1
|
Zhou X, Wang C, Kattel G, Zhang J, Xu M. Hydrodynamic and trophic variations reshape macroinvertebrate food webs in urban ecosystems. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100478. [PMID: 39280593 PMCID: PMC11402169 DOI: 10.1016/j.ese.2024.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024]
Abstract
Urbanization is modifying aquatic ecosystems, with hydrodynamic and trophic variations altering biotic assemblages in rapidly expanding cities worldwide. Despite the fundamental bioenergetic role of food webs within these assemblages, their responding mechanism to the hydrodynamic and trophic variations remains largely unknown. Here we show that hydrodynamic and trophic loss, coupled with the weakening of cascade controls by key trophic guilds, leads to a significant decline in the structure, function and stability of macroinvertebrate food webs. Utilizing the allometric diet breadth model and biomass balance model, we established representative food webs for macroinvertebrate groups under varying hydrodynamic and trophic stresses. We found that such losses have reduced ∼75% trophic guild richness, ∼85% biomass flux, and ∼80% biomass storage. These reductions promote trophic guild specialization, further destabilizing food web, eroding interactive strength asymmetry, and diminishing the control of trophic guilds. Furthermore, macroinvertebrate food webs show divergent stability responses under similar stress levels, mainly driven by differences in the cascade controls exerted by key trophic guilds. Our results underscore the critical role of hydrodynamic and trophic variations in shaping urban aquatic ecosystems and highlight the significance of both external environmental revitalization and internal food web dynamics enhancement in restoring the ecological stability in urban settings.
Collapse
Affiliation(s)
- Xiongdong Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, China
| | - Congcong Wang
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, China
| | - Giri Kattel
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, China
- Department of Infrastructure Engineering, University of Melbourne, Melbourne, VIC 3010, Australia
- School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jiahao Zhang
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, China
- National Inland Waterway Regulation Engineering Research Center, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Mengzhen Xu
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Knutie SA, Webster CN, Vaziri GJ, Albert L, Harvey JA, LaRue M, Verrett TB, Soldo A, Koop JAH, Chaves JA, Wegrzyn JL. Urban living can rescue Darwin's finches from the lethal effects of invasive vampire flies. GLOBAL CHANGE BIOLOGY 2024; 30:e17145. [PMID: 38273516 DOI: 10.1111/gcb.17145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024]
Abstract
Human activity changes multiple factors in the environment, which can have positive or negative synergistic effects on organisms. However, few studies have explored the causal effects of multiple anthropogenic factors, such as urbanization and invasive species, on animals and the mechanisms that mediate these interactions. This study examines the influence of urbanization on the detrimental effect of invasive avian vampire flies (Philornis downsi) on endemic Darwin's finches in the Galápagos Islands. We experimentally manipulated nest fly abundance in urban and non-urban locations and then characterized nestling health, fledging success, diet, and gene expression patterns related to host defense. Fledging success of non-parasitized nestlings from urban (79%) and non-urban (75%) nests did not differ significantly. However, parasitized, non-urban nestlings lost more blood, and fewer nestlings survived (8%) compared to urban nestlings (50%). Stable isotopic values (δ15 N) from urban nestling feces were higher than those from non-urban nestlings, suggesting that urban nestlings are consuming more protein. δ15 N values correlated negatively with parasite abundance, which suggests that diet might influence host defenses (e.g., tolerance and resistance). Parasitized, urban nestlings differentially expressed genes within pathways associated with red blood cell production (tolerance) and pro-inflammatory response (innate immunological resistance), compared to parasitized, non-urban nestlings. In contrast, parasitized non-urban nestlings differentially expressed genes within pathways associated with immunoglobulin production (adaptive immunological resistance). Our results suggest that urban nestlings are investing more in pro-inflammatory responses to resist parasites but also recovering more blood cells to tolerate blood loss. Although non-urban nestlings are mounting an adaptive immune response, it is likely a last effort by the immune system rather than an effective defense against avian vampire flies since few nestlings survived.
