1
|
Egan JP, Simons AM, Alavi-Yeganeh MS, Hammer MP, Tongnunui P, Arcila D, Betancur-R R, Bloom DD. Phylogenomics, Lineage Diversification Rates, and the Evolution of Diadromy in Clupeiformes (Anchovies, Herrings, Sardines, and Relatives). Syst Biol 2024; 73:683-703. [PMID: 38756097 DOI: 10.1093/sysbio/syae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024] Open
Abstract
Migration independently evolved numerous times in animals, with a myriad of ecological and evolutionary implications. In fishes, perhaps the most extreme form of migration is diadromy, the migration between marine and freshwater environments. Key and long-standing questions are: how many times has diadromy evolved in fishes, how frequently do diadromous clades give rise to non-diadromous species, and does diadromy influence lineage diversification rates? Many diadromous fishes have large geographic ranges with constituent populations that use isolated freshwater habitats. This may limit gene flow between some populations, increasing the likelihood of speciation in diadromous lineages relative to nondiadromous lineages. Alternatively, diadromy may reduce lineage diversification rates if migration is associated with enhanced dispersal capacity that facilitates gene flow within and between populations. Clupeiformes (herrings, sardines, shads, and anchovies) is a model clade for testing hypotheses about the evolution of diadromy because it includes an exceptionally high proportion of diadromous species and several independent evolutionary origins of diadromy. However, relationships among major clupeiform lineages remain unresolved, and existing phylogenies sparsely sampled diadromous species, limiting the resolution of phylogenetically informed statistical analyses. We assembled a phylogenomic dataset and used multi-species coalescent and concatenation-based approaches to generate the most comprehensive, highly resolved clupeiform phylogeny to date, clarifying associations among several major clades and identifying recalcitrant relationships needing further examination. We determined that variation in rates of sequence evolution (heterotachy) and base-composition (nonstationarity) had little impact on our results. Using this phylogeny, we characterized evolutionary patterns of diadromy and tested for differences in lineage diversification rates between diadromous, marine, and freshwater lineages. We identified 13 transitions to diadromy, all during the Cenozoic Era (10 origins of anadromy, 2 origins of catadromy, and 1 origin of amphidromy), and 7 losses of diadromy. Two diadromous lineages rapidly generated nondiadromous species, demonstrating that diadromy is not an evolutionary dead end. We discovered considerably faster transition rates out of diadromy than to diadromy. The largest lineage diversification rate increase in Clupeiformes was associated with a transition to diadromy, but we uncovered little statistical support for categorically faster lineage diversification rates in diadromous versus nondiadromous fishes. We propose that diadromy may increase the potential for accelerated lineage diversification, particularly in species that migrate long distances. However, this potential may only be realized in certain biogeographic contexts, such as when diadromy allows access to ecosystems in which there is limited competition from incumbent species.
Collapse
Affiliation(s)
- Joshua P Egan
- Department of Biological Sciences, Western Michigan University, 1903 W Michigan Ave., Kalamazoo, MI 49008, USA
- Bell Museum of Natural History, University of Minnesota, 100 Ecology, 1987 Upper Buford Circle, Saint Paul, MN 55108, USA
| | - Andrew M Simons
- Bell Museum of Natural History, University of Minnesota, 100 Ecology, 1987 Upper Buford Circle, Saint Paul, MN 55108, USA
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, 2003 Upper Buford Circle, Saint Paul, MN 55108, USA
| | | | - Michael P Hammer
- Museum and Art Gallery of the Northern Territory, GPO Box 4646, Darwin, NT 0801, Australia
| | - Prasert Tongnunui
- Department of Marine Science and Environment, Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Sikao, Trang 92150, Thailand
| | - Dahiana Arcila
