1
|
Miranda VH, Amaral RV, Cogni R. Clinal variation in natural populations of Drosophila melanogaster: An old debate about natural selection and neutral processes. Genet Mol Biol 2024; 47Suppl 1:e20230348. [PMID: 39037374 PMCID: PMC11262002 DOI: 10.1590/1678-4685-gmb-2023-0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/23/2024] [Indexed: 07/23/2024] Open
Abstract
Distinguishing between environmental adaptations and neutral processes poses a challenge in population genetics and evolutionary studies, particularly when phenomena can be explained by both processes. Clines are genotypic or phenotypic characters correlated with environmental variables, because of that correlation, they are used as examples of spatially varying selection. At the same time, many genotypic clines can be explained by demographic history, like isolation by distance or secondary contact zones. Clines have been extensively studied in Drosophila melanogaster, especially in North America and Australia, where they are attributed to both differential selection and various demographic processes. This review explores existing literature supporting this conclusion and suggests new approaches to better understand the influence of these processes on clines. These innovative approaches aim to shed light on the longstanding debate regarding the importance of natural selection versus neutral processes in maintaining variation in natural populations.
Collapse
Affiliation(s)
- Vitória H. Miranda
- Universidade de São Paulo, Instituto de Biociências,
Departamento de Ecologia, São Paulo, SP, Brazil
| | - Rafael Viana Amaral
- Universidade de São Paulo, Instituto de Biociências,
Departamento de Ecologia, São Paulo, SP, Brazil
| | - Rodrigo Cogni
- Universidade de São Paulo, Instituto de Biociências,
Departamento de Ecologia, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Yu Y, Bergland AO. Distinct signals of clinal and seasonal allele frequency change at eQTLs in Drosophila melanogaster. Evolution 2022; 76:2758-2768. [PMID: 36097359 PMCID: PMC9710195 DOI: 10.1111/evo.14617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/31/2022] [Accepted: 08/17/2022] [Indexed: 01/22/2023]
Abstract
Populations of short-lived organisms can respond to spatial and temporal environmental heterogeneity through local adaptation. Local adaptation can be reflected on both phenotypic and genetic levels, and it has been documented in many organisms. Although complex fitness-related phenotypes have been shown to vary across latitudinal clines and seasons in similar ways in Drosophila melanogaster populations, the comparative signals of local adaptation across space and time remain poorly understood. Here, we examined patterns of allele frequency change across a latitudinal cline and between seasons at previously reported expression quantitative trait loci (eQTLs). We divided eQTLs into groups by using differential expression profiles of fly populations collected across latitudinal clines or exposed to different environmental conditions. In general, we find that eQTLs are enriched for clinally varying polymorphisms, and that these eQTLs change in frequency in concordant ways across the cline and in response to starvation and chill-coma. The enrichment of eQTLs among seasonally varying polymorphisms is more subtle, and the direction of allele frequency change at eQTLs appears to be somewhat idiosyncratic. Taken together, we suggest that clinal adaptation at eQTLs is at least partially distinct from seasonal adaptation.
Collapse
Affiliation(s)
- Yang Yu
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginia22904
| | - Alan O. Bergland
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginia22904
| |
Collapse
|
3
|
Önder BŞ, Aksoy CF. Seasonal variation in wing size and shape of Drosophila melanogaster reveals rapid adaptation to environmental changes. Sci Rep 2022; 12:14622. [PMID: 36028640 PMCID: PMC9418266 DOI: 10.1038/s41598-022-18891-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
Populations in seasonal fluctuating environments receive multiple environmental cues and must deal with this heterogenic environment to survive and reproduce. An enlarged literature shows that this situation can be resolved through rapid adaptation in Drosophila melanogaster populations. Long-term monitoring of a population in its natural habitat and quantitative measurement of its responses to seasonal environmental changes are important for understanding the adaptive response of D. melanogaster to temporal variable selection. Here, we use inbred lines of a D. melanogaster population collected at monthly intervals between May to October over a temporal scale spanning three consecutive years to understand the variation in wing size and wing shape over these timepoints. The wing size and shape of this population changed significantly between months and a seasonal cycle of this traits is repeated for three years. Our results suggest that the effects of environmental variables that generated variation in body size between populations such as latitudinal clines, are a selective pressure in a different manner in terms of seasonal variation. Temperature related variable have a significant nonlinear relation to this fluctuating pattern in size and shape, whereas precipitation and humidity have a sex-specific effect which is more significant in males.
Collapse
Affiliation(s)
- Banu Şebnem Önder
- Genetic Variation and Adaptation Laboratory, Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey.
| | - Cansu Fidan Aksoy
- Genetic Variation and Adaptation Laboratory, Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
Lirakis M, Nolte V, Schlötterer C. Pool-GWAS on reproductive dormancy in Drosophila simulans suggests a polygenic architecture. G3 GENES|GENOMES|GENETICS 2022; 12:6523974. [PMID: 35137042 PMCID: PMC8895979 DOI: 10.1093/g3journal/jkac027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022]
Abstract
The genetic basis of adaptation to different environments has been of long-standing interest to evolutionary biologists. Dormancy is a well-studied adaptation to facilitate overwintering. In Drosophila melanogaster, a moderate number of genes with large effects have been described, which suggests a simple genetic basis of dormancy. On the other hand, genome-wide scans for dormancy suggest a polygenic architecture in insects. In D. melanogaster, the analysis of the genetic architecture of dormancy is complicated by the presence of cosmopolitan inversions. Here, we performed a genome-wide scan to characterize the genetic basis of this ecologically extremely important trait in the sibling species of D. melanogaster, D. simulans that lacks cosmopolitan inversions. We performed Pool-GWAS in a South African D. simulans population for dormancy incidence at 2 temperature regimes (10 and 12°C, LD 10:14). We identified several genes with SNPs that showed a significant association with dormancy (P-value < 1e-13), but the overall modest response suggests that dormancy is a polygenic trait with many loci of small effect. Our results shed light on controversies on reproductive dormancy in Drosophila and have important implications for the characterization of the genetic basis of this trait.
Collapse
Affiliation(s)
- Manolis Lirakis
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, 1210 Wien, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
| | | |
Collapse
|
5
|
Rodrigues MF, Cogni R. Genomic Responses to Climate Change: Making the Most of the Drosophila Model. Front Genet 2021; 12:676218. [PMID: 34326859 PMCID: PMC8314211 DOI: 10.3389/fgene.2021.676218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
It is pressing to understand how animal populations evolve in response to climate change. We argue that new sequencing technologies and the use of historical samples are opening unprecedented opportunities to investigate genome-wide responses to changing environments. However, there are important challenges in interpreting the emerging findings. First, it is essential to differentiate genetic adaptation from phenotypic plasticity. Second, it is extremely difficult to map genotype, phenotype, and fitness. Third, neutral demographic processes and natural selection affect genetic variation in similar ways. We argue that Drosophila melanogaster, a classical model organism with decades of climate adaptation research, is uniquely suited to overcome most of these challenges. In the near future, long-term time series genome-wide datasets of D. melanogaster natural populations will provide exciting opportunities to study adaptation to recent climate change and will lay the groundwork for related research in non-model systems.
Collapse
Affiliation(s)
- Murillo F. Rodrigues
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| | - Rodrigo Cogni
- Department of Ecology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Rodrigues MF, Vibranovski MD, Cogni R. Clinal and seasonal changes are correlated in Drosophila melanogaster natural populations. Evolution 2021; 75:2042-2054. [PMID: 34184262 DOI: 10.1111/evo.14300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022]
Abstract
Spatial and seasonal variations in the environment are ubiquitous. Environmental heterogeneity can affect natural populations and lead to covariation between environment and allele frequencies. Drosophila melanogaster is known to harbor polymorphisms that change both with latitude and seasons. Identifying the role of selection in driving these changes is not trivial, because nonadaptive processes can cause similar patterns. Given the environment changes in similar ways across seasons and along the latitudinal gradient, one promising approach may be to look for parallelism between clinal and seasonal changes. Here, we test whether there is a genome-wide correlation between clinal and seasonal changes, and whether the pattern is consistent with selection. Allele frequency estimates were obtained from pooled samples from seven different locations along the east coast of the United States, and across seasons within Pennsylvania. We show that there is a genome-wide correlation between clinal and seasonal variations, which cannot be explained by linked selection alone. This pattern is stronger in genomic regions with higher functional content, consistent with natural selection. We derive a way to biologically interpret these correlations and show that around 3.7% of the common, autosomal variants could be under parallel seasonal and spatial selection. Our results highlight the contribution of natural selection in driving fluctuations in allele frequencies in natural fly populations and point to a shared genomic basis to climate adaptation that happens over space and time in D. melanogaster.