Collapse
Affiliation(s)
- Sarah A Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| | - Cynthia N Webster
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Grace J Vaziri
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Lauren Albert
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Johanna A Harvey
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Department of Science and Technology, University of Maryland, College Park, Maryland, USA
| | - Michelle LaRue
- School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
| | - Taylor B Verrett
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Alexandria Soldo
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Jennifer A H Koop
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Jaime A Chaves
- Department of Biology, San Francisco State University, San Francisco, California, USA
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
3
|
Palacio FX, Ordano M. Urbanization shapes phenotypic selection of fruit traits in a seed-dispersal mutualism. Evolution 2023; 77:1769-1779. [PMID: 37128948 DOI: 10.1093/evolut/qpad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Urbanization is currently one of the trademarks of the Anthropocene, accelerating evolutionary processes and reshaping ecological interactions over short time scales. Species interactions represent a fundamental pillar of diversity that is being altered globally by anthropogenic change. Urban environments, despite their potential impact, have seldom been studied in relation to how they shape natural selection of phenotypic traits in multispecies interactions. Using a seed-dispersal mutualism as a study system, we estimated the regime and magnitude of phenotypic selection exerted by frugivores on fruit and seed traits across three plant populations with different degrees of urbanization (urban, semiurban, and rural). Urbanization weakened phenotypic selection via an indirect positive impact on fruit production and fitness and, to a lesser extent, through a direct positive effect on species visitation rates. Our results show that urban ecosystems may affect multifarious selection of traits in the short term and highlight the role of humans in shaping eco-evolutionary dynamics of multispecies interactions.
Collapse
Affiliation(s)
- Facundo X Palacio
- Sección Ornitología, División Zoología Vertebrados, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata and Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Mariano Ordano
- Fundación Miguel Lillo, San Miguel de Tucumán, Argentina
- Instituto de Ecología Regional, Universidad Nacional de Tucumán, Consejo Nacional de Investigaciones Científicas y Técnicas, Yerba Buena, Argentina
| |
Collapse
|
4
|
Fukano Y, Uchida K, Tachiki Y. Urban-rural gradients: how landscape changes drive adaptive evolution of plant competitive traits. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
5
|
Qu J, Bonte D, Vandegehuchte ML. Phenotypic and genotypic divergence of plant‐herbivore interactions along an urbanization gradient. Evol Appl 2022; 15:865-877. [PMID: 35603025 PMCID: PMC9108311 DOI: 10.1111/eva.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
Urban environments provide challenging conditions for species survival, including increased temperatures, drought and pollution. Species can deal with these conditions through evolution across generations or the immediate expression of phenotypic plasticity. The resulting phenotypic changes are key to the performance of species and their interactions with other species in the community. We here document patterns of herbivory in Arabidopsis thaliana along a rural–urban gradient, and tested the genetic background and ecological consequences of traits related to herbivore resistance. Aphid densities increased with urbanization levels along the gradient while plant size did not change. Offspring of urban mothers, raised under common garden conditions, were larger and had a decreased trichome density and seed set but a higher caterpillar (Pieris brassicae) tolerance. In contrast, no urban evolution was detected for defences against aphids (Myzus persicae). Aphids reduced seed set more strongly in urban offspring, but this effect disappeared in second‐generation plants. In general, urban adaptations as expressed in size and caterpillar tolerance were found, but these adaptations were associated with smaller inflorescences. The maternal effect on the response of seed set to aphid feeding demonstrates the relevance of intergenerational plasticity as a direct ecological consequence of herbivory. Our study demonstrates that the urban environment interacts with the plant's genotype and the extended phenotype as determined by ecological interactions.