- Scripps Institution of Oceanography, University of California - San Diego, La Jolla, CA 92093, USA
| | - Ricardo Betancur-R
- Scripps Institution of Oceanography, University of California - San Diego, La Jolla, CA 92093, USA
| | - Devin D Bloom
- Department of Biological Sciences, Western Michigan University, 1903 W Michigan Ave., Kalamazoo, MI 49008, USA
- School of the Environment, Geography, and Sustainability, Western Michigan University, 1903 W Michigan Ave, Kalamazoo, MI 49008, USA
| |
Collapse
|
2
|
Ramírez-Álvarez R, Peterson TA, Contreras S, Górski K. Evolution of the ecological niche behind the largest disjunct freshwater fish distribution in the world. J Anim Ecol 2024; 93:715-730. [PMID: 38529896 DOI: 10.1111/1365-2656.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/19/2024] [Indexed: 03/27/2024]
Abstract
Ecological processes that are behind distributions of species that inhabit isolated localities, complex disjunct distributions, remain poorly understood. Traditionally, vicariance and dispersion have been proposed as explanatory mechanisms that drive such distributions. However, to date, our understanding of the ecological processes driving evolution of ecological niches associated with disjunct distributions remains rudimentary. Here, we propose a framework to deconstruct drivers of such distribution using World's most widespread freshwater fish Galaxias maculatus as a model and integrating marine and freshwater environments where its life cycle may occur. Specifically, we assessed ecological and historical factors (Gondwanan vicariance, marine dispersion) and potential dispersion (niche-tracking) that explain its distribution in the Southern Hemisphere. Estimated distribution was consistent with previously reported distribution and mainly driven by temperature and topography in freshwater environments and by primary productivity and nitrate in marine environments. Niche dynamics of G. maculatus provided evidence of synergy between vicariance and marine dispersion as explanatory mechanisms of its disjunct distribution, suggesting that its ecological niche was conserved since approximately 30 Ma ago. This integrated assessment of ecological niche in marine and freshwater environments serves as a generic framework that may be applied to understand processes underpinning complex distributions of diadromous species.
Collapse
Affiliation(s)
| | - Townsend A Peterson
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | - Sergio Contreras
- Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Konrad Górski
- Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
3
|
Jense C, Adams M, Raadik TA, Waters JM, Morgan DL, Barmuta LA, Hardie SA, Deagle BE, Burridge CP. Cryptic diversity within two widespread diadromous freshwater fishes (Teleostei: Galaxiidae). Ecol Evol 2024; 14:e11201. [PMID: 38799386 PMCID: PMC11116845 DOI: 10.1002/ece3.11201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 05/29/2024] Open
Abstract
Identification of taxonomically cryptic species is essential for the effective conservation of biodiversity. Freshwater-limited organisms tend to be genetically isolated by drainage boundaries, and thus may be expected to show substantial cryptic phylogenetic and taxonomic diversity. By comparison, populations of diadromous taxa, that migrate between freshwater and marine environments, are expected to show less genetic differentiation. Here we test for cryptic diversity in Australasian populations (both diadromous and non-diadromous) of two widespread Southern Hemisphere fish species, Galaxias brevipinnis and Galaxias maculatus. Both mtDNA and nuclear markers reveal putative cryptic species within these taxa. The substantial diversity detected within G. brevipinnis may be explained by its strong climbing ability which allows it to form isolated inland populations. In island populations, G. brevipinnis similarly show deeper genetic divergence than those of G. maculatus, which may be explained by the greater abundance of G. maculatus larvae in the sea allowing more ongoing dispersal. Our study highlights that even widespread, 'high-dispersal' species can harbour substantial cryptic diversity and therefore warrant increased taxonomic and conservation attention.