Collapse
Affiliation(s)
- Murillo F Rodrigues
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, 05508-090, Brazil.,Current Address: Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403
| | - Maria D Vibranovski
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, 05508-090, Brazil
| | - Rodrigo Cogni
- Department of Ecology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, 05508-090, Brazil
| |
Collapse
|
7
|
Machado HE, Bergland AO, Taylor R, Tilk S, Behrman E, Dyer K, Fabian DK, Flatt T, González J, Karasov TL, Kim B, Kozeretska I, Lazzaro BP, Merritt TJS, Pool JE, O'Brien K, Rajpurohit S, Roy PR, Schaeffer SW, Serga S, Schmidt P, Petrov DA. Broad geographic sampling reveals the shared basis and environmental correlates of seasonal adaptation in Drosophila. eLife 2021; 10:e67577. [PMID: 34155971 PMCID: PMC8248982 DOI: 10.7554/elife.67577] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
To advance our understanding of adaptation to temporally varying selection pressures, we identified signatures of seasonal adaptation occurring in parallel among Drosophila melanogaster populations. Specifically, we estimated allele frequencies genome-wide from flies sampled early and late in the growing season from 20 widely dispersed populations. We identified parallel seasonal allele frequency shifts across North America and Europe, demonstrating that seasonal adaptation is a general phenomenon of temperate fly populations. Seasonally fluctuating polymorphisms are enriched in large chromosomal inversions, and we find a broad concordance between seasonal and spatial allele frequency change. The direction of allele frequency change at seasonally variable polymorphisms can be predicted by weather conditions in the weeks prior to sampling, linking the environment and the genomic response to selection. Our results suggest that fluctuating selection is an important evolutionary force affecting patterns of genetic variation in Drosophila.
Collapse
Affiliation(s)
- Heather E Machado
- Department of Biology, Stanford UniversityStanfordUnited States
- Wellcome Sanger InstituteHinxtonUnited Kingdom
| | - Alan O Bergland
- Department of Biology, Stanford UniversityStanfordUnited States
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Ryan Taylor
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Susanne Tilk
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Emily Behrman
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Kelly Dyer
- Department of Genetics, University of GeorgiaAthensUnited States
| | - Daniel K Fabian
- Institute of Population Genetics, Vetmeduni ViennaViennaAustria
- Centre for Pathogen Evolution, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Thomas Flatt
- Institute of Population Genetics, Vetmeduni ViennaViennaAustria
- Department of Biology, University of FribourgFribourgSwitzerland
| | - Josefa González
- Institute of Evolutionary Biology, CSIC- Universitat Pompeu FabraBarcelonaSpain
| | - Talia L Karasov
- Department of Biology, University of UtahSalt Lake CityUnited States
| | - Bernard Kim
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Iryna Kozeretska
- Taras Shevchenko National University of KyivKyivUkraine
- National Antarctic Scientific Centre of Ukraine, Taras Shevchenko Blvd.KyivUkraine
| | - Brian P Lazzaro
- Department of Entomology, Cornell UniversityIthacaUnited States
| | - Thomas JS Merritt
- Department of Chemistry & Biochemistry, Laurentian UniversitySudburyCanada
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-MadisonMadisonUnited States
| | - Katherine O'Brien
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Subhash Rajpurohit
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Paula R Roy
- Department of Ecology and Evolutionary Biology, University of KansasLawrenceUnited States
| | - Stephen W Schaeffer
- Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Svitlana Serga
- Taras Shevchenko National University of KyivKyivUkraine
- National Antarctic Scientific Centre of Ukraine, Taras Shevchenko Blvd.KyivUkraine
| | - Paul Schmidt
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Dmitri A Petrov
- Department of Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
8
|
Ahmadi F, Mikani A, Moharramipour S. Induction of diapause by clock proteins period and timeless via changes in PTTH and ecdysteroid titer in the sugar beet moth, Scrobipalpa ocellatella (Lepidoptera: Gelechiidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21790. [PMID: 33860953 DOI: 10.1002/arch.21790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/05/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
The sugar beet moth, Scrobipalpa ocellatella (Boyd), one of the most severe sugar beet pests, causes quantitative and qualitative yield losses late in the autumn. Previously, it was shown that low temperature and short-day photoperiod together cause diapause induction in pupae. Here, the interaction of the critical elements of the diapause induction, including the period (PER), timeless (TIM), prothoracicotropic hormone (PTTH), and ecdysteroid titer, were investigated. Immunohistochemistry results showed that the number of period immunoreactivity (PER-ir) and TIM-ir cells in nondiapause pupae (NDP) was lower than in the brain of the diapause pupae (DP). Moreover, the number of PER-ir and TIM-ir cells in the protocerebrum and optic lobe (OL) of NDP was lower than DP. Moreover, lower PTTH content in the brain and hemolymph of DP was confirmed by competitive enzyme-linked immunosorbent assay. Enzyme immunoassay showed a lower 20-hydroxyecdysone (20E) titer in the hemolymph of the DP compared with the NDP. Within a short-day condition, PER and TIM titers increased in the brain leading to decreasing PTTH titers in the brain and hemolymph that caused decreasing 20E titer in the hemolymph, leading to the induction of diapause. This study suggests that PER and TIM could be one of the brain factors that play an essential role in regulating diapause in S. ocellatella.
Collapse
Affiliation(s)
- Fatemeh Ahmadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Azam Mikani
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Saeid Moharramipour
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
Betancourt NJ, Rajpurohit S, Durmaz E, Fabian DK, Kapun M, Flatt T, Schmidt P. Allelic polymorphism at foxo contributes to local adaptation in Drosophila melanogaster. Mol Ecol 2021; 30:2817-2830. [PMID: 33914989 PMCID: PMC8693798 DOI: 10.1111/mec.15939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 04/13/2021] [Indexed: 01/09/2023]
Abstract
The insulin/insulin-like growth factor signalling pathway has been hypothesized as a major determinant of life-history profiles that vary adaptively in natural populations. In Drosophila melanogaster, multiple components of this pathway vary predictably with latitude; this includes foxo, a conserved gene that regulates insulin signalling and has pleiotropic effects on a variety of fitness-associated traits. We hypothesized that allelic variation at foxo contributes to genetic variance for size-related traits that vary adaptively with latitude. We first examined patterns of variation among natural populations along a latitudinal transect in the eastern United States and show that thorax length, wing area, wing loading, and starvation tolerance exhibit significant latitudinal clines for both males and females but that development time does not vary predictably with latitude. We then generated recombinant outbred populations and show that naturally occurring allelic variation at foxo, which exhibits stronger clinality than expected, is associated with the same traits that vary with latitude in the natural populations. Our results suggest that allelic variation at foxo contributes to adaptive patterns of life-history variation in natural populations of this genetic model.
Collapse
Affiliation(s)
| | - Subhash Rajpurohit
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Division of Biological and Life Sciences, Ahmedabad University, Ahmedabad, India
| | - Esra Durmaz
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Daniel K. Fabian
- Department of Genetics, University of Cambridge, Cambridge, UK
- European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Martin Kapun
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Thomas Flatt
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Bogaerts‐Márquez M, Guirao‐Rico S, Gautier M, González J. Temperature, rainfall and wind variables underlie environmental adaptation in natural populations of Drosophila melanogaster. Mol Ecol 2021; 30:938-954. [PMID: 33350518 PMCID: PMC7986194 DOI: 10.1111/mec.15783] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
While several studies in a diverse set of species have shed light on the genes underlying adaptation, our knowledge on the selective pressures that explain the observed patterns lags behind. Drosophila melanogaster is a valuable organism to study environmental adaptation because this species originated in Southern Africa and has recently expanded worldwide, and also because it has a functionally well-annotated genome. In this study, we aimed to decipher which environmental variables are relevant for adaptation of D. melanogaster natural populations in Europe and North America. We analysed 36 whole-genome pool-seq samples of D. melanogaster natural populations collected in 20 European and 11 North American locations. We used the BayPass software to identify single nucleotide polymorphisms (SNPs) and transposable elements (TEs) showing signature of adaptive differentiation across populations, as well as significant associations with 59 environmental variables related to temperature, rainfall, evaporation, solar radiation, wind, daylight hours, and soil type. We found that in addition to temperature and rainfall, wind related variables are also relevant for D. melanogaster environmental adaptation. Interestingly, 23%-51% of the genes that showed significant associations with environmental variables were not found overly differentiated across populations. In addition to SNPs, we also identified 10 reference transposable element insertions associated with environmental variables. Our results showed that genome-environment association analysis can identify adaptive genetic variants that are undetected by population differentiation analysis while also allowing the identification of candidate environmental drivers of adaptation.
