1
|
Reutemann AV, Schedler M, Hojsgaard DH, Brugnoli EA, Zilli AL, Acuña CA, Honfi AI, Martínez EJ. The Role of Reproductive Modes in Shaping Genetic Diversity in Polyploids: A Comparative Study of Selfing, Outcrossing, and Apomictic Paspalum Species. PLANTS (BASEL, SWITZERLAND) 2025; 14:476. [PMID: 39943038 PMCID: PMC11820972 DOI: 10.3390/plants14030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/09/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025]
Abstract
Exploring the genetic diversity and reproductive strategies of Paspalum species is essential for advancing forage grass improvement. We compared morpho-phenological, molecular, and genotypic variation in five tetraploid Paspalum species with contrasting mating systems and reproductive modes. Contrary to previous findings, selfing (Paspalum regnellii and P. urvillei) and outcrossing (P. durifolium and P. ionanthum) species exhibited similar phenotypic diversity patterns, with low intrapopulation variability and no morphological differentiation among populations. The apomictic species (P. intermedium) exhibited low intrapopulation phenotypic variation but high population differentiation, indicative of genetic drift and local adaptation. Outcrossing species showed greater intrapopulation genotypic variation than selfing species, which displayed a high population structure due to restricted pollen migration. The apomictic species exhibited the lowest intrapopulation molecular diversity, forming uniclonal populations with high interpopulation differentiation, highlighting the fixation of distinct gene pools via apomixis. This is the first report about genetic diversity in populations of sexual allopolyploid species of Paspalum. Population structure in these allotetraploid Paspalum species is primarily shaped by how reproductive modes, mating systems, and geographic distribution influence gene flow via pollen and seeds. Our findings contribute significantly to the conservation and genetic improvement of forage grasses, particularly for developing cultivars with enhanced adaptability and productivity.
Collapse
Affiliation(s)
- A. Verena Reutemann
- Grupo de Genética y Mejoramiento de Especies Forrajeras, Instituto de Botánica del Nordeste (CONICET-UNNE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), Corrientes 3400, Argentina; (A.V.R.); (E.A.B.); (A.L.Z.); (C.A.A.)
| | - Mara Schedler
- Estación Experimental Agropecuaria Montecarlo, Instituto Nacional de Tecnología Agropecuaria (INTA), Posadas 3300, Argentina;
| | - Diego H. Hojsgaard
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany;
| | - Elsa A. Brugnoli
- Grupo de Genética y Mejoramiento de Especies Forrajeras, Instituto de Botánica del Nordeste (CONICET-UNNE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), Corrientes 3400, Argentina; (A.V.R.); (E.A.B.); (A.L.Z.); (C.A.A.)
| | - Alex L. Zilli
- Grupo de Genética y Mejoramiento de Especies Forrajeras, Instituto de Botánica del Nordeste (CONICET-UNNE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), Corrientes 3400, Argentina; (A.V.R.); (E.A.B.); (A.L.Z.); (C.A.A.)
| | - Carlos A. Acuña
- Grupo de Genética y Mejoramiento de Especies Forrajeras, Instituto de Botánica del Nordeste (CONICET-UNNE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), Corrientes 3400, Argentina; (A.V.R.); (E.A.B.); (A.L.Z.); (C.A.A.)
| | - Ana I. Honfi
- Programa de Estudios Florísticos y Genética Vegetal, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (FCEQyN-UNaM), Posadas 3300, Argentina;
| | - Eric J. Martínez
- Grupo de Genética y Mejoramiento de Especies Forrajeras, Instituto de Botánica del Nordeste (CONICET-UNNE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), Corrientes 3400, Argentina; (A.V.R.); (E.A.B.); (A.L.Z.); (C.A.A.)
| |
Collapse
|
2
|
Tisinai SL, Busch JW. The influence of elevation on genetic structure and variability in a wetland crucifer of the Rocky Mountains. AMERICAN JOURNAL OF BOTANY 2025:e16467. [PMID: 39912514 DOI: 10.1002/ajb2.16467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 02/07/2025]
Abstract
PREMISE In mountain ecosystems, environmental conditions (e.g., temperature, ultraviolet radiation) covary with elevation, potentially limiting gene flow over steep gradients. We hypothesized that, (1) due to stark elevational differences in environmental factors, populations from dissimilar elevations (e.g., montane versus alpine) are more strongly differentiated than populations from similar elevations; (2) patterns of migration reflect downslope dispersal more than upslope dispersal; and (3) alpine populations at the cold edge show evidence of expansion, while montane populations at the warm edge have declined. METHODS DNA polymorphisms in whole-genome sequences were studied from 6-10 genotypes each in populations of Cardamine cordifolia found at three montane sites (ranging from 2200 to 2800 m a.s.l.) and three alpine sites (ranging from 3000 to 3500 m a.s.l.). Statistical analyses assessed patterns of population structure, genetic diversity, migration, and historical demography since the Pleistocene. RESULTS Populations maintained very high levels of nucleotide diversity (π range: 0.062-0.071) and were weakly differentiated (pairwise FST = 0.027) on average. Migration among alpine populations was also inferred, with no directionality of migration across elevation bands. Demographic inference suggests that both montane and alpine populations have declined in size since the Pleistocene. CONCLUSIONS Environmental differences across elevation represent diffuse barriers to gene flow. Recent polyploidy and clonal reproduction likely explain excess heterozygosity and high nucleotide diversity within populations. The genetic similarity of populations across elevation suggests highly connected refugia during the Pleistocene; such results may indicate that montane and alpine populations will respond similarly to changing environmental conditions associated with climate change.
Collapse
Affiliation(s)
- Shelby L Tisinai
- School of Biological Sciences, Washington State University, Pullman, 99164, WA, USA
| | - Jeremiah W Busch
- School of Biological Sciences, Washington State University, Pullman, 99164, WA, USA
| |
Collapse
|
3
|
Myers TC, de Mello PLH, Hime PM, Glor RE. Environmental Variation Influences Genome Evolution in Hispaniolan Trunk Anoles (Anolis distichus). Mol Ecol 2025; 34:e17622. [PMID: 39810233 DOI: 10.1111/mec.17622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
Environmental variation often drives evolutionary processes like population differentiation, local adaptation and speciation. We used genome-scale data to investigate the contribution of environmental variation to evolution of the North Caribbean bark anole (Anolis distichus), a widespread common lizard that exhibits impressive phenotypic variation across varying habitats on the island of Hispaniola. We obtained new double-digest restriction-associated DNA sequence data (ddRADseq) from nearly 200 individuals and used 53 GIS data layers representing a range of environmental variables. We first asked how environmental variation has contributed to genome-wide differentiation across Hispaniola. We found that Hispaniola's three major mountain ranges contribute to deep genome-wide divergence and patterns of migration, that some deeply genomically divergent populations occupy significantly different environments, and that environmental variation is broadly capable of explaining more range-wide genomic differentiation than geographic distance alone. We then asked whether specific loci exhibit evidence of local adaptation to environmental variation using genotype-environment association (GEA) methods. We initially identified hundreds of loci broadly distributed across the genome that are significantly correlated with one or more environmental variables, but ultimately found that fewer than 100 of these candidate loci are shared across different GEA methods applied to our entire dataset, and that only 10 candidate loci are shared by independent analyses of two regional subsets of our dataset, suggesting parallel evolution is infrequent. Our study shows that abiotic environmental variation has played a critical role in explaining the evolution and diversity of a widespread and phenotypically diverse Caribbean anole species.
Collapse
Affiliation(s)
- Tanner C Myers
- Department of Biological Sciences and Museum of Natural History, Auburn University, Auburn, Alabama, USA
| | - Pietro L H de Mello
- Department of Ecology and Evolutionary Biology, Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Paul M Hime
- McDonnell Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Richard E Glor
- Department of Ecology and Evolutionary Biology, Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
4
|
Thomas A, Sylvain F, Normandeau E, Leroux N, Holland A, Val AL, Derome N. Low Genetic Diversity and Complex Population Structure in Black Piranha ( Serrasalmus rhombeus), a Key Amazonian Predator. Ecol Evol 2025; 15:e70824. [PMID: 39963508 PMCID: PMC11831006 DOI: 10.1002/ece3.70824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 02/20/2025] Open
Abstract
The black piranha (Serrasalmus rhombeus), a widely spread species in the rivers of the Amazon basin, plays a vital role as both key predator and important prey. Despite its essential contribution to ecosystem stability, there is a lack of information regarding its genetic diversity and population dynamics in the central Amazon region. As the Amazon continues to undergo environmental changes in the context of growing anthropogenic threats, such knowledge is fundamental for assist in the conservation of this species. This study is the first to analyze the genetic diversity and population structure of S. rhombeus in the central Amazon region using high-resolution genomic data. We employed a Genotyping-by-Sequencing approach with 248 samples across 14 study sites from various tributaries, encompassing diverse water types (black, white, and clear water) and characterized by 34 physiochemical parameters. The data reveals low diversity accompanied by pronounced signs of inbreeding in half of the sites and robust genetic differentiation and variation among sites and within-sites. Surprisingly, we also found evidence of higher dispersal capacity than previously recognized. Our analysis exposed a complex and high population structure with genetic groups exclusive to some sites. Gene flow was low and some groups presented ambiguous genealogical divergence index (gdi) signals, suggesting the occurrence of potential cryptic species. Moreover, our results suggest that the population structure of black piranha appears more influenced by historical events than contemporary factors. These results underscore the need to give greater attention to this keystone species, for which no regulatory framework or conservation strategies is presently in effect.
Collapse
Affiliation(s)
- Alizée Thomas
- Institut de Biologie Intégrative et Des SystèmesUniversité LavalQuébec CityQuebecCanada
| | - François‐Étienne Sylvain
- Institut de Biologie Intégrative et Des SystèmesUniversité LavalQuébec CityQuebecCanada
- Fisheries and OceansGulf Fisheries CenterMonctonNew BrunswickCanada
| | - Eric Normandeau
- Plateforme de Bio‐Informatique de l'IBIS (Institut de Biologie Intégrative et Des Systèmes)Université LavalQuébecCanada
| | - Nicolas Leroux
- Institut de Biologie Intégrative et Des SystèmesUniversité LavalQuébec CityQuebecCanada
| | - Aleicia Holland
- Department of Ecology, Environment and Evolution, School of Life ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Adalberto Luis Val
- Laboratório de Ecofisiologia e Evolução MolecularInstituto Nacional de Pesquisas da Amazônia (INPA)ManausBrazil
| | - Nicolas Derome
- Institut de Biologie Intégrative et Des SystèmesUniversité LavalQuébec CityQuebecCanada
| |
Collapse
|
5
|
Mares‐Mayagoitia JA, Mejía‐Ruíz P, Lafarga‐De la Cruz F, Micheli F, Cruz‐Hernández P, De‐Anda‐Montañez JA, Hyde J, Hernández‐Saavedra NY, De Jesús‐Bonilla VS, Vargas‐Peralta CE, Flores‐Morales AL, Pares‐Sierra AF, Valenzuela‐Quiñonez F. A Seascape Genomics Perspective on Restrictive Genetic Connectivity Overcoming Signals of Local Adaptations in the Green Abalone ( Haliotis fulgens) of the California Current System. Ecol Evol 2025; 15:e70913. [PMID: 39911416 PMCID: PMC11794835 DOI: 10.1002/ece3.70913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/01/2025] [Accepted: 01/16/2025] [Indexed: 02/07/2025] Open
Abstract
Seascape genomics facilitates integrative research on eco-evolutionary forces, such as migration and natural selection, which shape genomic connectivity and structure and provide critical insights for conservation strategies. The green abalone (Haliotis fulgens) is distributed from California, United States, to Baja California Sur, Mexico, and exposed to a latitudinal environmental gradient in the California Current System. This study aimed to investigate genomic population structure and potential local adaptations of green abalone across its distribution. The green abalone exhibits a distinctive neutral genetic structuring influenced by geographic distance and marine currents rather than local adaptations. Analyses using 9100 neutral and 17 outlier SNPs revealed three distinct populations: the North group (California to Ensenada, Baja California), a population on Guadalupe Island, and the South group (coastal locations of the Baja California peninsula). The research underscores the significance of life history traits and larval dispersal in shaping genetic connectivity. Connectivity appears to be influenced by geographic distance on neutral genetic structure, overshadowing natural selection's role. Furthermore, no genome-environment associations to sea surface temperature values were found. Future research should integrate genetic data with ocean circulation modeling to better understand the mechanisms and outcomes of larval dispersal and genetic connectivity. This study emphasizes the importance of both local and binational (USA-Mexico) conservation efforts, suggesting the development of SNP marker panels for traceability and management. Collaborative strategies could serve as models for binational conservation initiatives in other ecoregions, promoting sustainable management and conservation of green abalone populations and other exploited species across national borders.