Collapse
Affiliation(s)
- Charlotte Jense
- Discipline of Biological Sciences, School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Mark Adams
- Evolutionary Biology UnitSouth Australian MuseumAdelaideSouth AustraliaAustralia
- School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Tarmo A. Raadik
- Department of Energy, Environment and Climate ActionArthur Rylah Institute for Environmental ResearchHeidelbergVictoriaAustralia
| | | | - David L. Morgan
- Centre for Sustainable Aquatic Ecosystems, Harry Butler InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Leon A. Barmuta
- Discipline of Biological Sciences, School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Scott A. Hardie
- Discipline of Biological Sciences, School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Bruce E. Deagle
- Australian National Fish CollectionCSIRO National Research Collections AustraliaHobartTasmaniaAustralia
| | - Christopher P. Burridge
- Discipline of Biological Sciences, School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
4
|
Chen YS, Muellner-Riehl AN, Yang Y, Liu J, Dimitrov D, Luo A, Luo Y, Sun H, Wang ZH. Dispersal modes affect Rhamnaceae diversification rates in a differentiated manner. Proc Biol Sci 2023; 290:20231926. [PMID: 37989241 PMCID: PMC10688438 DOI: 10.1098/rspb.2023.1926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023] Open
Abstract
The evolution of dispersal modes has been proposed to promote the diversification of angiosperms. However, little is known about the relative impact of different dispersal modes on plant diversification. We test the association between dispersal modes and diversification rates using Rhamnaceae, the cosmopolitan buckthorn family, as a model. We found that species with diplochory have the highest diversification rates followed by those with myrmecochory and ballistic dispersal, while lineages dispersed by vertebrates and wind have relatively low diversification rates. The difference in diversification rates may be closely linked to the difference in dispersal distance and ecological interactions implied by each dispersal mode. Species which disperse over larger geographical distances may have much higher speciation rates due to the increased chance of establishing isolated populations due to geological barriers or habitat fragmentation. However, long-distance dispersal may also increase the chance of extinction. By contrast, species with short-distance dispersal modes may have low speciation rates. Complex interactions with the surrounding environment may, however, impact diversification rates positively by increasing plant survival and reproductive success.
Collapse
Affiliation(s)
- Yong-Sheng Chen
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Alexandra N. Muellner-Riehl
- Department of Molecular Evolution and Plant Systematics & Herbarium (LZ), Institute of Biology, Leipzig University, 04013 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04013 Leipzig, Germany
| | - Yi Yang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, People's Republic of China
- Research Center of Ecological Sciences, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, People's Republic of China
| | - Jian Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Dimitar Dimitrov
- Department of Natural History, University Museum of Bergen, University of Bergen, Bergen 7800, 5020, Norway
| | - Ao Luo
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yuan Luo
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Zhi-Heng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
5
|
Oto Y, Kuroki M, Iida M, Ito R, Nomura S, Watanabe K. A key evolutionary step determining osmoregulatory ability for freshwater colonisation in early life stages of fish. J Exp Biol 2023; 226:jeb246110. [PMID: 37767765 DOI: 10.1242/jeb.246110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Colonisation of freshwater habitats by marine animals is a remarkable evolutionary event that has enriched biodiversity in freshwater ecosystems. The acquisition of tolerance to hypotonic stress during early life stages is presumed to be essential for their successful freshwater colonisation, but very little empirical evidence has been obtained to support this idea. This study aimed to comprehend the evolutionary changes in osmoregulatory mechanisms that enhance larval freshwater tolerance in amphidromous fishes, which typically spend their larval period in marine (ancestral) habitats and the rest of their life history stages in freshwater (derived) habitats. We compared the life history patterns and changes in larval survivorship and gene expression depending on salinity among three congeneric marine-originated amphidromous goby species (Gymnogobius), which had been suggested to differ in their larval dependence on freshwater habitats. An otolith microchemical analysis and laboratory-rearing experiment confirmed the presence of freshwater residents only in G. urotaenia and higher larval survivorship of this species in the freshwater condition than in the obligate amphidromous G. petschiliensis and G. opperiens. Larval whole-body transcriptome analysis revealed that G. urotaenia from both amphidromous and freshwater-resident populations exhibited the greatest differences in expression levels of several osmoregulatory genes, including aqp3, which is critical for water discharge from their body during early fish development. The present results consistently support the importance of enhanced freshwater tolerance and osmoregulatory plasticity in larval fish to establish freshwater forms, and further identified key candidate genes for larval freshwater adaptation and colonisation in the goby group.