Collapse
Affiliation(s)
- María Bogaerts‐Márquez
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
- The European Drosophila Population Genomics Consortium (DrosEU)Université de MontpellierMontpellierFrance
| | - Sara Guirao‐Rico
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
- The European Drosophila Population Genomics Consortium (DrosEU)Université de MontpellierMontpellierFrance
| | - Mathieu Gautier
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgroUniversité de MontpellierMontpellierFrance
| | - Josefa González
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
- The European Drosophila Population Genomics Consortium (DrosEU)Université de MontpellierMontpellierFrance
| |
Collapse
|
11
|
Erickson PA, Weller CA, Song DY, Bangerter AS, Schmidt P, Bergland AO. Unique genetic signatures of local adaptation over space and time for diapause, an ecologically relevant complex trait, in Drosophila melanogaster. PLoS Genet 2020; 16:e1009110. [PMID: 33216740 PMCID: PMC7717581 DOI: 10.1371/journal.pgen.1009110] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/04/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Organisms living in seasonally variable environments utilize cues such as light and temperature to induce plastic responses, enabling them to exploit favorable seasons and avoid unfavorable ones. Local adapation can result in variation in seasonal responses, but the genetic basis and evolutionary history of this variation remains elusive. Many insects, including Drosophila melanogaster, are able to undergo an arrest of reproductive development (diapause) in response to unfavorable conditions. In D. melanogaster, the ability to diapause is more common in high latitude populations, where flies endure harsher winters, and in the spring, reflecting differential survivorship of overwintering populations. Using a novel hybrid swarm-based genome wide association study, we examined the genetic basis and evolutionary history of ovarian diapause. We exposed outbred females to different temperatures and day lengths, characterized ovarian development for over 2800 flies, and reconstructed their complete, phased genomes. We found that diapause, scored at two different developmental cutoffs, has modest heritability, and we identified hundreds of SNPs associated with each of the two phenotypes. Alleles associated with one of the diapause phenotypes tend to be more common at higher latitudes, but these alleles do not show predictable seasonal variation. The collective signal of many small-effect, clinally varying SNPs can plausibly explain latitudinal variation in diapause seen in North America. Alleles associated with diapause are segregating in Zambia, suggesting that variation in diapause relies on ancestral polymorphisms, and both pro- and anti-diapause alleles have experienced selection in North America. Finally, we utilized outdoor mesocosms to track diapause under natural conditions. We found that hybrid swarms reared outdoors evolved increased propensity for diapause in late fall, whereas indoor control populations experienced no such change. Our results indicate that diapause is a complex, quantitative trait with different evolutionary patterns across time and space.
Collapse
Affiliation(s)
- Priscilla A. Erickson
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Cory A. Weller
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Daniel Y. Song
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alyssa S. Bangerter
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alan O. Bergland
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
12
|
Stone HM, Erickson PA, Bergland AO. Phenotypic plasticity, but not adaptive tracking, underlies seasonal variation in post-cold hardening freeze tolerance of Drosophila melanogaster. Ecol Evol 2020; 10:217-231. [PMID: 31988724 PMCID: PMC6972814 DOI: 10.1002/ece3.5887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/27/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022] Open
Abstract
In temperate regions, an organism's ability to rapidly adapt to seasonally varying environments is essential for its survival. In response to seasonal changes in selection pressure caused by variation in temperature, humidity, and food availability, some organisms exhibit plastic changes in phenotype. In other cases, seasonal variation in selection pressure can rapidly increase the frequency of genotypes that offer survival or reproductive advantages under the current conditions. Little is known about the relative influences of plastic and genetic changes in short-lived organisms experiencing seasonal environmental fluctuations. Cold hardening is a seasonally relevant plastic response in which exposure to cool, but nonlethal, temperatures significantly increases the organism's ability to later survive at freezing temperatures. In the present study, we demonstrate seasonal variation in cold hardening in Drosophila melanogaster and test the extent to which plasticity and adaptive tracking underlie that seasonal variation. We measured the post-cold hardening freeze tolerance of flies from outdoor mesocosms over the summer, fall, and winter. We bred outdoor mesocosm-caught flies for two generations in the laboratory and matched each outdoor cohort to an indoor control cohort of similar genetic background. We cold hardened all flies under controlled laboratory conditions and then measured their post-cold hardening freeze tolerance. Comparing indoor and field-caught flies and their laboratory-reared G1 and G2 progeny allowed us to determine the roles of seasonal environmental plasticity, parental effects, and genetic changes on cold hardening. We also tested the relationship between cold hardening and other factors, including age, developmental density, food substrate, presence of antimicrobials, and supplementation with live yeast. We found strong plastic responses to a variety of field- and laboratory-based environmental effects, but no evidence of seasonally varying parental or genetic effects on cold hardening. We therefore conclude that seasonal variation in post-cold hardening freeze tolerance results from environmental influences and not genetic changes.
Collapse
|
13
|
Ragland GJ, Armbruster PA, Meuti ME. Evolutionary and functional genetics of insect diapause: a call for greater integration. CURRENT OPINION IN INSECT SCIENCE 2019; 36:74-81. [PMID: 31539788 PMCID: PMC7212789 DOI: 10.1016/j.cois.2019.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Diapause in response to seasonality is an important model for rapid evolutionary adaptation that is highly genetically variable, and experiences strong natural selection. Forward genetic methods using various genomic and transcriptomic approaches have begun to characterize the genetic architecture and candidate genes underlying diapause evolution. Largely in parallel, reverse genetic studies have identified functional roles for candidate genes that may or may not be genetically variable. We illustrate the disconnect between the evolutionary and physiological literature using a suite of studies of the role of the circadian clock in diapause regulation. These extensive studies in two different disciplines provide excellent opportunities for integration, which should facilitate rapid progress in understanding both the regulation and evolution of diapause.
Collapse
Affiliation(s)
- Gregory J Ragland
- Department of Integrative Biology, University of Colorado, Denver, 1151 Arapahoe St., SI 2071, Denver, CO 80204, USA.
| | - Peter A Armbruster
- Department of Biology, Georgetown University, Reiss Science Building, Room 406 37th and O Streets, NW Washington DC 20057, USA
| | - Megan E Meuti
- Department of Entomology, The Ohio State University, 216 Kottman Hall 2021 Coffey Road, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Guirao-Rico S, González J. Evolutionary insights from large scale resequencing datasets in Drosophila melanogaster. CURRENT OPINION IN INSECT SCIENCE 2019; 31:70-76. [PMID: 31109676 DOI: 10.1016/j.cois.2018.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Drosophila melanogaster has long been used as an evolutionary model system. Its small genome size, well-annotated genome, and ease of sampling, also makes it a choice species for genome resequencing studies. Hundreds of genomic samples from populations worldwide are available and are currently being used to tackle a wide range of evolutionary questions. In this review, we focused on three insights that have increased our understanding of the evolutionary history of this species, and that have implications for the study of evolutionary processes in other species as well. Because of technical limitations, most of the studies so far have focused on SNP variants. However, long-read sequencing techniques should allow us in the near future to include other type of genomic variants that also influence genome evolution.
