1
|
Vecchi M, Calhim S. Patterns of sexual dimorphism in the armoured tardigrades. Biol Lett 2024; 20:20240301. [PMID: 39255843 PMCID: PMC11387062 DOI: 10.1098/rsbl.2024.0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/30/2024] [Indexed: 09/12/2024] Open
Abstract
Sexual dimorphism is widespread among animals, with diverse patterns and proposed explanations observed across the Tree of Life. Here we present the first formal analysis of the patterns of sexual dimorphism in body size and cephalic sensory appendages across 40 species (from 10 genera) of armoured tardigrades (Echiniscidae). Phylogenetic signal was found for body size traits and the cephalic papilla relative size, indicating that the association between these traits between the sexes has high evolutionary persistence. The Echiniscidae body size dimorphism is generally female-biased, which would be in accordance with the fecundity hypothesis. No strong evidence of allometric patterns of body size sexual dimorphism was found. In contrast, some of the cephalic appendages show male-biased sexual dimorphism, particularly those that, by being more innervated, are thought to function as chemodetection organs used by males during mate search. The latter is consistent with the sexual selection hypothesis. As the first systematic quantification and analysis of the patterns of sexual dimorphism in the phylum Tardigrada, this study provides important insights into their ecology and evolution, such as corroborating the suggestion that cephalic appendages evolved for mate searching.
Collapse
Affiliation(s)
- Matteo Vecchi
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, JyväskyläFI-40014, Finland
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, Kraków31-016, Poland
| | - Sara Calhim
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, JyväskyläFI-40014, Finland
| |
Collapse
|
2
|
De Lisle SP. Genotype × Environment interaction and the evolution of sexual dimorphism: adult nutritional environment mediates selection and expression of sex-specific genetic variance in Drosophila melanogaster. J Evol Biol 2024; 37:770-778. [PMID: 38668688 DOI: 10.1093/jeb/voae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/26/2024] [Accepted: 04/25/2024] [Indexed: 07/11/2024]
Abstract
Sexual conflict plays a key role in the dynamics of adaptive evolution in sexually reproducing populations, and theory suggests an important role for variance in resource acquisition in generating or masking sexual conflict over fitness and life history traits. Here, I used a quantitative genetic genotype × environment experiment in Drosophila melanogaster to test the theoretical prediction that variance in resource acquisition mediates variation in sex-specific component fitness. Holding larval conditions constant, I found that adult nutritional environments characterized by high protein content resulted in reduced survival of both sexes and lower male reproductive success compared to an environment of lower protein content. Despite reduced mean fitness of both sexes in high protein environments, I found a sex*treatment interaction for the relationship between resource acquisition and fitness; estimates of the adaptive landscape indicate males were furthest from their optimum resource acquisition level in high protein environments, and females were furthest in low protein environments. Expression of genetic variance in resource acquisition and survival was highest for each sex in the environment it was best adapted to, although the treatment effects on expression of genetic variance eroded in the path from resource acquisition to total fitness. Cross-sex genetic correlations were strongly positive for resource acquisition, survival, and total fitness and negative for mating success, although estimation error was high for all. These results demonstrate that environmental effects on resource acquisition can have predictable consequences for the expression of sex-specific genetic variance but also that these effects of resource acquisition can erode through life history.
Collapse
Affiliation(s)
- Stephen P De Lisle
- Department of Environmental and Life Science, Karlstad University, Universitetsgatan 2, Karlstad 651 88, Sweden
| |
Collapse
|
3
|
Alton LA, Kutz T, Bywater CL, Lombardi E, Cockerell FE, Layh S, Winwood-Smith H, Arnold PA, Beaman JE, Walter GM, Monro K, Mirth CK, Sgrò CM, White CR. Temperature and nutrition do not interact to shape the evolution of metabolic rate. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220484. [PMID: 38186272 PMCID: PMC10772606 DOI: 10.1098/rstb.2022.0484] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/22/2023] [Indexed: 01/09/2024] Open
Abstract
Metabolic cold adaptation, or Krogh's rule, is the controversial hypothesis that predicts a monotonically negative relationship between metabolic rate and environmental temperature for ectotherms living along thermal clines measured at a common temperature. Macrophysiological patterns consistent with Krogh's rule are not always evident in nature, and experimentally evolved responses to temperature have failed to replicate such patterns. Hence, temperature may not be the sole driver of observed variation in metabolic rate. We tested the hypothesis that temperature, as a driver of energy demand, interacts with nutrition, a driver of energy supply, to shape the evolution of metabolic rate to produce a pattern resembling Krogh's rule. To do this, we evolved replicate lines of Drosophila melanogaster at 18, 25 or 28°C on control, low-calorie or low-protein diets. Contrary to our prediction, we observed no effect of nutrition, alone or interacting with temperature, on adult female and male metabolic rates. Moreover, support for Krogh's rule was only in females at lower temperatures. We, therefore, hypothesize that observed variation in metabolic rate along environmental clines arises from the metabolic consequences of environment-specific life-history optimization, rather than because of the direct effect of temperature on metabolic rate. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
- Lesley A. Alton
- Centre for Geometric Biology, Monash University, Melbourne, Victoria 3800, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Teresa Kutz
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Candice L. Bywater
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Emily Lombardi
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Fiona E. Cockerell
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Sean Layh
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Hugh Winwood-Smith
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Pieter A. Arnold
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Julian E. Beaman
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Greg M. Walter
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Keyne Monro
- Centre for Geometric Biology, Monash University, Melbourne, Victoria 3800, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Christen K. Mirth
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Carla M. Sgrò
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Craig R. White
- Centre for Geometric Biology, Monash University, Melbourne, Victoria 3800, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
4
|
Murray M, Wright J, Araya-Ajoy YG. Evolutionary rescue from climate change: male indirect genetic effects on lay-dates and their consequences for population persistence. Evol Lett 2024; 8:137-148. [PMID: 38487362 PMCID: PMC10939382 DOI: 10.1093/evlett/qrad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 04/15/2023] [Accepted: 05/03/2023] [Indexed: 03/17/2024] Open
Abstract
Changes in avian breeding phenology are among the most apparent responses to climate change in free-ranging populations. A key question is whether populations will be able to keep up with the expected rates of environmental change. There is a large body of research on the mechanisms by which avian lay-dates track temperature change and the consequences of (mal)adaptation on population persistence. Often overlooked is the role of males, which can influence the lay-date of their mate through their effect on the prelaying environment. We explore how social plasticity causing male indirect genetic effects can help or hinder population persistence when female genes underpinning lay-date and male genes influencing female's timing of reproduction both respond to climate-mediated selection. We extend quantitative genetic moving optimum models to predict the consequences of social plasticity on the maximum sustainable rate of temperature change, and evaluate our model using a combination of simulated data and empirical estimates from the literature. Our results suggest that predictions for population persistence may be biased if indirect genetic effects and cross-sex genetic correlations are not considered and that the extent of this bias depends on sex differences in how environmental change affects the optimal timing of reproduction. Our model highlights that more empirical work is needed to understand sex-specific effects of environmental change on phenology and the fitness consequences for population dynamics. While we discuss our results exclusively in the context of avian breeding phenology, the approach we take here can be generalized to many different contexts and types of social interaction.
Collapse
Affiliation(s)
- Myranda Murray
- Centre for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Jonathan Wright
- Centre for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Yimen G Araya-Ajoy
- Centre for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| |
Collapse
|
5
|
Tosto NM, Beasley ER, Wong BBM, Mank JE, Flanagan SP. The roles of sexual selection and sexual conflict in shaping patterns of genome and transcriptome variation. Nat Ecol Evol 2023; 7:981-993. [PMID: 36959239 DOI: 10.1038/s41559-023-02019-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/21/2023] [Indexed: 03/25/2023]
Abstract
Sexual dimorphism is one of the most prevalent, and often the most extreme, examples of phenotypic variation within species, and arises primarily from genomic variation that is shared between females and males. Many sexual dimorphisms arise through sex differences in gene expression, and sex-biased expression is one way that a single, shared genome can generate multiple, distinct phenotypes. Although many sexual dimorphisms are expected to result from sexual selection, and many studies have invoked the possible role of sexual selection to explain sex-specific traits, the role of sexual selection in the evolution of sexually dimorphic gene expression remains difficult to differentiate from other forms of sex-specific selection. In this Review, we propose a holistic framework for the study of sex-specific selection and transcriptome evolution. We advocate for a comparative approach, across tissues, developmental stages and species, which incorporates an understanding of the molecular mechanisms, including genomic variation and structure, governing gene expression. Such an approach is expected to yield substantial insights into the evolution of genetic variation and have important applications in a variety of fields, including ecology, evolution and behaviour.
Collapse
Affiliation(s)
- Nicole M Tosto
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Emily R Beasley
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah P Flanagan
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
6
|
Kaufmann P, Howie JM, Immonen E. Sexually antagonistic selection maintains genetic variance when sexual dimorphism evolves. Proc Biol Sci 2023; 290:20222484. [PMID: 36946115 PMCID: PMC10031426 DOI: 10.1098/rspb.2022.2484] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Genetic variance (VG) in fitness related traits is often unexpectedly high, evoking the question how VG can be maintained in the face of selection. Sexually antagonistic (SA) selection favouring alternative alleles in the sexes is common and predicted to maintain VG, while directional selection should erode it. Both SA and sex-limited directional selection can lead to sex-specific adaptations but how each affect VG when sexual dimorphism evolves remain experimentally untested. Using replicated artificial selection on the seed beetle Callosobruchus maculatus body size we recently demonstrated an increase in size dimorphism under SA and male-limited (ML) selection by 50% and 32%, respectively. Here we test their consequences on genetic variation. We show that SA selection maintained significantly more ancestral, autosomal additive genetic variance than ML selection, while both eroded sex-linked additive variation equally. Ancestral female-specific dominance variance was completely lost under ML, while SA selection consistently sustained it. Further, both forms of selection preserved a high genetic correlation between the sexes (rm,f). These results demonstrate the potential for sexual antagonism to maintain more genetic variance while fuelling sex-specific adaptation in a short evolutionary time scale, and are in line with predicted importance of sex-specific dominance reducing sexual conflict over alternative alleles.