Collapse
Affiliation(s)
- Yumeki Oto
- Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto City, Kyoto Prefecture 606-8502, Japan
| | - Mari Kuroki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo Metropolitan 113-8657, Japan
| | - Midori Iida
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, 87 Tassha, Sado City, Niigata Prefecture 952-2135, Japan
| | - Ryosuke Ito
- Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto City, Kyoto Prefecture 606-8502, Japan
| | - Shota Nomura
- Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto City, Kyoto Prefecture 606-8502, Japan
| | - Katsutoshi Watanabe
- Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto City, Kyoto Prefecture 606-8502, Japan
| |
Collapse
|
6
|
Scarsbrook L, Mitchell KJ, Mcgee MD, Closs GP, Rawlence NJ. Ancient DNA from the extinct New Zealand grayling ( Prototroctes oxyrhynchus) reveals evidence for Miocene marine dispersal. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The evolutionary history of Southern Hemisphere graylings (Retropinnidae) in New Zealand (NZ), including their relationship to the Australian grayling, is poorly understood. The NZ grayling (Prototroctes oxyrhynchus) is the only known fish in NZ to have gone extinct since human arrival there. Despite its historical abundance, only 23 wet and dried, formalin-fixed specimens exist in museums. We used high-throughput DNA sequencing to generate mitogenomes from formalin-fixed P. oxyrhynchus specimens, and analysed these in a temporal phylogenetic framework of retropinnids and osmerids. We recovered a strong sister-relationship between NZ and Australian grayling (P. mareana), with a common ancestor ~13.8 Mya [95% highest posterior density (HPD): 6.1–23.2 Mya], after the height of Oligocene marine inundation in NZ. Our temporal phylogenetic analysis suggests a single marine dispersal between NZ and Australia, although the direction of dispersal is equivocal, followed by divergence into genetically and morphologically distinguishable species through isolation by distance. This study provides further insights into the possible extinction drivers of the NZ grayling, informs discussion regarding reintroduction of Prototroctes to NZ and highlights how advances in palaeogenetics can be used to test evolutionary hypotheses in fish, which, until relatively recently, have been comparatively neglected in ancient-DNA research.
Collapse
Affiliation(s)
- Lachie Scarsbrook
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago , Dunedin , New Zealand
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford , Oxford , UK
| | - Kieren J Mitchell
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago , Dunedin , New Zealand
| | - Matthew D Mcgee
- Behavioural Studies Group, School of Biological Sciences, Monash University , Melbourne, Victoria , Australia
| | - Gerard P Closs
- Department of Zoology, University of Otago , Dunedin , New Zealand
| | - Nicolas J Rawlence
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago , Dunedin , New Zealand
| |
Collapse
|
7
|
Campbell CSM, Dutoit L, King TM, Craw D, Burridge CP, Wallis GP, Waters JM. Genome‐wide analysis resolves the radiation of New Zealand's freshwater
Galaxias vulgaris
complex and reveals a candidate species obscured by mitochondrial capture. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Ludovic Dutoit
- Department of Zoology University of Otago Dunedin New Zealand
| | - Tania M. King
- Department of Zoology University of Otago Dunedin New Zealand
| | - Dave Craw
- Department of Geology University of Otago Dunedin New Zealand
| | - Christopher P. Burridge
- Discipline of Biological Sciences, School of Natural Sciences University of Tasmania Hobart Australia
| | | | | |
Collapse
|
8
|
Suárez D, Arribas P, Jiménez-García E, Emerson BC. Dispersal ability and its consequences for population genetic differentiation and diversification. Proc Biol Sci 2022; 289:20220489. [PMID: 35582805 PMCID: PMC9115014 DOI: 10.1098/rspb.2022.0489] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Dispersal ability is known to influence geographical structuring of genetic variation within species, with a direct relationship between low vagility and population genetic structure, which can potentially give rise to allopatric speciation. However, our general understanding of the relationship between dispersal ability, population differentiation and lineage diversification is limited. To address this issue, we sampled mitochondrial DNA variation within lineages of beetles and spiders across the Canary Islands to explore the relationships between dispersal ability, differentiation within lineages and diversification. We found positive relationships between population genetic structure and diversification for both beetles and spiders. Comparisons between dispersive and non-dispersive lineages revealed significant differences for both lineage differentiation and diversification. For both taxa, non-dispersive lineages had stronger population genetic structure. Genus-level endemic species richness and proxies for diversification rate within genera were higher in non-dispersive taxa for both beetles and spiders. Comparisons of average and maximum node divergences within genera suggest that species turnover may be higher in non-dispersive genera. Our results reveal a model where dispersal limitation may shape the diversity of lineages across evolutionary timescales by positively influencing intraspecific and species diversity, moderated by higher extinction rates compared to more dispersive lineages.
