two time points-1 and 2 weeks. There was no residual epithelial gap 1 week from incision in the Cur and O group vs. residual gap in the C group (P = .031). Curcumin 2% was associated with upregulated expression of epithelial-related markers (P < .05) although not statistically significant compared with orabase alone. Upregulation of connective tissue-related markers (P < .05) was unique to curcumin 2%. Curcumin promotes epithelial gap closure in a primary wound healing model in rats, possibly through upregulation of connective tissue stem cells leading to further epithelial differentiation and proliferation. Tel-Aviv University Animal Care Committee (approval Number: 01-16-031).
Collapse
Affiliation(s)
- Liat Chaushu
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marina Rahmanov Gavrielov
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gabi Chaushu
- Department of Oral and Maxillofacial Surgery, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Oral and Maxillofacial Surgery, Rabin Medical Center, Petah Tikva, Israel
| | - Keidar Zar
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hebrew University, Jerusalem, Israel
| | - Marilena Vered
- Department of Oral Pathology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Juncos Bombin AD, Dunne NJ, McCarthy HO. Electrospinning of natural polymers for the production of nanofibres for wound healing applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:110994. [PMID: 32993991 DOI: 10.1016/j.msec.2020.110994] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 02/07/2023]
Abstract
Wound healing is a highly regulated process composed of four overlapping phases: (1) coagulation/haemostasis, (2) inflammation, (3) proliferation and (4) remodelling. Comorbidities such as advanced age, diabetes and obesity can impair natural tissue repair, rendering the wound in a pathological state of inflammation. This results in significant discomfort for patients and considerable financial costs for healthcare systems. Due to the complex nature of wound healing, current treatments are ineffective at dealing with delayed healing. With flexible properties that can be tailored, nanomaterials have emerged as alternative therapeutics for many biomedical applications. A nanofibrous network can be made via electrospinning polymers using a high electric field to create a responsive meshwork that can be used as a medical dressing. A nanofibrous device has properties that can overcome the limitations of traditional dressings, such as: (1) adaptability to wound contour; (2) controlled drug delivery of therapeutics; (3) gaseous exchange; (4) exudate absorption and (5) surface functionalisation to further enhance the biological activity of the dressing. This review details emerging trends in nanotechnology to specifically target wound healing applications. Particular focus is given to the most common natural polymers that could address many unmet healthcare needs.
Collapse
Affiliation(s)
| | - Nicholas J Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland.; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland..
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
15
|
Rezaie F, Momeni-Moghaddam M, Naderi-Meshkin H. Regeneration and Repair of Skin Wounds: Various Strategies for Treatment. INT J LOW EXTR WOUND 2019; 18:247-261. [PMID: 31257948 DOI: 10.1177/1534734619859214] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skin as a mechanical barrier between the inner and outer environment of our body protects us against infection and electrolyte loss. This organ consists of 3 layers: the epidermis, dermis, and hypodermis. Any disruption in the integrity of skin leads to the formation of wounds, which are divided into 2 main categories: acute wounds and chronic wounds. Generally, acute wounds heal relatively faster. In contrast to acute wounds, closure of chronic wounds is delayed by 3 months after the initial insult. Treatment of chronic wounds has been one of the most challenging issues in the field of regenerative medicine, promoting scientists to develop various therapeutic strategies for a fast, qualified, and most cost-effective treatment modality. Here, we reviewed more recent approaches, including the development of stem cell therapy, tissue-engineered skin substitutes, and skin equivalents, for the healing of complex wounds.