Collapse
Affiliation(s)
- Philipp Kaufmann
- Department of Ecology and Genetics (Evolutionary Biology program), Uppsala University, Norbyvägen 18D, 75234 Uppsala, Sweden
| | - James Malcolm Howie
- Department of Ecology and Genetics (Evolutionary Biology program), Uppsala University, Norbyvägen 18D, 75234 Uppsala, Sweden
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Boku, University of Natural Resources and Life Sciences, Peter-Jordan-Straße 82/I, 1190, Vienna, Austria
| | - Elina Immonen
- Department of Ecology and Genetics (Evolutionary Biology program), Uppsala University, Norbyvägen 18D, 75234 Uppsala, Sweden
| |
Collapse
|
7
|
Bacon R, Washington D, Johnson MK, Burns M. The Geography of Sexual Conflict: A Synthetic Review. Am Nat 2023; 201:429-441. [PMID: 36848514 DOI: 10.1086/722797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractSexual conflict is a mechanism of selection driven by the divergent fitness interests between females and males. This disagreement can be great enough to promote antagonistic/defensive traits and behaviors. Although the existence of sexual conflict has been identified in many species, less research has explored the conditions that initially promote sexual conflict in animal mating systems. In previous work in Opiliones, we observed that morphological traits associated with sexual conflict occurred only in species from northern localities. We hypothesized that by shortening and compartmentalizing time periods optimal for reproduction, seasonality represents a geographic condition sufficient to promote sexual conflict. We conducted a systematic review of the literature on reproductive traits and behaviors. Using standardized criteria, we reviewed publications to identify whether subjects occurred in a temperate (high-seasonality) or tropical (low-seasonality) biome. After identifying and adjusting for a publication bias toward temperate research, we identified no significant difference in the strength of sexual conflict between temperate and tropical study systems. A comparison between the distribution of taxa studied in sexual conflict articles and articles focused on general biodiversity indicates that species with conflict-based mating systems more accurately represent the distribution of terrestrial animal species. These findings contribute to ongoing efforts to characterize the origins of sexual conflict as well as life history traits that covary with sexual conflict.
Collapse
|
8
|
Marshall DJ, Connallon T. Carry-over effects and fitness trade-offs in marine life histories: The costs of complexity for adaptation. Evol Appl 2023; 16:474-485. [PMID: 36793690 PMCID: PMC9923492 DOI: 10.1111/eva.13477] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Most marine organisms have complex life histories, where the individual stages of a life cycle are often morphologically and ecologically distinct. Nevertheless, life-history stages share a single genome and are linked phenotypically (by "carry-over effects"). These commonalities across the life history couple the evolutionary dynamics of different stages and provide an arena for evolutionary constraints. The degree to which genetic and phenotypic links among stages hamper adaptation in any one stage remains unclear and yet adaptation is essential if marine organisms will adapt to future climates. Here, we use an extension of Fisher's geometric model to explore how both carry-over effects and genetic links among life-history stages affect the emergence of pleiotropic trade-offs between fitness components of different stages. We subsequently explore the evolutionary trajectories of adaptation of each stage to its optimum using a simple model of stage-specific viability selection with nonoverlapping generations. We show that fitness trade-offs between stages are likely to be common and that such trade-offs naturally emerge through either divergent selection or mutation. We also find that evolutionary conflicts among stages should escalate during adaptation, but carry-over effects can ameliorate this conflict. Carry-over effects also tip the evolutionary balance in favor of better survival in earlier life-history stages at the expense of poorer survival in later stages. This effect arises in our discrete-generation framework and is, therefore, unrelated to age-related declines in the efficacy of selection that arise in models with overlapping generations. Our results imply a vast scope for conflicting selection between life-history stages, with pervasive evolutionary constraints emerging from initially modest selection differences between stages. Organisms with complex life histories should also be more constrained in their capacity to adapt to global change than those with simple life histories.
Collapse
Affiliation(s)
- Dustin J. Marshall
- School of Biological Sciences, and Centre for Geometric BiologyMonash UniversityMelbourneVictoriaAustralia
| | - Tim Connallon
- School of Biological Sciences, and Centre for Geometric BiologyMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
9
|
Waterman R, Sahli H, Koelling VA, Karoly K, Conner JK. Strong evidence for positive and negative correlational selection revealed by recreating ancestral variation. Evolution 2023; 77:264-275. [PMID: 36622224 DOI: 10.1093/evolut/qpac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 01/10/2023]
Abstract
The study of adaptation helps explain biodiversity and predict future evolution. Yet the process of adaptation can be difficult to observe due to limited phenotypic variation in contemporary populations. Furthermore, the scarcity of male fitness estimates has made it difficult to both understand adaptation and evaluate sexual conflict hypotheses. We addressed both issues in our study of two anther position traits in wild radish (Raphanus raphanistrum): anther exsertion (long filament - corolla tube lengths) and anther separation (long - short filament lengths). These traits affect pollination efficiency and are particularly interesting due to the unusually high correlations among their component traits. We measured selection through male and female fitness on wild radish plants from populations artificially selected to recreate ancestral variation in each anther trait. We found little evidence for conflicts between male and female function. We found strong evidence for stabilizing selection on anther exsertion and disruptive selection on anther separation, indicating positive and negative correlational selection on the component traits. Intermediate levels of exsertion are likely an adaptation to best contact small bees. The function of anther separation is less clear, but future studies might investigate pollen placement on pollinators and compare species possessing multiple stamen types.
Collapse
Affiliation(s)
- Robin Waterman
- Kellogg Biological Station and Department of Plant Biology, Michigan State University, Hickory Corners, MI, United States
| | - Heather Sahli
- Kellogg Biological Station and Department of Plant Biology, Michigan State University, Hickory Corners, MI, United States.,Department of Biology, Shippensburg University, Shippensburg, PA 17257, United States
| | - Vanessa A Koelling
- Biology Department, Reed College, Portland, OR, United States.,Current Address: Department of Biology and Environmental Science, Auburn University at Montgomery, Montgomery, AL, United States
| | - Keith Karoly
- Biology Department, Reed College, Portland, OR, United States
| | - Jeffrey K Conner
- Kellogg Biological Station and Department of Plant Biology, Michigan State University, Hickory Corners, MI, United States
| |
Collapse
|
10
|
May SA, Hard JJ, Ford MJ, Naish KA, Ward EJ. Assortative mating for reproductive timing affects population recruitment and resilience in a quantitative genetic model. Evol Appl 2023; 16:657-672. [PMID: 36969143 PMCID: PMC10033844 DOI: 10.1111/eva.13524] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/12/2022] [Indexed: 01/22/2023] Open
Abstract
Quantitative models that simulate the inheritance and evolution of fitness-linked traits offer a method for predicting how environmental or anthropogenic perturbations can affect the dynamics of wild populations. Random mating between individuals within populations is a key assumption of many such models used in conservation and management to predict the impacts of proposed management or conservation actions. However, recent evidence suggests that non-random mating may be underestimated in wild populations and play an important role in diversity-stability relationships. Here we introduce a novel individual-based quantitative genetic model that incorporates assortative mating for reproductive timing, a defining attribute of many aggregate breeding species. We demonstrate the utility of this framework by simulating a generalized salmonid lifecycle, varying input parameters, and comparing model outputs to theoretical expectations for several eco-evolutionary, population dynamic scenarios. Simulations with assortative mating systems resulted in more resilient and productive populations than those that were randomly mating. In accordance with established ecological and evolutionary theory, we also found that decreasing the magnitude of trait correlations, environmental variability, and strength of selection each had a positive effect on population growth. Our model is constructed in a modular framework so that future components can be easily added to address pressing issues such as the effects of supportive breeding, variable age structure, differential selection by sex or age, and fishery interactions on population growth and resilience. With code published in a public Github repository, model outputs may easily be tailored to specific study systems by parameterizing with empirically generated values from long-term ecological monitoring programs.
Collapse
Affiliation(s)
- Samuel A. May
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington USA
| | - Jeffrey J. Hard
- NOAA Fisheries Northwest Fisheries Science Center Seattle Washington USA
| | - Michael J. Ford
- NOAA Fisheries Northwest Fisheries Science Center Seattle Washington USA
| | - Kerry A. Naish
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington USA
| | - Eric J. Ward
- NOAA Fisheries Northwest Fisheries Science Center Seattle Washington USA
| |
Collapse
|
11
|
Understand Evolution Better Applying the Computer. Bioinformatics 2023. [DOI: 10.1007/978-3-662-65036-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
12
|
Kellermann V, Overgaard J, Sgrò CM, Hoffmann AA. Phylogenetic and environmental patterns of sex differentiation in physiological traits across Drosophila species. J Evol Biol 2022; 35:1548-1557. [PMID: 36196885 PMCID: PMC9828785 DOI: 10.1111/jeb.14104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/14/2022] [Accepted: 08/05/2022] [Indexed: 01/12/2023]
Abstract
Sex-based differences in physiological traits may be influenced by both evolutionary and environmental factors. Here we used male and female flies from >80 Drosophila species reared under common conditions to examine variance in a number of physiological traits including size, starvation, desiccation and thermal tolerance. Sex-based differences for desiccation and starvation resistance were comparable in magnitude to those for size, with females tending to be relatively more resistant than males. In contrast thermal resistance showed low divergence between the sexes. Phylogenetic signal was detected for measures of divergence between the sexes, such that species from the Sophophora clade showed larger differences between the sexes than species from the Drosophila clade. We also found that sex-based differences in desiccation resistance, body size and starvation resistance were weakly associated with climate (annual mean temperature/precipitation seasonality) but the direction and association with environment depended on phylogenetic position. The results suggest that divergence between the sexes can be linked to environmental factors, while an association with phylogeny suggests sex-based differences persist over long evolutionary time-frames.