Collapse
Affiliation(s)
- Jiao Qu
- Lushan Botanical Garden Chinese Academy of Sciences Jiujiang 332900 Jiangxi China
- Terrestrial Ecology Unit Department of Biology Ghent University Karel Lodewijk Ledeganckstraat 35 9000 Ghent Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit Department of Biology Ghent University Karel Lodewijk Ledeganckstraat 35 9000 Ghent Belgium
| | - Martijn L. Vandegehuchte
- Terrestrial Ecology Unit Department of Biology Ghent University Karel Lodewijk Ledeganckstraat 35 9000 Ghent Belgium
- Department of Biology Norwegian University of Science and Technology Høgskoleringen 5 7491 Trondheim Norway
| |
Collapse
|
6
|
Dunn RR, Burger JR, Carlen EJ, Koltz AM, Light JE, Martin RA, Munshi-South J, Nichols LM, Vargo EL, Yitbarek S, Zhao Y, Cibrián-Jaramillo A. A Theory of City Biogeography and the Origin of Urban Species. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.761449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many of the choices humans make with regard to infrastructure, urban planning and other phenomena have impacts that will last thousands of years. This can readily be seen in modern cities in which contemporary streets run along street grids that were laid out thousands of years prior or even in which ancient viaducts still play a role. However, rarely do evolutionary biologists explicitly consider the future of life likely to be associated with the decisions we are making today. Here, we consider the evolutionary future of species in cities with a focus on the origin of lineages and species. We do so by adjusting evolutionary predictions from the theory of island biogeography so as to correspond to the unique features of cities as islands. Specifically, the species endemic to cities tend to be associated with the gray habitats in cities. Those habitats tend to be dominated by human bodies, pet bodies and stored food. It is among such species where the origin of new lineages is most likely, although most research on evolution in cities has focused on green habitats. We conclude by considering a range of scenarios for the far future and their implications for the origin of lineages and species.
Collapse
|
7
|
Abstract
Although research performed in cities will not uncover new evolutionary mechanisms, it could provide unprecedented opportunities to examine the interplay of evolutionary forces in new ways and new avenues to address classic questions. However, while the variation within and among cities affords many opportunities to advance evolutionary biology research, careful alignment between how cities are used and the research questions being asked is necessary to maximize the insights that can be gained. In this review, we develop a framework to help guide alignment between urban evolution research approaches and questions. Using this framework, we highlight what has been accomplished to date in the field of urban evolution and identify several up-and-coming research directions for further expansion. We conclude that urban environments can be used as evolutionary test beds to tackle both new and long-standing questions in evolutionary biology.
Collapse
Affiliation(s)
- Sarah E. Diamond
- Department of Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA;,
| | - Ryan A. Martin
- Department of Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA;,
| |
Collapse
|
8
|
Martin RA, Chick LD, Garvin ML, Diamond SE. In a nutshell, a reciprocal transplant experiment reveals local adaptation and fitness trade-offs in response to urban evolution in an acorn-dwelling ant. Evolution 2021; 75:876-887. [PMID: 33586171 PMCID: PMC8247984 DOI: 10.1111/evo.14191] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/07/2021] [Indexed: 01/02/2023]
Abstract
Urban-driven evolution is widely evident, but whether these changes confer fitness benefits and thus represent adaptive urban evolution is less clear. We performed a multiyear field reciprocal transplant experiment of acorn-dwelling ants across urban and rural environments. Fitness responses were consistent with local adaptation: we found a survival advantage of the "home" and "local" treatments compared to "away" and "foreign" treatments. Seasonal bias in survival was consistent with evolutionary patterns of gains and losses in thermal tolerance traits across the urbanization gradient. Rural ants in the urban environment were more vulnerable in the summer, putatively due to low heat tolerance, and urban ants in the rural environment were more vulnerable in winter, putatively due to an evolved loss of cold tolerance. The results for fitness via fecundity were also generally consistent with local adaptation, if somewhat more complex. Urban-origin ants produced more alates in their home versus away environment, and rural-origin ants had a local advantage in the rural environment. Overall, the magnitude of local adaptation was lower for urban ants in the novel urban environment compared with rural ants adapted to the ancestral rural environment, adding further evidence that species might not keep pace with anthropogenic change.