Collapse
Affiliation(s)
- Fahimeh Rezaie
- Hakim Sabzevari University, Sabzevar, Iran.,Iranian Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | | | - Hojjat Naderi-Meshkin
- Iranian Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| |
Collapse
|
16
|
Aballay A, Hermans MHE. Neodermis Formation in Full Thickness Wounds Using an Esterified Hyaluronic Acid Matrix. J Burn Care Res 2019; 40:585-589. [PMID: 30957154 DOI: 10.1093/jbcr/irz057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe role of the dermis is essential for the proper orchestration of all phases of the normal wound healing process. Wounds with seriously damaged or even absent dermis consistently show seriously impaired wound healing and/or long-term complications such as hypertrophic scarring. Replacing a damaged dermis requires a dermal matrix that is compatible with, or even stimulates, the process of wound healing. Hyaluronic acid (HA), in an esterified form, is among the many matrices that are available. HA has been used in a number of indications, such as ulcers (ie, diabetic foot ulcers and venous leg ulcers), trauma, including burns, and for the repair of contractures and hypertrophic scars. The shorter healing time and the decrease of recurring hypertrophy demonstrate the efficiency of HA-derived matrices. Biopsies, taken up to 12 months post-reconstruction show a neodermis that histologically is largely comparable to normal skin, which probably is a function of HA playing such a pivotal role in normal, unwounded skin, as well as in the process of healing.
Collapse
Affiliation(s)
- Ariel Aballay
- Burn Center, West Penn Hospital, Allegheny Health Network, Pittsburgh, Pennsylvania
| | | |
Collapse
|
17
|
Triiodothyronine impregnated alginate/gelatin/polyvinyl alcohol composite scaffold designed for exudate-intensive wound therapy. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Ben Amara H, Thoma DS, Schwarz F, Song HY, Capetillo J, Koo KT. Healing kinetics of oral soft tissue wounds treated with recombinant epidermal growth factor: Translation from a canine model. J Clin Periodontol 2018; 46:105-117. [DOI: 10.1111/jcpe.13035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/02/2018] [Accepted: 10/23/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Heithem Ben Amara
- Department of Periodontology and Dental Research Institute; Translational Research Laboratory for Tissue Engineering (TTE); School of Dentistry; Seoul National University; Seoul Korea
| | - Daniel S. Thoma
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science; Center of Dental Medicine; University of Zurich; Zurich Switzerland
| | - Frank Schwarz
- Department of Oral Surgery and Implantology; Carolinum; Goethe-University Frankfurt; Frankfurt Germany
| | - Hyun Young Song
- Department of Periodontology and Dental Research Institute; Translational Research Laboratory for Tissue Engineering (TTE); School of Dentistry; Seoul National University; Seoul Korea
| | - Joseph Capetillo
- US Army Advanced Education Program in Periodontics; Ft. Gordon GA USA
| | - Ki-Tae Koo
- Department of Periodontology and Dental Research Institute; Translational Research Laboratory for Tissue Engineering (TTE); School of Dentistry; Seoul National University; Seoul Korea
| |
Collapse
|
19
|
Rizzi M, Migliario M, Tonello S, Rocchetti V, Renò F. Photobiomodulation induces in vitro re-epithelialization via nitric oxide production. Lasers Med Sci 2018; 33:1003-1008. [DOI: 10.1007/s10103-018-2443-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/11/2018] [Indexed: 12/16/2022]
|
20
|
Zhao J, Cao Y, DiPietro LA, Liang J. Dynamic cellular finite-element method for modelling large-scale cell migration and proliferation under the control of mechanical and biochemical cues: a study of re-epithelialization. J R Soc Interface 2017; 14:rsif.2016.0959. [PMID: 28404867 DOI: 10.1098/rsif.2016.0959] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/15/2017] [Indexed: 01/07/2023] Open
Abstract
Computational modelling of cells can reveal insight into the mechanisms of the important processes of tissue development. However, current cell models have limitations and are challenged to model detailed changes in cellular shapes and physical mechanics when thousands of migrating and interacting cells need to be modelled. Here we describe a novel dynamic cellular finite-element model (DyCelFEM), which accounts for changes in cellular shapes and mechanics. It also models the full range of cell motion, from movements of individual cells to collective cell migrations. The transmission of mechanical forces regulated by intercellular adhesions and their ruptures are also accounted for. Intra-cellular protein signalling networks controlling cell behaviours are embedded in individual cells. We employ DyCelFEM to examine specific effects of biochemical and mechanical cues in regulating cell migration and proliferation, and in controlling tissue patterning using a simplified re-epithelialization model of wound tissue. Our results suggest that biochemical cues are better at guiding cell migration with improved directionality and persistence, while mechanical cues are better at coordinating collective cell migration. Overall, DyCelFEM can be used to study developmental processes when a large population of migrating cells under mechanical and biochemical controls experience complex changes in cell shapes and mechanics.