Collapse
Affiliation(s)
| | | | - Carla M. Sgrò
- School of Biological SciencesMonash UniversityMelbourneVic.Australia
| | - Ary A. Hoffmann
- School of BioSciences, Bio21 InstituteThe University of MelbourneMelbourneVic.Australia
| |
Collapse
|
13
|
Reid JM. Intrinsic emergence and modulation of sex-specific dominance reversals in threshold traits. Evolution 2022; 76:1924-1941. [PMID: 35803581 PMCID: PMC9541474 DOI: 10.1111/evo.14563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 01/22/2023]
Abstract
Sex-specific dominance reversals (SSDRs) in fitness-related traits, where heterozygotes' phenotypes resemble those of alternative homozygotes in females versus males, can simultaneously maintain genetic variation in fitness and resolve sexual conflict and thereby shape key evolutionary outcomes. However, the full implications of SSDRs will depend on how they arise and the resulting potential for evolutionary, ecological and environmental modulation. Recent field and laboratory studies have demonstrated SSDRs in threshold(-like) traits with dichotomous or competitive phenotypic outcomes, implying that such traits could promote the emergence of SSDRs. However, such possibilities have not been explicitly examined. I show how phenotypic SSDRs can readily emerge in threshold traits given genetic architectures involving large-effect loci alongside sexual dimorphism in the mean and variance in polygenic liability. I also show how multilocus SSDRs can arise in line-cross experiments, especially given competitive reproductive systems that generate nonlinear fitness outcomes. SSDRs can consequently emerge in threshold(-like) traits as functions of sexual antagonism, sexual dimorphism and reproductive systems, even with purely additive underlying genetic effects. Accordingly, I identify theoretical and empirical advances that are now required to discern the basis and occurrence of SSDRs in nature, probe forms of (co-)evolutionary, ecological and environmental modulation, and evaluate net impacts on sexual conflict.
Collapse
Affiliation(s)
- Jane M. Reid
- Centre for Biodiversity DynamicsNTNUTrondheimNorway,School of Biological SciencesUniversity of AberdeenAberdeenUK
| |
Collapse
|
14
|
Villada-Bedoya S, Córdoba-Aguilar A, Escobar F, González-Tokman D. Contamination effects on sexual selection in wild dung beetles. J Evol Biol 2022; 35:905-918. [PMID: 35647730 DOI: 10.1111/jeb.14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/19/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
Abstract
Sexual selection influences the expression of secondary sexual traits, which are costly to produce and maintain and are thus considered honest indicators of individual condition. Therefore, sexual selection could select for high-quality individuals able to respond to stressful conditions, with impacts on population-level fitness. We sampled dung beetles from 19 pastures and investigated if contamination by herbicides and veterinary drugs modifies male investment in sexually selected traits and has associated population-level effects. We measured horn size, condition dependence (i.e. size-corrected body mass) and allometry, besides abundance and sexual size dimorphism in three species: Copris incertus, Euoniticellus intermedius and Digitonthophagus gazella. In contrary to our expectations, horn size was independent of contamination and individual condition. However, strong positive allometric relationships were reduced by herbicide contamination for C. incertus and D. gazella and were increased by ivermectin for C. incertus, revealing differential investment in horn production according to body size in contaminated habitats. At the population level, large-horned C. incertus males were more abundant in contaminated pastures, potentially revealing a case of evolutionary rescue by sexual selection or a plastic response to higher population densities. Finally, chemical compounds affected the sexual size dimorphism of all three species, with potential effects on female fecundity or intrasexual selection. Together, our findings indicate that contamination interferes with sexual selection processes in the wild, opening new questions regarding the role of sexual selection in favouring species persistence in contaminated environments.
Collapse
Affiliation(s)
| | - Alex Córdoba-Aguilar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Daniel González-Tokman
- Red de Ecoetología, Instituto de Ecología A.C, Xalapa, Mexico.,CONACYT, Mexico City, Mexico
| |
Collapse
|
15
|
Hangartner S, Sgrò CM, Connallon T, Booksmythe I. Sexual dimorphism in phenotypic plasticity and persistence under environmental change: An extension of theory and meta-analysis of current data. Ecol Lett 2022; 25:1550-1565. [PMID: 35334155 PMCID: PMC9311083 DOI: 10.1111/ele.14005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/18/2021] [Accepted: 03/03/2022] [Indexed: 11/29/2022]
Abstract
Populations must adapt to environmental changes to remain viable. Both evolution and phenotypic plasticity contribute to adaptation, with plasticity possibly being more important for coping with rapid change. Adaptation is complex in species with separate sexes, as the sexes can differ in the strength or direction of natural selection, the genetic basis of trait variation, and phenotypic plasticity. Many species show sex differences in plasticity, yet how these differences influence extinction susceptibility remains unclear. We first extend theoretical models of population persistence in changing environments and show that persistence is affected by sexual dimorphism for phenotypic plasticity, trait genetic architecture, and sex-specific selection. Our models predict that female-biased adaptive plasticity-particularly in traits with modest-to-low cross-sex genetic correlations-typically promotes persistence, though we also identify conditions where sexually monomorphic or male-biased plasticity promotes persistence. We then perform a meta-analysis of sex-specific plasticity under manipulated thermal conditions. Although examples of sexually dimorphic plasticity are widely observed, systematic sex differences are rare. An exception-cold resistance-is systematically female-biased and represents a trait wherein sexually dimorphic plasticity might elevate population viability in changing environments. We discuss our results in light of debates about the roles of evolution and plasticity in extinction susceptibility.
Collapse
Affiliation(s)
- Sandra Hangartner
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Tim Connallon
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Isobel Booksmythe
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
16
|
Sharda S, Kawecki TJ, Hollis B. Adaptation to a bacterial pathogen in Drosophila melanogaster is not aided by sexual selection. Ecol Evol 2022; 12:e8543. [PMID: 35169448 PMCID: PMC8840902 DOI: 10.1002/ece3.8543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 11/08/2022] Open
Abstract
Theory predicts that sexual selection should aid adaptation to novel environments, but empirical support for this idea is limited. Pathogens are a major driver of host evolution and, unlike abiotic selection pressures, undergo epidemiological and co-evolutionary cycles with the host involving adaptation and counteradaptation. Because of this, populations harbor ample genetic variation underlying immunity and the opportunity for sexual selection based on condition-dependent "good genes" is expected to be large. In this study, we evolved populations of Drosophila melanogaster in a 2-way factorial design manipulating sexual selection and pathogen presence, using a gram-negative insect pathogen Pseudomonas entomophila, for 14 generations. We then examined how the presence of sexual selection and the pathogen, as well as any potential interaction, affected the evolution of pathogen resistance. We found increased resistance to P. entomophila in populations that evolved under pathogen pressure, driven primarily by increased female survival after infection despite selection for resistance acting only on males over the course of experimental evolution. This result suggests that the genetic basis of resistance is in part shared between the sexes. We did not find any evidence of sexual selection aiding adaptation to pathogen, however, a finding contrary to the predictions of "good genes" theory. Our results therefore provide no support for a role for sexual selection in the evolution of immunity in this experimental system.
Collapse
Affiliation(s)
- Sakshi Sharda
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Tadeusz J. Kawecki
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Brian Hollis
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| |
Collapse
|
17
|
Winkler L, Moiron M, Morrow EH, Janicke T. Stronger net selection on males across animals. eLife 2021; 10:e68316. [PMID: 34787569 PMCID: PMC8598160 DOI: 10.7554/elife.68316] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/30/2021] [Indexed: 11/22/2022] Open
Abstract
Sexual selection is considered the major driver for the evolution of sex differences. However, the eco-evolutionary dynamics of sexual selection and their role for a population's adaptive potential to respond to environmental change have only recently been explored. Theory predicts that sexual selection promotes adaptation at a low demographic cost only if sexual selection is aligned with natural selection and if net selection is stronger on males compared to females. We used a comparative approach to show that net selection is indeed stronger in males and provide preliminary support that this sex bias is associated with sexual selection. Given that both sexes share the vast majority of their genes, our findings corroborate the notion that the genome is often confronted with a more stressful environment when expressed in males. Collectively, our study supports one of the long-standing key assumptions required for sexual selection to bolster adaptation, and sexual selection may therefore enable some species to track environmental change more efficiently.
Collapse
Affiliation(s)
| | - Maria Moiron
- CEFE, CNRS, Univ Montpellier, EPHE, IRDMontpellierFrance
| | - Edward H Morrow
- Department for Environmental and Life Sciences, Karlstad UniversityKarlstadSweden
| | - Tim Janicke
- Applied Zoology, Technical University DresdenDresdenGermany
- CEFE, CNRS, Univ Montpellier, EPHE, IRDMontpellierFrance
| |
Collapse
|
18
|
Janicke T, Chapuis E, Meconcelli S, Bonel N, Delahaie B, David P. Environmental effects on the genetic architecture of fitness components in a simultaneous hermaphrodite. J Anim Ecol 2021; 91:124-137. [PMID: 34652857 DOI: 10.1111/1365-2656.13607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/04/2021] [Indexed: 12/01/2022]
Abstract
Understanding how environmental change affects genetic variances and covariances of reproductive traits is key to formulate firm predictions on evolutionary responses. This is particularly true for sex-specific variance in reproductive success, which has been argued to affect how populations can adapt to environmental change. Our current knowledge on the impact of environmental stress on sex-specific genetic architecture of fitness components is still limited and restricted to separate-sexed organisms. However, hermaphroditism is widespread across animals and may entail interesting peculiarities with respect to genetic constraints imposed on the evolution of male and female reproduction. We explored how food restriction affects the genetic variance-covariance (G) matrix of body size and reproductive success of the simultaneously hermaphroditic freshwater snail Physa acuta. Our results provide strong evidence that the imposed environmental stress elevated the opportunity for selection in both sex functions. However, the G-matrix remained largely stable across the tested food treatments. Importantly, our results provide no support for cross-sex genetic correlations suggesting no strong evolutionary coupling of male and female reproductive traits. We discuss potential implications for the adaptation to changing environments and highlight the need for more quantitative genetic studies on male and female fitness components in simultaneous hermaphrodites.
