1
|
Hylander K, Nemomissa S, Fischer J, Zewdie B, Ayalew B, Tack AJM. Lessons from Ethiopian coffee landscapes for global conservation in a post-wild world. Commun Biol 2024; 7:714. [PMID: 38858451 PMCID: PMC11164958 DOI: 10.1038/s42003-024-06381-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
The reality for conservation of biodiversity across our planet is that all ecosystems are modified by humans in some way or another. Thus, biodiversity conservation needs to be implemented in multifunctional landscapes. In this paper we use a fascinating coffee-dominated landscape in southwest Ethiopia as our lens to derive general lessons for biodiversity conservation in a post-wild world. Considering a hierarchy of scales from genes to multi-species interactions and social-ecological system contexts, we focus on (i) threats to the genetic diversity of crop wild relatives, (ii) the mechanisms behind trade-offs between biodiversity and agricultural yields, (iii) underexplored species interactions suppressing pest and disease levels, (iv) how the interactions of climate change and land-use change sometimes provide opportunities for restoration, and finally, (v) how to work closely with stakeholders to identify scenarios for sustainable development. The story on how the ecology and evolution of coffee within its indigenous distribution shape biodiversity conservation from genes to social-ecological systems can inspire us to view other landscapes with fresh eyes. The ubiquitous presence of human-nature interactions demands proactive, creative solutions to foster biodiversity conservation not only in remote protected areas but across entire landscapes inhabited by people.
Collapse
Affiliation(s)
- Kristoffer Hylander
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden.
| | - Sileshi Nemomissa
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | - Joern Fischer
- Leuphana University, Faculty of Sustainability, Scharnhorststrasse 1, 21335, Lueneburg, Germany
| | - Beyene Zewdie
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Biruk Ayalew
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| |
Collapse
|
2
|
Zunino L, Cubry P, Sarah G, Mournet P, El Bakkali A, Aqbouch L, Sidibé-Bocs S, Costes E, Khadari B. Genomic evidence of genuine wild versus admixed olive populations evolving in the same natural environments in western Mediterranean Basin. PLoS One 2024; 19:e0295043. [PMID: 38232071 DOI: 10.1371/journal.pone.0295043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024] Open
Abstract
Crop-to-wild gene flow is a mechanism process widely documented, both in plants and animals. This can have positive or negative impacts on the evolution of admixed populations in natural environments, yet the phenomenon is still misunderstood in long-lived woody species, contrary to short-lived crops. Wild olive Olea europaea L. occurs in the same eco-geographical range as domesticated olive, i.e. the Mediterranean Basin (MB). Moreover, it is an allogamous and anemophilous species whose seeds are disseminated by birds, i.e. factors that drive gene flow between crops and their wild relatives. Here we investigated the genetic structure of western MB wild olive populations in natural environments assuming a homogenous gene pool with limited impact of cultivated alleles, as previously suggested. We used a target sequencing method based on annotated genes from the Farga reference genome to analyze 27 western MB olive tree populations sampled in natural environments in France, Spain and Morocco. We also target sequenced cultivated olive tree accessions from the Worldwide Olive Germplasm Bank of Marrakech and Porquerolles and from an eastern MB wild olive tree population. We combined PCA, sNMF, pairwise FST and TreeMix and clearly identified genuine wild olive trees throughout their natural distribution range along a north-south gradient including, for the first time, in southern France. However, contrary to our assumption, we highlighted more admixed than genuine wild olive trees. Our results raise questions regarding the admixed population evolution pattern in this environment, which might be facilitated by crop-to-wild gene flow.
Collapse
Affiliation(s)
- Lison Zunino
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Philippe Cubry
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Gautier Sarah
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Pierre Mournet
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
| | - Ahmed El Bakkali
- INRA, UR Amélioration des Plantes et Conservation des Ressources Phytogénétiques, Meknes, Morocco
| | - Laila Aqbouch
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Stéphanie Sidibé-Bocs
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
| | - Evelyne Costes
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Bouchaib Khadari
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- Conservatoire Botanique National Méditerranéen (CBNMed), UMR AGAP Institut, Montpellier, France
| |
Collapse
|
3
|
Chen X, Cornille A, An N, Xing L, Ma J, Zhao C, Wang Y, Han M, Zhang D. The East Asian wild apples, Malus baccata (L.) Borkh and Malus hupehensis (Pamp.) Rehder., are additional contributors to the genomes of cultivated European and Chinese varieties. Mol Ecol 2023; 32:5125-5139. [PMID: 35510734 DOI: 10.1111/mec.16485] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/09/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022]
Abstract
The domestication process in long-lived plant perennials differs dramatically from that of annuals, with a huge amount of genetic exchange between crop and wild populations. Though apple is a major fruit crop grown worldwide, the contribution of wild apple species to the genetic makeup of the cultivated apple genome remains a topic of intense study. We used population genomics approaches to investigate the contributions of several wild apple species to European and Chinese rootstock and dessert genomes, with a focus on the extent of wild-crop gene flow. Population genetic structure inferences revealed that the East Asian wild apples, Malus baccata (L.) Borkh and M. hupehensis (Pamp.), form a single panmictic group, and that the European dessert and rootstock apples form a specific gene pool whereas the Chinese dessert and rootstock apples were a mixture of three wild gene pools, suggesting different evolutionary histories of European and Chinese apple varieties. Coalescent-based inferences and gene flow estimates indicated that M. baccata - M. hupehensis contributed to the genome of both European and Chinese cultivated apples through wild-to-crop introgressions, and not as an initial contributor as previously supposed. We also confirmed the contribution through wild-to-crop introgressions of Malus sylvestris Mill. to the cultivated apple genome. Apple tree domestication is therefore one example in woody perennials that involved gene flow from several wild species from multiple geographical areas. This study provides an example of a complex protracted process of domestication in long-lived plant perennials, and is a starting point for apple breeding programmes.