Collapse
Affiliation(s)
| | - Paulina Mejía‐Ruíz
- Departamento de Acuícultura‐Departamento de Oceanografía FísicaCentro de Investigaciones Científicas y de Educación Superior de EnsenadaEnsenadaMexico
| | - Fabiola Lafarga‐De la Cruz
- Departamento de Acuícultura‐Departamento de Oceanografía FísicaCentro de Investigaciones Científicas y de Educación Superior de EnsenadaEnsenadaMexico
| | - Fiorenza Micheli
- Oceans Department and Stanford Center for Ocean Solutions, Hopkins Marine StationStanford UniversityPacific GroveCaliforniaUSA
| | - Pedro Cruz‐Hernández
- Programa de Ecología PesqueraCentro de Investigaciones Biológicas del Noroeste S.C.La PazBaja California SurMexico
| | - Juan A. De‐Anda‐Montañez
- Programa de Ecología PesqueraCentro de Investigaciones Biológicas del Noroeste S.C.La PazBaja California SurMexico
| | - John Hyde
- NOAA FisheriesSouthwest Fisheries Science CenterLa JollaCaliforniaUSA
| | - Norma Y. Hernández‐Saavedra
- Programa de Ecología PesqueraCentro de Investigaciones Biológicas del Noroeste S.C.La PazBaja California SurMexico
| | - Vladimir S. De Jesús‐Bonilla
- Programa de Ecología PesqueraCentro de Investigaciones Biológicas del Noroeste S.C.La PazBaja California SurMexico
| | - Carmen E. Vargas‐Peralta
- Departamento de Acuícultura‐Departamento de Oceanografía FísicaCentro de Investigaciones Científicas y de Educación Superior de EnsenadaEnsenadaMexico
| | | | - Alejandro F. Pares‐Sierra
- Departamento de Acuícultura‐Departamento de Oceanografía FísicaCentro de Investigaciones Científicas y de Educación Superior de EnsenadaEnsenadaMexico
| | - Fausto Valenzuela‐Quiñonez
- Programa de Ecología PesqueraCentro de Investigaciones Biológicas del Noroeste S.C.La PazBaja California SurMexico
| |
Collapse
|
6
|
Lin X, Yan C, Wang Y, Huang S, Yu H, Shih C, Jiang J, Xie F. The Genetic Architecture of Local Adaptation and Reproductive Character Displacement in Scutiger boulengeri Complex (Anura: Megophryidae). Mol Ecol 2025; 34:e17611. [PMID: 39681833 DOI: 10.1111/mec.17611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Speciation is a continuous process driven by barriers to gene flow. Based on genome-wide SNPs (single nucleotide polymorphisms) of 190 toads from 31 sampling sites of Scutiger boulengeri complex, we found evidence for monophyly which represented a continuous speciation process of at least six lineages in S. boulengeri, which radiated and exhibited varying degrees of divergence and gene flow. The SNP-based phylogenetic tree was largely discordant with the multilocus mitochondrial tree (i.e., S. mammatus and S. glandulatus nested in the lineages of S. boulengeri) published before. The Min Mountains (MM) and Qinghai-Tibet Plateau (QTP) lineages differ fundamentally in habitat (i.e., elevation) and morphology (i.e., SVL), we detected signatures of potential high-altitude and cold adaptation genes in QTP (vs. MM). We found the evidence of reproductive trait disparity (i.e., SVL and nuptial pads) is key to promoting sympatric rather than allopatric species pairs. In addition, we identified selection signals for genes related to sympatric character displacement, genes linked to obesity-related traits, nuptial spines morphology and enlarged chest nuptial pads in S. mammatus (vs. QTP group of S. boulengeri). Our study provided new insight and paradigm for a varied speciation pattern from local adaptation of allopatry to sympatric character displacement in the S. boulengeri complex.
Collapse
Affiliation(s)
- Xiuqin Lin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Chaochao Yan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanfei Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sining Huang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haoqi Yu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chungkun Shih
- College of Life Sciences, Capital Normal University, Beijing, China
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
- Mangkang Ecological Station, Tibet Ecological Safety Monitor Network, Changdu, China
| | - Feng Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
van Elst T, Sgarlata GM, Schüßler D, Tiley GP, Poelstra JW, Scheumann M, Blanco MB, Aleixo-Pais IG, Rina Evasoa M, Ganzhorn JU, Goodman SM, Hasiniaina AF, Hending D, Hohenlohe PA, Ibouroi MT, Iribar A, Jan F, Kappeler PM, Le Pors B, Manzi S, Olivieri G, Rakotonanahary AN, Rakotondranary SJ, Rakotondravony R, Ralison JM, Ranaivoarisoa JF, Randrianambinina B, Rasoloarison RM, Rasoloharijaona S, Rasolondraibe E, Teixeira H, Zaonarivelo JR, Louis EE, Yoder AD, Chikhi L, Radespiel U, Salmona J. Integrative taxonomy clarifies the evolution of a cryptic primate clade. Nat Ecol Evol 2025; 9:57-72. [PMID: 39333396 PMCID: PMC11726463 DOI: 10.1038/s41559-024-02547-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/23/2024] [Indexed: 09/29/2024]
Abstract
Global biodiversity is under accelerating threats, and species are succumbing to extinction before being described. Madagascar's biota represents an extreme example of this scenario, with the added complication that much of its endemic biodiversity is cryptic. Here we illustrate best practices for clarifying cryptic diversification processes by presenting an integrative framework that leverages multiple lines of evidence and taxon-informed cut-offs for species delimitation, while placing special emphasis on identifying patterns of isolation by distance. We systematically apply this framework to an entire taxonomically controversial primate clade, the mouse lemurs (genus Microcebus, family Cheirogaleidae). We demonstrate that species diversity has been overestimated primarily due to the interpretation of geographic variation as speciation, potentially biasing inference of the underlying processes of evolutionary diversification. Following a revised classification, we find that crypsis within the genus is best explained by a model of morphological stasis imposed by stabilizing selection and a neutral process of niche diversification. Finally, by clarifying species limits and defining evolutionarily significant units, we provide new conservation priorities, bridging fundamental and applied objectives in a generalizable framework.
Collapse
Affiliation(s)
- Tobias van Elst
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Gabriele M Sgarlata
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
- Department of Evolution and Ecology, University of California, Davis, CA, USA.
| | - Dominik Schüßler
- Institute of Biology and Chemistry, University of Hildesheim, Hildesheim, Germany.
| | - George P Tiley
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Biology, Duke University, Durham, NC, USA
| | - Jelmer W Poelstra
- Department of Biology, Duke University, Durham, NC, USA
- Molecular and Cellular Imaging Center, The Ohio State University, Columbus, OH, USA
| | - Marina Scheumann
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Isa G Aleixo-Pais
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Mamy Rina Evasoa
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
- Faculté des Sciences, de Technologies et de l'Environnement, Université de Mahajanga, Mahajanga, Madagascar
| | - Jörg U Ganzhorn
- Department of Biology, Universität Hamburg, Hamburg, Germany
| | - Steven M Goodman
- Field Museum of Natural History, Chicago, IL, USA
- Association Vahatra, Antananarivo, Madagascar
| | - Alida F Hasiniaina
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
- School for International Training, Antananarivo, Madagascar
| | - Daniel Hending
- John Krebs Field Station, Department of Biology, University of Oxford, Wytham, UK
| | - Paul A Hohenlohe
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Mohamed T Ibouroi
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Université de La Réunion, Saint-Denis de La Réunion, France
| | - Amaia Iribar
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300 Université Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 Paul Sabatier (UT3), Toulouse, France
| | - Fabien Jan
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Peter M Kappeler
- Department Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University Göttingen, Göttingen, Germany
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | | | - Sophie Manzi
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300 Université Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 Paul Sabatier (UT3), Toulouse, France
| | - Gillian Olivieri
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
- University of Warwick, Coventry, UK
| | - Ando N Rakotonanahary
- Faculté des Sciences, de Technologies et de l'Environnement, Université de Mahajanga, Mahajanga, Madagascar
| | - S Jacques Rakotondranary
- Mention Anthropobiologie et Développement Durable, Faculté des Sciences, Université d'Antananarivo, Antananarivo, Madagascar
| | - Romule Rakotondravony
- Faculté des Sciences, de Technologies et de l'Environnement, Université de Mahajanga, Mahajanga, Madagascar
- Ecole Doctorale Ecosystèmes Naturels (EDEN), Université de Mahajanga, Mahajanga, Madagascar
| | - José M Ralison
- Département de Biologie Animale, Université d'Antananarivo, Antananarivo, Madagascar
| | - J Freddy Ranaivoarisoa
- Mention Anthropobiologie et Développement Durable, Faculté des Sciences, Université d'Antananarivo, Antananarivo, Madagascar
| | - Blanchard Randrianambinina
- Faculté des Sciences, de Technologies et de l'Environnement, Université de Mahajanga, Mahajanga, Madagascar
- Ecole Doctorale Ecosystèmes Naturels (EDEN), Université de Mahajanga, Mahajanga, Madagascar
| | - Rodin M Rasoloarison
- Department Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University Göttingen, Göttingen, Germany
| | | | | | - Helena Teixeira
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
- UMR ENTROPIE (Université de La Réunion, IRD, CNRS, IFREMER, Université de Nouvelle-Calédonie), Saint-Denis de La Réunion, France
| | - John R Zaonarivelo
- Département des Sciences de la Nature et de l'Environnement, Université d'Antsiranana, Antsiranana, Madagascar
| | - Edward E Louis
- Madagascar Biodiversity Partnership, Antananarivo, Madagascar
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, USA
| | - Lounès Chikhi
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300 Université Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 Paul Sabatier (UT3), Toulouse, France
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jordi Salmona
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300 Université Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
8
|
Yellapu B, Farhadi A, Jeffs AG, Smith G, Lavery SD. Geospatial and environmental drivers of genetic divergence in the Indo-West Pacific spiny lobster Panulirus ornatus. FISHERIES RESEARCH 2025; 281:107196. [DOI: 10.1016/j.fishres.2024.107196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Pozzi ACM, Shaw RG, May G. The geographic scale of population-level variation in growth and nodulation differs for two species of prairie clover. AMERICAN JOURNAL OF BOTANY 2025; 112:e16450. [PMID: 39754326 DOI: 10.1002/ajb2.16450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 01/06/2025]
Abstract
PREMISE Prairies are among the most threatened biomes due to changing patterns of climate and land use, yet information on genetic variation in key species that would inform conservation is often limited. We assessed evidence for the geographic scale of population-level variation in growth of two species of prairie clover and of their symbiotic associations with nitrogen-fixing bacteria. METHODS Seed representing two species, Dalea candida and D. purpurea, from the same five source populations were planted into an experimental site in Minnesota. We assessed variation within and among source populations in plant growth and in numbers of nodules and evaluated the relationship of growth and nodulation levels. RESULTS Plant growth varied among source populations, with greater differences among populations of D. purpurea than of D. candida. We did not detect a relationship between plant growth and distance of source populations from the experimental site. Populations of both species were equally likely to develop nodules at the experimental site, but the numbers of nodules were lowest for the most distantly sourced populations. Plant growth was positively correlated with the number of nodules, and this relationship varied considerably within and among populations. CONCLUSIONS Environmental heterogeneity at local and regional scales maintains substantial levels of genetic variation in plant populations within remnant prairie preserves. Further, association with rhizobia at a restoration site can improve growth of widely sourced plant populations. The in situ maintenance of plant genetic variation and species diversity provides resources for conservation and maintenance of prairie biomes.
Collapse
Affiliation(s)
- Adrien C M Pozzi
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, St Paul, 55108, MN, USA
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Villeurbanne, 69622, France
| | - Ruth G Shaw
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, St Paul, 55108, MN, USA
| | - Georgiana May
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, St Paul, 55108, MN, USA
| |
Collapse
|
10
|
Johnson SD. Pollination ecotypes and the origin of plant species. Proc Biol Sci 2025; 292:20242787. [PMID: 39876736 PMCID: PMC11775599 DOI: 10.1098/rspb.2024.2787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025] Open
Abstract
Ecological niche shifts are a key driver of phenotypic divergence and contribute to isolating barriers among lineages. For many groups of organisms, the history of these shifts and associated trait-environment correlations are well-documented at the macroevolutionary level. However, the processes that generate these patterns are initiated below the species level, often by the formation of ecotypes in contrasting environments. Here, I review the evidence in plants for 'pollination ecotypes' as microevolutionary responses to environmental gradients in pollinator availability. Pollinators are critical for population establishment and persistence in most species, thereby forming part of their fundamental niche. Novel floral trait combinations allow species to exploit particular pollination opportunities in local habitats and evolve primarily through sexual selection due to their effects on mating success. I examine selected case studies on the evolution of pollination ecotypes, including self-pollinating forms, and use these to illustrate challenging practical and conceptual issues. These issues include the paucity of reliable natural history data, the problem of implementing and interpreting reciprocal translocation experiments, and establishing criteria for when allopatric ecotypes should be considered species.
Collapse
Affiliation(s)
- Steven D. Johnson
- Centre for Functional Biodiversity, University of KwaZulu-Natal, Pietermaritzburg3209, South Africa
| |
Collapse
|
11
|
Sandamal S, Tennakoon A, Wijerathna P, Zhang HX, Yu WH, Qiang CG, Han JD, Zhang FM, Ratnasekera D, Ge S. Phenological and morphological variations of Oryza rufipogon and O. nivara in Sri Lanka and their evolutionary implications. Sci Rep 2024; 14:31126. [PMID: 39730894 DOI: 10.1038/s41598-024-82383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
Phenological and morphological variation are widely viewed as a pivotal driver of ecological adaptation and speciation. Here, we investigate variation patterns of flowering phenology and morphological traits within and between O. rufipogon and O. nivara populations in Sri Lanka by incorporating the in situ observation in natural habitats and manipulative experiments in the common gardens. First, we observed varying degrees of phenological variation under different temporal and spatial conditions, suggesting that flowering phenology of two Oryza species varied depending on both environments and management practices. Particularly, the Sri Lankan O. nivara exhibits high plasticity in flowering phenology, implying that O. nivara might not be an annual in the strict sense. Second, the observation that flowering time of the two species overlapped suggests that the primary factor to maintain the species divergence in Sri Lanka may not be flowering time but rather environments. Third, our selection analysis suggests that interspecific divergence in the traits related to reproduction and habitat preference is adaptive and most likely driven by natural selection. Together, our case study on the Sri Lankan O. rufipogon and O. nivara enhances the understanding of the roles of phenotypic plasticity and environmental factors in the processes of adaptation and speciation.