Collapse
Affiliation(s)
- Tim Janicke
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.,Applied Zoology, Technical University Dresden, Dresden, Germany
| | - Elodie Chapuis
- MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Stefania Meconcelli
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.,Department of Life Sciences and Systems Biology, Università di Torino, Torino, Italy
| | - Nicolas Bonel
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.,Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CCT-CONICET Bahía Blanca), Bahía Blanca, Argentina
| | - Boris Delahaie
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Patrice David
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| |
Collapse
|
19
|
Plesnar‐Bielak A, Łukasiewicz A. Sexual conflict in a changing environment. Biol Rev Camb Philos Soc 2021; 96:1854-1867. [PMID: 33960630 PMCID: PMC8518779 DOI: 10.1111/brv.12728] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/02/2023]
Abstract
Sexual conflict has extremely important consequences for various evolutionary processes including its effect on local adaptation and extinction probability during environmental change. The awareness that the intensity and dynamics of sexual conflict is highly dependent on the ecological setting of a population has grown in recent years, but much work is yet to be done. Here, we review progress in our understanding of the ecology of sexual conflict and how the environmental sensitivity of such conflict feeds back into population adaptivity and demography, which, in turn, determine a population's chances of surviving a sudden environmental change. We link two possible forms of sexual conflict - intralocus and interlocus sexual conflict - in an environmental context and identify major gaps in our knowledge. These include sexual conflict responses to fluctuating and oscillating environmental changes and its influence on the interplay between interlocus and intralocus sexual conflict, among others. We also highlight the need to move our investigations into more natural settings and to investigate sexual conflict dynamics in wild populations.
Collapse
Affiliation(s)
- Agata Plesnar‐Bielak
- Institute of Environmental Sciences, Faculty of BiologyJagiellonian Universityul. Gronostajowa 730‐387KrakówPoland
| | - Aleksandra Łukasiewicz
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandPO Box 11180101JoensuuFinland
- Evolutionary Biology Group, Faculty of BiologyAdam Mickiewicz Universityul. Uniwersytetu Poznańskiego 661‐614PoznańPoland
| |
Collapse
|
20
|
De Lisle SP, Bolnick DI. Male and female reproductive fitness costs of an immune response in natural populations . Evolution 2021; 75:2509-2523. [PMID: 33991339 PMCID: PMC8488946 DOI: 10.1111/evo.14266] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/29/2022]
Abstract
Parasites can mediate host fitness both directly, via effects on survival and reproduction, or indirectly by inducing host immune defense with costly side-effects. The evolution of immune defense is determined by a complex interplay of costs and benefits of parasite infection and immune response, all of which may differ for male and female hosts in sexual lineages. Here, we examine fitness costs associated with an inducible immune defense in a fish-cestode host-parasite system. Cestode infection induces peritoneal fibrosis in threespine stickleback (Gasterosteus aculeatus), constraining cestode growth and sometimes encasing and killing the parasite. Surveying two wild populations of stickleback, we confirm that the presence of fibrosis scar tissue is associated with reduced parasite burden in both male and female fish. However, fibrotic fish had lower foraging success and reproductive fitness (reduced female egg production and male nesting success), indicating strong costs of the lingering immunopathology. Consistent with substantial sexually concordant fitness effects of immune response, we find alignment of multivariate selection across the sexes despite sexual antagonism over morphological shape. Although both sexes experienced costs of fibrosis, the net impacts are unequal because in the two study populations females had higher cestode exposure. To evaluate whether this difference in risk should drive sex-specific immune strategies, we analyze a quantitative genetic model of host immune response to a trophically transmitted parasite. The model and empirical data illustrate how shared costs and benefits of immune response lead to shared evolutionary interests of male and female hosts, despite unequal infection risks across the sexes.
Collapse
Affiliation(s)
- Stephen P. De Lisle
- Department of Ecology & Evolutionary Biology University of Connecticut Storrs, CT 06269
- Department of Biology, Evolutionary Ecology Unit, Lund University, Lund, Sweden
| | - Daniel I. Bolnick
- Department of Ecology & Evolutionary Biology University of Connecticut Storrs, CT 06269
| |
Collapse
|
21
|
Colicchio JM, Hamm LN, Verdonk HE, Kooyers NJ, Blackman BK. Adaptive and nonadaptive causes of heterogeneity in genetic differentiation across the Mimulus guttatus genome. Mol Ecol 2021; 30:6486-6507. [PMID: 34289200 DOI: 10.1111/mec.16087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Genetic diversity becomes structured among populations over time due to genetic drift and divergent selection. Although population structure is often treated as a uniform underlying factor, recent resequencing studies of wild populations have demonstrated that diversity in many regions of the genome may be structured quite dissimilar to the genome-wide pattern. Here, we explored the adaptive and nonadaptive causes of such genomic heterogeneity using population-level, whole genome resequencing data obtained from annual Mimulus guttatus individuals collected across a rugged environment landscape. We found substantial variation in how genetic differentiation is structured both within and between chromosomes, although, in contrast to other studies, known inversion polymorphisms appear to serve only minor roles in this heterogeneity. In addition, much of the genome can be clustered into eight among-population genetic differentiation patterns, but only two of these clusters are particularly consistent with patterns of isolation by distance. By performing genotype-environment association analysis, we also identified genomic intervals where local adaptation to specific climate factors has accentuated genetic differentiation among populations, and candidate genes in these windows indicate climate adaptation may proceed through changes affecting specialized metabolism, drought resistance, and development. Finally, by integrating our findings with previous studies, we show that multiple aspects of plant reproductive biology may be common targets of balancing selection and that variants historically involved in climate adaptation among populations have probably also fuelled rapid adaptation to microgeographic environmental variation within sites.
Collapse
Affiliation(s)
- Jack M Colicchio
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Lauren N Hamm
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Hannah E Verdonk
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Nicholas J Kooyers
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA.,Department of Biology, University of Louisiana, Lafayette, Lafayette, Louisiana, USA
| | - Benjamin K Blackman
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
22
|
Cally JG, Stuart-Fox D, Holman L, Dale J, Medina I. Male-biased sexual selection, but not sexual dichromatism, predicts speciation in birds. Evolution 2021; 75:931-944. [PMID: 33559135 DOI: 10.1111/evo.14183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/13/2021] [Indexed: 01/04/2023]
Abstract
Sexual selection is thought to shape phylogenetic diversity by affecting speciation or extinction rates. However, the net effect of sexual selection on diversification is hard to predict because many of the hypothesized effects on speciation or extinction have opposing signs and uncertain magnitudes. Theoretical work also suggests that the net effect of sexual selection on diversification should depend strongly on ecological factors, though this prediction has seldom been tested. Here, we test whether variation in sexual selection can predict speciation and extinction rates across passerine birds (up to 5812 species, covering most genera) and whether this relationship is mediated by environmental factors. Male-biased sexual selection, and specifically sexual size dimorphism, predicted two of the three measures of speciation rates that we examined. The link we observed between sexual selection and speciation was independent of environmental variability, though species with smaller ranges had higher speciation rates. There was no association between any proxies of sexual selection and extinction rate. Our findings support the view that male-biased sexual selection, as measured by frequent predictors of male-male competition, has shaped diversification in the largest radiation of birds.
Collapse
Affiliation(s)
- Justin G Cally
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Luke Holman
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - James Dale
- School of Natural and Computational Sciences, Massey University (Albany Campus), Auckland, 0632, New Zealand
| | - Iliana Medina
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| |
Collapse
|
23
|
Tonnabel J, Klein EK, Ronce O, Oddou-Muratorio S, Rousset F, Olivieri I, Courtiol A, Mignot A. Sex-specific spatial variation in fitness in the highly dimorphic Leucadendron rubrum. Mol Ecol 2021; 30:1721-1735. [PMID: 33559274 DOI: 10.1111/mec.15833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022]
Abstract
Sexual dimorphism in plants may emerge as a result of sex-specific selection on traits enhancing access to nutritive resources and/or to sexual partners. Here we investigated sex-specific differences in selection of sexually dimorphic traits and in the spatial distribution of effective fecundity (our fitness proxy) in a highly dimorphic dioecious wind-pollinated shrub, Leucadendron rubrum. In particular, we tested for the effect of density on male and female effective fecundity. We used spatial and genotypic data of parent and offspring cohorts to jointly estimate individual male and female effective fecundity on the one hand and pollen and seed dispersal kernels on the other hand. This methodology was adapted to the case of dioecious species. Explicitly modelling dispersal avoids the confounding effects of heterogeneous spatial distribution of mates and sampled seedlings on the estimation of effective fecundity. We also estimated selection gradients on plant traits while modelling sex-specific spatial autocorrelation in fecundity. Males exhibited spatial autocorrelation in effective fecundity at a smaller scale than females. A higher local density of plants was associated with lower effective fecundity in males but was not related to female effective fecundity. These results suggest sex-specific sensitivities to environmental heterogeneity in L. rubrum. Despite these sexual differences, we found directional selection for wider canopies and smaller leaves in both sexes, and no sexually antagonistic selection on strongly dimorphic traits in L. rubrum. Many empirical studies in animals similarly failed to detect sexually antagonistic selection in species expressing strong sexual dimorphism, and we discuss reasons explaining this common pattern.