Collapse
Affiliation(s)
- Jieling Zhao
- Department of Bioengineering, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Youfang Cao
- Theoretical Biology and Biophysics (T-6), Center for Nonlinear Studies (CNLS), Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Jie Liang
- Department of Bioengineering, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
21
|
|
22
|
Recent advancements in nanotechnological strategies in selection, design and delivery of biomolecules for skin regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:747-765. [DOI: 10.1016/j.msec.2016.05.074] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/03/2016] [Accepted: 05/18/2016] [Indexed: 12/31/2022]
|
23
|
Xu F, Othman B, Lim J, Batres A, Ponugoti B, Zhang C, Yi L, Liu J, Tian C, Hameedaldeen A, Alsadun S, Tarapore R, Graves DT. Foxo1 inhibits diabetic mucosal wound healing but enhances healing of normoglycemic wounds. Diabetes 2015; 64:243-56. [PMID: 25187373 PMCID: PMC4274809 DOI: 10.2337/db14-0589] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Re-epithelialization is an important part in mucosal wound healing. Surprisingly little is known about the impact of diabetes on the molecular events of mucosal healing. We examined the role of the transcription factor forkhead box O1 (Foxo1) in oral wounds of diabetic and normoglycemic mice with keratinocyte-specific Foxo1 deletion. Diabetic mucosal wounds had significantly delayed healing with reduced cell migration and proliferation. Foxo1 deletion rescued the negative impact of diabetes on healing but had the opposite effect in normoglycemic mice. Diabetes in vivo and in high glucose conditions in vitro enhanced expression of chemokine (C-C motif) ligand 20 (CCL20) and interleukin-36γ (IL-36γ) in a Foxo1-dependent manner. High glucose-stimulated Foxo1 binding to CCL20 and IL-36γ promoters and CCL20 and IL-36γ significantly inhibited migration of these cells in high glucose conditions. In normal healing, Foxo1 was needed for transforming growth factor-β1 (TGF-β1) expression, and in standard glucose conditions, TGF-β1 rescued the negative effect of Foxo1 silencing on migration in vitro. We propose that Foxo1 under diabetic or high glucose conditions impairs healing by promoting high levels of CCL20 and IL-36γ expression but under normal conditions, enhances it by inducing TGF-β1. This finding provides mechanistic insight into how Foxo1 mediates the impact of diabetes on mucosal wound healing.
Collapse
Affiliation(s)
- Fanxing Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Badr Othman
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jason Lim
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Angelika Batres
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bhaskar Ponugoti
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Chenying Zhang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Leah Yi
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jian Liu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA Department of Stomatology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chen Tian
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alhassan Hameedaldeen
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sarah Alsadun
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rohinton Tarapore
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
24
|
Role of dermatopontin in re-epithelialization: implications on keratinocyte migration and proliferation. Sci Rep 2014; 4:7385. [PMID: 25486882 PMCID: PMC4260223 DOI: 10.1038/srep07385] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/19/2014] [Indexed: 01/04/2023] Open
Abstract
Re-epithelialization is a key event in wound healing and any impairment in that process is associated with various pathological conditions. Epidermal keratinocyte migration and proliferation during re-epithelialization is largely regulated by the cytokines and growth factors from the provisional matrix and dermis. Extracellular matrix consists of numerous growth factors which mediate cell migration via cell membrane receptors. Dermatopontin (DPT), a non-collagenous matrix protein highly expressed in dermis is known for its striking ability to promote cell adhesion. DPT also enhances the biological activity of transforming growth factor beta 1 which plays a central role in the process of wound healing. This study was designed to envisage the role of DPT in keratinocyte migration and proliferation along with its mRNA and protein expression pattern in epidermis. The results showed that DPT promotes keratinocyte migration in a dose dependant fashion but fail to induce proliferation. Further, PCR and immunodetection studies revealed that the mRNA and protein expression of DPT is considerably negligible in the epidermis in contrast to the dermis. To conclude, DPT has a profound role in wound healing specifically during re-epithelialization by promoting keratinocyte migration via paracrine action from the underlying dermis.