Collapse
Affiliation(s)
- Ryan A. Martin
- Department of BiologyCase Western Reserve UniversityClevelandOhio44106
| | - Lacy D. Chick
- Department of BiologyCase Western Reserve UniversityClevelandOhio44106
- Hawken SchoolGates MillsOhio44040
| | - Matthew L. Garvin
- Department of BiologyCase Western Reserve UniversityClevelandOhio44106
- Department of BiologyCentral Michigan UniversityMount PleasantMichigan48859
| | - Sarah E. Diamond
- Department of BiologyCase Western Reserve UniversityClevelandOhio44106
| |
Collapse
|
9
|
Diamond SE, Martin RA. Physiological adaptation to cities as a proxy to forecast global-scale responses to climate change. J Exp Biol 2021; 224:224/Suppl_1/jeb229336. [PMID: 33627462 DOI: 10.1242/jeb.229336] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cities are emerging as a new venue to overcome the challenges of obtaining data on compensatory responses to climatic warming through phenotypic plasticity and evolutionary change. In this Review, we highlight how cities can be used to explore physiological trait responses to experimental warming, and also how cities can be used as human-made space-for-time substitutions. We assessed the current literature and found evidence for significant plasticity and evolution in thermal tolerance trait responses to urban heat islands. For those studies that reported both plastic and evolved components of thermal tolerance, we found evidence that both mechanisms contributed to phenotypic shifts in thermal tolerance, rather than plastic responses precluding or limiting evolved responses. Interestingly though, for a broader range of studies, we found that the magnitude of evolved shifts in thermal tolerance was not significantly different from the magnitude of shift in those studies that only reported phenotypic results, which could be a product of evolution, plasticity, or both. Regardless, the magnitude of shifts in urban thermal tolerance phenotypes was comparable to more traditional space-for-time substitutions across latitudinal and altitudinal clines in environmental temperature. We conclude by considering how urban-derived estimates of plasticity and evolution of thermal tolerance traits can be used to improve forecasting methods, including macrophysiological models and species distribution modelling approaches. Finally, we consider areas for further exploration including sub-lethal performance traits and thermal performance curves, assessing the adaptive nature of trait shifts, and taking full advantage of the environmental thermal variation that cities generate.
Collapse
Affiliation(s)
- Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ryan A Martin
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
10
|
Meyer JM, Leempoel K, Losapio G, Hadly EA. Molecular Ecological Network Analyses: An Effective Conservation Tool for the Assessment of Biodiversity, Trophic Interactions, and Community Structure. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.588430] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
11
|
Xie S, Wang X, Ren Y, Su Z, Su Y, Wang S, Zhou W, Lu F, Qian Y, Gong C, Huang B, Ouyang Z. Factors responsible for forest and water bird distributions in rivers and lakes along an urban gradient in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139308. [PMID: 32492564 DOI: 10.1016/j.scitotenv.2020.139308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/11/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Urban rivers and lakes, in combination with nearby green spaces, provide important habitat for urban birds, but few urban studies have focused on forest and water birds simultaneously along an urban intensity gradient. In this study, we randomly chose 39 rivers and lakes along an urban gradient of Beijing to examine bird community parameters in relation to aquatic and terrestrial habitat conditions, aquatic life data, and water quality data. We selected models with the AICc (corrected Akaike information criterion) method, bivariate linear or generalized linear regressions, and structural equation modeling to determine distribution patterns of avian communities along an urban gradient and bird-environment relationships. We found that both forest and water bird species and individuals peaked at intermediate urbanization intensities, especially for abundance of both forest and water bird and water bird species richness and abundance. We suggest that the differences in the strength of response to urbanization and the similarities in the gradient distribution pattern between forest and water birds should receive more attention in future urbanization gradient studies. Significant correlation ship between species richness of resident water birds, fish foragers, and insectivore-frugivores, abundance of insectivores, insectivore-frugivores (negative), and granivores (positive) and impervious surface proportion within 1-km radius buffer of sampled sites became more evident after coverage of artificial surfaces exceeded a 50% threshold. Regressions showed that distance from the urban center, number of islands in waterbody, and proportion of gross or unarmored shoreline length were significantly and positively related to species richness and abundance of both forest and water birds. The availability of unarmored shoreline is a critical pathway through which urbanization detrimentally impacts avian diversity. Our results demonstrate how the urban intensity gradient affects the relative availability of food resources and habitat, which could provide practical applications for urban landscape planning and avian biodiversity conservation in urban areas.