Collapse
Affiliation(s)
- Jeanne Tonnabel
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.,Department of Ecology and Evolution, Le Biophore, UNIL-SORGE, University of Lausanne, Lausanne, Switzerland
| | | | - Ophélie Ronce
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.,CNRS, Biodiversity Research Center, University of British Columbia, Vancouver, Canada
| | | | - François Rousset
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Isabelle Olivieri
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Alexandre Courtiol
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Agnès Mignot
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
24
|
Koch EL, Sbilordo SH, Guillaume F. Genetic variance in fitness and its cross‐sex covariance predict adaptation during experimental evolution. Evolution 2020; 74:2725-2740. [DOI: 10.1111/evo.14119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/29/2020] [Accepted: 10/25/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Eva L. Koch
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstr. 190 Zürich 8057 Switzerland
- Department of Animal and Plant Science University of Sheffield Western Bank Sheffield S10 2TN United Kingdom
| | - Sonja H. Sbilordo
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstr. 190 Zürich 8057 Switzerland
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstr. 190 Zürich 8057 Switzerland
| |
Collapse
|
25
|
Han CS. Density-dependent sex-biased development of macroptery in a water strider. Ecol Evol 2020; 10:9514-9521. [PMID: 32953079 PMCID: PMC7487258 DOI: 10.1002/ece3.6644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
In wing-polymorphic insects, wing morphs differ not only in dispersal capability but also in life history traits because of trade-offs between flight capability and reproduction. When the fitness benefits and costs of producing wings differ between males and females, sex-specific trade-offs can result in sex differences in the frequency of long-winged individuals. Furthermore, the social environment during development affects sex differences in wing development, but few empirical tests of this phenomenon have been performed to date. Here, I used the wing-dimorphic water strider Tenagogerris euphrosyne to test how rearing density and sex ratio affect the sex-specific development of long-winged dispersing morphs (i.e., sex-specific macroptery). I also used a full-sib, split-family breeding design to assess genetic effects on density-dependent, sex-specific macroptery. I reared water strider nymphs at either high or low densities and measured their wing development. I found that long-winged morphs developed more frequently in males than in females when individuals were reared in a high-density environment. However, the frequency of long-winged morphs was not biased according to sex when individuals were reared in a low-density environment. In addition, full-sib males and females showed similar macroptery incidence rates at low nymphal density, whereas the macroptery incidence rates differed between full-sib males and females at high nymphal density. Thus complex gene-by-environment-by-sex interactions may explain the density-specific levels of sex bias in macroptery, although this interpretation should be treated with some caution. Overall, my study provides empirical evidence for density-specific, sex-biased wing development. My findings suggest that social factors as well as abiotic factors can be important in determining sex-biased wing development in insects.
Collapse
Affiliation(s)
- Chang S. Han
- Department of BiologyKyung Hee UniversitySeoulKorea
| |
Collapse
|
26
|
García-Roa R, Garcia-Gonzalez F, Noble DWA, Carazo P. Temperature as a modulator of sexual selection. Biol Rev Camb Philos Soc 2020; 95:1607-1629. [PMID: 32691483 DOI: 10.1111/brv.12632] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022]
Abstract
A central question in ecology and evolution is to understand why sexual selection varies so much in strength across taxa; it has long been known that ecological factors are crucial to this. Temperature is a particularly salient abiotic ecological factor that modulates a wide range of physiological, morphological and behavioural traits, impacting individuals and populations at a global taxonomic scale. Furthermore, temperature exhibits substantial temporal variation (e.g. daily, seasonally and inter-seasonally), and hence for most species in the wild sexual selection will regularly unfold in a dynamic thermal environment. Unfortunately, studies have so far almost completely neglected the role of temperature as a modulator of sexual selection. Here, we outline the main pathways through which temperature can affect the intensity and form (i.e. mechanisms) of sexual selection, via: (i) direct effects on secondary sexual traits and preferences (i.e. trait variance, opportunity for selection and trait-fitness covariance), and (ii) indirect effects on key mating parameters, sex-specific reproductive costs/benefits, trade-offs, demography and correlated abiotic factors. Building upon this framework, we show that, by focusing exclusively on the first-order effects that environmental temperature has on traits linked with individual fitness and population viability, current global warming studies may be ignoring eco-evolutionary feedbacks mediated by sexual selection. Finally, we tested the general prediction that temperature modulates sexual selection by conducting a meta-analysis of available studies experimentally manipulating temperature and reporting effects on the variance of male/female reproductive success and/or traits under sexual selection. Our results show a clear association between temperature and sexual selection measures in both sexes. In short, we suggest that studying the feedback between temperature and sexual selection processes may be vital to developing a better understanding of variation in the strength of sexual selection in nature, and its consequences for population viability in response to environmental change (e.g. global warming).
Collapse
Affiliation(s)
- Roberto García-Roa
- Behaviour and Evolution, Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedrático José Beltrán 2, Paterna, Valencia, 46980, Spain
| | - Francisco Garcia-Gonzalez
- Doñana Biological Station, Spanish Research Council CSIC, c/Americo Vespucio, 26, Isla de la Cartuja, Sevilla, 41092, Spain.,Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Daniel W A Noble
- Ecology and Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia.,Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, 2061, Australia
| | - Pau Carazo
- Behaviour and Evolution, Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedrático José Beltrán 2, Paterna, Valencia, 46980, Spain
| |
Collapse
|
27
|
Reid JM, Arcese P. Recent immigrants alter the quantitative genetic architecture of paternity in song sparrows. Evol Lett 2020; 4:124-136. [PMID: 32313688 PMCID: PMC7156105 DOI: 10.1002/evl3.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/11/2019] [Accepted: 01/19/2020] [Indexed: 12/13/2022] Open
Abstract
Quantifying additive genetic variances and cross‐sex covariances in reproductive traits, and identifying processes that shape and maintain such (co)variances, is central to understanding the evolutionary dynamics of reproductive systems. Gene flow resulting from among‐population dispersal could substantially alter additive genetic variances and covariances in key traits in recipient populations, thereby altering forms of sexual conflict, indirect selection, and evolutionary responses. However, the degree to which genes imported by immigrants do in fact affect quantitative genetic architectures of key reproductive traits and outcomes is rarely explicitly quantified. We applied structured quantitative genetic analyses to multiyear pedigree, pairing, and paternity data from free‐living song sparrows (Melospiza melodia) to quantify the differences in mean breeding values for major sex‐specific reproductive traits, specifically female extra‐pair reproduction and male paternity loss, between recent immigrants and the previously existing population. We thereby quantify effects of natural immigration on the means, variances, and cross‐sex covariance in total additive genetic values for extra‐pair paternity arising within the complex socially monogamous but genetically polygynandrous reproductive system. Recent immigrants had lower mean breeding values for male paternity loss, and somewhat lower values for female extra‐pair reproduction, than the local recipient population, and would therefore increase the emerging degree of reproductive fidelity of social pairings. Furthermore, immigration increased the variances in total additive genetic values for these traits, but decreased the magnitudes of the negative cross‐sex genetic covariation and correlation below those evident in the existing population. Immigration thereby increased the total additive genetic variance but could decrease the magnitude of indirect selection acting on sex‐specific contributions to paternity outcomes. These results demonstrate that dispersal and resulting immigration and gene flow can substantially affect quantitative genetic architectures of complex local reproductive systems, implying that comprehensive theoretical and empirical efforts to understand mating system dynamics will need to incorporate spatial population processes.
Collapse
Affiliation(s)
- Jane M Reid
- Centre for Biodiversity Dynamics NTNU Trondheim Norway.,School of Biological Sciences University of Aberdeen Aberdeen United Kingdom
| | - Peter Arcese
- Forest & Conservation Sciences University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
28
|
Rostant WG, Mason JS, de Coriolis JC, Chapman T. Resource-dependent evolution of female resistance responses to sexual conflict. Evol Lett 2020; 4:54-64. [PMID: 32055411 PMCID: PMC7006461 DOI: 10.1002/evl3.153] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 01/31/2023] Open
Abstract
Sexual conflict can promote the evolution of dramatic reproductive adaptations as well as resistance to its potentially costly effects. Theory predicts that responses to sexual conflict will vary significantly with resource levels—when scant, responses should be constrained by trade‐offs, when abundant, they should not. However, this can be difficult to test because the evolutionary interests of the sexes align upon short‐term exposure to novel environments, swamping any selection due to sexual conflict. What is needed are investigations of populations that are well adapted to both differing levels of sexual conflict and resources. Here, we used this approach in a long‐term experimental evolution study to track the evolution of female resistance to sexual conflict in the fruit fly Drosophila melanogaster. In resource‐rich regimes, high‐conflict females evolved resistance to continual exposure to males. There was no difference in baseline survival, consistent with the idea that responses evolving under nutritional abundance experienced no trade‐offs with resistance. In the poor resource regimes, the ability of high‐conflict females to evolve resistance to males was severely compromised and they also showed lower baseline survival than low‐conflict females. This suggested high‐conflict females traded off somatic maintenance against any limited resistance they had evolved in response to sexual conflict. Overall, these findings provide experimental support for the hypothesis that evolutionary responses to sexual conflict are critically dependent upon resource levels.