Collapse
Affiliation(s)
- Salinda Sandamal
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Asanka Tennakoon
- Department of Agricultural Biology Faculty of Agriculture, Eastern University, 30350, Chenkaladi, Sri Lanka
| | - Parakkrama Wijerathna
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Department of Agricultural Biology Faculty of Agriculture, University of Ruhuna, 81100, Matara, Sri Lanka
- Sea Institute of Oceanology, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
| | - Hong-Xiang Zhang
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wen-Hao Yu
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Cheng-Gen Qiang
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jing-Dan Han
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Fu-Min Zhang
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Disna Ratnasekera
- Department of Agricultural Biology Faculty of Agriculture, University of Ruhuna, 81100, Matara, Sri Lanka.
| | - Song Ge
- Institute of Botany State Key Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
12
|
Lu S, Liu L, Lei W, Wang D, Zhu H, Lai Q, Ma L, Ru D. Cryptic divergence in and evolutionary dynamics of endangered hybrid Picea brachytyla sensu stricto in the Qinghai-Tibet Plateau. BMC PLANT BIOLOGY 2024; 24:1202. [PMID: 39701948 DOI: 10.1186/s12870-024-05851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND The visual similarities observed across various plant groups often conceal underlying genetic distinctions. This occurrence, known as cryptic diversity, underscores the key importance of identifying and understanding cryptic intraspecific evolutionary lineages in evolutionary ecology and conservation biology. RESULTS In this study, we conducted transcriptome analysis of 81 individuals from 18 natural populations of a northern lineage of Picea brachytyla sensu stricto that is endemic to the Qinghai-Tibet Plateau. Our analysis revealed the presence of two distinct local lineages, emerging approximately 444.8 thousand years ago (kya), within this endangered species. The divergence event aligns well with the geographic and climatic oscillations that occurred across the distributional range during the Mid-Pleistocene epoch. Additionally, we identified numerous environmentally correlated gene variants, as well as many other genes showing signals of positive selection across the genome. These factors likely contributed to the persistence and adaptation of the two distinct local lineages. CONCLUSIONS Our findings shed light on the highly dynamic evolutionary processes underlying the remarkably similar phenotypes of the two lineages of this endangered species. Importantly, these results enhance our understanding of the evolutionary past for this and for other endangered species with similar histories, and also provide guidance for the development of conservation plans.
Collapse
Affiliation(s)
- Shengming Lu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Lian Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Weixiao Lei
- Xi'an Center for Disease Control and Prevention, Xi'an, China
| | - Donglei Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Hui Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Qing Lai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Liru Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Dafu Ru
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
13
|
Mead A, Fitz‐Gibbon S, Knapp J, Sork VL. Comparison of Conservation Strategies for California Channel Island Oak ( Quercus tomentella) Using Climate Suitability Predicted From Genomic Data. Evol Appl 2024; 17:e70057. [PMID: 39703674 PMCID: PMC11655387 DOI: 10.1111/eva.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Management strategies, such as assisted gene flow, can increase resilience to climate change in tree populations. Knowledge of evolutionary history and genetic structure of species are needed to assess the risks and benefits of different strategies. Quercus tomentella, or Island Oak, is a rare oak restricted to six Channel Islands in California, United States, and Baja California, Mexico. Previous work has shown that Island Oaks on each island are genetically differentiated, but it is unclear whether assisted gene flow could enable populations to tolerate future climates. We performed whole-genome sequencing on Island Oak individuals and Q. chrysolepis, a closely related species that hybridizes with Island Oak (127 total), to characterize genetic structure and introgression across its range and assess the relationship between genomic variation and climate. We introduce and assess three potential management strategies with different trade-offs between conserving historic genetic structure and enabling populations to survive changing climates: the status quo approach; ecosystem preservation approach, which conserves the trees and their associated biodiversity; and species preservation approach, which conserves the species. We compare the impact of these approaches on predicted maladaptation to climate using Gradient Forest. We also introduce a climate suitability index to identify optimal pairs of seed sources and planting sites for approaches involving assisted gene flow. We found one island (Santa Rosa) that could benefit from the ecosystem preservation approach and also serve as a species preservation site. Overall, we find that both the ecosystem and species preservation approaches will do better than the status quo approach. If preserving Island Oak ecosystems is the goal, assisted dispersal into multiple sites could produce adapted populations. If the goal is to preserve a species, the Santa Rosa population would be suitable. This case study both illustrates viable conservation strategies for Island Oak and introduces a framework for tree conservation.
Collapse
Affiliation(s)
- Alayna Mead
- Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Department of Ecosystem Science and ManagementPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Sorel Fitz‐Gibbon
- Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - John Knapp
- The Nature Conservancy California ChapterSan FranciscoCaliforniaUSA
| | - Victoria L. Sork
- Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Institute of the Environment and Sustainability, University of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
14
|
Longo PADS, Azevedo-Silva M, Mansur KFR, Marinho TA, Madeira AG, de Souza AP, Hirota SK, Suyama Y, Mori GM, Leite FPP. Towards the understanding of genetic and morphological variations of a highly abundant seaweed-associated marine invertebrate. ESTUARINE, COASTAL AND SHELF SCIENCE 2024; 309:108977. [DOI: 10.1016/j.ecss.2024.108977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Bentley BP, Cheng BS, Brennan RS, Swenson JD, Adkins JL, Villeneuve AR, Komoroske LM. Successful Invasion Into New Environments Without Evidence of Rapid Adaptation by a Predatory Marine Gastropod. Mol Ecol 2024; 33:e17575. [PMID: 39523904 DOI: 10.1111/mec.17575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Invasive species with native ranges spanning strong environmental gradients are well suited for examining the roles of selection and population history in rapid adaptation to new habitats, providing insight into potential evolutionary responses to climate change. The Atlantic oyster drill (Urosalpinx cinerea) is a marine snail whose native range spans the strongest coastal latitudinal temperature gradient in the world, with invasive populations established on the US Pacific coast. Here, we leverage this system using genome-wide SNPs and environmental data to examine invasion history and identify genotype-environment associations indicative of local adaptation across the native range, and then assess evidence for allelic frequency shifts that would signal rapid adaptation within invasive populations. We demonstrate strong genetic structuring among native regions which aligns with life history expectations, identifying southern New England as the source of invasive populations. Then, we identify putatively thermally adaptive loci across the native range but find no evidence of allele frequency shifts in invasive populations that suggest rapid adaptation to new environments. Our results indicate that while these loci may underpin local thermal adaptation in their native range, selection is relaxed in invasive populations, perhaps due to complex polygenic architecture underlying thermal traits and/or standing capacity for phenotypic plasticity. Given the prolific invasion of Urosalpinx, our study suggests population success in new environments is influenced by factors other than selection on standing genetic variation that underlies local adaptation in the native range and highlights the importance of considering population history and environmental selection pressures when evaluating adaptive capacity.
Collapse
Affiliation(s)
- Blair P Bentley
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Brian S Cheng
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Reid S Brennan
- Marine Evolutionary Ecology, GEOMAR Helmholtz Center for Ocean Research Kiel, Kiel, Germany
- Marine Mammal and Turtle Division, Southeast Fisheries Science Center, NOAA Fisheries, Miami, Florida, USA
| | - John D Swenson
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Jamie L Adkins
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Andrew R Villeneuve
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Lisa M Komoroske
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
16
|
Sotka EE, Hughes AR, Hanley TC, Hays CG. Restricted Dispersal and Phenotypic Response to Water Depth in a Foundation Seagrass. Mol Ecol 2024; 33:e17565. [PMID: 39474794 PMCID: PMC11589694 DOI: 10.1111/mec.17565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024]
Abstract
Species conservation and management benefit from precise understanding of natural patterns of dispersal and genetic variation. Using recent advances in indirect genetic methods applied to both adult plants and dispersed seeds, we find that the mean seed dispersal in a threatened marine foundation plant (the eelgrass Zostera marina) is approximately 100-200 m. This distance is surprisingly more similar to that of wind-dispersed terrestrial seeds (~10s to 100s of meters) than the passive dispersal of marine propagules via currents (~10s to 100s of kilometres). Because nearshore marine plants like Zostera are commonly distributed across strong selective gradients driven by bathymetry (depth) even within these restricted spatial scales, seeds are capable of dispersing to novel water depths and experiencing profound shifts in light availability, temperature and wave exposure. We documented strong phenotypic variation and genome-wide differentiation among plants separated by approximately the spatial scale of mean realised dispersal. This result suggests genetic isolation by environment in response to depth-related environmental gradients as one plausible explanation for this pattern. The ratio of effective to census size (or Ne/Nc) approximated 0.1%, indicating that a fraction of existing plants provides the genetic variation to allow adaptation to environmental change. Our results suggest that successful conservation of seagrass meadows that can adapt to microspatial and temporal variation in environmental conditions will be low without direct and persistent intervention using large numbers of individuals or a targeted selection of genotypes.
Collapse
Affiliation(s)
- Erik E. Sotka
- Department of BiologyCollege of CharlestonCharlestonSouth CarolinaUSA
| | - A. Randall Hughes
- Marine Science Center and Coastal Sustainability InstituteNortheastern UniversityNahantMassachusettsUSA
| | - Torrance C. Hanley
- Marine Science Center and Coastal Sustainability InstituteNortheastern UniversityNahantMassachusettsUSA
- Department of BiologySacred Heart UniversityFairfieldConnecticutUSA
| | - Cynthia G. Hays
- Department of BiologyKeene State CollegeKeeneNew HampshireUSA
| |
Collapse
|
17
|
Sopniewski J, Catullo R, Ward M, Mitchell N, Scheele BC. Niche-based approach to explore the impacts of environmental disturbances on biodiversity. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14277. [PMID: 38660923 PMCID: PMC11588999 DOI: 10.1111/cobi.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 04/26/2024]
Abstract
Globally, species are increasingly at risk from compounding threatening processes, an increasingly prominent driver of which is environmental disturbances. To facilitate effective conservation efforts following such events, methods that evaluate potential impacts across multiple species and provide landscape-scale information are needed to guide targeted responses. Often, the geographic overlap between a disturbance and species' distribution is calculated and then used as a proxy for potential impact. However, such methods do not account for the important influence of environmental heterogeneity throughout species' ranges. To address this shortcoming, we quantified the effects of environmental disturbances on species' environmental niche space. Using the Australian 2019 and 2020 Black Summer fires as a case study, we applied a niche-centric approach to examine the potential impacts of these fires on 387 vertebrate species. We examined the utility of established and novel niche metrics to assess the potential impacts of large-scale disturbance events on species by comparing the potential effects of the fires as determined by our various niche measures to those derived from geographic-based measures of impact. We examined the quality of environmental space affected by the disturbance by quantifying the position in niche space where the disturbance occurred (center or margin), the uniqueness of the environmental space that was burned, and the degree to which the remaining, unburned portion of the niche differed from a species' original prefire niche. There was limited congruence between the proportion of geographic and niche space affected, which showed that geographic-based approaches in isolation may have underestimated the impact of the fires for 56% of modeled species. For each species, when combined, these metrics provided a greater indication of postdisturbance recovery potential than geographic-based measures alone. Accordingly, the integration of niche-based analyses into conservation assessments following large-scale disturbance events will lead to a more nuanced understanding of potential impacts and guide more informed and effective conservation actions.
Collapse
Affiliation(s)
- Jarrod Sopniewski
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Renee Catullo
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Michelle Ward
- WWF‐AusBrisbaneQueenslandAustralia
- Centre for Biodiversity and Conservation ScienceThe University of QueenslandSt LuciaQueenslandAustralia
| | - Nicola Mitchell
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Ben C. Scheele
- Fenner School of Environment and SocietyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
18
|
Song R, Zhang X, Zhang Z, Zhou C. Climatic factors, but not geographic distance, promote genetic structure and differentiation of Cleistogenes squarrosa (Trin.) Keng populations. FRONTIERS IN BIOINFORMATICS 2024; 4:1454689. [PMID: 39606024 PMCID: PMC11599168 DOI: 10.3389/fbinf.2024.1454689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Climate can shape plant genetic diversity and genetic structure, and genetic diversity and genetic structure can reflect the adaptation of plants to climate change. We used rbcl and trnL-trnF sequences to analyze the genetic diversity and genetic structure of C. squarrosa under the influence of different environmental factors in Inner Mongolia grassland. The results showed that the genetic diversity of this species was low. (The trnL-trnF sequences have higher genetic diversity than rbcl sequences.) C. squarrosa had low genetic diversity compared to other prairie plants, but had a more pronounced genetic structure. The haplotype network diagram of the combined sequences could be divided into two categories, and the results of the NJ, MP, and ML trees also showed that the haplotypes were divided into two branches. The results of genetic structure analysis showed that that the populations located in the desert steppe fall into exactly one cluster, and the populations located in the typical steppe fall into exactly another cluster. The neutrality tests were all negative and the mismatch distribution also showed a single peak across the population, suggesting that C. squarrosa had undergone population expansion and was well adapted to the local environment. The results of the mantel test showed that climate had a greater influence on the genetic distance of C. squarrosa, with annual precipitation having a higher influence than mean annual temperature. This study provided basic genetic information on the genetic structure of C. squarrosa and contributes to the study of genetic adaptation mechanisms in grassland plants.
Collapse
Affiliation(s)
- Ruyan Song
- School of Life Science, Liaoning University, Shenyang, China
| | - Xueli Zhang
- School of Life Science, Liaoning University, Shenyang, China
| | - Zhuo Zhang
- School of Life Science and Bioengineering, Shenyang University, Shenyang, China
| | - Chan Zhou
- School of Life Science, Liaoning University, Shenyang, China
| |
Collapse
|
19
|
McGreevy TJ, Crawford NG, Legreneur P, Schneider CJ. Influence of geographic isolation and the environment on gene flow among phenotypically diverse lizards. Heredity (Edinb) 2024; 133:317-330. [PMID: 39266673 PMCID: PMC11528109 DOI: 10.1038/s41437-024-00716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/14/2024] Open
Abstract
Lizards in the genus Anolis comprise hundreds of species that display a wide range of phenotypic variation closely related to their environment. One example is the Guadeloupean anole (Anolis marmoratus ssp.) that display extreme phenotypic variation, primarily in adult male color and pattern, with twelve described subspecies on the archipelago. Here we examine the relationship between phenotypic and genetic divergence among five subspecies on the two main islands and test the role of geographic isolation and the environment in reducing gene flow. We also examined two offshore island populations to assess the impact of complete geographic isolation on gene flow. We analyzed color phenotypes by measuring spectral reflectance and genomic diversity using SNPs. Genetic divergence was correlated with dorsolateral head and body color phenotypes, and slope and geographic distance were nearly equivalent at explaining this divergence. There was minimal genome-wide divergence at neutral loci among phenotypically disparate subspecies on the two main islands and their differentiation is consistent with a model of divergence with gene flow. Our spatial visualization of gene flow showed an impact of environmental features consistent with a hypothesis of ecologically driven divergence. Nonetheless, subspecies on the two main islands remain interconnected by substantial gene flow and their phenotypic variation is likely maintained at selection-gene flow equilibrium by divergent selection at loci associated with their color phenotypes. Greater isolation, such as inhabiting a remote island, may be required for reducing gene flow. Our findings highlight the role of the environment, adaptation, and geographic isolation on gene flow.