Collapse
Affiliation(s)
- Sara Guirao-Rico
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.
| |
Collapse
|
15
|
Behrman EL, Howick VM, Kapun M, Staubach F, Bergland AO, Petrov DA, Lazzaro BP, Schmidt PS. Rapid seasonal evolution in innate immunity of wild Drosophila melanogaster. Proc Biol Sci 2019; 285:rspb.2017.2599. [PMID: 29321302 DOI: 10.1098/rspb.2017.2599] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022] Open
Abstract
Understanding the rate of evolutionary change and the genetic architecture that facilitates rapid adaptation is a current challenge in evolutionary biology. Comparative studies show that genes with immune function are among the most rapidly evolving genes across a range of taxa. Here, we use immune defence in natural populations of Drosophila melanogaster to understand the rate of evolution in natural populations and the genetics underlying rapid change. We probed the immune system using the natural pathogens Enterococcus faecalis and Providencia rettgeri to measure post-infection survival and bacterial load of wild D. melanogaster populations collected across seasonal time along a latitudinal transect along eastern North America (Massachusetts, Pennsylvania and Virginia). There are pronounced and repeatable changes in the immune response over the approximately 10 generations between spring and autumn collections, with a significant but less distinct difference observed among geographical locations. Genes with known immune function are not enriched among alleles that cycle with seasonal time, but the immune function of a subset of seasonally cycling alleles in immune genes was tested using reconstructed outbred populations. We find that flies containing seasonal alleles in Thioester-containing protein 3 (Tep3) have different functional responses to infection and that epistatic interactions among seasonal Tep3 and Drosomycin-like 6 (Dro6) alleles underlie the immune phenotypes observed in natural populations. This rapid, cyclic response to seasonal environmental pressure broadens our understanding of the complex ecological and genetic interactions determining the evolution of immune defence in natural populations.
Collapse
Affiliation(s)
- Emily L Behrman
- Department of Biology, University of Pennsylvania, 433 S. University Ave., Philadelphia, PA 19104, USA
| | - Virginia M Howick
- Department of Entomology, Cornell University, 3125 Comstock Hall, Ithaca, NY 14853, USA
| | - Martin Kapun
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Fabian Staubach
- Department of Biology, Stanford University, 371 Serra St, Stanford, CA 94305-5020, USA.,Albert-Ludwigs University, Freiburg, Germany
| | - Alan O Bergland
- Department of Biology, Stanford University, 371 Serra St, Stanford, CA 94305-5020, USA.,Department of Biology, University of Virginia, 409 McCormic Rd, Charlottesville, VA 22904, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, 371 Serra St, Stanford, CA 94305-5020, USA
| | - Brian P Lazzaro
- Department of Entomology, Cornell University, 3125 Comstock Hall, Ithaca, NY 14853, USA
| | - Paul S Schmidt
- Department of Biology, University of Pennsylvania, 433 S. University Ave., Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Mateo L, Rech GE, González J. Genome-wide patterns of local adaptation in Western European Drosophila melanogaster natural populations. Sci Rep 2018; 8:16143. [PMID: 30385770 PMCID: PMC6212444 DOI: 10.1038/s41598-018-34267-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Signatures of spatially varying selection have been investigated both at the genomic and transcriptomic level in several organisms. In Drosophila melanogaster, the majority of these studies have analyzed North American and Australian populations, leading to the identification of several loci and traits under selection. However, several studies based mainly in North American populations showed evidence of admixture that likely contributed to the observed population differentiation patterns. Thus, disentangling demography from selection might be challenging when analyzing these populations. European populations could help identify loci under spatially varying selection provided that no recent admixture from African populations would have occurred. In this work, we individually sequence the genome of 42 European strains collected in populations from contrasting environments: Stockholm (Sweden) and Castellana Grotte (Southern Italy). We found low levels of population structure and no evidence of recent African admixture in these two populations. We thus look for patterns of spatially varying selection affecting individual genes and gene sets. Besides single nucleotide polymorphisms, we also investigated the role of transposable elements in local adaptation. We concluded that European populations are a good dataset to identify candidate loci under spatially varying selection. The analysis of the two populations sequenced in this work in the context of all the available D. melanogaster data allowed us to pinpoint genes and biological processes likely to be relevant for local adaptation. Identifying and analyzing populations with low levels of population structure and admixture should help to disentangle selective from non-selective forces underlying patterns of population differentiation in other species as well.
Collapse
Affiliation(s)
- Lidia Mateo
- Institute of Evolutionary Biology. CSIC-Universitat Pompeu Fabra. Passeig Maritim de la Barceloneta, 37-49. 08003, Barcelona, Spain
| | - Gabriel E Rech
- Institute of Evolutionary Biology. CSIC-Universitat Pompeu Fabra. Passeig Maritim de la Barceloneta, 37-49. 08003, Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology. CSIC-Universitat Pompeu Fabra. Passeig Maritim de la Barceloneta, 37-49. 08003, Barcelona, Spain.
| |
Collapse
|
17
|
Williams CM, Ragland GJ, Betini G, Buckley LB, Cheviron ZA, Donohue K, Hereford J, Humphries MM, Lisovski S, Marshall KE, Schmidt PS, Sheldon KS, Varpe Ø, Visser ME. Understanding Evolutionary Impacts of Seasonality: An Introduction to the Symposium. Integr Comp Biol 2018; 57:921-933. [PMID: 29045649 DOI: 10.1093/icb/icx122] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Seasonality is a critically important aspect of environmental variability, and strongly shapes all aspects of life for organisms living in highly seasonal environments. Seasonality has played a key role in generating biodiversity, and has driven the evolution of extreme physiological adaptations and behaviors such as migration and hibernation. Fluctuating selection pressures on survival and fecundity between summer and winter provide a complex selective landscape, which can be met by a combination of three outcomes of adaptive evolution: genetic polymorphism, phenotypic plasticity, and bet-hedging. Here, we have identified four important research questions with the goal of advancing our understanding of evolutionary impacts of seasonality. First, we ask how characteristics of environments and species will determine which adaptive response occurs. Relevant characteristics include costs and limits of plasticity, predictability, and reliability of cues, and grain of environmental variation relative to generation time. A second important question is how phenological shifts will amplify or ameliorate selection on physiological hardiness. Shifts in phenology can preserve the thermal niche despite shifts in climate, but may fail to completely conserve the niche or may even expose life stages to conditions that cause mortality. Considering distinct environmental sensitivities of life history stages will be key to refining models that forecast susceptibility to climate change. Third, we must identify critical physiological phenotypes that underlie seasonal adaptation and work toward understanding the genetic architectures of these responses. These architectures are key for predicting evolutionary responses. Pleiotropic genes that regulate multiple responses to changing seasons may facilitate coordination among functionally related traits, or conversely may constrain the expression of optimal phenotypes. Finally, we must advance our understanding of how changes in seasonal fluctuations are impacting ecological interaction networks. We should move beyond simple dyadic interactions, such as predator prey dynamics, and understand how these interactions scale up to affect ecological interaction networks. As global climate change alters many aspects of seasonal variability, including extreme events and changes in mean conditions, organisms must respond appropriately or go extinct. The outcome of adaptation to seasonality will determine responses to climate change.
Collapse
Affiliation(s)
- Caroline M Williams
- Department of Integrative Biology, University of California, 3040 Valley Life Sciences Building, Berkeley, CA 94705, USA
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado, Denver, CO, USA
| | - Gustavo Betini
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Lauren B Buckley
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | | | - Joe Hereford
- Department of Ecology and Evolution, University of California, Davis, CA, USA
| | - Murray M Humphries
- Department of Natural Resource Sciences, McGill University, Quebec, Canada
| | - Simeon Lisovski
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
| | | | - Paul S Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly S Sheldon
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Øystein Varpe
- Department of Arctic Biology, The University Centre in Svalbard, Longyearbyen, Norway.,Akvaplan-niva, Fram Centre, Tromsø, Norway
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| |
Collapse
|
18
|
Lirakis M, Dolezal M, Schlötterer C. Redefining reproductive dormancy in Drosophila as a general stress response to cold temperatures. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:175-185. [PMID: 29649483 DOI: 10.1016/j.jinsphys.2018.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/07/2018] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
Organisms regularly encounter unfavorable conditions and the genetic adaptations facilitating survival have been of long-standing interest to evolutionary biologists. Winter is one particularly stressful condition for insects, during which they encounter low temperatures and scarcity of food. Despite dormancy being a well-studied adaptation to facilitate overwintering, there is still considerable controversy about the distribution of dormancy among natural populations and between species in Drosophila. The current definition of dormancy as developmental arrest of oogenesis at the previtellogenic stage (stage 7) distinguishes dormancy from general stress related block of oogenesis at early vitellogenic stages (stages 8 - 9). In an attempt to resolve this, we scrutinized reproductive dormancy in D. melanogaster and D. simulans. We show that dormancy shows the same hallmarks of arrest of oogenesis at stage 9, as described for other stressors and propose a new classification for dormancy. Applying this modified classification, we show that both species express dormancy in cosmopolitan and African populations, further supporting that dormancy uses an ancestral pathway induced by environmental stress. While we found significant differences between individuals and the two Drosophila species in their sensitivity to cold temperature stress, we also noted that extreme temperature stress (8 °C) resulted in very strong dormancy incidence, which strongly reduced the differences seen at less extreme temperatures. We conclude that dormancy in Drosophila should not be considered a special trait, but is better understood as a generic stress response occurring at low temperatures.