Collapse
Affiliation(s)
- Xilong Chen
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | - Amandine Cornille
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | - Na An
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Libo Xing
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Juanjuan Ma
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Caiping Zhao
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Yibin Wang
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingyu Han
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Dong Zhang
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Greaves E, Kron P, Husband BC. Demographic and reproductive impacts of hybridization unrelated to hybrid viability in a native plant. AMERICAN JOURNAL OF BOTANY 2023; 110:e16208. [PMID: 37409880 DOI: 10.1002/ajb2.16208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 07/07/2023]
Abstract
PREMISE Introduced species can influence native congeners through production of hybrids and introgression, but impacts not involving viable hybrids, such as reduced conspecific offspring and increased asexual seed production, are rarely examined. Here we tested for these demographic and reproductive consequences of hybridization between introduced, domesticated apple (Malus domestica) and native crabapple (M. coronaria) in southern Canada. METHODS We applied four pollination treatments (open, M. coronaria, M. domestica, open + M. coronaria) to focal M. coronaria trees across multiple years and assessed the number and reproductive origins of resulting seeds (hybrid or conspecific endosperm and, for each, sexual or asexual embryo) using flow cytometry. RESULTS In open-pollinated fruit, 27% of seeds had hybrid endosperm; 52% of embryos were asexual. The number of conspecific embryos (sexual or asexual) per fruit did not decline significantly with increasing hybridization, indicating no seed discounting, but hand pollinations using only domestic apple or crabapple pollen reduced the number of conspecific embryos significantly. Hybridization was not associated with a change in percentage asexual embryos, overall, but there was an increase in asexual embryos in tetraploid seeds, the maternal and most common offspring ploidy. CONCLUSIONS We conclude that hybridization can influence native Malus in ways beyond the production of viable hybrids, with significant implications for population dynamics and genetic structure.
Collapse
Affiliation(s)
- Elaina Greaves
- Department of Integrative Biology, University of Guelph, 50 Stone Road E., Guelph, Ontario, N1G 2W1, Canada
| | - Paul Kron
- Department of Integrative Biology, University of Guelph, 50 Stone Road E., Guelph, Ontario, N1G 2W1, Canada
| | - Brian C Husband
- Department of Integrative Biology, University of Guelph, 50 Stone Road E., Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
5
|
Chen X, Avia K, Forler A, Remoué C, Venon A, Rousselet A, Lucas G, Kwarteng AO, Rover R, Le Guilloux M, Belcram H, Combes V, Corti H, Olverà-Vazquez S, Falque M, Alins G, Kirisits T, Ursu TM, Roman A, Volk GM, Bazot S, Cornille A. Ecological and evolutionary drivers of phenotypic and genetic variation in the European crabapple [Malus sylvestris (L.) Mill.], a wild relative of the cultivated apple. ANNALS OF BOTANY 2023; 131:1025-1037. [PMID: 37148364 PMCID: PMC10332392 DOI: 10.1093/aob/mcad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Studying the relationship between phenotypic and genetic variation in populations distributed across environmental gradients can help us to understand the ecological and evolutionary processes involved in population divergence. We investigated the patterns of genetic and phenotypic diversity in the European crabapple, Malus sylvestris, a wild relative of the cultivated apple (Malus domestica) that occurs naturally across Europe in areas subjected to different climatic conditions, to test for divergence among populations. METHODS Growth rates and traits related to carbon uptake in seedlings collected across Europe were measured in controlled conditions and associated with the genetic status of the seedlings, which was assessed using 13 microsatellite loci and the Bayesian clustering method. Isolation-by-distance, isolation-by-climate and isolation-by-adaptation patterns, which can explain genetic and phenotypic differentiation among M. sylvestris populations, were also tested. KEY RESULTS A total of 11.6 % of seedlings were introgressed by M. domestica, indicating that crop-wild gene flow is ongoing in Europe. The remaining seedlings (88.4 %) belonged to seven M. sylvestris populations. Significant phenotypic trait variation among M. sylvestris populations was observed. We did not observe significant isolation by adaptation; however, the significant association between genetic variation and the climate during the Last Glacial Maximum suggests that there has been local adaptation of M. sylvestris to past climates. CONCLUSIONS This study provides insight into the phenotypic and genetic differentiation among populations of a wild relative of the cultivated apple. This might help us to make better use of its diversity and provide options for mitigating the impact of climate change on the cultivated apple through breeding.