Collapse
Affiliation(s)
- Thomas J McGreevy
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
- Department of Natural Resources Science, University of Rhode Island, 1 Greenhouse Road, Kingston, RI, 02881, USA.
| | - Nicholas G Crawford
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | | | | |
Collapse
|
20
|
Duffy KJ. The enigma of genetic adaptation in a panmictic pine. THE NEW PHYTOLOGIST 2024; 243:830-832. [PMID: 38520184 DOI: 10.1111/nph.19710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
This article is a Commentary on Bruxaux et al. (2024), 243: 1231–1246.
Collapse
Affiliation(s)
- Karl J Duffy
- Department of Biology, Complesso Universitario Monte Sant'Angelo, University of Naples Federico II, Naples, 80126, Italy
| |
Collapse
|
21
|
Briscoe Runquist R, Moeller DA. Isolation by environment and its consequences for range shifts with global change: Landscape genomics of the invasive plant common tansy. Mol Ecol 2024; 33:e17462. [PMID: 38993027 DOI: 10.1111/mec.17462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024]
Abstract
Invasive species are a growing global economic and ecological problem. However, it is not well understood how environmental factors mediate invasive range expansion. In this study, we investigated the recent and rapid range expansion of common tansy across environmental gradients in Minnesota, USA. We densely sampled individuals across the expanding range and performed reduced representation sequencing to generate a dataset of 3071 polymorphic loci for 176 individuals. We used non-spatial and spatially explicit analyses to determine the relative influences of geographic distance and environmental variation on patterns of genomic variation. We found no evidence for isolation by distance but strong evidence for isolation by environment, indicating that environmental factors may have modulated patterns of range expansion. Land use classification and soils were particularly important variables related to population structure although they operated on different spatial scales; land use classification was related to broad-scale patterns and soils were related to fine-scale patterns. All analyses indicated a distinctive genetic cluster in the most recently invaded portion of the range. Individuals from the far northwestern range margin were separated from the remainder of the range by reduced migration, which was associated with environmental resistance. This portion of the range was invaded primarily in the last 15 years. Ecological niche models also indicated that this cluster was associated with the expansion of the niche. While invasion is often assumed to be primarily influenced by dispersal limitation, our results suggest that ongoing invasion and range shifts with climate change may be strongly affected by environmental heterogeneity.
Collapse
Affiliation(s)
- Ryan Briscoe Runquist
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - David A Moeller
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
22
|
Romero-Báez Ó, Murphy MA, Díaz de la Vega-Pérez AH, Vázquez-Domínguez E. Environmental and anthropogenic factors mediating the functional connectivity of the mesquite lizard along the eastern Trans-Mexican Volcanic Belt. Mol Ecol 2024; 33:e17469. [PMID: 39016177 DOI: 10.1111/mec.17469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Functional connectivity, the extent to which a landscape facilitates or impedes the dispersal of individuals across the landscape, is a key factor for the survival of species. Anthropogenic activities, such as urbanization, agriculture and roads, negatively impact functional connectivity of most species, particularly low-vagility species like lizards. Here, we examine how a landscape modified by anthropogenic activities affects the functional connectivity, at both broad and fine scales, of a widely distributed generalist lizard Sceloporus grammicus in the eastern Trans-Mexican Volcanic Belt, Mexico. We estimated for the first time the species' genetic structure, gene flow and functional connectivity in agricultural and forest zones using genomic data, a comprehensive landscape characterization and novel methods including gravity models. Our results showed not only marked genetic differentiation across the study region but also that functional connectivity is maintained for tens of kilometres despite S. grammicus low vagility. Specifically, we found that substrate and air temperature facilitated connectivity over broad and fine scales, respectively, while agricultural cover, relative humidity and slope were important for connectivity and gene flow. Contrastingly, forest cover and roads favoured (broad-scale) and limited (fine-scale) connectivity, likely associated with movement facilitated by small forest patches and with thermoregulation. Altogether, these results support that S. grammicus alternates its thermoregulatory behaviour depending on the distance travelled and the habitat environmental conditions, and that it can disperse through relatively modified landscapes, mainly using agricultural zones. The information obtained is crucial to understanding the response of lizards to current anthropogenic pressures and their potential to adapt.
Collapse
Affiliation(s)
- Óscar Romero-Báez
- Laboratorio de Genética y Ecología, Departamento de Ecología de La Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Melanie A Murphy
- Ecosystem Science and Management, Program in Ecology and Evolution, College of Agriculture, Life Sciences, and Natural Resources, University of Wyoming, Laramie, Wyoming, USA
| | - Aníbal H Díaz de la Vega-Pérez
- Consejo Nacional de Humanidades Ciencias y Tecnologías-Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Ella Vázquez-Domínguez
- Laboratorio de Genética y Ecología, Departamento de Ecología de La Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
23
|
Pavón-Vázquez CJ, Rana Q, Farleigh K, Crispo E, Zeng M, Liliah J, Mulcahy D, Ascanio A, Jezkova T, Leaché AD, Flouri T, Yang Z, Blair C. Gene Flow and Isolation in the Arid Nearctic Revealed by Genomic Analyses of Desert Spiny Lizards. Syst Biol 2024; 73:323-342. [PMID: 38190300 DOI: 10.1093/sysbio/syae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
The opposing forces of gene flow and isolation are two major processes shaping genetic diversity. Understanding how these vary across space and time is necessary to identify the environmental features that promote diversification. The detection of considerable geographic structure in taxa from the arid Nearctic has prompted research into the drivers of isolation in the region. Several geographic features have been proposed as barriers to gene flow, including the Colorado River, Western Continental Divide (WCD), and a hypothetical Mid-Peninsular Seaway in Baja California. However, recent studies suggest that the role of barriers in genetic differentiation may have been overestimated when compared to other mechanisms of divergence. In this study, we infer historical and spatial patterns of connectivity and isolation in Desert Spiny Lizards (Sceloporus magister) and Baja Spiny Lizards (Sceloporus zosteromus), which together form a species complex composed of parapatric lineages with wide distributions in arid western North America. Our analyses incorporate mitochondrial sequences, genomic-scale data, and past and present climatic data to evaluate the nature and strength of barriers to gene flow in the region. Our approach relies on estimates of migration under the multispecies coalescent to understand the history of lineage divergence in the face of gene flow. Results show that the S. magister complex is geographically structured, but we also detect instances of gene flow. The WCD is a strong barrier to gene flow, while the Colorado River is more permeable. Analyses yield conflicting results for the catalyst of differentiation of peninsular lineages in S. zosteromus. Our study shows how large-scale genomic data for thoroughly sampled species can shed new light on biogeography. Furthermore, our approach highlights the need for the combined analysis of multiple sources of evidence to adequately characterize the drivers of divergence.
Collapse
Affiliation(s)
- Carlos J Pavón-Vázquez
- Department of Biological Sciences, New York City College of Technology, The City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Colonia Los Reyes Ixtacala, Tlalnepantla, Estado de México, C.P. 54090, México
| | - Qaantah Rana
- Department of Biological Sciences, New York City College of Technology, The City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA
| | - Keaka Farleigh
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Erika Crispo
- Department of Biology, Pace University, One Pace Plaza, New York, NY 10038, USA
| | - Mimi Zeng
- Department of Biological Sciences, New York City College of Technology, The City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA
| | - Jeevanie Liliah
- Department of Biological Sciences, New York City College of Technology, The City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA
| | - Daniel Mulcahy
- Collection Future, Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin 10115, Germany
| | - Alfredo Ascanio
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Tereza Jezkova
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Adam D Leaché
- Department of Biology & Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA
| | - Tomas Flouri
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Christopher Blair
- Department of Biological Sciences, New York City College of Technology, The City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA
- Biology PhD Program, CUNY Graduate Center, 365 5th Ave., New York, NY 10016, USA
| |
Collapse
|
24
|
Nie L, Fang Y, Xia Z, Wei X, Wu Z, Yan Y, Wang F. Relationships within Bolbitis sinensis Species Complex Using RAD Sequencing. PLANTS (BASEL, SWITZERLAND) 2024; 13:1987. [PMID: 39065514 PMCID: PMC11280518 DOI: 10.3390/plants13141987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Species identification and phylogenetic relationship clarification are fundamental goals in species delimitation. However, these tasks pose challenges when based on morphologies, geographic distribution, and genomic data. Previously, two species of the fern genus Bolbitis, B. × multipinna and B. longiaurita were described based on morphological traits; they are phylogenetically intertwined with B. sinensis and fail to form monophyletic groups. To address the unclear phylogenetic relationships within the B. sinensis species complex, RAD sequencing was performed on 65 individuals from five populations. Our integrated analysis of phylogenetic trees, neighbor nets, and genetic structures indicate that the B. sinensis species complex should not be considered as separate species. Moreover, our findings reveal differences in the degree of genetic differentiation among the five populations, ranging from low to moderate, which might be influenced by geographical distance and gene flow. The Fst values also confirmed that genetic differentiation intensifies with increasing geographic distance. Collectively, this study clarifies the complex phylogenetic relationships within the B. sinensis species complex, elucidates the genetic diversity and differentiation across the studied populations, and offers valuable genetic insights that contribute to the broader study of evolutionary relationships and population genetics within the Bolbitis species.
Collapse
Affiliation(s)
- Liyun Nie
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.N.); (Y.F.); (Z.X.); (X.W.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Yuhan Fang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.N.); (Y.F.); (Z.X.); (X.W.)
| | - Zengqiang Xia
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.N.); (Y.F.); (Z.X.); (X.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueying Wei
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.N.); (Y.F.); (Z.X.); (X.W.)
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China;
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Yuehong Yan
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China;
| | - Faguo Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.N.); (Y.F.); (Z.X.); (X.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Montalvo LD, Kimball RT, Austin JD, Robinson SK. Unraveling the genomic landscape of Campylorhynchus wrens along western Ecuador's precipitation gradient: Insights into hybridization, isolation by distance, and isolation by the environment. Ecol Evol 2024; 14:e11661. [PMID: 38994212 PMCID: PMC11237350 DOI: 10.1002/ece3.11661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Environmental gradients have the potential to influence genetic differentiation among populations ultimately leading to allopatric speciation. However, environmental gradients can also facilitate hybridization between closely related taxa. We investigated a putative hybrid zone in western Ecuador, involving two polytypic wren species (Aves: Troglodytidae), Campylorhynchus zonatus and C. fasciatus. Our study addressed two primary questions: (1) Is there evidence of population structure and genetic admixture between these taxa in western Ecuador? and (2) What are the relative contributions of isolation by distance and isolation by the environment to the observed genetic differentiation along the environmental gradient in this region? We analyzed 4409 single-nucleotide polymorphisms (SNPs) from 112 blood samples sequenced using ddRadSeq and a de novo assembly. The optimum number of genetic clusters ranged from 2 to 4, aligning with geographic origins, known phylogenetics, and physical or ecological constraints. We observed notable transitions in admixture proportions along the environmental gradient in western Ecuador between C. z. brevirostris and the northern and southern genetic clusters of C. f. pallescens. Genetic differentiation between the two C. f. pallescens populations could be attributed to an unreported potential physical barrier in central western Ecuador, where the proximity of the Andes to the coastline restricts lowland habitats, limiting dispersal and gene flow, especially among dry-habitat specialists. The observed admixture in C. f. pallescens suggests that this subspecies may be a hybrid between C. z. brevirostris and C. fasciatus, with varying degrees of admixture in western Ecuador and northwestern Peru. We found evidence of isolation by distance, while isolation by the environment was less pronounced but still significant for annual mean precipitation and precipitation seasonality. This study enhances our understanding of avian population genomics in tropical regions.
Collapse
Affiliation(s)
- Luis Daniel Montalvo
- Florida Museum of Natural History University of Florida Gainesville Florida USA
- Department of Biology University of Florida Gainesville Florida USA
| | | | - James D Austin
- Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
| | - Scott K Robinson
- Florida Museum of Natural History University of Florida Gainesville Florida USA
| |
Collapse
|
26
|
Sexton JP, Clemens M, Bell N, Hall J, Fyfe V, Hoffmann AA. Patterns and effects of gene flow on adaptation across spatial scales: implications for management. J Evol Biol 2024; 37:732-745. [PMID: 38888218 DOI: 10.1093/jeb/voae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/21/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Gene flow can have rapid effects on adaptation and is an important evolutionary tool available when undertaking biological conservation and restoration. This tool is underused partly because of the perceived risk of outbreeding depression and loss of mean fitness when different populations are crossed. In this article, we briefly review some theory and empirical findings on how genetic variation is distributed across species ranges, describe known patterns of gene flow in nature with respect to environmental gradients, and highlight the effects of gene flow on adaptation in small or stressed populations in challenging environments (e.g., at species range limits). We then present a case study involving crosses at varying spatial scales among mountain populations of a trigger plant (Stylidium armeria: Stylidiaceae) in the Australian Alps to highlight how some issues around gene flow effects can be evaluated. We found evidence of outbreeding depression in seed production at greater geographic distances. Nevertheless, we found no evidence of maladaptive gene flow effects in likelihood of germination, plant performance (size), and performance variance, suggesting that gene flow at all spatial scales produces offspring with high adaptive potential. This case study demonstrates a path to evaluating how increasing sources of gene flow in managed wild and restored populations could identify some offspring with high fitness that could bolster the ability of populations to adapt to future environmental changes. We suggest further ways in which managers and researchers can act to understand and consider adaptive gene flow in natural and conservation contexts under rapidly changing conditions.