Collapse
Affiliation(s)
- Manolis Lirakis
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria; Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria.
| | - Marlies Dolezal
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria
| | - Christian Schlötterer
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria
| |
Collapse
|
19
|
Abstract
In response to adverse environmental conditions many organisms from nematodes to mammals deploy a dormancy strategy, causing states of developmental or reproductive arrest that enhance somatic maintenance and survival ability at the expense of growth or reproduction. Dormancy regulation has been studied in C. elegans and in several insects, but how neurosensory mechanisms act to relay environmental cues to the endocrine system in order to induce dormancy remains unclear. Here we examine this fundamental question by genetically manipulating aminergic neurotransmitter signaling in Drosophila melanogaster. We find that both serotonin and dopamine enhance adult ovarian dormancy, while the downregulation of their respective signaling pathways in endocrine cells or tissues (insulin producing cells, fat body, corpus allatum) reduces dormancy. In contrast, octopamine signaling antagonizes dormancy. Our findings enhance our understanding of the ability of organisms to cope with unfavorable environments and illuminate some of the relevant signaling pathways.
Collapse
|
20
|
Hardy CM, Burke MK, Everett LJ, Han MV, Lantz KM, Gibbs AG. Genome-Wide Analysis of Starvation-Selected Drosophila melanogaster-A Genetic Model of Obesity. Mol Biol Evol 2018; 35:50-65. [PMID: 29309688 PMCID: PMC5850753 DOI: 10.1093/molbev/msx254] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Experimental evolution affords the opportunity to investigate adaptation to stressful environments. Studies combining experimental evolution with whole-genome resequencing have provided insight into the dynamics of adaptation and a new tool to uncover genes associated with polygenic traits. Here, we selected for starvation resistance in populations of Drosophila melanogaster for over 80 generations. In response, the starvation-selected lines developed an obese condition, storing nearly twice the level of total lipids than their unselected controls. Although these fats provide a ∼3-fold increase in starvation resistance, the imbalance in lipid homeostasis incurs evolutionary cost. Some of these tradeoffs resemble obesity-associated pathologies in mammals including metabolic depression, low activity levels, dilated cardiomyopathy, and disrupted sleeping patterns. To determine the genetic basis of these traits, we resequenced genomic DNA from the selected lines and their controls. We found 1,046,373 polymorphic sites, many of which diverged between selection treatments. In addition, we found a wide range of genetic heterogeneity between the replicates of the selected lines, suggesting multiple mechanisms of adaptation. Genome-wide heterozygosity was low in the selected populations, with many large blocks of SNPs nearing fixation. We found candidate loci under selection by using an algorithm to control for the effects of genetic drift. These loci were mapped to a set of 382 genes, which associated with many processes including nutrient response, catabolic metabolism, and lipid droplet function. The results of our study speak to the evolutionary origins of obesity and provide new targets to understand the polygenic nature of obesity in a unique model system.
Collapse
Affiliation(s)
- Christopher M Hardy
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV
| | - Molly K Burke
- Department of Integrative Biology, Oregon State University, Corvallis, OR
| | - Logan J Everett
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | - Mira V Han
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV
| | - Kathryn M Lantz
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV
| | - Allen G Gibbs
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV
| |
Collapse
|
21
|
Pegoraro M, Zonato V, Tyler ER, Fedele G, Kyriacou CP, Tauber E. Geographical analysis of diapause inducibility in European Drosophila melanogaster populations. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:238-244. [PMID: 28131702 DOI: 10.1016/j.jinsphys.2017.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/18/2017] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
Seasonal overwintering in insects represents an adaptation to stressful environments and in European Drosophila melanogaster females, low temperatures and short photoperiods can induce an ovarian diapause. Diapause may represent a recent (<15Ky) adaptation to the colonisation of temperate Europe by D. melanogaster from tropical sub-Saharan Africa, because African D. melanogaster and the sibling species D. simulans, have been reported to fail to undergo diapause. Over the past few centuries, D. melanogaster have also invaded North America and Australia, and eastern populations on both continents show a predictable latitudinal cline in diapause induction. In Europe however, a new diapause-enhancing timeless allele, ls-tim, is observed at high levels in southern Italy (∼80%), where it appears to have arisen and has spread throughout the continent with a frequency of ∼20% in Scandinavia. Given the phenotype of ls-tim and its geographical distribution, we might predict that it would work against any latitudinal cline in diapause induction within Europe. Indeed we reveal that any latitudinal cline for diapause in Europe is very weak, as predicted by ls-tim frequencies. In contrast, we determine ls-tim frequencies in North America and observe that they would be expected to strengthen the latitudinal pattern of diapause. Our results reveal how a newly arisen mutation, can, via the stochastic nature of where it initially arose, blur an otherwise adaptive geographical pattern.
Collapse
Affiliation(s)
- Mirko Pegoraro
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Valeria Zonato
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Elizabeth R Tyler
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Giorgio Fedele
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | | | - Eran Tauber
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK; Department of Evolutionary & Environmental Biology, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
22
|
Zonato V, Collins L, Pegoraro M, Tauber E, Kyriacou CP. Is diapause an ancient adaptation in Drosophila? JOURNAL OF INSECT PHYSIOLOGY 2017; 98:267-274. [PMID: 28161445 DOI: 10.1016/j.jinsphys.2017.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
D. melanogaster enters a state of reproductive arrest when exposed to low temperatures (12°C) and shorter photoperiods. A number of studies have suggested that diapause has recently evolved in European D. melanogaster populations, that it is not present in the sibling species D. simulans, that it is non-photoperiodic in American D. melanogaster populations, and that it spontaneously terminates after 6-8weeks. We have studied the overwintering phenotype under different conditions and observe that American, European and, surprisingly, African D. melanogaster populations can show photoperiodic diapause, as can European, but not African D. simulans. Surprisingly other Drosophila species from pan-tropical regions can also show significant levels of photoperiodic diapause. We observe that spontaneous termination of diapause after a few weeks can be largely avoided with a more realistic winter simulation for D. melanogaster, but not D. simulans. Examining metabolite accumulation during diapause reveals that the shallow diapause of D. melanogaster has similar features to that of other more robustly-diapausing species. Our results suggest that diapause may be an ancient character that emerged in the tropics to resist unfavourable seasonal conditions and which has been enhanced during D. melanogaster's colonisation of temperate regions. Our results also highlight how different methodologies to quantify diapause can lead to apparently conflicting results that we believe can now largely be resolved.
Collapse
Affiliation(s)
- Valeria Zonato
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Lewis Collins
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Mirko Pegoraro
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Eran Tauber
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK; Department of Evolutionary & Environmental Biology, University of Haifa, Haifa 3498838, Israel(2)
| | | |
Collapse
|
23
|
Cogni R, Kuczynski K, Koury S, Lavington E, Behrman EL, O’Brien KR, Schmidt PS, Eanes WF. On the Long-term Stability of Clines in Some Metabolic Genes in Drosophila melanogaster. Sci Rep 2017; 7:42766. [PMID: 28220806 PMCID: PMC5318857 DOI: 10.1038/srep42766] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/13/2017] [Indexed: 11/16/2022] Open
Abstract
Very little information exists for long-term changes in genetic variation in natural populations. Here we take the unique opportunity to compare a set of data for SNPs in 15 metabolic genes from eastern US collections of Drosophila melanogaster that span a large latitudinal range and represent two collections separated by 12 to 13 years. We also expand this to a 22-year interval for the Adh gene and approximately 30 years for the G6pd and Pgd genes. During these intervals, five genes showed a statistically significant change in average SNP allele frequency corrected for latitude. While much remains unchanged, we see five genes where latitudinal clines have been lost or gained and two where the slope significantly changes. The long-term frequency shift towards a southern favored Adh S allele reported in Australia populations is not observed in the eastern US over a period of 21 years. There is no general pattern of southern-favored or northern-favored alleles increasing in frequency across the genes. This observation points to the fluid nature of some allelic variation over this time period and the action of selective responses or migration that may be more regional than uniformly imposed across the cline.