Collapse
Affiliation(s)
- X Chen
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - K Avia
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000 Colmar, France
| | - A Forler
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - C Remoué
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - A Venon
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - A Rousselet
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - G Lucas
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - A O Kwarteng
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - R Rover
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - M Le Guilloux
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - H Belcram
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - V Combes
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - H Corti
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - S Olverà-Vazquez
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - M Falque
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - G Alins
- Institut de Recerca i Tecnologia Agroalimentàries, IRTA-Fruit Production, PCiTAL, Parc 21 de Gardeny, edifici Fruitcentre, 25003 Lleida, Spain
| | - T Kirisits
- Institute of Forest Entomology, Forest Pathology and Forest Protection (IFFF), Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Peter-Jordan-Straße 82 (Franz Schwackhöfer-Haus), A-1190 Vienna, Austria
| | - T M Ursu
- NIRDBS, Institute of Biological Research Cluj-Napoca, 48 Republicii St., Cluj-Napoca, Romania
| | - A Roman
- NIRDBS, Institute of Biological Research Cluj-Napoca, 48 Republicii St., Cluj-Napoca, Romania
| | - G M Volk
- USDA-ARS National Laboratory for Genetic Resources Preservation, 1111 South Mason Street, Fort Collins, CO 80521, USA
| | - S Bazot
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris‐Saclay, Orsay, France
| | - A Cornille
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| |
Collapse
|
6
|
Ruhsam M, Bell D, Hart M, Hollingsworth P. The genome sequence of the European crab apple, Malus sylvestris (L.) Mill., 1768. Wellcome Open Res 2022; 7:296. [PMID: 36874569 PMCID: PMC9975420 DOI: 10.12688/wellcomeopenres.18645.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
We present a genome assembly from an individual Malus sylvestris (the European or 'wild' crab apple; Streptophyta; Magnoliopsida; Rosales; Rosaceae). The genome sequence is 642 megabases in span. Most of the assembly (99.98%) is scaffolded into 17 chromosomal pseudomolecules. The mitochondrial and chloroplast genomes were also assembled, with respective lengths of 396.9 kilobases and 160.0 kilobases.
Collapse
Affiliation(s)
| | - David Bell
- Royal Botanic Garden, Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bina H, Yousefzadeh H, Venon A, Remoué C, Rousselet A, Falque M, Faramarzi S, Chen X, Samanchina J, Gill D, Kabaeva A, Giraud T, Hosseinpour B, Abdollahi H, Gabrielyan I, Nersesyan A, Cornille A. Evidence of an additional centre of apple domestication in Iran, with contributions from the Caucasian crab apple Malus orientalis Uglitzk. to the cultivated apple gene pool. Mol Ecol 2022; 31:5581-5601. [PMID: 35984725 DOI: 10.1111/mec.16667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/08/2022] [Accepted: 08/09/2022] [Indexed: 12/29/2022]
Abstract
Divergence processes in crop-wild fruit tree complexes in pivotal regions for plant domestication such as the Caucasus and Iran remain little studied. We investigated anthropogenic and natural divergence processes in apples in these regions using 26 microsatellite markers amplified in 550 wild and cultivated samples. We found two genetically distinct cultivated populations in Iran that are differentiated from Malus domestica, the standard cultivated apple worldwide. Coalescent-based inferences showed that these two cultivated populations originated from specific domestication events of Malus orientalis in Iran. We found evidence of substantial wild-crop and crop-crop gene flow in the Caucasus and Iran, as has been described in apple in Europe. In addition, we identified seven genetically differentiated populations of wild apple (M. orientalis), not introgressed by the cultivated apple. Niche modelling combined with genetic diversity estimates indicated that these wild populations likely resulted from range changes during past glaciations. This study identifies Iran as a key region in the domestication of apple and M. orientalis as an additional contributor to the cultivated apple gene pool. Domestication of the apple tree therefore involved multiple origins of domestication in different geographic locations and substantial crop-wild hybridization, as found in other fruit trees. This study also highlights the impact of climate change on the natural divergence of a wild fruit tree and provides a starting point for apple conservation and breeding programmes in the Caucasus and Iran.
Collapse
Affiliation(s)
- Hamid Bina
- Department of Forestry, Tarbiat Modares University, Noor, Iran
| | - Hamed Yousefzadeh
- Department of Environmental Science, Biodiversity Branch, Natural Resources Faculty, Tarbiat Modares University, Noor, Iran
| | - Anthony Venon
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | - Carine Remoué
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | - Agnès Rousselet
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | - Matthieu Falque
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | - Shadab Faramarzi
- Department of Plant Production and Genetics, Faculty of Agriculture, Razi University, Kermanshah, Iran
| | - Xilong Chen
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | | | - David Gill
- Fauna & Flora International, Cambridge, UK
| | | | - Tatiana Giraud
- Ecologie Systematique Evolution, Universite Paris-Saclay, CNRS, AgroParisTech, Gif-sur-Yvette, France
| | - Batool Hosseinpour
- Department of Agriculture, Iranian Research Organization for Science and Technology (IROST), Institute of Agriculture, Tehran, Iran
| | - Hamid Abdollahi
- Temperate Fruits Research Centre, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ivan Gabrielyan
- Department of Palaeobotany, A. Takhtajyan Institute of Botany, Armenian National Academy of Sciences, Yerevan, Armenia
| | - Anush Nersesyan
- Department of Conservation of Genetic Resources of Armenian Flora, A. Takhtajyan Institute of Botany, Armenian National Academy of Sciences, Yerevan, Armenia
| | - Amandine Cornille
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| |
Collapse
|
8
|
Liu L, Zhang L, Fu J, Shen W, Fang Z, Dai Y, Jia R, Liu B, Liang J. Fitness and Ecological Risk of Hybrid Progenies of Wild and Herbicide-Tolerant Soybeans With EPSPS Gene. FRONTIERS IN PLANT SCIENCE 2022; 13:922215. [PMID: 35755711 PMCID: PMC9224928 DOI: 10.3389/fpls.2022.922215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/24/2022] [Indexed: 05/11/2023]
Abstract
Exogenous genes of transgenic crops are usually transferred to their wild-type relatives through pollen-mediated gene flow, which may change the ecological fitness and ability to invade wild populations, resulting in the weeding of wild plants and other unpredictable environmental impacts. In this study, the F1 generation of herbicide-resistant soybeans and wild soybeans was obtained by artificial pollination, F2 generation seeds were obtained by self-crossing, and the fitness of the parents and their F1 and F2 generations were tested. The foreign protein EPSPS was expressed normally in the hybrid between transgenic and wild soybeans; however, the protein expression was significantly lower than that in transgenic soybeans. The fitness of the F1 hybrid between transgenic and wild soybeans was significantly lower than that of its parent. Compared with those of the wild soybeans, the F2 generation soybeans improved in some fitness indices, while the emergence rate, pollen germination rate, and number of full seeds per pod, pods per plant, and full seeds per plant did not significantly differ. The aboveground biomass and 100-seed weight of the F2 generation were higher than those of wild soybeans. Fitness among the F2-negative plants, homozygous, and heterozygous positive plants did not significantly vary. Improved fitness and presence of foreign genes in the F2 soybean were not significantly correlated. As the F2 generation of transgenic and wild soybeans had no fitness cost and the flowering stage were overlapped, the foreign gene might still spread in the wild soybean population.