Collapse
Affiliation(s)
- Jason P Sexton
- Department of Life and Environmental Sciences, University of California, Merced, CA, United States
| | - Molly Clemens
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Nicholas Bell
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Joseph Hall
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Verity Fyfe
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
27
|
Li YR, Fritsch PW, Zhao GG, Cheng XJ, Ding ZL, Lu L. Population differentiation and dynamics of five pioneer species of Gaultheria from the secondary forests in subtropical China. BMC PLANT BIOLOGY 2024; 24:516. [PMID: 38851686 PMCID: PMC11161945 DOI: 10.1186/s12870-024-05189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND The influence of native secondary succession associated with anthropogenic disturbance on the biodiversity of the forests in subtropical China remains uncertain. In particular, the evolutionary response of small understory shrubs, particularly pioneer species inhabiting continuously disturbed habitats, to topographic heterogeneity and climate change is poorly understood. This study aimed to address this knowledge gap by focusing on the Gaultheria crenulata group, a clade of small pioneer shrubs in subtropical China. RESULTS We examined the genetic structure and demographic history of all five species of the G. crenulata group with two maternally inherited chloroplast DNA (cpDNA) fragments and two biparentally inherited low-copy nuclear genes (LCG) over 89 natural populations. We found that the genetic differentiation of this group was influenced by the geomorphological boundary between different regions of China in association with Quaternary climatic events. Despite low overall genetic diversity, we observed an isolation-by-distance (IBD) pattern at a regional scale, rather than isolation-by-environment (IBE), which was attributed to ongoing human disturbance in the region. CONCLUSION Our findings suggest that the genetic structure of the G. crenulata group reflects the interplay of geological topography, historical climates, and anthropogenic disturbance during the Pliocene-Pleistocene-Holocene periods in subtropical China. The observed IBD pattern, particularly prominent in western China, highlights the role of limited dispersal and gene flow, possibly influenced by physical barriers or decreased connectivity over geographic distance. Furthermore, the east-to-west trend of gene flow, potentially facilitated by the East Asian monsoon system, underscores the complex interplay of biotic and abiotic factors shaping the genetic dynamics of pioneer species in subtropical China's secondary forests. These findings can be used to assess the impact of environmental changes on the adaptation and persistence of biodiversity in subtropical forest ecosystems.
Collapse
Affiliation(s)
- Yi-Rong Li
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Peter W Fritsch
- Botanical Research Institute of Texas, 1700 University Drive, Fort Worth, TX, 76017, USA
| | - Gui-Gang Zhao
- Genome Center of Biodiversity, Kunming Institute of Zoology, Chinese Academy of Science, Kunming, 650223, China
| | - Xiao-Juan Cheng
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Zhao-Li Ding
- Genome Center of Biodiversity, Kunming Institute of Zoology, Chinese Academy of Science, Kunming, 650223, China.
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Science, Kunming, 650223, China.
| | - Lu Lu
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
28
|
Runno-Paurson E, Agho CA, Nassar H, Hansen M, Leitaru K, Hallikma T, Cooke DEL, Niinemets Ü. The Variability of Phytophthora infestans Isolates Collected from Estonian Islands in the Baltic Sea. PLANT DISEASE 2024; 108:1645-1658. [PMID: 38127634 DOI: 10.1094/pdis-07-23-1399-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Knowledge of a pathogen's genetic variability and population structure is of great importance to effective disease management. In this study, 193 isolates of Phytophthora infestans collected from three Estonian islands were characterized over 3 years using simple sequence repeat (SSR) marker data complemented by information on their mating type and resistance to metalaxyl. In combination with SSR marker data from samples in the neighboring Pskov region of Northwest Russia, the impact of regional and landscape structure on the level of genetic exchange was also examined. Among the 111 P. infestans isolates from Estonian islands, 49 alleles were detected among 12 SSR loci, and 59 SSR multilocus genotypes were found, of which 64% were unique. The genetic variation was higher among years than that among islands, as revealed by the analysis of molecular variance. The frequency of metalaxyl-resistant isolates increased from 9% in 2012 to 30% in 2014, and metalaxyl resistance was most frequent among A1 isolates. The test for isolation by distance among the studied regions was not significant, and coupled with the absence of genetic differentiation, the result revealed gene flow and the absence of local adaptation. The data are consistent with a sexual population in which diversity is driven by an annual germination of soilborne oospores. The absence of shared genotypes over the years has important implications when it comes to the management of diseases. Such population diversity can make it difficult to predict the nature of the outbreak in the coming year as the genetic makeup is different for each year.
Collapse
Affiliation(s)
- Eve Runno-Paurson
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Collins A Agho
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Helina Nassar
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Merili Hansen
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Kätlin Leitaru
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Tiit Hallikma
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | | | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| |
Collapse
|
29
|
Conceição TA, Santos AS, Fernandes AKC, Meireles GN, de Oliveira FA, Barbosa RM, Gaiotto FA. Guiding seed movement: environmental heterogeneity drives genetic differentiation in Plathymenia reticulata, providing insights for restoration. AOB PLANTS 2024; 16:plae032. [PMID: 38883565 PMCID: PMC11176975 DOI: 10.1093/aobpla/plae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Forest and landscape restoration is one of the main strategies for overcoming the environmental crisis. This activity is particularly relevant for biodiversity-rich areas threatened by deforestation, such as tropical forests. Efficient long-term restoration requires understanding the composition and genetic structure of native populations, as well as the factors that influence these genetic components. This is because these populations serve as the seed sources and, therefore, the gene reservoirs for areas under restoration. In the present study, we investigated the influence of environmental, climatic and spatial distance factors on the genetic patterns of Plathymenia reticulata, aiming to support seed translocation strategies for restoration areas. We collected plant samples from nine populations of P. reticulata in the state of Bahia, Brazil, located in areas of Atlantic Forest and Savanna, across four climatic types, and genotyped them using nine nuclear and three chloroplast microsatellite markers. The populations of P. reticulata evaluated generally showed low to moderate genotypic variability and low haplotypic diversity. The populations within the Savanna phytophysiognomy showed values above average for six of the eight evaluated genetic diversity parameters. Using this classification based on phytophysiognomy demonstrated a high predictive power for genetic differentiation in P. reticulata. Furthermore, the interplay of climate, soil and geographic distance influenced the spread of alleles across the landscape. Based on our findings, we propose seed translocation, taking into account the biome, with restricted use of seed sources acquired or collected from the same environment as the areas to be restored (Savanna or Atlantic Forest).
Collapse
Affiliation(s)
- Taise Almeida Conceição
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, USP, Piracicaba, São Paulo 13418-900, Brazil
| | - Alesandro Souza Santos
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Ane Karoline Campos Fernandes
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Gabriela Nascimento Meireles
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Fernanda Ancelmo de Oliveira
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo 13083-875, Brazil
| | - Rafael Marani Barbosa
- Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Fernanda Amato Gaiotto
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, USP, Piracicaba, São Paulo 13418-900, Brazil
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| |
Collapse
|
30
|
Fonseca EM, Pope NS, Peterman WE, Werneck FP, Colli GR, Carstens BC. Genetic structure and landscape effects on gene flow in the Neotropical lizard Norops brasiliensis (Squamata: Dactyloidae). Heredity (Edinb) 2024; 132:284-295. [PMID: 38575800 PMCID: PMC11166928 DOI: 10.1038/s41437-024-00682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
One key research goal of evolutionary biology is to understand the origin and maintenance of genetic variation. In the Cerrado, the South American savanna located primarily in the Central Brazilian Plateau, many hypotheses have been proposed to explain how landscape features (e.g., geographic distance, river barriers, topographic compartmentalization, and historical climatic fluctuations) have promoted genetic structure by mediating gene flow. Here, we asked whether these landscape features have influenced the genetic structure and differentiation in the lizard species Norops brasiliensis (Squamata: Dactyloidae). To achieve our goal, we used a genetic clustering analysis and estimate an effective migration surface to assess genetic structure in the focal species. Optimized isolation-by-resistance models and a simulation-based approach combined with machine learning (convolutional neural network; CNN) were then used to infer current and historical effects on population genetic structure through 12 unique landscape models. We recovered five geographically distributed populations that are separated by regions of lower-than-expected gene flow. The results of the CNN showed that geographic distance is the sole predictor of genetic variation in N. brasiliensis, and that slope, rivers, and historical climate had no discernible influence on gene flow. Our novel CNN approach was accurate (89.5%) in differentiating each landscape model. CNN and other machine learning approaches are still largely unexplored in landscape genetics studies, representing promising avenues for future research with increasingly accessible genomic datasets.
Collapse
Affiliation(s)
- Emanuel M Fonseca
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Nathaniel S Pope
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - William E Peterman
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH, USA
| | - Fernanda P Werneck
- Coordenação de Biodiversidade, Programa de Coleções Científicas Biológicas, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Guarino R Colli
- Departamento de Zoologia, Universidade de Brasília, Brasília, Brazil
| | - Bryan C Carstens
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
31
|
Monsanto DM, Hedding DW, Durand S, Parbhu SP, Adair MG, Emami‐Khoyi A, Teske PR, Jansen van Vuuren B. The effect of terrain on the fine-scale genetic diversity of sub-Antarctic Collembola: A landscape genetics approach. Ecol Evol 2024; 14:e11519. [PMID: 38895565 PMCID: PMC11183960 DOI: 10.1002/ece3.11519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Biodiversity patterns are shaped by the interplay between geodiversity and organismal characteristics. Superimposing genetic structure onto landscape heterogeneity (i.e., landscape genetics) can help to disentangle their interactions and better understand population dynamics. Previous studies on the sub-Antarctic Prince Edward Islands (located midway between Antarctica and Africa) have highlighted the importance of landscape and climatic barriers in shaping spatial genetic patterns and have drawn attention to the value of these islands as natural laboratories for studying fundamental concepts in biology. Here, we assessed the fine-scale spatial genetic structure of the springtail, Cryptopygus antarcticus travei, which is endemic to Marion Island, in tandem with high-resolution geological data. Using a species-specific suite of microsatellite markers, a fine-scale sampling design incorporating landscape complexity and generalised linear models (GLMs), we examined genetic patterns overlaid onto high-resolution digital surface models and surface geology data across two 1-km sampling transects. The GLMs revealed that genetic patterns across the landscape closely track landscape resistance data in concert with landscape discontinuities and barriers to gene flow identified at a scale of a few metres. These results show that the island's geodiversity plays an important role in shaping biodiversity patterns and intraspecific genetic diversity. This study illustrates that fine-scale genetic patterns in soil arthropods are markedly more structured than anticipated, given that previous studies have reported high levels of genetic diversity and evidence of genetic structing linked to landscape changes for springtail species and considering the homogeneity of the vegetation complexes characteristic of the island at the scale of tens to hundreds of metres. By incorporating fine-scale and high-resolution landscape features into our study, we were able to explain much of the observed spatial genetic patterns. Our study highlights geodiversity as a driver of spatial complexity. More widely, it holds important implications for the conservation and management of the sub-Antarctic islands.
Collapse
Affiliation(s)
- Daniela Marques Monsanto
- Department of Zoology, Centre for Ecological Genomics and Wildlife ConservationUniversity of JohannesburgAuckland ParkSouth Africa
| | | | - Sandra Durand
- Department of GeographyUniversity of South AfricaPretoriaSouth Africa
| | - Shilpa Pradeep Parbhu
- Department of Zoology, Centre for Ecological Genomics and Wildlife ConservationUniversity of JohannesburgAuckland ParkSouth Africa
| | - Matthew Grant Adair
- Department of Zoology, Centre for Ecological Genomics and Wildlife ConservationUniversity of JohannesburgAuckland ParkSouth Africa
| | - Arsalan Emami‐Khoyi
- Department of Zoology, Centre for Ecological Genomics and Wildlife ConservationUniversity of JohannesburgAuckland ParkSouth Africa
- Institute of Wildlife Management and Nature ConservationHungarian University of Agriculture and Life SciencesGödöllőHungary
| | - Peter Rodja Teske
- Department of Zoology, Centre for Ecological Genomics and Wildlife ConservationUniversity of JohannesburgAuckland ParkSouth Africa
| | - Bettine Jansen van Vuuren
- Department of Zoology, Centre for Ecological Genomics and Wildlife ConservationUniversity of JohannesburgAuckland ParkSouth Africa
| |
Collapse
|
32
|
Dai JX, Cao LJ, Chen JC, Yang F, Shen XJ, Ma LJ, Hoffmann AA, Chen M, Wei SJ. Testing for adaptive changes linked to range expansion following a single introduction of the fall webworm. Mol Ecol 2024; 33:e17038. [PMID: 37277936 DOI: 10.1111/mec.17038] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Adaptive evolution following colonization can affect the impact of invasive species. The fall webworm (FWW) invaded China 40 years ago through a single introduction event involving a severe bottleneck and subsequently diverged into two genetic groups. The well-recorded invasion history of FWW, coupled with a clear pattern of genetic divergence, provides an opportunity to investigate whether there is any sign of adaptive evolution following the invasion. Based on genome-wide SNPs, we identified genetically separated western and eastern groups of FWW and correlated spatial variation in SNPs with geographical and climatic factors. Geographical factors explained a similar proportion of the genetic variation across all populations compared with climatic factors. However, when the two population groups were analysed separately, environmental factors explained more variation than geographical factors. SNP outliers in populations of the western group had relatively stronger response to precipitation than temperature-related variables. Functional annotation of SNP outliers identified genes associated with insect cuticle protein potentially related to desiccation adaptation in the western group and genes associated with lipase biosynthesis potentially related to temperature adaptation in the eastern group. Our study suggests that invasive species may maintain the evolutionary potential to adapt to heterogeneous environments despite a single invasion event. The molecular data suggest that quantitative trait comparisons across environments would be worthwhile.