Collapse
Affiliation(s)
- Rodrigo Cogni
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794 USA
| | - Kate Kuczynski
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794 USA
| | - Spencer Koury
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794 USA
| | - Erik Lavington
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794 USA
| | - Emily L. Behrman
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Paul S. Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Walter F. Eanes
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794 USA
| |
Collapse
|
24
|
Rajpurohit S, Hanus R, Vrkoslav V, Behrman EL, Bergland AO, Petrov D, Cvačka J, Schmidt PS. Adaptive dynamics of cuticular hydrocarbons in Drosophila. J Evol Biol 2016; 30:66-80. [PMID: 27718537 DOI: 10.1111/jeb.12988] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 01/19/2023]
Abstract
Cuticular hydrocarbons (CHCs) are hydrophobic compounds deposited on the arthropod cuticle that are of functional significance with respect to stress tolerance, social interactions and mating dynamics. We characterized CHC profiles in natural populations of Drosophila melanogaster at five levels: across a latitudinal transect in the eastern United States, as a function of developmental temperature during culture, across seasonal time in replicate years, and as a function of rapid evolution in experimental mesocosms in the field. Furthermore, we also characterized spatial and temporal changes in allele frequencies for SNPs in genes that are associated with the production and chemical profile of CHCs. Our data demonstrate a striking degree of parallelism for clinal and seasonal variation in CHCs in this taxon; CHC profiles also demonstrate significant plasticity in response to rearing temperature, and the observed patterns of plasticity parallel the spatiotemporal patterns observed in nature. We find that these congruent shifts in CHC profiles across time and space are also mirrored by predictable shifts in allele frequencies at SNPs associated with CHC chain length. Finally, we observed rapid and predictable evolution of CHC profiles in experimental mesocosms in the field. Together, these data strongly suggest that CHC profiles respond rapidly and adaptively to environmental parameters that covary with latitude and season, and that this response reflects the process of local adaptation in natural populations of D. melanogaster.
Collapse
Affiliation(s)
- S Rajpurohit
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - R Hanus
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - V Vrkoslav
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - E L Behrman
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - A O Bergland
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - D Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
| | - J Cvačka
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - P S Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
Eanes WF. New views on the selection acting on genetic polymorphism in central metabolic genes. Ann N Y Acad Sci 2016; 1389:108-123. [PMID: 27859384 DOI: 10.1111/nyas.13285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 12/14/2022]
Abstract
Studies of the polymorphism of central metabolic genes as a source of fitness variation in natural populations date back to the discovery of allozymes in the 1960s. The unique features of these genes and their enzymes and our knowledge base greatly facilitates the systems-level study of this group. The expectation that pathway flux control is central to understanding the molecular evolution of genes is discussed, as well as studies that attempt to place gene-specific molecular evolution and polymorphism into a context of pathway and network architecture. There is an increasingly complex picture of the metabolic genes assuming additional roles beyond their textbook anabolic and catabolic reactions. In particular, this review emphasizes the potential role of these genes as part of the energy-sensing machinery. It is underscored that the concentrations of key cellular metabolites are the reflections of cellular energy status and nutritional input. These metabolites are the top-down signaling messengers that set signaling through signaling pathways that are involved in energy economy. I propose that the polymorphisms in central metabolic genes shift metabolite concentrations and in that fashion act as genetic modifiers of the energy-state coupling to the transcriptional networks that affect physiological trade-offs with significant fitness consequences.
Collapse
Affiliation(s)
- Walter F Eanes
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York
| |
Collapse
|
26
|
Schiesari L, Andreatta G, Kyriacou CP, O’Connor MB, Costa R. The Insulin-Like Proteins dILPs-2/5 Determine Diapause Inducibility in Drosophila. PLoS One 2016; 11:e0163680. [PMID: 27689881 PMCID: PMC5045170 DOI: 10.1371/journal.pone.0163680] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/12/2016] [Indexed: 01/28/2023] Open
Abstract
Diapause is an actively induced dormancy that has evolved in Metazoa to resist environmental stresses. In temperate regions, many diapausing insects overwinter at low temperatures by blocking embryonic, larval or adult development. Despite its Afro-tropical origin, Drosophila melanogaster migrated to temperate regions of Asia and Europe where females overwinter as adults by arresting gonadal development (reproductive diapause) at temperatures <13°C. Recent work in D. melanogaster has implicated the developmental hormones dILPs-2 and/or dILP3, and dILP5, homologues of vertebrate insulin/insulin-like growth factors (IGFs), in reproductive arrest. However, polymorphisms in timeless (tim) and couch potato (cpo) dramatically affect diapause inducibility and these dILP experiments could not exclude this common genetic variation contributing to the diapause phenotype. Here, we apply an extensive genetic dissection of the insulin signaling pathway which allows us to see both enhancements and reductions in egg development that are independent of tim and cpo variations. We show that a number of manipulations dramatically enhance diapause to ~100%. These include ablating, or reducing the excitability of the insulin-producing cells (IPCs) that express dILPs-2,3,5 employing the dilp2,3,5-/- triple mutant, desensitizing insulin signaling using a chico mutation, or inhibiting dILP2 and 5 in the hemolymph by over-expressing Imaginal Morphogenesis Protein-Late 2 (Imp-L2). In addition, triple mutant dilp2,3,5-/- females maintain high levels of diapause even when temperatures are raised in adulthood to 19°C. However at 22°C, these females all show egg development revealing that the effects are conditional on temperature and not a general female sterility. In contrast, over-expression of dilps-2/5 or enhancing IPC excitability, led to levels of ovarian arrest that approached zero, underscoring dILPs-2 and 5 as key antagonists of diapause.
Collapse
Affiliation(s)
- Luca Schiesari
- Department of Biology, University of Padova, Padova, Italy
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States of America
| | | | | | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States of America
| | - Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy
- * E-mail:
| |
Collapse
|
27
|
Zonato V, Fedele G, Kyriacou CP. An Intronic Polymorphism in couch potato Is Not Distributed Clinally in European Drosophila melanogaster Populations nor Does It Affect Diapause Inducibility. PLoS One 2016; 11:e0162370. [PMID: 27598401 PMCID: PMC5012703 DOI: 10.1371/journal.pone.0162370] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/22/2016] [Indexed: 12/24/2022] Open
Abstract
couch potato (cpo) encodes an RNA binding protein that has been reported to be expressed in the peripheral and central nervous system of embryos, larvae and adults, including the major endocrine organ, the ring gland. A polymorphism in the D. melanogaster cpo gene coding region displays a latitudinal cline in frequency in North American populations, but as cpo lies within the inversion In(3R)Payne, which is at high frequencies and itself shows a strong cline on this continent, interpretation of the cpo cline is not straightforward. A second downstream SNP in strong linkage disequilibrium with the first has been claimed to be primarily responsible for the latitudinal cline in diapause incidence in USA populations.Here, we investigate the frequencies of these two cpo SNPs in populations of Drosophila throughout continental Europe. The advantage of studying cpo variation in Europe is the very low frequency of In(3R)Payne, which we reveal here, does not appear to be clinally distributed. We observe a very different geographical scenario for cpo variation from the one in North America, suggesting that the downstream SNP does not play a role in diapause. In an attempt to verify whether the SNPs influence diapause we subsequently generated lines with different combinations of the two cpo SNPs on known timeless (tim) genetic backgrounds, because polymorphism in the clock gene tim plays a significant role in diapause inducibility. Our results reveal that the downstream cpo SNP does not seem to play any role in diapause induction in European populations in contrast to the upstream coding cpo SNP. Consequently, all future diapause studies on strains of D. melanogaster should initially determine their tim and cpo status.