Collapse
Affiliation(s)
- Laipan Liu
- Key Laboratory on Biosafety of Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| | - Li Zhang
- Key Laboratory on Biosafety of Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| | - Jianmei Fu
- Key Laboratory on Biosafety of Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| | - Wenjing Shen
- Key Laboratory on Biosafety of Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| | - Zhixiang Fang
- Key Laboratory on Biosafety of Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| | - Ying Dai
- Key Laboratory on Biosafety of Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| | - Ruizong Jia
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, China
| | - Biao Liu
- Key Laboratory on Biosafety of Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
- *Correspondence: Biao Liu,
| | - Jingang Liang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Jingang Liang,
| |
Collapse
|
9
|
Wang Y, Paterson AH. Loquat (Eriobotrya japonica (Thunb.) Lindl) population genomics suggests a two-staged domestication and identifies genes showing convergence/parallel selective sweeps with apple or peach. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:942-952. [PMID: 33624402 DOI: 10.1111/tpj.15209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/26/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Crop domestication and evolution represent key fields of plant and genetics research. Here, we re-sequenced and analyzed whole genome data from 51 wild accessions and 53 representative cultivars of Eriobotrya japonica, an important semi-subtropical fruit crop. Population genomics analysis suggested that modern cultivated E. japonica experienced a two-staged domestication fitting the "marginality model," being initially domesticated in west-northern Hubei province from a mono-phylogenetic wild progenitor, then refined mainly in Jiangsu, Zhejiang and Fujian provinces of China. Cultivated E. japonica has experienced little reduction in genome-wide nucleotide polymorphism compared with wild forms. Genes responsible for sugar biosynthesis were enriched in regions harboring putative selective sweeps. An approach based on co-clustering into gene families and evaluating chromosome colinearity of orthologous and paralogous genes was used to identify convergent/parallel selective sweeps among different crops. Specifically, more than one hundred of orthologs and paralogs undergoing selective sweeps were identified between loquat, apple and peach, among which 14 encoded "UDP glycosyltransferase 1." In sum, the study not only provided valuable information for breeding of E. japonica, but also enriched knowledge of crop domestication.
Collapse
Affiliation(s)
- Yunsheng Wang
- College of Health and Life Science, Kaili University, Kaili City, Guizhou Province, 556011, China
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, 30605, USA
- Southwest University, Chongqing, China
- North China University of Science and Technology, Tangshan City, Hebei Province, 063210, China
| |
Collapse
|
10
|
Genetic structure of Malus sylvestris and potential link with preference/performance by the rosy apple aphid pest Dysaphis plantaginea. Sci Rep 2021; 11:5732. [PMID: 33707470 PMCID: PMC7970975 DOI: 10.1038/s41598-021-85014-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
The European crabapple Malus sylvestris, a crop wild relative of Malus domestica, is a major contributor to the cultivated apple genome and represents a potential source of interesting alleles or genes, particularly pest resistance traits. An original approach was used to explore the trophic interaction between M. sylvestris populations and its pest, the rosy apple aphid (Dysaphis plantaginea). Using 13 microsatellite markers, population genetic structure and level of crop-to-wild introgressions were inferred between M. sylvestris seedlings from three sites in Europe (Denmark, France, Romania), and M. domestica seedlings. Genetically characterized plants were also used to analyze aphid feeding behavior and fitness parameters. First, aphids submitted to two genetically close M. sylvestris populations (the Danish and French) exhibited similar behavioral parameters, suggesting similar patterns of resistance in these host plants. Second, the Romanian M. sylvestris population was most closely genetically related to M. domestica. Although the two plant genetic backgrounds were significantly differentiated, they showed comparable levels of sensitivity to D. plantaginea infestation. Third, aphid fitness parameters were not significantly impacted by the host plant's genetic background. Finally, crop-to-wild introgression seemed to significantly drive resistance to D. plantaginea independent of host plant population genetic structure, with hybrids being less suitable hosts.
Collapse
|
11
|
Wang X, Shen F, Gao Y, Wang K, Chen R, Luo J, Yang L, Zhang X, Qiu C, Li W, Wu T, Xu X, Wang Y, Cong P, Han Z, Zhang X. Application of genome-wide insertion/deletion markers on genetic structure analysis and identity signature of Malus accessions. BMC PLANT BIOLOGY 2020; 20:540. [PMID: 33256591 PMCID: PMC7708918 DOI: 10.1186/s12870-020-02744-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Apple (Malus ssp.), one of the most important temperate fruit crops, has a long cultivation history and is economically important. To identify the genetic relationships among the apple germplasm accessions, whole-genome structural variants identified between M. domestica cultivars 'Jonathan' and 'Golden Delicious' were used. RESULTS A total of 25,924 insertions and deletions (InDels) were obtained, from which 102 InDel markers were developed. Using the InDel markers, we found that 942 (75.3%) of the 1251 Malus accessions from 35 species exhibited a unique identity signature due to their distinct genotype combinations. The 102 InDel markers could distinguish 16.7-71.4% of the 331 bud sports derived from 'Fuji', 'Red Delicious', 'Gala', 'Golden Delicious', and other cultivars. Five distinct genetic patterns were found in 1002 diploid accessions based on 78 bi-allele InDel markers. Genetic structure analysis indicated that M. domestica showed higher genetic diversity than the other species. Malus underwent a relatively high level of wild-to-crop or crop-to-wild gene flow. M. sieversii was closely related to both M. domestica and cultivated Chinese cultivars. CONCLUSIONS The identity signatures of Malus accessions can be used to determine distinctness, uniformity, and stability. The results of this study may also provide better insight into the genetic relationships among Malus species.