Collapse
Affiliation(s)
- Jin-Xu Dai
- Beijing Key Laboratory for Forest Pests Control, Beijing Forestry University, Beijing, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fangyuan Yang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiu-Jing Shen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Ma
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ary Anthony Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Min Chen
- Beijing Key Laboratory for Forest Pests Control, Beijing Forestry University, Beijing, China
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
33
|
Springer AL, Gompert Z. Considerable genetic diversity and structure despite narrow endemism and limited ecological specialization in the Hayden's ringlet, Coenonympha haydenii. Mol Ecol 2024; 33:e17310. [PMID: 38441401 DOI: 10.1111/mec.17310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/26/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024]
Abstract
Understanding the processes that underlie the development of population genetic structure is central to the study of evolution. Patterns of genetic structure, in turn, can reveal signatures of isolation by distance (IBD), barriers to gene flow, or even the genesis of speciation. However, it is unclear how severe range restriction might impact the processes that dominate the development of genetic structure. In narrow endemic species, is population structure likely to be adaptive in nature, or rather the result of genetic drift? In this study, we investigated patterns of genetic diversity and structure in the narrow endemic Hayden's ringlet butterfly. Specifically, we asked to what degree genetic structure in the Hayden's ringlet can be explained by IBD, isolation by resistance (IBR) (in the form of geographic or ecological barriers to migration between populations), and isolation by environment (in the form of differences in host plant availability and preference). We employed a genotyping-by-sequencing (GBS) approach coupled with host preference assays, Bayesian modelling, and population genomic analyses to answer these questions. Our results suggest that despite their restricted range, levels of genetic diversity in the Hayden's ringlet are comparable to those seen in more widespread butterfly species. Hayden's ringlets showed a strong preference for feeding on grasses relative to sedges, but neither larval preference nor potential host availability at sampling sites correlated with genetic structure. We conclude that geography, in the form of IBR and simple IBD, was the major driver of contemporary patterns of differentiation in this narrow endemic species.
Collapse
Affiliation(s)
- Amy L Springer
- Department of Biology, Utah State University, Logan, Utah, USA
| | - Zachariah Gompert
- Department of Biology, Utah State University, Logan, Utah, USA
- Ecology Center, Utah State University, Logan, Utah, USA
| |
Collapse
|
34
|
Sgarlata GM, Rasolondraibe E, Salmona J, Le Pors B, Ralantoharijaona T, Rakotonanahary A, Jan F, Manzi S, Iribar A, Zaonarivelo JR, Volasoa Andriaholinirina N, Rasoloharijaona S, Chikhi L. The genomic diversity of the Eliurus genus in northern Madagascar with a putative new species. Mol Phylogenet Evol 2024; 193:107997. [PMID: 38128795 DOI: 10.1016/j.ympev.2023.107997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Madagascar exhibits extraordinarily high level of species richness and endemism, while being severely threatened by habitat loss and fragmentation (HL&F). In front of these threats to biodiversity, conservation effort can be directed, for instance, in the documentation of species that are still unknown to science, or in investigating how species respond to HL&F. The tufted-tail rats genus (Eliurus spp.) is the most speciose genus of endemic rodents in Madagascar, with 13 described species, which occupy two major habitat types: dry or humid forests. The large species diversity and association to specific habitat types make the Eliurus genus a suitable model for investigating species adaptation to new environments, as well as response to HL&F (dry vs humid). In the present study, we investigated Eliurus spp. genomic diversity across northern Madagascar, a region covered by both dry and humid fragmented forests. From the mitochondrial DNA (mtDNA) and nuclear genomic (RAD-seq) data of 124 Eliurus individuals sampled in poorly studied forests of northern Madagascar, we identified an undescribed Eliurus taxon (Eliurus sp. nova). We tested the hypothesis of a new Eliurus species using several approaches: i) DNA barcoding; ii) phylogenetic inferences; iii) species delimitation tests based on the Multi-Species Coalescent (MSC) model, iv) genealogical divergence index (gdi); v) an ad-hoc test of isolation-by-distance within versus between sister-taxa, vi) comparisons of %GC content patterns and vii) morphological analyses. All analyses support the recognition of the undescribed lineage as a putative distinct species. In addition, we show that Eliurus myoxinus, a species known from the dry forests of western Madagascar, is, surprisingly, found mostly in humid forests in northern Madagascar. In conclusion, we discuss the implications of such findings in the context of Eliurus species evolution and diversification, and use the distribution of northern Eliurus species as a proxy for reconstructing past changes in forest cover and vegetation type in northern Madagascar.
Collapse
Affiliation(s)
| | - Emmanuel Rasolondraibe
- Département de Biologie Animale et Ecologie, Faculté des Sciences, Université de Mahajanga, Mahajanga, Madagascar.
| | - Jordi Salmona
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal; Centre de Recherche sur la Biodiversité et l'Environnement (CRBE),Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 -Paul Sabatier (UT3), Toulouse, France.
| | - Barbara Le Pors
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Tantely Ralantoharijaona
- Département de Biologie Animale et Ecologie, Faculté des Sciences, Université de Mahajanga, Mahajanga, Madagascar
| | - Ando Rakotonanahary
- Département de Biologie Animale et Ecologie, Faculté des Sciences, Université de Mahajanga, Mahajanga, Madagascar.
| | - Fabien Jan
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Sophie Manzi
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE),Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 -Paul Sabatier (UT3), Toulouse, France.
| | - Amaia Iribar
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE),Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 -Paul Sabatier (UT3), Toulouse, France.
| | - John Rigobert Zaonarivelo
- Département des Sciences de la Nature et de l'Environnement, Université d'Antsiranana, 201 Antsiranana, Madagascar.
| | | | - Solofonirina Rasoloharijaona
- Département de Biologie Animale et Ecologie, Faculté des Sciences, Université de Mahajanga, Mahajanga, Madagascar
| | - Lounès Chikhi
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal; Centre de Recherche sur la Biodiversité et l'Environnement (CRBE),Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 -Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
35
|
Verly T, Pita S, Carbajal-de-la-Fuente AL, Burgueño-Rodríguez G, Piccinali RV, Fiad FG, Ríos N, Panzera F, Lobbia P, Sánchez-Casaccia P, Rojas de Arias A, Cavallo MJ, Gigena GV, Rodríguez CS, Nattero J. Relationship between genetic diversity and morpho-functional characteristics of flight-related traits in Triatoma garciabesi (Hemiptera: Reduviidae). Parasit Vectors 2024; 17:145. [PMID: 38500121 PMCID: PMC10949591 DOI: 10.1186/s13071-024-06211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Triatoma garciabesi, a potential vector of the parasitic protozoan Trypanosoma cruzi, which is the causative agent of Chagas disease, is common in peridomestic and wild environments and found throughout northwestern and central Argentina, western Paraguay and the Bolivian Chaco. Genetic differentiation of a species across its range can help to understand dispersal patterns and connectivity between habitats. Dispersal by flight is considered to be the main active dispersal strategy used by triatomines. In particular, the morphological structure of the hemelytra is associated with their function. The aim of this study was to understand how genetic diversity is structured, how morphological variation of dispersal-related traits varies with genetic diversity and how the morphological characteristics of dispersal-related traits may explain the current distribution of genetic lineages in this species. METHODS Males from 24 populations of T. garciabesi across its distribution range were examined. The cytochrome c oxidase I gene (coI) was used for genetic diversity analyses. A geometric morphometric method based on landmarks was used for morpho-functional analysis of the hemelytra. Centroid size (CS) and shape of the forewing, and contour of both parts of the forewing, the head and the pronotum were characterised. Length and area of the forewing were measured to estimate the aspect ratio. RESULTS The morphometric and phylogenetic analysis identified two distinct lineages, namely the Eastern and Western lineages, which coincide with different ecological regions. The Eastern lineage is found exclusively in the eastern region of Argentina (Chaco and Formosa provinces), whereas the Western lineage is prevalent in the rest of the geographical range of the species. CS, shape and aspect ratio of the hemelytra differed between lineages. The stiff portion of the forewing was more developed in the Eastern lineage. The shape of both portions of the hemelytra were significantly different between lineages, and the shape of the head and pronotum differed between lineages. CONCLUSIONS The results provide preliminary insights into the evolution and diversification of T. garciabesi. Variation in the forewing, pronotum and head is congruent with genetic divergence. Consistent with genetic divergence, morphometry variation was clustered according to lineages, with congruent variation in the size and shape of the forewing, pronotum and head.
Collapse
Affiliation(s)
- Thaiane Verly
- Centro Nacional de Diagnóstico e Investigación en Endemo-Epidemias (CeNDIE), Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos Malbrán" (ANLIS), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sebastián Pita
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| | - Ana Laura Carbajal-de-la-Fuente
- Centro Nacional de Diagnóstico e Investigación en Endemo-Epidemias (CeNDIE), Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos Malbrán" (ANLIS), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Romina V Piccinali
- Departamento de Ecología Genética y Evolución, Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET/Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico G Fiad
- Cátedras de Introducción a la Biología y Morfología Animal, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Facultad de Ciencias Exactas Físicas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Néstor Ríos
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Francisco Panzera
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Patricia Lobbia
- Unidad Operativa de Vectores y Ambiente (UnOVE), Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos Malbrán", Centro Nacional de Diagnostico e Investigación en Endemo-Epidemias (CeNDIE), Córdoba, Argentina
| | - Paz Sánchez-Casaccia
- Centro Nacional de Diagnóstico e Investigación en Endemo-Epidemias (CeNDIE), Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos Malbrán" (ANLIS), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Asunción, Paraguay
| | | | - María José Cavallo
- Centro Regional de Energía y Ambiente Para el Desarrollo Sustentable (CREAS-CONICET), Universidad Nacional de Catamarca (UNCA), San Fernando del Valle de Catamarca, Catamarca, Argentina
| | - Gisel V Gigena
- Cátedras de Introducción a la Biología y Morfología Animal, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Facultad de Ciencias Exactas Físicas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Claudia S Rodríguez
- Cátedras de Introducción a la Biología y Morfología Animal, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Facultad de Ciencias Exactas Físicas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Julieta Nattero
- Departamento de Ecología Genética y Evolución, Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET/Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
36
|
Ma Y, Liu P, Li Z, Yue Y, Zhao Y, He J, Zhao J, Song X, Wang J, Liu Q, Lu L. High genetic diversity of the himalayan marmot relative to plague outbreaks in the Qinghai-Tibet Plateau, China. BMC Genomics 2024; 25:262. [PMID: 38459433 PMCID: PMC10921737 DOI: 10.1186/s12864-024-10171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Plague, as an ancient zoonotic disease caused by Yersinia pestis, has brought great disasters. The natural plague focus of Marmota himalayana in the Qinghai-Tibet Plateau is the largest, which has been constantly active and the leading source of human plague in China for decades. Understanding the population genetics of M. himalayana and relating that information to the biogeographic distribution of Yersinia pestis and plague outbreaks are greatly beneficial for the knowledge of plague spillover and arecrucial for pandemic prevention. In the present research, we assessed the population genetics of M. himalayana. We carried out a comparative study of plague outbreaks and the population genetics of M. himalayana on the Qinghai-Tibet Plateau. We found that M. himalayana populations are divided into two main clusters located in the south and north of the Qinghai-Tibet Plateau. Fourteen DFR genomovars of Y. pestis were found and exhibited a significant region-specific distribution. Additionally, the increased genetic diversity of plague hosts is positively associated with human plague outbreaks. This insight gained can improve our understanding of biodiversity for pathogen spillover and provide municipally directed targets for One Health surveillance development, which will be an informative next step toward increased monitoring of M. himalayana dynamics.
Collapse
Affiliation(s)
- Ying Ma
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
| | - Pengbo Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
| | - Ziyan Li
- College of Life Sciences, WuHan University, Wuhan, 430072, China
| | - Yujuan Yue
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
| | - Yanmei Zhao
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, China
| | - Jian He
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, China
| | - Jiaxin Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
- Center for Disease Control and Prevention of Chaoyang District, Beijing, 100021, China
| | - Xiuping Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
| | - Jun Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
| | - Liang Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
37
|
Folkertsma R, Charbonnel N, Henttonen H, Heroldová M, Huitu O, Kotlík P, Manzo E, Paijmans JLA, Plantard O, Sándor AD, Hofreiter M, Eccard JA. Genomic signatures of climate adaptation in bank voles. Ecol Evol 2024; 14:e10886. [PMID: 38455148 PMCID: PMC10918726 DOI: 10.1002/ece3.10886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 03/09/2024] Open
Abstract
Evidence for divergent selection and adaptive variation across the landscape can provide insight into a species' ability to adapt to different environments. However, despite recent advances in genomics, it remains difficult to detect the footprints of climate-mediated selection in natural populations. Here, we analysed ddRAD sequencing data (21,892 SNPs) in conjunction with geographic climate variation to search for signatures of adaptive differentiation in twelve populations of the bank vole (Clethrionomys glareolus) distributed across Europe. To identify the loci subject to selection associated with climate variation, we applied multiple genotype-environment association methods, two univariate and one multivariate, and controlled for the effect of population structure. In total, we identified 213 candidate loci for adaptation, 74 of which were located within genes. In particular, we identified signatures of selection in candidate genes with functions related to lipid metabolism and the immune system. Using the results of redundancy analysis, we demonstrated that population history and climate have joint effects on the genetic variation in the pan-European metapopulation. Furthermore, by examining only candidate loci, we found that annual mean temperature is an important factor shaping adaptive genetic variation in the bank vole. By combining landscape genomic approaches, our study sheds light on genome-wide adaptive differentiation and the spatial distribution of variants underlying adaptive variation influenced by local climate in bank voles.