Collapse
Affiliation(s)
- Daniel Suárez
- Island Ecology and Evolution Research Group, CSIC Institute of Natural Products and Agrobiology (IPNA-CSIC), C/Astrofísico Francisco Sánchez 3, La Laguna, Tenerife, Canary Islands 38206, Spain,School of Doctoral and Postgraduate Studies, University of La Laguna, 38200 La Laguna, Tenerife, Canary Islands, Spain
| | - Paula Arribas
- Island Ecology and Evolution Research Group, CSIC Institute of Natural Products and Agrobiology (IPNA-CSIC), C/Astrofísico Francisco Sánchez 3, La Laguna, Tenerife, Canary Islands 38206, Spain
| | - Eduardo Jiménez-García
- Island Ecology and Evolution Research Group, CSIC Institute of Natural Products and Agrobiology (IPNA-CSIC), C/Astrofísico Francisco Sánchez 3, La Laguna, Tenerife, Canary Islands 38206, Spain,School of Doctoral and Postgraduate Studies, University of La Laguna, 38200 La Laguna, Tenerife, Canary Islands, Spain
| | - Brent C. Emerson
- Island Ecology and Evolution Research Group, CSIC Institute of Natural Products and Agrobiology (IPNA-CSIC), C/Astrofísico Francisco Sánchez 3, La Laguna, Tenerife, Canary Islands 38206, Spain
| |
Collapse
|
9
|
Yamaguchi R. Intermediate dispersal hypothesis of species diversity: New insights. Ecol Res 2022. [DOI: 10.1111/1440-1703.12313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryo Yamaguchi
- Department of Advanced Transdisciplinary Science Hokkaido University Sapporo Japan
| |
Collapse
|
10
|
French R, Charon J, Lay CL, Muller C, Holmes EC. Human Land-Use Impacts Viral Diversity and Abundance in a New Zealand River. Virus Evol 2022; 8:veac032. [PMID: 35494173 PMCID: PMC9049113 DOI: 10.1093/ve/veac032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022] Open
Abstract
Although water-borne viruses have important implications for the health of humans and other animals, little is known about the impact of human land use on viral diversity and evolution in water systems such as rivers. We used metatranscriptomic sequencing to compare the diversity and abundance of viruses at sampling sites along a single river in New Zealand that differed in human land-use impacts, ranging from pristine to urban. From this, we identified 504 putative virus species, of which 97 per cent were novel. Many of the novel viruses were highly divergent and likely included a new subfamily within the Parvoviridae. We identified at least sixty-three virus species that may infect vertebrates—most likely fish and water birds—from the Astroviridae, Birnaviridae, Parvoviridae, and Picornaviridae. No putative human viruses were detected. Importantly, we observed differences in the composition of viral communities at sites impacted by human land use (farming and urban) compared to native forest sites (pristine). At the viral species level, the urban sites had higher diversity (327 virus species) than the farming (n = 150) and pristine sites (n = 119), and more viruses were shared between the urban and farming sites (n = 76) than between the pristine and farming or urban sites (n = 24). The two farming sites had a lower viral abundance across all host types, while the pristine sites had a higher abundance of viruses associated with animals, plants, and fungi. We also identified viruses linked to agriculture and human impact at the river sampling sites in farming and urban areas that were not present at the native forest sites. Although based on a small sample size, our study suggests that human land use can impact viral communities in rivers, such that further work is needed to reduce the impact of intensive farming and urbanisation on water systems.