Collapse
Affiliation(s)
- Shilin Xie
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049,China
| | - Xiaoke Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049,China; Beijing Urban Ecosystem Research Station, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yufen Ren
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049,China; Beijing Urban Ecosystem Research Station, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhimin Su
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049,China; Beijing Urban Ecosystem Research Station, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuebo Su
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049,China
| | - Siqi Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049,China; Beijing Urban Ecosystem Research Station, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weiqi Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049,China; Beijing Urban Ecosystem Research Station, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fei Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049,China; Beijing Urban Ecosystem Research Station, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuguo Qian
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049,China
| | - Cheng Gong
- School of Life Science, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049,China
| | - Binbin Huang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049,China
| | - Zhiyun Ouyang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049,China.
| |
Collapse
|
12
|
Weaver AK, Hood GR, Foster M, Egan SP. Trade-off between fecundity and survival generates stabilizing selection on gall size. Ecol Evol 2020; 10:10207-10218. [PMID: 33005376 PMCID: PMC7520187 DOI: 10.1002/ece3.6682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/27/2020] [Accepted: 07/20/2020] [Indexed: 11/09/2022] Open
Abstract
Complex interactions within multitrophic communities are fundamental to the evolution of individual species that reside within them. One common outcome of species interactions are fitness trade-offs, where traits adaptive in some circumstances are maladaptive in others. Here, we identify a fitness trade-off between fecundity and survival in the cynipid wasp Callirhytis quercusbatatoides that induces multichambered galls on the stem of its host plant Quercus virginiana. We first quantified this trade-off in natural populations by documenting two relationships: a positive association between the trait gall size and fecundity, as larger galls contain more offspring, and a negative association between gall size and survival, as larger galls are attacked by birds at a higher rate. Next, we performed a field-based experimental evolution study where birds were excluded from the entire canopy of 11 large host trees for five years. As a result of the five-year release from avian predators, we observed a significant shift to larger galls per tree. Overall, our study demonstrates how two opposing forces of selection can generate stabilizing selection on a critical phenotypic trait in wild populations, and how traits can evolve rapidly in the predicted direction when conditions change.
Collapse
Affiliation(s)
| | - Glen Ray Hood
- Department of BioSciencesRice UniversityHoustonTXUSA
- Department of Biological SciencesWayne State UniversityDetroitMIUSA
| | | | - Scott P. Egan
- Department of BioSciencesRice UniversityHoustonTXUSA
| |
Collapse
|
13
|
Pisman M, Bonte D, de la Peña E. Urbanization alters plastic responses in the common dandelion Taraxacum officinale. Ecol Evol 2020; 10:4082-4090. [PMID: 32489632 PMCID: PMC7244812 DOI: 10.1002/ece3.6176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 11/07/2022] Open
Abstract
Urban environments expose species to contrasting selection pressures relative to rural areas due to altered microclimatic conditions, habitat fragmentation, and changes in species interactions. To improve our understanding on how urbanization impacts selection through biotic interactions, we assessed differences in plant defense and tolerance, dispersal, and flowering phenology of a common plant species (Taraxacum officinale) along an urbanization gradient and their reaction norms in response to a biotic stressor (i.e., herbivory). We raised plants from 45 lines collected along an urbanization gradient under common garden conditions and assessed the impact of herbivory on plant growth (i.e., aboveground biomass), dispersal capacity (i.e., seed morphology), and plant phenology (i.e., early seed production) by exposing half of our plants to two events of herbivory (i.e., grazing by locusts). Independent from their genetic background, all plants consistently increased their resistance to herbivores by which the second exposure to locusts resulted in lower levels of damage suffered. Herbivory had consistent effects on seed pappus length, with seeds showing a longer pappus (and, hence, increased dispersal capacities) regardless of urbanization level. Aboveground plant biomass was neither affected by urbanization nor herbivore presence. In contrast to consistent responses in plant defenses and pappus length, plant fitness did vary between lines. Urban lines had a reduced early seed production following herbivory while rural and suburban lines did not show any plastic response. Our results show that herbivory affects plant phenotypes but more importantly that differences in herbivory reaction norms exist between urban and rural populations.