Collapse
Affiliation(s)
- Remco Folkertsma
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
- Comparative Cognition Unit, Messerli Research InstituteUniversity of Veterinary Medicine ViennaViennaAustria
| | | | | | - Marta Heroldová
- Department of Forest Ecology, FFWTMendel University in BrnoBrnoCzech Republic
| | - Otso Huitu
- Natural Resources Institute FinlandHelsinkiFinland
| | - Petr Kotlík
- Laboratory of Molecular Ecology, Institute of Animal Physiology and GeneticsCzech Academy of SciencesLiběchovCzech Republic
| | - Emiliano Manzo
- Fondazione Ethoikos, Convento dell'OsservanzaRadicondoliItaly
| | - Johanna L. A. Paijmans
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
- Present address:
Evolutionary Ecology Group, Department of ZoologyUniversity of CambridgeCambridgeUK
| | | | - Attila D. Sándor
- HUN‐RENClimate Change: New Blood‐Sucking Parasites and Vector‐Borne Pathogens Research GroupBudapestHungary
- Department of Parasitology and ZoologyUniversity of Veterinary MedicineBudapestHungary
- Department of Parasitology and Parasitic DiseasesUniversity of Agricultural Sciences and Veterinary MedicineCluj‐NapocaRomania
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of ScienceUniversity of PotsdamPotsdamGermany
| | - Jana A. Eccard
- Animal Ecology, Institute for Biochemistry and Biology, Faculty of ScienceBerlin‐Brandenburg Institute for Biodiversity ResearchUniversity of PotsdamPotsdamGermany
| |
Collapse
|
38
|
Padilla Perez DJ. Geographic and seasonal variation of the for gene reveal signatures of local adaptation in Drosophila melanogaster. J Evol Biol 2024; 37:201-211. [PMID: 38301664 DOI: 10.1093/jeb/voad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/18/2023] [Accepted: 12/16/2023] [Indexed: 02/03/2024]
Abstract
In the early 1980s, the observation that Drosophila melanogaster larvae differed in their foraging behaviour laid the foundation for the work that would later lead to the discovery of the foraging gene (for) and its associated foraging phenotypes, rover and sitter. Since then, the molecular characterization of the for gene and our understanding of the mechanisms that maintain its phenotypic variants in the laboratory have progressed enormously. However, the significance and dynamics of such variation are yet to be investigated in nature. With the advent of next-generation sequencing, it is now possible to identify loci underlying the adaptation of populations in response to environmental variation. Here, I present the results of a genotype-environment association analysis that quantifies variation at the for gene among samples of D. melanogaster structured across space and time. These samples consist of published genomes of adult flies collected worldwide, and at least twice per site of collection (during spring and fall). Both an analysis of genetic differentiation based on Fst values and an analysis of population structure revealed an east-west gradient in allele frequency. This gradient may be the result of spatially varying selection driven by the seasonality of precipitation. These results support the hypothesis that different patterns of gene flow as expected under models of isolation by distance and potentially isolation by environment are driving genetic differentiation among populations. Overall, this study is essential for understanding the mechanisms underlying the evolution of foraging behaviour in D. melanogaster.
Collapse
|
39
|
Andraca-Gómez G, Ordano M, Lira-Noriega A, Osorio-Olvera L, Domínguez CA, Fornoni J. Climatic and soil characteristics account for the genetic structure of the invasive cactus moth Cactoblastis cactorum, in its native range in Argentina. PeerJ 2024; 12:e16861. [PMID: 38361769 PMCID: PMC10868523 DOI: 10.7717/peerj.16861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Background Knowledge of the physical and environmental conditions that may limit the migration of invasive species is crucial to assess the potential for expansion outside their native ranges. The cactus moth, Cactoblastis cactorum, is native to South America (Argentina, Paraguay, Uruguay and Brazil) and has been introduced and invaded the Caribbean and southern United States, among other regions. In North America there is an ongoing process of range expansion threatening cacti biodiversity of the genus Opuntia and the commercial profits of domesticated Opuntia ficus-indica. Methods To further understand what influences the distribution and genetic structure of this otherwise important threat to native and managed ecosystems, in the present study we combined ecological niche modeling and population genetic analyses to identify potential environmental barriers in the native region of Argentina. Samples were collected on the host with the wider distribution range, O. ficus-indica. Results Significant genetic structure was detected using 10 nuclear microsatellites and 24 sampling sites. At least six genetic groups delimited by mountain ranges, salt flats and wetlands were mainly located to the west of the Dry Chaco ecoregion. Niche modeling supports that this region has high environmental suitability where the upper soil temperature and humidity, soil carbon content and precipitation were the main environmental factors that explain the presence of the moth. Environmental filters such as the upper soil layer may be critical for pupal survival and consequently for the establishment of populations in new habitats, whereas the presence of available hosts is a necessary conditions for insect survival, upper soil and climatic characteristics will determine the opportunities for a successful establishment.
Collapse
Affiliation(s)
- Guadalupe Andraca-Gómez
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Mariano Ordano
- CONICET-UNT, Fundación Miguel Lillo-Instituto de Ecología Regional, San Miguel de Tucumán, Tucumán, Argentina
| | - Andrés Lira-Noriega
- Instituto de Ecología, A.C., CONAHCYT Research Fellow, Xalapa, Veracrúz, México
| | - Luis Osorio-Olvera
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - César A. Domínguez
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Juan Fornoni
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| |
Collapse
|
40
|
Poljak I, Vidaković A, Benić L, Tumpa K, Idžojtić M, Šatović Z. Patterns of Leaf and Fruit Morphological Variation in Marginal Populations of Acer tataricum L. subsp. tataricum. PLANTS (BASEL, SWITZERLAND) 2024; 13:320. [PMID: 38276777 PMCID: PMC10818317 DOI: 10.3390/plants13020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Marginal populations are usually smaller and more isolated and grow in less favourable conditions than those at the distribution centre. The variability of these populations is of high importance, as it can support the adaptations needed for the conditions that they grow in. In this research, the morphological variability of eight Tatar maple (Acer tataricum L. subsp. tataricum) populations was analysed. Tatar maple is an insect-pollinated and wind-dispersed shrub/tree, whose northwestern distribution edge is in southeastern Europe. Morphometric methods were used to analyse the variability of the populations using leaf and fruit morphology. The research revealed significant differences between and within populations. Furthermore, differences in the distribution of the total variability were noted, which suggest that different evolutionarily factors affect different plant traits. Correlation analysis confirmed a weak dependency between the vegetative and generative traits. In addition, no evidence was found for the presence of isolation by environment (IBE). However, the Mantel test for isolation by distance (IBD) was significant for the leaf morphometric traits and non-significant for the fruit morphometric traits. Being the marginal leading-edge populations, they are younger and were less likely to have had time for adaptation to local environments, which would have resulted in the development of IBE. Overall, edge populations of Tatar maple were characterised by great morphological variability, which helps these populations in their response to the intensive selective pressures they face in their environment.
Collapse
Affiliation(s)
- Igor Poljak
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (I.P.); (A.V.); (L.B.); (K.T.); (M.I.)
| | - Antonio Vidaković
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (I.P.); (A.V.); (L.B.); (K.T.); (M.I.)
| | - Luka Benić
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (I.P.); (A.V.); (L.B.); (K.T.); (M.I.)
| | - Katarina Tumpa
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (I.P.); (A.V.); (L.B.); (K.T.); (M.I.)
| | - Marilena Idžojtić
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (I.P.); (A.V.); (L.B.); (K.T.); (M.I.)
| | - Zlatko Šatović
- Department for Seed Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, HR-10000 Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, HR-10000 Zagreb, Croatia
| |
Collapse
|
41
|
Pyron RA, Kakkera A, Beamer DA, O'Connell KA. Discerning structure versus speciation in phylogeographic analysis of Seepage Salamanders (Desmognathus aeneus) using demography, environment, geography, and phenotype. Mol Ecol 2024; 33:e17219. [PMID: 38015012 DOI: 10.1111/mec.17219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Numerous mechanisms can drive speciation, including isolation by adaptation, distance, and environment. These forces can promote genetic and phenotypic differentiation of local populations, the formation of phylogeographic lineages, and ultimately, completed speciation. However, conceptually similar mechanisms may also result in stabilizing rather than diversifying selection, leading to lineage integration and the long-term persistence of population structure within genetically cohesive species. Processes that drive the formation and maintenance of geographic genetic diversity while facilitating high rates of migration and limiting phenotypic differentiation may thereby result in population genetic structure that is not accompanied by reproductive isolation. We suggest that this framework can be applied more broadly to address the classic dilemma of "structure" versus "species" when evaluating phylogeographic diversity, unifying population genetics, species delimitation, and the underlying study of speciation. We demonstrate one such instance in the Seepage Salamander (Desmognathus aeneus) from the southeastern United States. Recent studies estimated up to 6.3% mitochondrial divergence and four phylogenomic lineages with broad admixture across geographic hybrid zones, which could potentially represent distinct species supported by our species-delimitation analyses. However, while limited dispersal promotes substantial isolation by distance, microhabitat specificity appears to yield stabilizing selection on a single, uniform, ecologically mediated phenotype. As a result, climatic cycles promote recurrent contact between lineages and repeated instances of high migration through time. Subsequent hybridization is apparently not counteracted by adaptive differentiation limiting introgression, leaving a single unified species with deeply divergent phylogeographic lineages that nonetheless do not appear to represent incipient species.
Collapse
Affiliation(s)
- R Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| | - Anvith Kakkera
- Thomas Jefferson High School for Science and Technology, Alexandria, Virginia, USA
| | - David A Beamer
- Office of Research, Economic Development and Engagement, East Carolina University, Greenville, North Carolina, USA
| | - Kyle A O'Connell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
- Deloitte Consulting LLP, Health and Data AI, Arlington, Virginia, USA
| |
Collapse
|
42
|
Parvizi E, Vaughan AL, Dhami MK, McGaughran A. Genomic signals of local adaptation across climatically heterogenous habitats in an invasive tropical fruit fly (Bactrocera tryoni). Heredity (Edinb) 2024; 132:18-29. [PMID: 37903919 PMCID: PMC10798995 DOI: 10.1038/s41437-023-00657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/21/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023] Open
Abstract
Local adaptation plays a key role in the successful establishment of pest populations in new environments by enabling them to tolerate novel biotic and abiotic conditions experienced outside their native range. However, the genomic underpinnings of such adaptive responses remain unclear, especially for agriculturally important pests. We investigated population genomic signatures in the tropical/subtropical Queensland fruit fly, Bactrocera tryoni, which has an expanded range encompassing temperate and arid zones in Australia, and tropical zones in the Pacific Islands. Using reduced representation sequencing data from 28 populations, we detected allele frequency shifts associated with the native/invasive status of populations and identified environmental factors that have likely driven population differentiation. We also determined that precipitation, temperature, and geographic variables explain allelic shifts across the distribution range of B. tryoni. We found spatial heterogeneity in signatures of local adaptation across various climatic conditions in invaded areas. Specifically, disjunct invasive populations in the tropical Pacific Islands and arid zones of Australia were characterised by multiple significantly differentiated single nucleotide polymorphisms (SNPs), some of which were associated with genes with well-understood function in environmental stress (e.g., heat and desiccation) response. However, invasive populations in southeast Australian temperate zones showed higher gene flow with the native range and lacked a strong local adaptive signal. These results suggest that population connectivity with the native range has differentially affected local adaptive patterns in different invasive populations. Overall, our findings provide insights into the evolutionary underpinnings of invasion success of an important horticultural pest in climatically distinct environments.
Collapse
Affiliation(s)
- Elahe Parvizi
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Amy L Vaughan
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | - Manpreet K Dhami
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | - Angela McGaughran
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand.
| |
Collapse
|
43
|
Franzoni J, Astuti G, Peruzzi L. Weak Genetic Isolation and Putative Phenotypic Selection in the Wild Carnation Dianthus virgineus (Caryophyllaceae). BIOLOGY 2023; 12:1355. [PMID: 37887065 PMCID: PMC10604185 DOI: 10.3390/biology12101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
By relating genetic divergence at neutral loci, phenotypic variation, and geographic and environmental distances, it is possible to dissect micro-evolutionary scenarios involving natural selection and neutral evolution. In this work, we tested the patterns of intraspecific genetic and phenotypic variation along an elevational gradient, using Dianthus virgineus as study system. We genotyped genome-wide SNPs through ddRAD sequencing and quantified phenotypic variation through multivariate morphological variation. We assessed patterns of variation by testing the statistical association between genetic, phenotypic, geographic, and elevational distances and explored the role of genetic drift and selection by comparing the Fst and Pst of morphometric traits. We revealed a weak genetic structure related to geographic distance among populations, but we excluded the predominant role of genetic drift acting on phenotypic traits. A high degree of phenotypic differentiation with respect to genetic divergence at neutral loci allowed us to hypothesize the effect of selection, putatively fuelled by changing conditions at different sites, on morphological traits. Thus, natural selection acting despite low genetic divergence at neutral loci can be hypothesized as a putative driver explaining the observed patterns of variation.
Collapse
Affiliation(s)
- Jacopo Franzoni
- PLANTSEED Lab, Department of Biology, University of Pisa, 56127 Pisa, Italy;
| | - Giovanni Astuti
- Botanic Garden and Museum, University of Pisa, 56126 Pisa, Italy;
| | - Lorenzo Peruzzi
- PLANTSEED Lab, Department of Biology, University of Pisa, 56127 Pisa, Italy;
| |
Collapse
|
44
|
Scucchia F, Zaslansky P, Boote C, Doheny A, Mass T, Camp EF. The role and risks of selective adaptation in extreme coral habitats. Nat Commun 2023; 14:4475. [PMID: 37507378 PMCID: PMC10382478 DOI: 10.1038/s41467-023-39651-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The alarming rate of climate change demands new management strategies to protect coral reefs. Environments such as mangrove lagoons, characterized by extreme variations in multiple abiotic factors, are viewed as potential sources of stress-tolerant corals for strategies such as assisted evolution and coral propagation. However, biological trade-offs for adaptation to such extremes are poorly known. Here, we investigate the reef-building coral Porites lutea thriving in both mangrove and reef sites and show that stress-tolerance comes with compromises in genetic and energetic mechanisms and skeletal characteristics. We observe reduced genetic diversity and gene expression variability in mangrove corals, a disadvantage under future harsher selective pressure. We find reduced density, thickness and higher porosity in coral skeletons from mangroves, symptoms of metabolic energy redirection to stress response functions. These findings demonstrate the need for caution when utilizing stress-tolerant corals in human interventions, as current survival in extremes may compromise future competitive fitness.