Collapse
Affiliation(s)
- Valeria Zonato
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Giorgio Fedele
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Charalambos P. Kyriacou
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Zhao X, Bergland AO, Behrman EL, Gregory BD, Petrov DA, Schmidt PS. Global Transcriptional Profiling of Diapause and Climatic Adaptation in Drosophila melanogaster. Mol Biol Evol 2016; 33:707-20. [PMID: 26568616 PMCID: PMC5009998 DOI: 10.1093/molbev/msv263] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Wild populations of the model organism Drosophila melanogaster experience highly heterogeneous environments over broad geographical ranges as well as over seasonal and annual timescales. Diapause is a primary adaptation to environmental heterogeneity, and in D. melanogaster the propensity to enter diapause varies predictably with latitude and season. Here we performed global transcriptomic profiling of naturally occurring variation in diapause expression elicited by short day photoperiod and moderately low temperature in two tissue types associated with neuroendocrine and endocrine signaling, heads, and ovaries. We show that diapause in D. melanogaster is an actively regulated phenotype at the transcriptional level, suggesting that diapause is not a simple physiological or reproductive quiescence. Differentially expressed genes and pathways are highly distinct in heads and ovaries, demonstrating that the diapause response is not uniform throughout the soma and suggesting that it may be comprised of functional modules associated with specific tissues. Genes downregulated in heads of diapausing flies are significantly enriched for clinally varying single nucleotide polymorphism (SNPs) and seasonally oscillating SNPs, consistent with the hypothesis that diapause is a driving phenotype of climatic adaptation. We also show that chromosome location-based coregulation of gene expression is present in the transcriptional regulation of diapause. Taken together, these results demonstrate that diapause is a complex phenotype actively regulated in multiple tissues, and support the hypothesis that natural variation in diapause propensity underlies adaptation to spatially and temporally varying selective pressures.
Collapse
Affiliation(s)
- Xiaqing Zhao
- Department of Biology, University of Pennsylvania
| | | | | | | | | | | |
Collapse
|
29
|
Cogni R, Kuczynski K, Lavington E, Koury S, Behrman EL, O'Brien KR, Schmidt PS, Eanes WF. Variation in Drosophila melanogaster central metabolic genes appears driven by natural selection both within and between populations. Proc Biol Sci 2016; 282:20142688. [PMID: 25520361 DOI: 10.1098/rspb.2014.2688] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this report, we examine the hypothesis that the drivers of latitudinal selection observed in the eastern US Drosophila melanogaster populations are reiterated within seasons in a temperate orchard population in Pennsylvania, USA. Specifically, we ask whether alleles that are apparently favoured in northern populations are also favoured early in the spring, and decrease in frequency from the spring to autumn with the population expansion. We use SNP data collected for 46 metabolic genes and 128 SNPs representing the central metabolic pathway and examine for the aggregate SNP allele frequencies whether the association of allele change with latitude and that with increasing days of spring-autumn season are reversed. Testing by random permutation, we observe a highly significant negative correlation between these associations that is consistent with this expectation. This correlation is stronger when we confine our analysis to only those alleles that show significant latitudinal changes. This pattern is not caused by association with chromosomal inversions. When data are resampled using SNPs for amino acid change the relationship is not significant but is supported when SNPs associated with cis-expression are only considered. Our results suggest that climate factors driving latitudinal molecular variation in a metabolic pathway are related to those operating on a seasonal level within populations.
Collapse
Affiliation(s)
- Rodrigo Cogni
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kate Kuczynski
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Erik Lavington
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Spencer Koury
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Emily L Behrman
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Paul S Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Walter F Eanes
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
30
|
Kapun M, Fabian DK, Goudet J, Flatt T. Genomic Evidence for Adaptive Inversion Clines in Drosophila melanogaster. Mol Biol Evol 2016; 33:1317-36. [PMID: 26796550 DOI: 10.1093/molbev/msw016] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Clines in chromosomal inversion polymorphisms-presumably driven by climatic gradients-are common but there is surprisingly little evidence for selection acting on them. Here we address this long-standing issue in Drosophila melanogaster by using diagnostic single nucleotide polymorphism (SNP) markers to estimate inversion frequencies from 28 whole-genome Pool-seq samples collected from 10 populations along the North American east coast. Inversions In(3L)P, In(3R)Mo, and In(3R)Payne showed clear latitudinal clines, and for In(2L)t, In(2R)NS, and In(3R)Payne the steepness of the clinal slopes changed between summer and fall. Consistent with an effect of seasonality on inversion frequencies, we detected small but stable seasonal fluctuations of In(2R)NS and In(3R)Payne in a temperate Pennsylvanian population over 4 years. In support of spatially varying selection, we observed that the cline in In(3R)Payne has remained stable for >40 years and that the frequencies of In(2L)t and In(3R)Payne are strongly correlated with climatic factors that vary latitudinally, independent of population structure. To test whether these patterns are adaptive, we compared the amount of genetic differentiation of inversions versus neutral SNPs and found that the clines in In(2L)t and In(3R)Payne are maintained nonneutrally and independent of admixture. We also identified numerous clinal inversion-associated SNPs, many of which exhibit parallel differentiation along the Australian cline and reside in genes known to affect fitness-related traits. Together, our results provide strong evidence that inversion clines are maintained by spatially-and perhaps also temporally-varying selection. We interpret our data in light of current hypotheses about how inversions are established and maintained.
Collapse
Affiliation(s)
- Martin Kapun
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Daniel K Fabian
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Thomas Flatt
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
31
|
Rivas GBS, Bauzer LGSDR, Meireles-Filho ACA. "The Environment is Everything That Isn't Me": Molecular Mechanisms and Evolutionary Dynamics of Insect Clocks in Variable Surroundings. Front Physiol 2016; 6:400. [PMID: 26793115 PMCID: PMC4709423 DOI: 10.3389/fphys.2015.00400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/07/2015] [Indexed: 12/24/2022] Open
Abstract
Circadian rhythms are oscillations in behavior, metabolism and physiology that have a period close to 24 h. These rhythms are controlled by an internal pacemaker that evolved under strong selective pressures imposed by environmental cyclical changes, mainly of light and temperature. The molecular nature of the circadian pacemaker was extensively studied in a number of organisms under controlled laboratory conditions. But although these studies were fundamental to our understanding of the circadian clock, most of the environmental conditions used resembled rather crudely the relatively constant situation at lower latitudes. At higher latitudes light-dark and temperature cycles vary considerably across different seasons, with summers having long and hot days and winters short and cold ones. Considering these differences and other external cues, such as moonlight, recent studies in more natural and semi-natural situations revealed unexpected features at both molecular and behavioral levels, highlighting the dramatic influence of multiple environmental variables in the molecular clockwork. This emphasizes the importance of studying the circadian clock in the wild, where seasonal environmental changes fine-tune the underlying circadian mechanism, affecting population dynamics and impacting the geographical variation in clock genes. Indeed, latitudinal clines in clock gene frequencies suggest that natural selection and demography shape the circadian clock over wide geographical ranges. In this review we will discuss the recent advances in understanding the molecular underpinnings of the circadian clock, how it resonates with the surrounding variables (both in the laboratory and in semi-natural conditions) and its impact on population dynamics and evolution. In addition, we will elaborate on how next-generation sequencing technologies will complement classical reductionist approaches by identifying causal variants in natural populations that will link genetic variation to circadian phenotypes, illuminating how the circadian clock functions in the real world.
Collapse
Affiliation(s)
- Gustavo B. S. Rivas
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo CruzRio de Janeiro, Brazil
| | - Luiz G. S. da R. Bauzer
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fundação Oswaldo CruzRio de Janeiro, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo CruzRio de Janeiro, Brazil
| | - Antonio C. A. Meireles-Filho
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanne, Switzerland
- Swiss Institute of BioinformaticsLausanne, Switzerland
| |
Collapse
|
32
|
Reis M, Valer FB, Vieira CP, Vieira J. Drosophila americana Diapausing Females Show Features Typical of Young Flies. PLoS One 2015; 10:e0138758. [PMID: 26398836 PMCID: PMC4580583 DOI: 10.1371/journal.pone.0138758] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 09/03/2015] [Indexed: 11/18/2022] Open
Abstract
Diapause is a period of arrested development which is controlled physiologically, preprogrammed environmentally and characterized by metabolic depression that can occur during any stage of insect development. Nevertheless, in the genus Drosophila, diapause is almost always associated with the cessation of ovarian development and reproductive activity in adult females. In this work, we show that, in D. americana (a temperate species of the virilis group), diapause is a genetically determined delay in ovarian development that is triggered by temperature and/or photoperiod. Moreover, we show that in this species diapause incidence increases with latitude, ranging from 13% in the southernmost to 91% in the northernmost range of the distribution. When exposed to diapause inducing conditions, both diapausing and non-diapausing females show a 10% increase in lifespan, that is further increased by 18.6% in diapausing females, although senescence is far from being negligible. ActinD1 expression levels suggest that diapausing females are biologically much younger than their chronological age, and that the fly as a whole, rather than the ovarian development alone, which is phenotypically more evident, is delayed by diapause. Therefore, diapause candidate genes that show expression levels that are compatible with flies younger than their chronological age may not necessarily play a role in reproductive diapause and in adaptation to seasonally varying environmental conditions.