Collapse
Affiliation(s)
- Matti Pisman
- Terrestrial Ecology Unit (TEREC)Department of BiologyGhent UniversityGentBelgium
| | - Dries Bonte
- Terrestrial Ecology Unit (TEREC)Department of BiologyGhent UniversityGentBelgium
| | - Eduardo de la Peña
- Terrestrial Ecology Unit (TEREC)Department of BiologyGhent UniversityGentBelgium
- Institute for Subtropical and Mediterranean HorticultureFinca Experimental La MayoraSpanish National Research Council (IHSM‐UMA‐CSIC)MalagaSpain
| |
Collapse
|
14
|
Barbour MA, Greyson-Gaito CJ, Sotoodeh A, Locke B, Bascompte J. Loss of consumers constrains phenotypic evolution in the resulting food web. Evol Lett 2020; 4:266-277. [PMID: 32547786 PMCID: PMC7293086 DOI: 10.1002/evl3.170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/14/2020] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
The loss of biodiversity is altering the structure of ecological networks; however, we are currently in a poor position to predict how these altered communities will affect the evolution of remaining populations. Theory on fitness landscapes provides a framework for predicting how selection alters the evolutionary trajectory and adaptive potential of populations, but often treats the network of interacting populations as a “black box.” Here, we integrate ecological networks and fitness landscapes to examine how changes in food‐web structure shape phenotypic evolution. We conducted a field experiment that removed a guild of larval parasitoids that imposed direct and indirect selection pressures on an insect herbivore. We then measured herbivore survival as a function of three key phenotypic traits to estimate directional, quadratic, and correlational selection gradients in each treatment. We used these selection gradients to characterize the slope and curvature of the fitness landscape to understand the direct and indirect effects of consumer loss on phenotypic evolution. We found that the number of traits under directional selection increased with the removal of larval parasitoids, indicating evolution was more constrained toward a specific combination of traits. Similarly, we found that the removal of larval parasitoids altered the curvature of the fitness landscape in such a way that tended to decrease the evolvability of the traits we measured in the next generation. Our results suggest that the loss of trophic interactions can impose greater constraints on phenotypic evolution. This indicates that the simplification of ecological communities may constrain the adaptive potential of remaining populations to future environmental change.
Collapse
Affiliation(s)
- Matthew A Barbour
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich 8057 ZH Switzerland.,Department of Zoology University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Christopher J Greyson-Gaito
- Department of Zoology University of British Columbia Vancouver BC V6T 1Z4 Canada.,Department of Integrative Biology University of Guelph Guelph ON N1G 2W1 Canada
| | - Arezoo Sotoodeh
- Department of Zoology University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Brendan Locke
- Department of Biological Sciences Humboldt State University Arcata California 95521
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich 8057 ZH Switzerland
| |
Collapse
|
15
|
Start D. Ecological rigidity and the hardness of selection in the wild. Evolution 2020; 74:859-870. [PMID: 32187651 DOI: 10.1111/evo.13950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 11/27/2022]
Abstract
Hutchinson's ecological theater and evolutionary play is a classical view of evolutionary ecology-ecology provides a template in which evolution occurs. An opposing view is that ecological and evolutionary changes are like two actors on a stage, intertwined by density and frequency dependence. These opposing views correspond to hard and soft selection, respectively. Although often presented as diametrically opposed, both types of selection can occur simultaneously, yet we largely lack knowledge of the relative importance of hard versus soft selection in the wild. I use a dataset of 3000 individual gall makers from 15 wild local populations over 5 years to investigate the hardness of selection. I show that enemy attack consistently favors some gall sizes over others (hard selection) but that these biases can be fine-tuned by density and frequency dependence (soft selection). As a result, selection is hard and soft in roughly equal measures, but the importance of each type varies as species interactions shift. I conclude that eco-evolutionary dynamics should occur when a mix of hard and soft selection acts on a population. This work contributes to the rapprochement of disparate views of evolutionary ecology-ecology is neither a rigid theater nor a flexible actor, but instead embodies components of both.
Collapse
Affiliation(s)
- Denon Start
- Center for Population Biology, UC Davis, Davis, California, 95616
| |
Collapse
|
16
|
Knutie SA. Food supplementation affects gut microbiota and immunological resistance to parasites in a wild bird species. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13567] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sarah A. Knutie
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA
- Institute for Systems Genomics University of Connecticut Storrs CT USA
| |
Collapse
|
17
|
Abstract
The distribution of biodiversity depends on the combined and interactive effects of ecological and evolutionary processes. The joint contribution of these processes has focused almost exclusively on deterministic effects, even though mechanisms that increase the importance of random ecological processes are expected to also increase the importance of random evolutionary processes. Here we manipulate the sizes of old field fragments to generate correlated sampling effects for a focal population (a gall maker) and its enemy community. Traits and communities were more variable in smaller patches. However, because of the preference of some enemies for some trait values (gall sizes), random variation in population mean trait values exacerbated differences in community composition. The random distribution of traits and interactions created predictable but highly variable patterns of natural selection. Our study highlights how stochastic processes can affect ecological and evolutionary processes structuring the strength and direction of selection locally and at larger scales.