Collapse
Affiliation(s)
- Xuan Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Fei Shen
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yuan Gao
- Research Institute of Pomology, Chinese Academy of Agricultural Science, Xingcheng, Liaoning, China
| | - Kun Wang
- Research Institute of Pomology, Chinese Academy of Agricultural Science, Xingcheng, Liaoning, China
| | - Ruiting Chen
- College of Horticulture, China Agricultural University, Beijing, China
- Present Address: Shaanxi Haisheng Fruit Industry Development Co., Ltd., Shaanxi, Xian, China
| | - Jun Luo
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| | - Lili Yang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| | - Xi Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Changpeng Qiu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Wei Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Peihua Cong
- Research Institute of Pomology, Chinese Academy of Agricultural Science, Xingcheng, Liaoning, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
12
|
Feurtey A, Guitton E, De Gracia Coquerel M, Duvaux L, Shiller J, Bellanger MN, Expert P, Sannier M, Caffier V, Giraud T, Le Cam B, Lemaire C. Threat to Asian wild apple trees posed by gene flow from domesticated apple trees and their "pestified" pathogens. Mol Ecol 2020; 29:4925-4941. [PMID: 33031644 DOI: 10.1111/mec.15677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/28/2022]
Abstract
Secondary contact between crops and their wild relatives poses a threat to wild species, not only through gene flow between plants, but also through the dispersal of crop pathogens and genetic exchanges involving these pathogens, particularly those that have become more virulent by indirect selection on resistant crops, a phenomenon known as "pestification." Joint analyses of wild and domesticated hosts and their pathogens are essential to address this issue, but such analyses remain rare. We used population genetics approaches, demographic inference and pathogenicity tests on host-pathogen pairs of wild or domesticated apple trees from Central Asia and their main fungal pathogen, Venturia inaequalis, which itself has differentiated agricultural and wild-type populations. We confirmed the occurrence of gene flow from cultivated (Malus domestica) to wild (Malus sieversii) apple trees in Asian forests, potentially threatening the persistence of Asian wild apple trees. Pathogenicity tests demonstrated the pestification of V. inaequalis, the agricultural-type population being more virulent on both wild and domesticated trees. Single nucleotide polymorphism (SNP) markers and the demographic modelling of pathogen populations revealed hybridization following secondary contact between agricultural and wild-type fungal populations, and dispersal of the agricultural-type pathogen population in wild forests, increasing the threat of disease in the wild apple species. We detected an SNP potentially involved in pathogen pestification, generating an early stop codon in a gene encoding a small secreted protein in the agricultural-type fungal population. Our findings, based on joint analyses of paired host and pathogen data sets, highlight the threat posed by cultivating a crop near its centre of origin, in terms of pestified pathogen invasions in wild plant populations and introgression in the wild-type pathogen population.
Collapse
Affiliation(s)
- Alice Feurtey
- Ecologie Systématique Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France.,Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Ellen Guitton
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, Beaucouzé, France
| | | | - Ludovic Duvaux
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, Beaucouzé, France.,BIOGECO, INRAE, Université de Bordeaux, Cestas, France
| | - Jason Shiller
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, Beaucouzé, France.,Noble Research Institute, Ardmore, OK, USA
| | | | - Pascale Expert
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, Beaucouzé, France
| | - Mélanie Sannier
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, Beaucouzé, France
| | - Valérie Caffier
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, Beaucouzé, France
| | - Tatiana Giraud
- Ecologie Systématique Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Bruno Le Cam
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, Beaucouzé, France
| | - Christophe Lemaire
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, Beaucouzé, France
| |
Collapse
|
13
|
Reim S, Lochschmidt F, Proft A, Höfer M. Genetic integrity is still maintained in natural populations of the indigenous wild apple species Malus sylvestris (Mill.) in Saxony as demonstrated with nuclear SSR and chloroplast DNA markers. Ecol Evol 2020; 10:11798-11809. [PMID: 33145002 PMCID: PMC7593173 DOI: 10.1002/ece3.6818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/25/2022] Open
Abstract
Malus sylvestris (Mill.) is the only indigenous wild apple species in Central Europe. Agriculture, forestry, and urbanization increasingly endanger Malus sylvestris natural habitats. In addition, the risks of cross-hybridization associated with increase in the cultivation of the domesticated apple Malus × domestica (Borkh.) threaten the genetic integrity of M. sylvestris. The present study investigated the number of hybrids, genetic diversity, and genetic structure of 292 putative M. sylvestris that originate from five different natural M. sylvestris populations in Saxony, Germany. All samples were genetically analyzed using nine nuclear microsatellite markers (ncSSR) and four maternally inherited chloroplast markers (cpDNA) along with 56 apple cultivars commonly cultivated in Saxony. Eighty-seven percent of the wild apple accessions were identified as pure M. sylvestris. The cpDNA analysis showed six private haplotypes for M. sylvestris, whereas three haplotypes were present in M. sylvestris and M. × domestica. The analysis of molecular variance (AMOVA) resulted in a moderate (ncSSR) and great (cpDNA) variation among pure M. sylvestris and M. × domestica individuals indicating a low gene flow between both species. The genetic diversity within the pure M. sylvestris populations was high with a weak genetic structure between the M. sylvestris populations indicating an unrestricted genetic exchange between these M. sylvestris populations. The clear distinguishing of M. sylvestris and M. ×domestica confirms our expectation of the existence of pure M. sylvestris accessions in this area and supports the argument for the implementation of preservation measures to protect the M. sylvestris populations in Saxony.