Collapse
Affiliation(s)
- Wayne G Rostant
- School of Biological Sciences University of East Anglia Norwich NR4 7TJ United Kingdom
| | - Janet S Mason
- School of Biological Sciences University of East Anglia Norwich NR4 7TJ United Kingdom
| | | | - Tracey Chapman
- School of Biological Sciences University of East Anglia Norwich NR4 7TJ United Kingdom
| |
Collapse
|
29
|
Stahlschmidt ZR, Chu I, Koh C. When do looks matter? Effects of mate quality and environmental variability on lifetime reproduction. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-019-2790-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Predation risk induces age- and sex-specific morphological plastic responses in the fathead minnow Pimephales promelas. Sci Rep 2019; 9:15378. [PMID: 31653876 PMCID: PMC6814781 DOI: 10.1038/s41598-019-51591-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/04/2019] [Indexed: 12/19/2022] Open
Abstract
Although comprehending the significance of phenotypic plasticity for evolution is of major interest in biology, the pre-requirement for that, the understanding of variance in plasticity, is still in its infancy. Most researchers assess plastic traits at single developmental stages and pool results between sexes. Here, we study variation among sexes and developmental stages in inducible morphological defences, a well-known instance of plasticity. We raised fathead minnows, Pimephales promelas, under different levels of background predation risk (conspecific alarm cues or distilled water) in a split-clutch design and studied morphology in both juveniles and adults. In accordance with the theory that plasticity varies across ontogeny and sexes, geometric morphometry analyses revealed significant shape differences between treatments that varied across developmental stages and sexes. Alarm cue-exposed juveniles and adult males developed deeper heads, deeper bodies, longer dorsal fin bases, shorter caudal peduncles and shorter caudal fins. Adult alarm cue-exposed males additionally developed a larger relative eye size. These responses represent putative adaptive plasticity as they are linked to reduced predation risk. Perhaps most surprisingly, we found no evidence for inducible morphological defences in females. Understanding whether similar variation occurs in other taxa and their environments is crucial for modelling evolution.
Collapse
|
31
|
Hangartner S, Lasne C, Sgrò CM, Connallon T, Monro K. Genetic covariances promote climatic adaptation in Australian
Drosophila
*. Evolution 2019; 74:326-337. [DOI: 10.1111/evo.13831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/12/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Sandra Hangartner
- School of Biological Sciences Monash University Building 18 Melbourne Victoria 3800 Australia
| | - Clementine Lasne
- School of Biological Sciences Monash University Building 18 Melbourne Victoria 3800 Australia
| | - Carla M. Sgrò
- School of Biological Sciences Monash University Building 18 Melbourne Victoria 3800 Australia
| | - Tim Connallon
- School of Biological Sciences Monash University Building 18 Melbourne Victoria 3800 Australia
| | - Keyne Monro
- School of Biological Sciences Monash University Building 18 Melbourne Victoria 3800 Australia
- Centre for Geometric Biology Monash University Melbourne Victoria 3800 Australia
| |
Collapse
|
32
|
Matthews G, Hangartner S, Chapple DG, Connallon T. Quantifying maladaptation during the evolution of sexual dimorphism. Proc Biol Sci 2019; 286:20191372. [PMID: 31409252 DOI: 10.1098/rspb.2019.1372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Females and males have distinct trait optima, resulting in selection for sexual dimorphism. However, most traits have strong cross-sex genetic correlations, which constrain evolutionary divergence between the sexes and lead to protracted periods of maladaptation during the evolution of sexual dimorphism. While such constraints are thought to be costly in terms of individual and population fitness, it remains unclear how severe such costs are likely to be. Building upon classical models for the 'cost of selection' in changing environments (sensu Haldane), we derived a theoretical expression for the analogous cost of evolving sexual dimorphism; this cost is a simple function of genetic (co)variances of female and male traits and sex differences in trait optima. We then conducted a comprehensive literature search, compiled quantitative genetic data from a diverse set of traits and populations, and used them to quantify costs of sexual dimorphism in the light of our model. For roughly 90% of traits, costs of sexual dimorphism appear to be modest, and comparable to the costs of fixing one or a few beneficial substitutions. For the remaining traits (approx. 10%), sexual dimorphism appears to carry a substantial cost-potentially orders of magnitude greater than costs of selection during adaptation to environmental changes.
Collapse
Affiliation(s)
- Genevieve Matthews
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Sandra Hangartner
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Tim Connallon
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.,Centre for Geometric Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
33
|
Li XY, Holman L. Evolution of female choice under intralocus sexual conflict and genotype-by-environment interactions. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0425. [PMID: 30150223 DOI: 10.1098/rstb.2017.0425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2018] [Indexed: 12/15/2022] Open
Abstract
In many species, females are hypothesized to obtain 'good genes' for their offspring by mating with males in good condition. However, female preferences might deplete genetic variance and make choice redundant. Additionally, high-condition males sometimes produce low-fitness offspring, for example because of environmental turnover and gene-by-environment interactions (GEIs) for fitness, or because fit males carry sexually antagonistic alleles causing them to produce unfit daughters. Here, we extend previous theory by investigating the evolution of female mate choice in a spatially explicit evolutionary simulation implementing both GEIs and intralocus sexual conflict (IASC), under sex-specific hard or soft selection. We show that IASC can weaken female preferences for high-condition males or even cause a preference for males in low condition, depending on the relative benefits of producing well-adapted sons versus daughters, which in turn depends on the relative hardness of selection on males and females. We discuss the relevance of our results to conservation genetics and empirical evolutionary biology.This article is part of the theme issue 'Linking local adaptation with the evolution of sex differences'.
Collapse
Affiliation(s)
- Xiang-Yi Li
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Luke Holman
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
34
|
De Lisle SP, Goedert D, Reedy AM, Svensson EI. Climatic factors and species range position predict sexually antagonistic selection across taxa. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0415. [PMID: 30150216 DOI: 10.1098/rstb.2017.0415] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2018] [Indexed: 01/31/2023] Open
Abstract
Sex differences in selection are ubiquitous in sexually reproducing organisms. When the genetic basis of traits is shared between the sexes, such sexually antagonistic selection (SAS) creates a potential constraint on adaptive evolution. Theory and laboratory experiments suggest that environmental variation and the degree of local adaptation may all affect the frequency and intensity of SAS. Here, we capitalize on a large database of over 700 spatially or temporally replicated estimates of sex-specific phenotypic selection from wild populations, combined with data on microclimates and geographical range information. We performed a meta-analysis to test three predictions from SAS theory, that selection becomes more concordant between males and females: (1) in more stressful environments, (2) in more variable environments and (3) closer to the edge of the species' range. We find partial empirical support for all three predictions. Within-study analyses indicate SAS decreases in extreme environments, as indicated by a relationship with maximum temperature, minimum precipitation and evaporative potential (PET). Across studies, we found that the average level of SAS at high latitudes was lower, where environmental conditions are typically less stable. Finally, we found evidence for reduced SAS in populations that are far from the centre of their geographical range. However, and notably, we also found some evidence of reduced average strength of selection in these populations, which is in contrast to predictions from classical theoretical models on range limit evolution. Our results suggest that environmental lability and species range position predictably influence sex-specific selection and sexual antagonism in the wild.This article is part of the theme issue 'Linking local adaptation with the evolution of sex differences'.
Collapse
Affiliation(s)
- Stephen P De Lisle
- Evolutionary Ecology Unit, Department of Biology, Lund University, Sölvegatan 37, Lund 22362, Sweden
| | - Debora Goedert
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Aaron M Reedy
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.,Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Erik I Svensson
- Evolutionary Ecology Unit, Department of Biology, Lund University, Sölvegatan 37, Lund 22362, Sweden
| |
Collapse
|
35
|
Connallon T, Débarre F, Li XY. Linking local adaptation with the evolution of sex differences. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0414. [PMID: 30150215 DOI: 10.1098/rstb.2017.0414] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 01/21/2023] Open
Abstract
Many conspicuous forms of evolutionary diversity occur within species. Two prominent examples include evolutionary divergence between populations differentially adapted to their local environments (local adaptation), and divergence between females and males in response to sex differences in selection (sexual dimorphism sensu lato). These two forms of diversity have inspired vibrant research programmes, yet these fields have largely developed in isolation from one another. Nevertheless, conceptual parallels between these research traditions are striking. Opportunities for local adaptation strike a balance between local selection, which promotes divergence, and gene flow-via dispersal and interbreeding between populations-which constrains it. Sex differences are similarly constrained by fundamental features of inheritance that mimic gene flow. Offspring of each sex inherit genes from same-sex and opposite-sex parents, leading to gene flow between each differentially selected half of the population, and raising the question of how sex differences arise and are maintained. This special issue synthesizes and extends emerging research at the interface between the research traditions of local adaptation and sex differences. Each field can promote understanding of the other, and interactions between local adaptation and sex differences can generate new empirical predictions about the evolutionary consequences of selection that varies across space, time, and between the sexes.This article is part of the theme issue 'Linking local adaptation with the evolution of sex differences'.
Collapse
Affiliation(s)
- Tim Connallon
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Florence Débarre
- CNRS, UMR 7241 Centre Interdisciplinaire de Recherche en Biologie (CIRB), Collège de France, Paris, France
| | - Xiang-Yi Li
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
36
|
Cally JG, Stuart-Fox D, Holman L. Meta-analytic evidence that sexual selection improves population fitness. Nat Commun 2019; 10:2017. [PMID: 31043615 PMCID: PMC6494874 DOI: 10.1038/s41467-019-10074-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/16/2019] [Indexed: 01/12/2023] Open
Abstract
Sexual selection has manifold ecological and evolutionary consequences, making its net effect on population fitness difficult to predict. A powerful empirical test is to experimentally manipulate sexual selection and then determine how population fitness evolves. Here, we synthesise 459 effect sizes from 65 experimental evolution studies using meta-analysis. We find that sexual selection on males tends to elevate the mean and reduce the variance for many fitness traits, especially in females and in populations evolving under stressful conditions. Sexual selection had weaker effects on direct measures of population fitness such as extinction rate and proportion of viable offspring, relative to traits that are less closely linked to population fitness. Overall, we conclude that the beneficial population-level consequences of sexual selection typically outweigh the harmful ones and that the effects of sexual selection can differ between sexes and environments. We discuss the implications of these results for conservation and evolutionary biology. Sexual selection has the potential to either increase or decrease absolute fitness. Here, Cally et al. perform a meta-analysis of 65 experimental evolution studies and find that sexual selection on males tends to increase fitness, especially in females evolving under stressful conditions.