Collapse
|
18
|
Start D, Barbour MA, Bonner C. Urbanization reshapes a food web. J Anim Ecol 2019; 89:808-816. [PMID: 31677271 DOI: 10.1111/1365-2656.13136] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/28/2019] [Indexed: 01/20/2023]
Abstract
Cities represent humanity's most intense impact on our planet, with more than half of all humans now residing in urban areas. Indeed, urbanization has well-understood impacts on both individual species and general patterns of biodiversity. However, species do not exist in isolation, but are instead members of complex interaction networks that shape patterns of diversity and influence ecosystem services. Despite the importance of species interaction for creating patterns of diversity, we do not understand how urbanization alters these interactions. Here, we investigate how an interaction network (food web) is reshaped by urbanization. We show that, consistent with theory, cities tend to support less diverse ecological communities, and rare species that interact with few species are particularly sensitive to urbanization. As a result, remnant urban food webs tend to have more interactions per species and greater connectance, creating more integrated interaction networks. We discuss the implications of this food web reshaping for ecological stability, eco-evolutionary dynamics, and the joining of interaction networks and conservation planning. The role of cities in reshaping interaction networks provides an interesting study of food web (dis)assembly, while also shedding light on new approaches to applied conservation issues.
Collapse
Affiliation(s)
- Denon Start
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Matthew A Barbour
- Department of Evolutionary Biology & Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Colin Bonner
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Hood GR, Comerford M, Weaver AK, Morton PM, Egan SP. Human-mediated disturbance in multitrophic interactions results in outbreak levels of North America's most venomous caterpillar. Biol Lett 2019; 15:20190470. [PMID: 31480937 DOI: 10.1098/rsbl.2019.0470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Anthropogenic environmental change is predicted to disrupt multitrophic interactions, which may have drastic consequences for population-level processes. Here, we investigate how a large-scale human-mediated disturbance affects the abundance of North America's most venomous caterpillar species, Megalopyge opercularis. Specifically, we used a natural experiment where netting was deployed to cover the entire canopies of a subset of mature southern live oak trees (Quercus virginiana) to exclude urban pest birds (grackles and pigeons), throughout an 8.1 km2 area encompassing a medical centre in Houston, Texas. We used this experimental exclusion to test the following hypothesis: release from avian predators increases caterpillar abundance to outbreak levels, which increases the risk to human health. Results from a multi-year survey show that caterpillar abundance increased, on average, more than 7300% on netted versus non-netted trees. Thus, increases in caterpillar abundance due to anthropogenic enemy release increase human exposure to this venomous pest, and should be considered a health threat in the area. This study emphasizes the unforeseen consequences of ecological disturbance for species interactions and highlights the importance of considering ecology in urban planning.