Collapse
Affiliation(s)
- Rebecca French
- Sydney Institute for Infectious Diseases, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead NSW 2145, Australia
| | - Justine Charon
- Sydney Institute for Infectious Diseases, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead NSW 2145, Australia
| | - Callum Le Lay
- Sydney Institute for Infectious Diseases, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead NSW 2145, Australia
| | - Chris Muller
- Wildbase, School of Veterinary Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead NSW 2145, Australia
| |
Collapse
|
11
|
Foster BJ, McCulloch GA, Vogel MFS, Ingram T, Waters JM. Anthropogenic evolution in an insect wing polymorphism following widespread deforestation. Biol Lett 2021; 17:20210069. [PMID: 34376076 DOI: 10.1098/rsbl.2021.0069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Anthropogenic environmental change can underpin major shifts in natural selective regimes, and can thus alter the evolutionary trajectories of wild populations. However, little is known about the evolutionary impacts of deforestation-one of the most pervasive human-driven changes to terrestrial ecosystems globally. Absence of forest cover (i.e. exposure) has been suggested to play a role in selecting for insect flightlessness in montane ecosystems. Here, we capitalize on human-driven variation in alpine treeline elevation in New Zealand to test whether anthropogenic deforestation has caused shifts in the distributions of flight-capable and flightless phenotypes in a wing-polymorphic lineage of stoneflies from the Zelandoperla fenestrata species complex. Transect sampling revealed sharp transitions from flight-capable to flightless populations with increasing elevation. However, these phenotypic transitions were consistently delineated by the elevation of local treelines, rather than by absolute elevation, providing a novel example of human-driven evolution in response to recent deforestation. The inferred rapid shifts to flightlessness in newly deforested regions have implications for the evolution and conservation of invertebrate biodiversity.
Collapse
Affiliation(s)
- Brodie J Foster
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | - Marianne F S Vogel
- Department of Zoology, University of Otago, Dunedin, New Zealand.,Institut Agro, Rennes, France
| | - Travis Ingram
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
12
|
Delgado ML, Manosalva A, Urbina MA, Habit E, Link O, Ruzzante DE. Genomic basis of the loss of diadromy in Galaxias maculatus: Insights from reciprocal transplant experiments. Mol Ecol 2020; 29:4857-4870. [PMID: 33048403 DOI: 10.1111/mec.15686] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022]
Abstract
Diadromy is known for having major effects on the distribution and richness of aquatic species, and so does its loss. The loss of diadromy has led to the diversification of many species, yet research focusing on understanding its molecular basis and consequences are limited. This is particularly true for amphidromous species despite being the most abundant group of diadromous species. Galaxias maculatus, an amphidromous species and one of the most widely distributed fishes in the Southern Hemisphere, exhibits many instances of nonmigratory or resident populations. The existence of naturally replicated resident populations in Patagonia can serve as an ideal system for the study of the mechanisms that lead to the loss of the diadromy and its ecological and evolutionary consequences. Here, we studied two adjacent river systems in which resident populations are genetically differentiated yet derived from the same diadromous population. By combining a reciprocal transplant experiment with genomic data, we showed that the two resident populations followed different evolutionary pathways by exhibiting a differential response in their capacity to survive in salt water. While one resident population was able to survive salt water, the other was not. Genomic analyses provided insights into the genes that distinguished (a) migratory from nonmigratory populations; (b) populations that can vs those that cannot survive a saltwater environment; and (c) between these resident populations. This study demonstrates that the loss of diadromy can be achieved by different pathways and that environmental (selection) and random (genetic drift) forces shape this dynamic evolutionary process.
Collapse
Affiliation(s)
| | - Aliro Manosalva
- Departamento de Sistemas Acuáticos, Facultad de Ciencias Ambientales y Centro EULA, Universidad de Concepción, Concepción, Chile
| | - Mauricio A Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, Concepción, Chile
| | - Evelyn Habit
- Departamento de Sistemas Acuáticos, Facultad de Ciencias Ambientales y Centro EULA, Universidad de Concepción, Concepción, Chile
| | - Oscar Link
- Departamento de Ingeniería Civil, Facultad de Ingeniería, Universidad de Concepción, Concepción, Chile
| | | |
Collapse
|