Collapse
Affiliation(s)
- Justin G Cally
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Luke Holman
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| |
Collapse
|
37
|
Connallon T, Matthews G. Cross-sex genetic correlations for fitness and fitness components: Connecting theoretical predictions to empirical patterns. Evol Lett 2019; 3:254-262. [PMID: 31171981 PMCID: PMC6546386 DOI: 10.1002/evl3.116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/21/2019] [Accepted: 04/07/2019] [Indexed: 11/18/2022] Open
Abstract
Sex differences in morphology, physiology, development, and behavior are widespread, yet the sexes inherit nearly identical genomes, causing most traits to exhibit strong and positive cross‐sex genetic correlations. In contrast to most other traits, estimates of cross‐sex genetic correlations for fitness and fitness components (rW fm ) are generally low and occasionally negative, implying that a substantial fraction of standing genetic variation for fitness might be sexually antagonistic (i.e., alleles benefitting one sex harm the other). Nevertheless, while low values of rW fm are often regarded as consequences of sexually antagonistic selection, it remains unclear exactly how selection and variation in quantitative traits interact to determine the sign and magnitude of rW fm , making it difficult to relate empirical estimates of cross‐sex genetic correlations to the evolutionary processes that might shape them. We present simple univariate and multivariate quantitative genetic models that explicitly link patterns of sex‐specific selection and trait genetic variation to the cross‐sex genetic correlation for fitness. We show that rW fm provides an unreliable signal of sexually antagonistic selection for two reasons. First, rW fm is constrained to be less than the cross‐sex genetic correlation for traits affecting fitness, regardless of the nature of selection on the traits. Second, sexually antagonistic selection is an insufficient condition for generating negative cross‐sex genetic correlations for fitness. Instead, negative fitness correlations between the sexes (rW fm <0) can only emerge when selection is sexually antagonistic and the strength of directional selection on each sex is strong relative to the amount of shared additive genetic variation in female and male traits. These results imply that empirical tests of sexual antagonism that are based on estimates of rW fm will be conservative and underestimate its true scope. In light of these theoretical results, we revisit current data on rW fm and sex‐specific selection and find that they are consistent with the theory.
Collapse
Affiliation(s)
- Tim Connallon
- School of Biological Sciences, and Centre for Geometric Biology Monash University Clayton Victoria 3800 Australia
| | - Genevieve Matthews
- School of Biological Sciences, and Centre for Geometric Biology Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
38
|
Ruzicka F, Hill MS, Pennell TM, Flis I, Ingleby FC, Mott R, Fowler K, Morrow EH, Reuter M. Genome-wide sexually antagonistic variants reveal long-standing constraints on sexual dimorphism in fruit flies. PLoS Biol 2019; 17:e3000244. [PMID: 31022179 PMCID: PMC6504117 DOI: 10.1371/journal.pbio.3000244] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/07/2019] [Accepted: 04/09/2019] [Indexed: 01/02/2023] Open
Abstract
The evolution of sexual dimorphism is constrained by a shared genome, leading to ‘sexual antagonism’, in which different alleles at given loci are favoured by selection in males and females. Despite its wide taxonomic incidence, we know little about the identity, genomic location, and evolutionary dynamics of antagonistic genetic variants. To address these deficits, we use sex-specific fitness data from 202 fully sequenced hemiclonal Drosophila melanogaster fly lines to perform a genome-wide association study (GWAS) of sexual antagonism. We identify approximately 230 chromosomal clusters of candidate antagonistic single nucleotide polymorphisms (SNPs). In contradiction to classic theory, we find no clear evidence that the X chromosome is a hot spot for sexually antagonistic variation. Characterising antagonistic SNPs functionally, we find a large excess of missense variants but little enrichment in terms of gene function. We also assess the evolutionary persistence of antagonistic variants by examining extant polymorphism in wild D. melanogaster populations and closely related species. Remarkably, antagonistic variants are associated with multiple signatures of balancing selection across the D. melanogaster distribution range and in their sister species D. simulans, indicating widespread and evolutionarily persistent (about 1 million years) genomic constraints on the evolution of sexual dimorphism. Based on our results, we propose that antagonistic variation accumulates because of constraints on the resolution of sexual conflict over protein coding sequences, thus contributing to the long-term maintenance of heritable fitness variation. This study characterises antagonistic loci across the genome of the fruit fly Drosophila melanogaster, finding them to be preferentially associated with variation in coding sequences and to be selectively maintained across worldwide populations of D. melanogaster, and even its sister species D. simulans.
Collapse
Affiliation(s)
- Filip Ruzicka
- Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Mark S. Hill
- Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Department of Ecology and Evolutionary Biology, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tanya M. Pennell
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Ilona Flis
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Fiona C. Ingleby
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Richard Mott
- Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- UCL Genetics Institute, University College London, London, United Kingdom
| | - Kevin Fowler
- Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Edward H. Morrow
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
- * E-mail: (MR); (EHM)
| | - Max Reuter
- Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- * E-mail: (MR); (EHM)
| |
Collapse
|
39
|
Fox RJ, Fromhage L, Jennions MD. Sexual selection, phenotypic plasticity and female reproductive output. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180184. [PMID: 30966965 PMCID: PMC6365872 DOI: 10.1098/rstb.2018.0184] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2018] [Indexed: 01/17/2023] Open
Abstract
In a rapidly changing environment, does sexual selection on males elevate a population's reproductive output? If so, does phenotypic plasticity enhance or diminish any such effect? We outline two routes by which sexual selection can influence the reproductive output of a population: a genetic correlation between male sexual competitiveness and female lifetime reproductive success; and direct effects of males on females' breeding success. We then discuss how phenotypic plasticity of sexually selected male traits and/or female responses (e.g. plasticity in mate choice), as the environment changes, might influence how sexual selection affects a population's reproductive output. Two key points emerge. First, condition-dependent expression of male sexual traits makes it likely that sexual selection increases female fitness if reproductively successful males disproportionately transfer genes that are under natural selection in both sexes, such as genes for foraging efficiency. Condition-dependence is a form of phenotypic plasticity if some of the variation in net resource acquisition and assimilation is attributable to the environment rather than solely genetic in origin. Second, the optimal allocation of resources into different condition-dependent traits depends on their marginal fitness gains. As male condition improves, this can therefore increase or, though rarely highlighted, actually decrease the expression of sexually selected traits. It is therefore crucial to understand how condition determines male allocation of resources to different sexually selected traits that vary in their immediate effects on female reproductive output (e.g. ornaments versus coercive behaviour). In addition, changes in the distribution of condition among males as the environment shifts could reduce phenotypic variance in certain male traits, thereby reducing the strength of sexual selection imposed by females. Studies of adaptive evolution under rapid environmental change should consider the possibility that phenotypic plasticity of sexually selected male traits, even if it elevates male fitness, could have a negative effect on female reproductive output, thereby increasing the risk of population extinction. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Rebecca J. Fox
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Lutz Fromhage
- Department of Biological and Environmental Science, University of Jyvaskyla, PO Box 35, Jyvaskyla 40014, Finland
| | - Michael D. Jennions
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
40
|
Olito C, Abbott JK, Jordan CY. The interaction between sex-specific selection and local adaptation in species without separate sexes. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170426. [PMID: 30150224 PMCID: PMC6125720 DOI: 10.1098/rstb.2017.0426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2018] [Indexed: 11/12/2022] Open
Abstract
Local adaptation in hermaphrodite species can be based on a variety of fitness components, including survival, as well as both female and male sex-functions within individuals. When selection via female and male fitness components varies spatially (e.g. due to environmental heterogeneity), local adaptation will depend, in part, on variation in selection through each fitness component, and the extent to which genetic trade-offs between sex-functions maintain genetic variation necessary for adaptation. Local adaptation will also depend on the hermaphrodite mating system because self-fertilization alters several key factors influencing selection and the maintenance of genetic variance underlying trade-offs between the sex-functions (sexually antagonistic polymorphism). As a first step to guide intuition regarding sex-specific adaptation in hermaphrodites, we develop a simple theoretical model incorporating the essential features of hermaphrodite mating and adaptation in a spatially heterogeneous environment, and explore the interaction between sex-specific selection, self-fertilization and local adaptation. Our results suggest that opportunities for sex-specific local adaptation in hermaphrodites depend strongly on the extent of self-fertilization and inbreeding depression. Using our model as a conceptual framework, we provide a broad overview of the literature on sex-specific selection and local adaptation in hermaphroditic plants and animals, emphasizing promising future directions in light of our theoretical predictions.This article is part of the theme issue 'Linking local adaptation with the evolution of sex differences'.
Collapse
Affiliation(s)
- Colin Olito
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Victoria 3800, Australia
- Department of Biology, Section for Evolutionary Ecology, Lund University, Lund, Sweden
| | - Jessica K Abbott
- Department of Biology, Section for Evolutionary Ecology, Lund University, Lund, Sweden
| | - Crispin Y Jordan
- School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
41
|
Skwierzyńska AM, Radwan J, Plesnar‐Bielak A. Male-limited secondary sexual trait interacts with environment in determining female fitness. Evolution 2018; 72:1716-1722. [PMID: 29984827 PMCID: PMC6175437 DOI: 10.1111/evo.13551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 06/27/2018] [Accepted: 06/30/2018] [Indexed: 12/16/2022]
Abstract
Selection for secondary sexual trait (SST) elaboration may increase intralocus sexual conflict over the optimal values of traits expressed from shared genomes. This conflict can reduce female fitness, and the resulting gender load can be exacerbated by environmental stress, with consequences for a population's ability to adapt to novel environments. However, how the evolution of SSTs interacts with environment in determining female fitness is not well understood. Here, we investigated this question using replicate lines of bulb mites selected for increased or decreased prevalence of a male SST-thickened legs used as weapons. The fitness of females from these lines was measured at a temperature to which the mites were adapted (24°C), as well as at two novel temperatures: 18°C and 28°C. We found the prevalence of the SST interacted with temperature in determining female fecundity. At 28°C, females from populations with high SST prevalence were less fecund than females from populations in which the SST was rare, but the reverse was true at 18°C. Thus, a novel environment does not universally depress female fitness more in populations with a high degree of sexually selected dimorphism. We discuss possible consequences of the interaction we detected for adaptation to novel environments.