Collapse
Affiliation(s)
- Glen R Hood
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.,Department of Biosciences, Rice University, Houston, TX 77005, USA
| | | | - Amanda K Weaver
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Patricia M Morton
- Department of Sociology, Wayne State University, Detroit, MI 48202, USA
| | - Scott P Egan
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
20
|
Miles LS, Breitbart ST, Wagner HH, Johnson MTJ. Urbanization Shapes the Ecology and Evolution of Plant-Arthropod Herbivore Interactions. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00310] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Knutie SA, Chaves JA, Gotanda KM. Human activity can influence the gut microbiota of Darwin's finches in the Galapagos Islands. Mol Ecol 2019; 28:2441-2450. [DOI: 10.1111/mec.15088] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Sarah A. Knutie
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut
| | - Jaime A. Chaves
- Colegio de Ciencias Biológicas y Ambientales Universidad San Francisco de Quito Cumbayá Quito Ecuador
- Galápagos Science Center Puerto Baquerizo Moreno Ecuador
| | | |
Collapse
|
22
|
Rivkin LR, Santangelo JS, Alberti M, Aronson MFJ, de Keyzer CW, Diamond SE, Fortin M, Frazee LJ, Gorton AJ, Hendry AP, Liu Y, Losos JB, MacIvor JS, Martin RA, McDonnell MJ, Miles LS, Munshi‐South J, Ness RW, Newman AEM, Stothart MR, Theodorou P, Thompson KA, Verrelli BC, Whitehead A, Winchell KM, Johnson MTJ. A roadmap for urban evolutionary ecology. Evol Appl 2019; 12:384-398. [PMID: 30828362 PMCID: PMC6383741 DOI: 10.1111/eva.12734] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/29/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022] Open
Abstract
Urban ecosystems are rapidly expanding throughout the world, but how urban growth affects the evolutionary ecology of species living in urban areas remains largely unknown. Urban ecology has advanced our understanding of how the development of cities and towns change environmental conditions and alter ecological processes and patterns. However, despite decades of research in urban ecology, the extent to which urbanization influences evolutionary and eco-evolutionary change has received little attention. The nascent field of urban evolutionary ecology seeks to understand how urbanization affects the evolution of populations, and how those evolutionary changes in turn influence the ecological dynamics of populations, communities, and ecosystems. Following a brief history of this emerging field, this Perspective article provides a research agenda and roadmap for future research aimed at advancing our understanding of the interplay between ecology and evolution of urban-dwelling organisms. We identify six key questions that, if addressed, would significantly increase our understanding of how urbanization influences evolutionary processes. These questions consider how urbanization affects nonadaptive evolution, natural selection, and convergent evolution, in addition to the role of urban environmental heterogeneity on species evolution, and the roles of phenotypic plasticity versus adaptation on species' abundance in cities. Our final question examines the impact of urbanization on evolutionary diversification. For each of these six questions, we suggest avenues for future research that will help advance the field of urban evolutionary ecology. Lastly, we highlight the importance of integrating urban evolutionary ecology into urban planning, conservation practice, pest management, and public engagement.
Collapse
|
23
|
Abstract
Species do not live, interact, or evolve in isolation but are instead members of complex ecological communities. In ecological terms, complex multispecies interactions can be understood by considering indirect effects that are mediated by changes in traits and abundances of intermediate species. Interestingly, traits and abundances are also central to our understanding of phenotypic selection, suggesting that indirect effects may be extended to understand evolution in complex communities. Here we explore indirect ecological effects and their evolutionary corollary in a well-understood food web comprising a plant, its herbivores, and enemies that select for opposite defensive phenotypes in one of the herbivores. We show that ecological indirect interactions are mediated by changes to both the traits and the abundances of intermediate species and that these changes ultimately reduce enemy attack and weaken selection. We discuss the generality of the link between indirect effects and selection. We go on to argue that local adaptation and eco-evolutionary feedback may be less likely in complex multispecies food webs than in simpler food chains (e.g., coevolution). Overall, considering selection in complex interaction networks can facilitate the rapprochement of community ecology and evolution.
Collapse
|
24
|
Hood GR, Zhang L, Egan SP. Digest: Disentangled bank: Less diverse urban environments modify the shape and magnitude of natural selection. Evolution 2018; 72:1972-1973. [PMID: 30101493 DOI: 10.1111/evo.13577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/02/2018] [Indexed: 11/30/2022]
Abstract
Urbanization provides a natural experiment for biologists to test how anthropogenic environmental change affects evolution in real time and frames predictions for anticipated evolutionary outcomes worldwide. Start et al. () found that changes in species interactions (herbivore abundance and avian predation) along urbanization gradients predictably alter the shape and magnitude of natural selection on gall size (a defensive trait), suggesting that rapid global environmental change can alter species interactions, which may have foreseeable evolutionary consequences.
Collapse
Affiliation(s)
- Glen R Hood
- Department of Biosciences, Rice University, Houston, Texas, 77005.,Department of Biological Sciences, Wayne State University, Detroit, Michigan, 48202
| | - Linyi Zhang
- Department of Biosciences, Rice University, Houston, Texas, 77005
| | - Scott P Egan
- Department of Biosciences, Rice University, Houston, Texas, 77005
| |
Collapse
|