Collapse
Affiliation(s)
- Federica Scucchia
- Department of Marine Biology, Leon H, Charney school of Marine Sciences, University of Haifa, Haifa, Israel.
| | - Paul Zaslansky
- Department for Operative, Preventive and Pediatric Dentistry, Charité-Universitätsmedizin, Berlin, Germany
| | - Chloë Boote
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Annabelle Doheny
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Tali Mass
- Department of Marine Biology, Leon H, Charney school of Marine Sciences, University of Haifa, Haifa, Israel
| | - Emma F Camp
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
45
|
Arenas S, Búrquez A, Bustamante E, Scheinvar E, Eguiarte LE. Are 150 km of open sea enough? Gene flow and population differentiation in a bat-pollinated columnar cactus. PLoS One 2023; 18:e0282932. [PMID: 37384637 PMCID: PMC10309638 DOI: 10.1371/journal.pone.0282932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
Genetic differentiations and phylogeographical patterns are controlled by the interplay between spatial isolation and gene flow. To assess the extent of gene flow across an oceanic barrier, we explored the effect of the separation of the peninsula of Baja California on the evolution of mainland and peninsular populations of the long-lived columnar cactus Stenocereus thurberi. We analyzed twelve populations throughout the OPC distribution range to assess genetic diversity and structure using chloroplast DNA sequences. Genetic diversity was higher (Hd = 0.81), and genetic structure was lower (GST = 0.143) in mainland populations vs peninsular populations (Hd = 0.71, GST = 0.358 respectively). Genetic diversity was negatively associated with elevation but positively with rainfall. Two mainland and one peninsular ancestral haplotypes were reconstructed. Peninsular populations were as isolated among them as with mainland populations. Peninsular haplotypes formed a group with one mainland coastal population, and populations across the gulf shared common haplotypes giving support to regular gene flow across the Gulf. Gene flow is likely mediated by bats, the main pollinators and seed dispersers. Niche modeling suggests that during the Last Glacial Maximum (c. 130 ka), OPC populations shrank to southern locations. Currently, Stenocereus thurberi populations are expanding, and the species is under population divergence despite ongoing gene flow. Ancestral populations are located on the mainland and although vicariant peninsular populations cannot be ruled out, they are likely the result of gene flow across the seemingly formidable barrier of the Gulf of California. Still, unique haplotypes occur in the peninsula and the mainland, and peninsular populations are more structured than those on the mainland.
Collapse
Affiliation(s)
- Sebastián Arenas
- DIADE, Université de Montpellier, IRD, Montpellier, France
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Hermosillo, Sonora, México
| | - Alberto Búrquez
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Hermosillo, Sonora, México
| | - Enriquena Bustamante
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Hermosillo, Sonora, México
| | - Enrique Scheinvar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
46
|
Dwivedi SL, Chapman MA, Abberton MT, Akpojotor UL, Ortiz R. Exploiting genetic and genomic resources to enhance productivity and abiotic stress adaptation of underutilized pulses. Front Genet 2023; 14:1193780. [PMID: 37396035 PMCID: PMC10311922 DOI: 10.3389/fgene.2023.1193780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
Underutilized pulses and their wild relatives are typically stress tolerant and their seeds are packed with protein, fibers, minerals, vitamins, and phytochemicals. The consumption of such nutritionally dense legumes together with cereal-based food may promote global food and nutritional security. However, such species are deficient in a few or several desirable domestication traits thereby reducing their agronomic value, requiring further genetic enhancement for developing productive, nutritionally dense, and climate resilient cultivars. This review article considers 13 underutilized pulses and focuses on their germplasm holdings, diversity, crop-wild-crop gene flow, genome sequencing, syntenic relationships, the potential for breeding and transgenic manipulation, and the genetics of agronomic and stress tolerance traits. Recent progress has shown the potential for crop improvement and food security, for example, the genetic basis of stem determinacy and fragrance in moth bean and rice bean, multiple abiotic stress tolerant traits in horse gram and tepary bean, bruchid resistance in lima bean, low neurotoxin in grass pea, and photoperiod induced flowering and anthocyanin accumulation in adzuki bean have been investigated. Advances in introgression breeding to develop elite genetic stocks of grass pea with low β-ODAP (neurotoxin compound), resistance to Mungbean yellow mosaic India virus in black gram using rice bean, and abiotic stress adaptation in common bean, using genes from tepary bean have been carried out. This highlights their potential in wider breeding programs to introduce such traits in locally adapted cultivars. The potential of de-domestication or feralization in the evolution of new variants in these crops are also highlighted.
Collapse
Affiliation(s)
| | - Mark A. Chapman
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | | | | | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
47
|
Ortiz V, Chang HX, Sang H, Jacobs J, Malvick DK, Baird R, Mathew FM, Estévez de Jensen C, Wise KA, Mosquera GM, Chilvers MI. Population genomic analysis reveals geographic structure and climatic diversification for Macrophomina phaseolina isolated from soybean and dry bean across the United States, Puerto Rico, and Colombia. Front Genet 2023; 14:1103969. [PMID: 37351341 PMCID: PMC10282554 DOI: 10.3389/fgene.2023.1103969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/20/2023] [Indexed: 06/24/2023] Open
Abstract
Macrophomina phaseolina causes charcoal rot, which can significantly reduce yield and seed quality of soybean and dry bean resulting from primarily environmental stressors. Although charcoal rot has been recognized as a warm climate-driven disease of increasing concern under global climate change, knowledge regarding population genetics and climatic variables contributing to the genetic diversity of M. phaseolina is limited. This study conducted genome sequencing for 95 M. phaseolina isolates from soybean and dry bean across the continental United States, Puerto Rico, and Colombia. Inference on the population structure using 76,981 single nucleotide polymorphisms (SNPs) revealed that the isolates exhibited a discrete genetic clustering at the continental level and a continuous genetic differentiation regionally. A majority of isolates from the United States (96%) grouped in a clade with a predominantly clonal genetic structure, while 88% of Puerto Rican and Colombian isolates from dry bean were assigned to a separate clade with higher genetic diversity. A redundancy analysis (RDA) was used to estimate the contributions of climate and spatial structure to genomic variation (11,421 unlinked SNPs). Climate significantly contributed to genomic variation at a continental level with temperature seasonality explaining the most variation while precipitation of warmest quarter explaining the most when spatial structure was accounted for. The loci significantly associated with multivariate climate were found closely to the genes related to fungal stress responses, including transmembrane transport, glycoside hydrolase activity and a heat-shock protein, which may mediate climatic adaptation for M. phaseolina. On the contrary, limited genome-wide differentiation among populations by hosts was observed. These findings highlight the importance of population genetics and identify candidate genes of M. phaseolina that can be used to elucidate the molecular mechanisms that underly climatic adaptation to the changing climate.
Collapse
Affiliation(s)
- Viviana Ortiz
- Department of Plant, Soil and Microbial Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, United States
| | - Hao-Xun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Janette Jacobs
- Department of Plant, Soil and Microbial Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
| | - Dean K. Malvick
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Richard Baird
- BCH-EPP Department, Mississippi State University, Mississippi State, MS, United States
| | - Febina M. Mathew
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | | | - Kiersten A. Wise
- Department of Plant Pathology, College of Agriculture, Food and Environment, University of Kentucky, Princeton, KY, United States
| | - Gloria M. Mosquera
- Plant Pathology, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), The Americas Hub, Palmira, Colombia
| | - Martin I. Chilvers
- Department of Plant, Soil and Microbial Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
48
|
Zhang L, Chen J, Zhao R, Zhong J, Lin L, Li H, Ji X, Qu Y. Genomic insights into local adaptation in the Asiatic toad Bufo gargarizans, and its genomic offset to climate warming. Evol Appl 2023; 16:1071-1083. [PMID: 37216027 PMCID: PMC10197391 DOI: 10.1111/eva.13555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/31/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Genomic signatures of local adaptation have been identified in many species but remain sparsely studied in amphibians. Here, we explored genome-wide divergence within the Asiatic toad, Bufo gargarizans, to study local adaptation and genomic offset (i.e., the mismatch between current and future genotype-environment relationships) under climate warming scenarios. We obtained high-quality SNP data for 94 Asiatic toads from 21 populations in China to study spatial patterns of genomic variation, local adaptation, and genomic offset to warming in this wide-ranging species. Population structure and genetic diversity analysis based on high-quality SNPs revealed three clusters of B. gargarizans in the western, central-eastern, and northeastern portions of the species' range in China. Populations generally dispersed along two migration routes, one from the west to the central-east and one from the central-east to the northeast. Both genetic diversity and pairwise F ST were climatically correlated, and pairwise F ST was also correlated with geographic distance. Spatial genomic patterns in B. gargarizans were determined by the local environment and geographic distance. Global warming will increase the extirpation risk of B. gargarizans.
Collapse
Affiliation(s)
- Lu‐Wen Zhang
- College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Jun‐Qiong Chen
- College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Ru‐Meng Zhao
- College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Jun Zhong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental SciencesWenzhou UniversityWenzhouChina
| | - Long‐Hui Lin
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - Hong Li
- College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Xiang Ji
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental SciencesWenzhou UniversityWenzhouChina
| | - Yan‐Fu Qu
- College of Life SciencesNanjing Normal UniversityNanjingChina
| |
Collapse
|
49
|
Chen B, Bai Y, Wang J, Ke Q, Zhou Z, Zhou T, Pan Y, Wu R, Wu X, Zheng W, Xu P. Population structure and genome-wide evolutionary signatures reveal putative climate-driven habitat change and local adaptation in the large yellow croaker. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:141-154. [PMID: 37275538 PMCID: PMC10232709 DOI: 10.1007/s42995-023-00165-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/25/2023] [Indexed: 06/07/2023]
Abstract
The large yellow croaker (Larimichthys crocea) is one of the most economically valuable marine fish in China and is a notable species in ecological studies owing to a serious collapse of wild germplasm in the past few decades. The stock division and species distribution, which have important implications for ecological protection, germplasm recovery, and fishery resource management, have been debated since the 1960s. However, it is still uncertain even how many stocks exist in this species. To address this, we evaluated the fine-scale genetic structure of large yellow croaker populations distributed along the eastern and southern Chinese coastline based on 7.64 million SNP markers. Compared with the widely accepted stock boundaries proposed in the 1960s, our results revealed that a climate-driven habitat change probably occurred between the Naozhou (Nanhai) Stock and the Ming-Yuedong (Mindong) Stock. The boundary between these two stocks might have shifted northwards from the Pearl River Estuary to the northern area of the Taiwan Strait, accompanied by highly asymmetric introgression. In addition, we found divergent landscapes of natural selection between the stocks inhabiting northern and southern areas. The northern population exhibited highly agminated signatures of strong natural selection in genes related to developmental processes, whereas moderate and interspersed selective signatures were detected in many immune-related genes in the southern populations. These findings establish the stock status and genome-wide evolutionary landscapes of large yellow croaker, providing a basis for conservation, fisheries management and further evolutionary biology studies. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00165-2.
Collapse
Affiliation(s)
- Baohua Chen
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 China
- National Key Laboratory of Mariculture Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352000 China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 China
| | - Yulin Bai
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 China
| | - Jiaying Wang
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 China
| | - Qiaozhen Ke
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 China
- National Key Laboratory of Mariculture Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352000 China
| | - Zhixiong Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 China
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 China
| | - Ying Pan
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 China
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, 350000 China
| | - Renxie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088 China
| | - Xiongfei Wu
- Ningbo Academy of Oceanology and Fishery, Ningbo, 315012 China
| | - Weiqiang Zheng
- National Key Laboratory of Mariculture Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352000 China
| | - Peng Xu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 China
- National Key Laboratory of Mariculture Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352000 China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 China
| |
Collapse
|
50
|
Wu N, Wang S, Dujsebayeva TN, Chen D, Ali A, Guo X. Geography and past climate changes have shaped the evolution of a widespread lizard in arid Central Asia. Mol Phylogenet Evol 2023; 184:107781. [PMID: 37044189 DOI: 10.1016/j.ympev.2023.107781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
The complex orogenic history and structure of Central Asia, coupled with Pleistocene glacial cycles have generated its stepwise aridification. Such events would have significantly influenced the evolution of many mid-latitude species in arid Central Asia (ACA). In this study, we employed two mitochondrial genes (CO1 and ND2) and genome-wide SNPs, coupled with ecological niche modeling, to investigate the lineage diversification and historical demography within a widespread lizard Phrynocepahlus helioscopus, and their associations with geography and past climate change. We obtained themtDNA dataset for 300 individuals from 96 localities within the known range of the lizard, among which 51 individuals from 27 localities were selected for generating the SNP dataset via genotyping-by-sequencing approach. Phylogenetic analyses of the concatenated mtDNA dataset revealed eight geographically correlated lineages that diverged by 4.21-10.41% for the CO1 gene, which were estimated to have coalesced ∼4.47 million years ago. However, we observed mito-nuclear discordance pattern regarding the population of Clade V (P. helioscopus sergeevi) from Tajikistan. Ancestral area estimations suggested that P. helioscopus originated from the Fergana Valley and then dispersed into the adjacent areas in ACA along with a history of multiple allopatric divergence processes, suggesting that Fergana may have been the cradle of diversification of P. helioscopus. The intensification of aridification across Central Asia during the Late Pliocene may have facilitated the rapid radiation of this arid-adapted lizard throughout this vast territory. Subsequently, the geological events (e.g., uplift of the Hissar-Alay, transgressions of the Caspian Sea) and geographic barriers (e.g., Amu Darya River, Zerarshan River) during the Pleistocene triggered the progressive diversification of P. helioscopus. Interestingly, Clade VIII (P. helioscopus varius) experienced rapid population growth coupled with range expansion while Clade IV (P. helioscopus cameranoi) underwent drastic population expansion associated with range contraction during the Last Glacial Maximum. In Clade IV, but not in Clade VIII, environmental turnover contributes more to mitochondrial genetic distinctiveness than geographic distance. Overall, the SNP dataset demonstrates that geographic distance plays a greater role than environmental distance. Both the mtDNA dataset and the SNP dataset suggest local-scale genetic differentiation in Clade IV and Clade VIII, revealing potential geographic barriers in the Ili River Valley and the Junggar Basin, respectively. Twenty-seven outlier SNPs associated with environmental factors (precipitation and temperature) were identified, which supports the signature of local adaptation to the arid desert environment. Finally, our finding suggests taxonomic implications, such as support for full species status for P. saidalievi (Clade II) and P. meridionalis (Clade I). Future analyses based on further evidence and increased taxon and geographic sampling should be carried out to corroborate our findings.
Collapse
Affiliation(s)
- Na Wu
- Chengdu Institute of Biology Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Wang
- Chengdu Institute of Biology Chinese Academy of Sciences, Chengdu 610041, China
| | - Tatjana N Dujsebayeva
- Laboratory of Ornithology and Herpetology, Institute of Zoology, Ministry of Sciences and High Education of Republic of Kazakhstan, Almaty 050060, Kazakhstan
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Abid Ali
- Chengdu Institute of Biology Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianguang Guo
- Chengdu Institute of Biology Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|