Collapse
Affiliation(s)
- Stefanie Reim
- Federal Research Centre for Cultivated PlantsInstitute for Breeding Research on Fruit CropsJulius Kühn Institute (JKI)DresdenGermany
| | | | - Anke Proft
- Green League Osterzgebirge e.V.DippoldiswaldeGermany
| | - Monika Höfer
- Federal Research Centre for Cultivated PlantsInstitute for Breeding Research on Fruit CropsJulius Kühn Institute (JKI)DresdenGermany
| |
Collapse
|
14
|
Paudel I, Gerbi H, Wagner Y, Zisovich A, Sapir G, Brumfeld V, Klein T. Drought tolerance of wild versus cultivated tree species of almond and plum in the field. TREE PHYSIOLOGY 2020; 40:454-466. [PMID: 31860710 DOI: 10.1093/treephys/tpz134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/29/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Trees of the genus Prunus produce some of the most widely consumed fruits globally. The combination of climate change-related warming and increased drought stress, scarcity of freshwater resources for irrigation, and increasing demands due to population growth creates a need for increased drought tolerance in these tree species. Recently, we have shown in the field that a native wild pear species performs better under drought than two cultivated pear species. Here, a comparative field study was conducted in Israel to investigate traits associated with drought tolerance in almond (cultivated Prunus dulcis (Mill.) D. A. Webb vs wild Prunus ramonensis Danin) and plum (cultivated Prunus domestica L. vs wild Prunus ursina Kotschy). Measurements of xylem embolism and shoot and root carbon reserves were done along a year, including seasonal drought in the wild and a 35-day drought experiment in the orchards. Synchronous measurements of native xylem embolism and shoot water potential showed that cultivated and wild almond trees lost ~50% of hydraulic conductivity at -2.3 and -3.2 MPa, respectively. Micro-CT images confirmed the higher embolism ratio in cultivated versus wild almond, whereas the two plum species were similar. Dynamics of tissue concentrations of nonstructural carbohydrates were mostly similar across species, with higher levels in cultivated versus wild plum. Our results indicate an advantage for the wild almond over its cultivated relative in terms of xylem resistance to embolism, a major risk factor for trees under drought stress. This result is in line with our previous experiment on pear species. However, the opposite trends observed among the studied plum species mean that these trends cannot be generalized. It is possible that the potential for superior drought tolerance in wild tree species, relative to their cultivated relatives, is limited to wild species from dry and hot habitats.
Collapse
Affiliation(s)
- Indira Paudel
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Forestry and Natural Resourses, Purdue University, West Lafayette, IN, USA
| | - Hadas Gerbi
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Wagner
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Annat Zisovich
- Extension Service, Ministry of Agriculture, Kiryat Shemona 10200, Israel
| | - Gal Sapir
- MIGAL Galilee Research Institute, PO Box 831, Kiryat Shemona 11016, Israel
| | - Vlad Brumfeld
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamir Klein
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
15
|
Yan S, Yu J, Han M, Michaud JP, Guo LL, Li Z, Zeng B, Zhang QW, Liu XX. Intercrops can mitigate pollen-mediated gene flow from transgenic cotton while simultaneously reducing pest densities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134855. [PMID: 31812403 DOI: 10.1016/j.scitotenv.2019.134855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Genetically modified (GM) cotton, engineered to express Bt toxins that protect it from insect damage, has become the most successfully commercialized GM crop in China since its authorization in 1997. In light of the potential ecological consequences of pollen-mediated gene flow (PGF) from GM plants, a two year field trial was conducted to test the effects on PGF of sunflower, Helianthus annuus, buckwheat, Fagopyrum esculentum, and soybean, Glycine max, as intercrops in non-GM cotton fields during 2017 and 2018. DNA tests for hybridized seed were used to estimate rates of PGF in intercrop treatments. PGF was the lowest in cotton intercropped with either buckwheat or sunflower, likely due to the trapping of pollen in these flowers, and/or the diversion of pollinators away from cotton flowers. PGF declined as an exponential function of distance from the GM cotton; Y = -lnx was the model of best fit for estimating pollen dispersal potential. A sunflower intercrop reduced the peak abundance of Aphis gossypii, (Hemiptera: Aphididae), Bemisia tabaci (Hemiptera: Aleyrodidae), and Nysius ericae (Hemiptera: Lygaeidae) on cotton plants, although densities of Tetranychus cinnabarinus (Acari: Tetranychidae), were increased. A buckwheat intercrop had very similar effects on these pests, likely due to attraction of their natural enemies. We conclude that sunflower and buckwheat are suitable intercrops for reducing PGF from GM cotton, and may be useful for reducing PGF from other insect-pollinated GM crops in the agricultural landscape, while simultaneously contributing to control of specific pests. This is the first demonstration, to our knowledge, that intercrops can be used to reduce PGF from transgenic plants.