Collapse
|
25
|
Koivisto L, Heino J, Häkkinen L, Larjava H. Integrins in Wound Healing. Adv Wound Care (New Rochelle) 2014; 3:762-783. [PMID: 25493210 DOI: 10.1089/wound.2013.0436] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 01/06/2023] Open
Abstract
Significance: Regulation of cell adhesions during tissue repair is fundamentally important for cell migration, proliferation, and protein production. All cells interact with extracellular matrix proteins with cell surface integrin receptors that convey signals from the environment into the nucleus, regulating gene expression and cell behavior. Integrins also interact with a variety of other proteins, such as growth factors, their receptors, and proteolytic enzymes. Re-epithelialization and granulation tissue formation are crucially dependent on the temporospatial function of multiple integrins. This review explains how integrins function in wound repair. Recent Advances: Certain integrins can activate latent transforming growth factor beta-1 (TGF-β1) that modulates wound inflammation and granulation tissue formation. Dysregulation of TGF-β1 function is associated with scarring and fibrotic disorders. Therefore, these integrins represent targets for therapeutic intervention in fibrosis. Critical Issues: Integrins have multifaceted functions and extensive crosstalk with other cell surface receptors and molecules. Moreover, in aberrant healing, integrins may assume different functions, further increasing the complexity of their functionality. Discovering and understanding the role that integrins play in wound healing provides an opportunity to identify the mechanisms for medical conditions, such as excessive scarring, chronic wounds, and even cancer. Future Directions: Integrin functions in acute and chronic wounds should be further addressed in models better mimicking human wounds. Application of any products in acute or chronic wounds will potentially alter integrin functions that need to be carefully considered in the design.
Collapse
Affiliation(s)
- Leeni Koivisto
- Laboratory of Periodontal Biology, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Jyrki Heino
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Lari Häkkinen
- Laboratory of Periodontal Biology, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Hannu Larjava
- Laboratory of Periodontal Biology, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
26
|
Curcumin as a wound healing agent. Life Sci 2014; 116:1-7. [PMID: 25200875 DOI: 10.1016/j.lfs.2014.08.016] [Citation(s) in RCA: 381] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 11/22/2022]
Abstract
Turmeric (Curcuma longa) is a popular Indian spice that has been used for centuries in herbal medicines for the treatment of a variety of ailments such as rheumatism, diabetic ulcers, anorexia, cough and sinusitis. Curcumin (diferuloylmethane) is the main curcuminoid present in turmeric and responsible for its yellow color. Curcumin has been shown to possess significant anti-inflammatory, anti-oxidant, anti-carcinogenic, anti-mutagenic, anti-coagulant and anti-infective effects. Curcumin has also been shown to have significant wound healing properties. It acts on various stages of the natural wound healing process to hasten healing. This review summarizes and discusses recently published papers on the effects of curcumin on skin wound healing. The highlighted studies in the review provide evidence of the ability of curcumin to reduce the body's natural response to cutaneous wounds such as inflammation and oxidation. The recent literature on the wound healing properties of curcumin also provides evidence for its ability to enhance granulation tissue formation, collagen deposition, tissue remodeling and wound contraction. It has become evident that optimizing the topical application of curcumin through altering its formulation is essential to ensure the maximum therapeutical effects of curcumin on skin wounds.