Collapse
Affiliation(s)
| | - Jacek Radwan
- Institute of Environmental Biology, Faculty of BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Agata Plesnar‐Bielak
- Institute of Environmental SciencesJagiellonian UniversityGronostajowa7, 30‐387KrakówPoland
| |
Collapse
|
42
|
Knell RJ, Martínez-Ruiz C. Selective harvest focused on sexual signal traits can lead to extinction under directional environmental change. Proc Biol Sci 2018; 284:rspb.2017.1788. [PMID: 29187627 DOI: 10.1098/rspb.2017.1788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/30/2017] [Indexed: 11/12/2022] Open
Abstract
Humans commonly harvest animals based on their expression of secondary sexual traits such as horns or antlers. This selective harvest is thought to have little effect on harvested populations because offtake rates are low and usually only the males are targeted. These arguments do not, however, take the relationship between secondary sexual trait expression and animal condition into account: there is increasing evidence that in many cases the degree of expression of such traits is correlated with an animal's overall well-being, which is partly determined by their genetic match to the environment. Using an individual-based model, we find that when there is directional environmental change, selective harvest of males with the largest secondary sexual traits can lead to extinction in otherwise resilient populations. When harvest is not selective, the males best suited to a new environment gain the majority of matings and beneficial alleles spread rapidly. When these best-adapted males are removed, however, their beneficial alleles are lost, leading to extinction. Given the current changes happening globally, these results suggest that trophy hunting and other cases of selective harvest (such as certain types of insect collection) should be managed with extreme care whenever populations are faced with changing conditions.
Collapse
Affiliation(s)
- Robert J Knell
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Carlos Martínez-Ruiz
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
43
|
Lasne C, Hangartner SB, Connallon T, Sgrò CM. Cross‐sex genetic correlations and the evolution of sex‐specific local adaptation: Insights from classical trait clines in
Drosophila melanogaster. Evolution 2018; 72:1317-1327. [DOI: 10.1111/evo.13494] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/03/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Clémentine Lasne
- School of Biological Sciences Monash University Clayton Victoria 3800 Australia
| | | | - Tim Connallon
- School of Biological Sciences Monash University Clayton Victoria 3800 Australia
| | - Carla M. Sgrò
- School of Biological Sciences Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
44
|
Meuthen D, Baldauf SA, Bakker TCM, Thünken T. Neglected Patterns of Variation in Phenotypic Plasticity: Age- and Sex-Specific Antipredator Plasticity in a Cichlid Fish. Am Nat 2018; 191:475-490. [DOI: 10.1086/696264] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
45
|
Martinossi-Allibert I, Savković U, Đorđević M, Arnqvist G, Stojković B, Berger D. The consequences of sexual selection in well-adapted and maladapted populations of bean beetles†. Evolution 2018; 72:518-530. [DOI: 10.1111/evo.13412] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/24/2017] [Accepted: 12/03/2017] [Indexed: 12/12/2022]
Affiliation(s)
| | - Uroš Savković
- Department of Evolutionary Biology; Institute for Biological Research “Siniša Stanković; ” University of Belgrade; Bulevar despota Stefana 142 Belgrade 11060 Serbia
| | - Mirko Đorđević
- Department of Evolutionary Biology; Institute for Biological Research “Siniša Stanković; ” University of Belgrade; Bulevar despota Stefana 142 Belgrade 11060 Serbia
| | - Göran Arnqvist
- Department of Ecology and Genetics, Evolutionary Biology Centre; Uppsala University; Sweden
| | - Biljana Stojković
- Department of Evolutionary Biology; Institute for Biological Research “Siniša Stanković; ” University of Belgrade; Bulevar despota Stefana 142 Belgrade 11060 Serbia
- Institute of Zoology, Faculty of Biology; University of Belgrade; Studentskitrg 16 Belgrade 11000 Serbia
| | - David Berger
- Department of Ecology and Genetics, Evolutionary Biology Centre; Uppsala University; Sweden
| |
Collapse
|
46
|
Connallon T, Hall MD. Genetic constraints on adaptation: a theoretical primer for the genomics era. Ann N Y Acad Sci 2018; 1422:65-87. [PMID: 29363779 DOI: 10.1111/nyas.13536] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 12/14/2022]
Abstract
Genetic constraints are features of inheritance systems that slow or prohibit adaptation. Several population genetic mechanisms of constraint have received sustained attention within the field since they were first articulated in the early 20th century. This attention is now reflected in a rich, and still growing, theoretical literature on the genetic limits to adaptive change. In turn, empirical research on constraints has seen a rapid expansion over the last two decades in response to changing interests of evolutionary biologists, along with new technologies, expanding data sets, and creative analytical approaches that blend mathematical modeling with genomics. Indeed, one of the most notable and exciting features of recent progress in genetic constraints is the close connection between theoretical and empirical research. In this review, we discuss five major population genetic contexts of genetic constraint: genetic dominance, pleiotropy, fitness trade-offs between types of individuals of a population, sign epistasis, and genetic linkage between loci. For each, we outline historical antecedents of the theory, specific contexts where constraints manifest, and their quantitative consequences for adaptation. From each of these theoretical foundations, we discuss recent empirical approaches for identifying and characterizing genetic constraints, each grounded and motivated by this theory, and outline promising areas for future work.
Collapse
Affiliation(s)
- Tim Connallon
- School of Biological Sciences, and Centre for Geometric Biology, Monash University, Clayton, Victoria, Australia
| | - Matthew D Hall
- School of Biological Sciences, and Centre for Geometric Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
47
|
Holman L, Jacomb F. The effects of stress and sex on selection, genetic covariance, and the evolutionary response. J Evol Biol 2017; 30:1898-1909. [PMID: 28763136 DOI: 10.1111/jeb.13149] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/02/2017] [Accepted: 07/06/2017] [Indexed: 12/26/2022]
Abstract
The capacity of a population to adapt to selection (evolvability) depends on whether the structure of genetic variation permits the evolution of fitter trait combinations. Selection, genetic variance and genetic covariance can change under environmental stress, and males and females are not genetically independent, yet the combined effects of stress and dioecy on evolvability are not well understood. Here, we estimate selection, genetic (co)variance and evolvability in both sexes of Tribolium castaneum flour beetles under stressful and benign conditions, using a half-sib breeding design. Although stress uncovered substantial latent heritability, stress also affected genetic covariance, such that evolvability remained low under stress. Sexual selection on males and natural selection on females favoured a similar phenotype, and there was positive intersex genetic covariance. Consequently, sexual selection on males augmented adaptation in females, and intralocus sexual conflict was weak or absent. This study highlights that increased heritability does not necessarily increase evolvability, suggests that selection can deplete genetic variance for multivariate trait combinations with strong effects on fitness, and tests the recent hypothesis that sexual conflict is weaker in stressful or novel environments.
Collapse
Affiliation(s)
- L Holman
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - F Jacomb
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
48
|
De Lisle SP, Rowe L. Disruptive natural selection predicts divergence between the sexes during adaptive radiation. Ecol Evol 2017; 7:3590-3601. [PMID: 28515895 PMCID: PMC5433998 DOI: 10.1002/ece3.2868] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/01/2017] [Indexed: 12/17/2022] Open
Abstract
Evolution of sexual dimorphism in ecologically relevant traits, for example, via resource competition between the sexes, is traditionally envisioned to stall the progress of adaptive radiation. An alternative view is that evolution of ecological sexual dimorphism could in fact play an important positive role by facilitating sex-specific adaptation. How competition-driven disruptive selection, ecological sexual dimorphism, and speciation interact during real adaptive radiations is thus a critical and open empirical question. Here, we examine the relationships between these three processes in a clade of salamanders that has recently radiated into divergent niches associated with an aquatic life cycle. We find that morphological divergence between the sexes has occurred in a combination of head shape traits that are under disruptive natural selection within breeding ponds, while divergence among species means has occurred independently of this disruptive selection. Further, we find that adaptation to aquatic life is associated with increased sexual dimorphism across taxa, consistent with the hypothesis of clade-wide character displacement between the sexes. Our results suggest the evolution of ecological sexual dimorphism may play a key role in niche divergence among nascent species and demonstrate that ecological sexual dimorphism and ecological speciation can and do evolve concurrently in the early stages of adaptive radiation.
Collapse
Affiliation(s)
- Stephen P De Lisle
- Department of Ecology and Evolutionary Biology University of Toronto Toronto ON Canada
| | - Locke Rowe
- Department of Ecology and Evolutionary Biology University of Toronto Toronto ON Canada
| |
Collapse
|
49
|
Smith SRT, Connallon T. The contribution of the mitochondrial genome to sex‐specific fitness variance. Evolution 2017; 71:1417-1424. [DOI: 10.1111/evo.13238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Shane R. T. Smith
- School of Biological Sciences Monash University Clayton VIC 3800 Australia
| | - Tim Connallon
- School of Biological Sciences Monash University Clayton VIC 3800 Australia
| |
Collapse
|
50
|
Zajitschek F, Connallon T. Partitioning of resources: the evolutionary genetics of sexual conflict over resource acquisition and allocation. J Evol Biol 2017; 30:826-838. [DOI: 10.1111/jeb.13051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/15/2017] [Accepted: 01/27/2017] [Indexed: 01/20/2023]
Affiliation(s)
- F. Zajitschek
- Department of Biological Sciences Monash University Clayton Vic. Australia
| | - T. Connallon
- Department of Biological Sciences Monash University Clayton Vic. Australia
| |
Collapse
|