Collapse
Affiliation(s)
- Shuo Yan
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Jian Yu
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Min Han
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Center-Hays, Hays, KS 67601, USA
| | - Li-Lei Guo
- Center of International Cooperation Service, Ministry of Agriculture and Rural Affairs, Beijing 100125, PR China
| | - Zhen Li
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Bo Zeng
- National Agricultural Technology Extension and Service Center, Beijing 100125, PR China
| | - Qing-Wen Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Xiao-Xia Liu
- Department of Entomology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
16
|
Cornille A, Antolín F, Garcia E, Vernesi C, Fietta A, Brinkkemper O, Kirleis W, Schlumbaum A, Roldán-Ruiz I. A Multifaceted Overview of Apple Tree Domestication. TRENDS IN PLANT SCIENCE 2019; 24:770-782. [PMID: 31296442 DOI: 10.1016/j.tplants.2019.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 05/19/2023]
Abstract
The apple is an iconic tree and a major fruit crop worldwide. It is also a model species for the study of the evolutionary processes and genomic basis underlying the domestication of clonally propagated perennial crops. Multidisciplinary approaches from across Eurasia have documented the pace and process of cultivation of this remarkable crop. While population genetics and genomics have revealed the overall domestication history of apple across Eurasia, untangling the evolutionary processes involved, archeobotany has helped to document the transition from gathering and using apples to the practice of cultivation. Further studies integrating archeogenetic and archeogenomic approaches will bring new insights about key traits involved in apple domestication. Such knowledge has potential to boost innovation in present-day apple breeding.
Collapse
Affiliation(s)
- Amandine Cornille
- Génétique Quantitative et Evolution- Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France.
| | - Ferran Antolín
- Integrative Prehistory and Archeological Science (IPNA/IPAS), Department of Environmental Sciences, University of Basel, Spalenring 145, 4055 Basel, Switzerland
| | - Elena Garcia
- Department of Horticulture, University of Arkansas, Fayetteville, AR, USA
| | - Cristiano Vernesi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre - Fondazione Edmund Mach, via Edmund Mach 1, 38010 San Michele all'Adige, TN, Italy
| | - Alice Fietta
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre - Fondazione Edmund Mach, via Edmund Mach 1, 38010 San Michele all'Adige, TN, Italy
| | - Otto Brinkkemper
- Cultural Heritage Agency, PO Box 1600, 3800 BP Amersfoort, The Netherlands
| | - Wiebke Kirleis
- Institute for Prehistoric and Protohistoric Archeology/Graduate School Human Development in Landscapes, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Angela Schlumbaum
- Integrative Prehistory and Archeological Science (IPNA/IPAS), Department of Environmental Sciences, University of Basel, Spalenring 145, 4055 Basel, Switzerland
| | - Isabel Roldán-Ruiz
- Flanders Research Institute for Agriculture, Fisheries, and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, 9090 Melle, Belgium; Ghent University, Faculty of Sciences, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
17
|
Spengler RN. Origins of the Apple: The Role of Megafaunal Mutualism in the Domestication of Malus and Rosaceous Trees. FRONTIERS IN PLANT SCIENCE 2019; 10:617. [PMID: 31191563 PMCID: PMC6545323 DOI: 10.3389/fpls.2019.00617] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/25/2019] [Indexed: 05/05/2023]
Abstract
The apple (Malus domestica [Suckow] Borkh.) is one of the most economically and culturally significant fruits in the world today, and it is grown in all temperate zones. With over a thousand landraces recognized, the modern apple provides a unique case study for understanding plant evolution under human cultivation. Recent genomic and archaeobotanical studies have illuminated parts of the process of domestication in the Rosaceae family. Interestingly, these data seem to suggest that rosaceous arboreal crops did not follow the same pathway toward domestication as other domesticated, especially annual, plants. Unlike in cereal crops, tree domestication appears to have been rapid and driven by hybridization. Apple domestication also calls into question the concept of centers of domestication and human intentionality. Studies of arboreal domestication also illustrate the importance of fully understanding the seed dispersal processes in the wild progenitors when studying crop origins. Large fruits in Rosaceae evolved as a seed-dispersal adaptation recruiting megafaunal mammals of the late Miocene. Genetic studies illustrate that the increase in fruit size and changes in morphology during evolution in the wild resulted from hybridization events and were selected for by large seed dispersers. Humans over the past three millennia have fixed larger-fruiting hybrids through grafting and cloning. Ultimately, the process of evolution under human cultivation parallels the natural evolution of larger fruits in the clade as an adaptive strategy, which resulted in mutualism with large mammalian seed dispersers (disperser recruitment).
Collapse
Affiliation(s)
- Robert Nicholas Spengler
- Paleoethnobotany Laboratories, Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| |
Collapse
|
18
|
Peace CP, Bianco L, Troggio M, van de Weg E, Howard NP, Cornille A, Durel CE, Myles S, Migicovsky Z, Schaffer RJ, Costes E, Fazio G, Yamane H, van Nocker S, Gottschalk C, Costa F, Chagné D, Zhang X, Patocchi A, Gardiner SE, Hardner C, Kumar S, Laurens F, Bucher E, Main D, Jung S, Vanderzande S. Apple whole genome sequences: recent advances and new prospects. HORTICULTURE RESEARCH 2019; 6:59. [PMID: 30962944 PMCID: PMC6450873 DOI: 10.1038/s41438-019-0141-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 05/19/2023]
Abstract
In 2010, a major scientific milestone was achieved for tree fruit crops: publication of the first draft whole genome sequence (WGS) for apple (Malus domestica). This WGS, v1.0, was valuable as the initial reference for sequence information, fine mapping, gene discovery, variant discovery, and tool development. A new, high quality apple WGS, GDDH13 v1.1, was released in 2017 and now serves as the reference genome for apple. Over the past decade, these apple WGSs have had an enormous impact on our understanding of apple biological functioning, trait physiology and inheritance, leading to practical applications for improving this highly valued crop. Causal gene identities for phenotypes of fundamental and practical interest can today be discovered much more rapidly. Genome-wide polymorphisms at high genetic resolution are screened efficiently over hundreds to thousands of individuals with new insights into genetic relationships and pedigrees. High-density genetic maps are constructed efficiently and quantitative trait loci for valuable traits are readily associated with positional candidate genes and/or converted into diagnostic tests for breeders. We understand the species, geographical, and genomic origins of domesticated apple more precisely, as well as its relationship to wild relatives. The WGS has turbo-charged application of these classical research steps to crop improvement and drives innovative methods to achieve more durable, environmentally sound, productive, and consumer-desirable apple production. This review includes examples of basic and practical breakthroughs and challenges in using the apple WGSs. Recommendations for "what's next" focus on necessary upgrades to the genome sequence data pool, as well as for use of the data, to reach new frontiers in genomics-based scientific understanding of apple.