Collapse
|
27
|
Häkkinen L, Larjava H, Fournier BPJ. Distinct phenotype and therapeutic potential of gingival fibroblasts. Cytotherapy 2014; 16:1171-86. [PMID: 24934304 DOI: 10.1016/j.jcyt.2014.04.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 03/13/2014] [Accepted: 04/04/2014] [Indexed: 01/15/2023]
Abstract
Gingiva of the oral mucosa provides a practical source to isolate fibroblasts for therapeutic purposes because the tissue is easily accessible, tissue discards are common during routine clinical procedures and wound healing after biopsy is fast and results in complete wound regeneration with very little morbidity or scarring. In addition, gingival fibroblasts have unique traits, including neural crest origin, distinct gene expression and synthetic properties and potent immunomodulatory functions. These characteristics may provide advantages for certain therapeutic approaches over other more commonly used cells, including skin fibroblasts, both in intraoral and extra-oral sites. However, identity and phenotype of gingival fibroblasts, like other fibroblasts, are still not completely understood. Gingival fibroblasts are phenotypically heterogeneous, and these…fibroblast subpopulations may play different roles in tissue maintenance, regeneration and pathologies. The purpose of this review is to summarize what is currently known about gingival fibroblasts, their distinct potential for tissue regeneration and their potential therapeutic uses in the future.
Collapse
Affiliation(s)
- Lari Häkkinen
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada.
| | - Hannu Larjava
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Benjamin P J Fournier
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada; Paris Diderot University, Dental School, Rotschild Hospital, AP-HP, Paris, France; UMRS872, Team 5, Molecular Oral Physiopathology, CRC Les Cordeliers, Paris, 75006, INSERM UMRS872, Pierre et Marie Curie University, Paris Descartes University, Paris, France
| |
Collapse
|
28
|
Yousefi S, Qin J, Dziennis S, Wang RK. Assessment of microcirculation dynamics during cutaneous wound healing phases in vivo using optical microangiography. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:76015. [PMID: 25036212 PMCID: PMC4103582 DOI: 10.1117/1.jbo.19.7.076015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/24/2014] [Accepted: 06/05/2014] [Indexed: 05/20/2023]
Abstract
Cutaneous wound healing consists of multiple overlapping phases starting with blood coagulation following incision of blood vessels. We utilized label-free optical coherence tomography and optical microangiography (OMAG) to noninvasively monitor healing process and dynamics of microcirculation system in a mouse ear pinna wound model. Mouse ear pinna is composed of two layers of skin separated by a layer of cartilage and because its total thickness is around 500 μm, it can be utilized as an ideal model for optical imaging techniques. These skin layers are identical to human skin structure except for sweat ducts and glands. Microcirculatory system responds to the wound injury by recruiting collateral vessels to supply blood flow to hypoxic region. During the inflammatory phase, lymphatic vessels play an important role in the immune response of the tissue and clearing waste from interstitial fluid. In the final phase of wound healing, tissue maturation, and remodeling, the wound area is fully closed while blood vessels mature to support the tissue cells. We show that using OMAG technology allows noninvasive and label-free monitoring and imaging each phase of wound healing that can be used to replace invasive tissue sample histology and immunochemistry technologies.
Collapse
Affiliation(s)
- Siavash Yousefi
- University of Washington, Department of Bioengineering, Seattle, Washington 98195, United States
| | - Jia Qin
- University of Washington, Department of Bioengineering, Seattle, Washington 98195, United States
| | - Suzan Dziennis
- University of Washington, Department of Bioengineering, Seattle, Washington 98195, United States
| | - Ruikang K. Wang
- University of Washington, Department of Bioengineering, Seattle, Washington 98195, United States
- Address all correspondence to: Ruikang K. Wang, E-mail:
| |
Collapse
|