Collapse
Affiliation(s)
- Micael Reis
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Felipe B. Valer
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Biologia, Universidade Federal de Pelotas—UFPel, Pelotas, Rio Grande do Sul, Brazil
| | - Cristina P. Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Jorge Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
33
|
Behrman EL, Watson SS, O'Brien KR, Heschel MS, Schmidt PS. Seasonal variation in life history traits in two Drosophila species. J Evol Biol 2015; 28:1691-704. [PMID: 26174167 DOI: 10.1111/jeb.12690] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 01/16/2023]
Abstract
Seasonal environmental heterogeneity is cyclic, persistent and geographically widespread. In species that reproduce multiple times annually, environmental changes across seasonal time may create different selection regimes that may shape the population ecology and life history adaptation in these species. Here, we investigate how two closely related species of Drosophila in a temperate orchard respond to environmental changes across seasonal time. Natural populations of Drosophila melanogaster and Drosophila simulans were sampled at four timepoints from June through November to assess seasonal change in fundamental aspects of population dynamics as well as life history traits. D. melanogaster exhibit pronounced change across seasonal time: early in the season, the population is inferred to be uniformly young and potentially represents the early generation following overwintering survivorship. D. melanogaster isofemale lines derived from the early population and reared in a common garden are characterized by high tolerance to a variety of stressors as well as a fast rate of development in the laboratory environment that declines across seasonal time. In contrast, wild D. simulans populations were inferred to be consistently heterogeneous in age distribution across seasonal collections; only starvation tolerance changed predictably over seasonal time in a parallel manner as in D. melanogaster. These results suggest fundamental differences in population and evolutionary dynamics between these two taxa associated with seasonal heterogeneity in environmental parameters and associated selection pressures.
Collapse
Affiliation(s)
- E L Behrman
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - S S Watson
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - K R O'Brien
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.,School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - M S Heschel
- Department of Organismal Biology & Ecology, Colorado College, Colorado Springs, CO, USA
| | - P S Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Adrion JR, Hahn MW, Cooper BS. Revisiting classic clines in Drosophila melanogaster in the age of genomics. Trends Genet 2015; 31:434-44. [PMID: 26072452 PMCID: PMC4526433 DOI: 10.1016/j.tig.2015.05.006] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/16/2022]
Abstract
Adaptation to spatially varying environments has been studied for decades, but advances in sequencing technology are now enabling researchers to investigate the landscape of genetic variation underlying this adaptation genome wide. In this review we highlight some of the decades-long research on local adaptation in Drosophila melanogaster from well-studied clines in North America and Australia. We explore the evidence for parallel adaptation and identify commonalities in the genes responding to clinal selection across continents as well as discussing instances where patterns differ among clines. We also investigate recent studies utilizing whole-genome data to identify clines in D. melanogaster and several other systems. Although connecting segregating genomic variation to variation in phenotypes and fitness remains challenging, clinal genomics is poised to increase our understanding of local adaptation and the selective pressures that drive the extensive phenotypic diversity observed in nature.
Collapse
Affiliation(s)
- Jeffrey R Adrion
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Brandon S Cooper
- Center for Population Biology, University of California, Davis, CA 95616, USA; Department of Evolution and Ecology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
35
|
Fabian DK, Lack JB, Mathur V, Schlötterer C, Schmidt PS, Pool JE, Flatt T. Spatially varying selection shapes life history clines among populations of Drosophila melanogaster from sub-Saharan Africa. J Evol Biol 2015; 28:826-40. [PMID: 25704153 DOI: 10.1111/jeb.12607] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/12/2015] [Accepted: 02/17/2015] [Indexed: 01/31/2023]
Abstract
Clines in life history traits, presumably driven by spatially varying selection, are widespread. Major latitudinal clines have been observed, for example, in Drosophila melanogaster, an ancestrally tropical insect from Africa that has colonized temperate habitats on multiple continents. Yet, how geographic factors other than latitude, such as altitude or longitude, affect life history in this species remains poorly understood. Moreover, most previous work has been performed on derived European, American and Australian populations, but whether life history also varies predictably with geography in the ancestral Afro-tropical range has not been investigated systematically. Here, we have examined life history variation among populations of D. melanogaster from sub-Saharan Africa. Viability and reproductive diapause did not vary with geography, but body size increased with altitude, latitude and longitude. Early fecundity covaried positively with altitude and latitude, whereas lifespan showed the opposite trend. Examination of genetic variance-covariance matrices revealed geographic differentiation also in trade-off structure, and QST -FST analysis showed that life history differentiation among populations is likely shaped by selection. Together, our results suggest that geographic and/or climatic factors drive adaptive phenotypic differentiation among ancestral African populations and confirm the widely held notion that latitude and altitude represent parallel gradients.
Collapse
Affiliation(s)
- D K Fabian
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria; Vienna Graduate School of Population Genetics, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
36
|
Wadsworth CB, Dopman EB. Transcriptome profiling reveals mechanisms for the evolution of insect seasonality. J Exp Biol 2015; 218:3611-22. [DOI: 10.1242/jeb.126136] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/14/2015] [Indexed: 11/20/2022]
Abstract
Rapid evolutionary change in seasonal timing can facilitate ecological speciation and resilience to climate warming. However, the molecular mechanisms behind shifts in animal seasonality are still unclear. Evolved differences in seasonality occur in the European corn borer moth (Ostrinia nubilalis), in which early summer emergence in E-strain adults and later summer emergence in Z-strain adults is explained by a shift in the length of the termination phase of larval diapause. Here, we sample from the developmental time course of diapause in both strains and use transcriptome sequencing to profile regulatory and amino acid changes associated with timing divergence. Within a previously defined QTL, we nominate 48 candidate genes including several in the insulin signaling and circadian rhythm pathways. Genome-wide transcriptional activity is negligible during the extended Z-strain termination, whereas shorter E-strain termination is characterized by a rapid burst of regulatory changes involved in resumption of the cell cycle, hormone production, and stress response. Although gene expression during diapause termination in Ostrinia is similar to that found previously in flies, nominated genes for shifts in timing are species-specific. Hence, across distant relatives the evolution of insect seasonality appears to involve unique genetic switches that direct organisms into distinct phases of the diapause pathway through wholesale restructuring of conserved gene regulatory networks
Collapse
Affiliation(s)
- Crista B. Wadsworth
- Department of Biology, Tufts University, 200 Boston Ave, Suite 4700, Medford, MA, 02155 USA
| | - Erik B. Dopman
- Department of Biology, Tufts University, 200 Boston Ave, Suite 4700, Medford, MA, 02155 USA
| |
Collapse
|
37
|
Levy RC, Kozak GM, Wadsworth CB, Coates BS, Dopman EB. Explaining the sawtooth: latitudinal periodicity in a circadian gene correlates with shifts in generation number. J Evol Biol 2014; 28:40-53. [DOI: 10.1111/jeb.12562] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 01/03/2023]
Affiliation(s)
- R. C. Levy
- Department of Biology; Tufts University; Medford MA USA
| | - G. M. Kozak
- Department of Biology; Tufts University; Medford MA USA
| | | | - B. S. Coates
- USDA-ARS; Corn Insects and Crop Genetics Research Unit; Genetics Laboratory; Iowa State University; Ames IA USA
| | - E. B. Dopman
- Department of Biology; Tufts University; Medford MA USA
| |
Collapse
|