Collapse
Affiliation(s)
- Cameron P. Peace
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Luca Bianco
- Computational Biology, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - Michela Troggio
- Department of Genomics and Biology of Fruit Crops, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - Eric van de Weg
- Plant Breeding, Wageningen University and Research, Wageningen, 6708PB The Netherlands
| | - Nicholas P. Howard
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108 USA
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität, 26129 Oldenburg, Germany
| | - Amandine Cornille
- GQE – Le Moulon, Institut National de la Recherche Agronomique, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Charles-Eric Durel
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
| | - Sean Myles
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| | - Zoë Migicovsky
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| | - Robert J. Schaffer
- The New Zealand Institute for Plant and Food Research Ltd, Motueka, 7198 New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1142 New Zealand
| | - Evelyne Costes
- AGAP, INRA, CIRAD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Gennaro Fazio
- Plant Genetic Resources Unit, USDA ARS, Geneva, NY 14456 USA
| | - Hisayo Yamane
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Chris Gottschalk
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Fabrizio Costa
- Department of Genomics and Biology of Fruit Crops, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, 4474 New Zealand
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | | | - Susan E. Gardiner
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, 4474 New Zealand
| | - Craig Hardner
- Queensland Alliance of Agriculture and Food Innovation, University of Queensland, St Lucia, 4072 Australia
| | - Satish Kumar
- New Cultivar Innovation, Plant and Food Research, Havelock North, 4130 New Zealand
| | - Francois Laurens
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
| | - Etienne Bucher
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
- Agroscope, 1260 Changins, Switzerland
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Stijn Vanderzande
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
19
|
Wringe BF, Jeffery NW, Stanley RRE, Hamilton LC, Anderson EC, Fleming IA, Grant C, Dempson JB, Veinott G, Duffy SJ, Bradbury IR. Extensive hybridization following a large escape of domesticated Atlantic salmon in the Northwest Atlantic. Commun Biol 2018; 1:108. [PMID: 30271988 PMCID: PMC6123692 DOI: 10.1038/s42003-018-0112-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/16/2018] [Indexed: 11/09/2022] Open
Abstract
Domestication is rife with episodes of interbreeding between cultured and wild populations, potentially challenging adaptive variation in the wild. In Atlantic salmon, Salmo salar, the number of domesticated individuals far exceeds wild individuals, and escape events occur regularly, yet evidence of the magnitude and geographic scale of interbreeding resulting from individual escape events is lacking. We screened juvenile Atlantic salmon using 95 single nucleotide polymorphisms following a single, large aquaculture escape in the Northwest Atlantic and report the landscape-scale detection of hybrid and feral salmon (27.1%, 17/18 rivers). Hybrids were reproductively viable, and observed at higher frequency in smaller wild populations. Repeated annual sampling of this cohort revealed decreases in the presence of hybrid and feral offspring over time. These results link previous observations of escaped salmon in rivers with reports of population genetic change, and demonstrate the potential negative consequences of escapes from net-pen aquaculture on wild populations.
Collapse
Affiliation(s)
- Brendan F Wringe
- Science Branch, Fisheries and Oceans Canada, 80 East White Hills Road, St. John's, Newfoundland, A1C 5X1, Canada
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, A1C 5S7, Canada
| | - Nicholas W Jeffery
- Science Branch, Fisheries and Oceans Canada, 80 East White Hills Road, St. John's, Newfoundland, A1C 5X1, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Ryan R E Stanley
- Science Branch, Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, B2Y 4A2, Canada
| | - Lorraine C Hamilton
- Aquatic Biotechnology Laboratory, Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, B2Y 4A2, Canada
| | - Eric C Anderson
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA, 95060, USA
| | - Ian A Fleming
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, A1C 5S7, Canada
| | - Carole Grant
- Science Branch, Fisheries and Oceans Canada, 80 East White Hills Road, St. John's, Newfoundland, A1C 5X1, Canada
| | - J Brian Dempson
- Science Branch, Fisheries and Oceans Canada, 80 East White Hills Road, St. John's, Newfoundland, A1C 5X1, Canada
| | - Geoff Veinott
- Science Branch, Fisheries and Oceans Canada, 80 East White Hills Road, St. John's, Newfoundland, A1C 5X1, Canada
| | - Steven J Duffy
- Science Branch, Fisheries and Oceans Canada, 80 East White Hills Road, St. John's, Newfoundland, A1C 5X1, Canada
| | - Ian R Bradbury
- Science Branch, Fisheries and Oceans Canada, 80 East White Hills Road, St. John's, Newfoundland, A1C 5X1, Canada.
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, A1C 5S7, Canada.
- Faculty of Computer Science, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
20
|
Thomsen CN, Hart MM. Using invasion theory to predict the fate of arbuscular mycorrhizal fungal inoculants. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1746-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|