1
|
Shu P, Wang Y, Zhang L. The Effect of α-Arbutin on UVB-Induced Damage and Its Underlying Mechanism. Molecules 2024; 29:1921. [PMID: 38731413 PMCID: PMC11085163 DOI: 10.3390/molecules29091921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
Ultraviolet radiation can heighten tyrosinase activity, stimulate melanocyte production, impede the metabolism of numerous melanocytes, and result in the accumulation of plaques on the skin surface. α-Arbutin, a bioactive substance extracted from the arbutin plant, has been widely used for skin whitening. In this study, the whitening effect of α-arbutin by inhibiting tyrosinase activity and alleviating the photoaging effect induced by UVB are investigated. The results indicate that α-arbutin can inhibit skin inflammation, and its effectiveness is positively correlated with concentration. Moreover, α-arbutin can reduce the skin epidermal thickness, decrease the number of inflammatory cells, and down-regulate the expression levels of IL-1β, IL-6 and TNF-α, which are inflammatory factors. It also promotes the expression of COL-1 collagen, thus playing an important role in anti-inflammatory action. Network pharmacology, metabolomics and transcriptomics further confirm that α-arbutin is related to the L-tyrosine metabolic pathway and may interfere with various signaling pathways related to melanin and other photoaging by regulating metabolic changes. Therefore, α-arbutin has a potential inhibitory effect on UVB-induced photoaging and possesses a whitening effect as a cosmetic compound.
Collapse
Affiliation(s)
- Peng Shu
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen 518000, China; (P.S.); (Y.W.)
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Shihezi 830011, China
- University of Chinese Academy of Sciences, No. 19 (A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yuan Wang
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen 518000, China; (P.S.); (Y.W.)
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Hajibabaie F, Abedpoor N, Haghjooy Javanmard S, Hasan A, Sharifi M, Rahimmanesh I, Shariati L, Makvandi P. The molecular perspective on the melanoma and genome engineering of T-cells in targeting therapy. ENVIRONMENTAL RESEARCH 2023; 237:116980. [PMID: 37648188 DOI: 10.1016/j.envres.2023.116980] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Melanoma, an aggressive malignant tumor originating from melanocytes in humans, is on the rise globally, with limited non-surgical treatment options available. Recent advances in understanding the molecular and cellular mechanisms underlying immune escape, tumorigenesis, drug resistance, and cancer metastasis have paved the way for innovative therapeutic strategies. Combination therapy targeting multiple pathways simultaneously has been shown to be promising in treating melanoma, eliciting favorable responses in most melanoma patients. CAR T-cells, engineered to overcome the limitations of human leukocyte antigen (HLA)-dependent tumor cell detection associated with T-cell receptors, offer an alternative approach. By genetically modifying apheresis-collected allogeneic or autologous T-cells to express chimeric antigen receptors, CAR T-cells can appreciate antigens on cell surfaces independently of major histocompatibility complex (MHC), providing a significant cancer cell detection advantage. However, identifying the most effective target antigen is the initial step, as it helps mitigate the risk of toxicity due to "on-target, off-tumor" and establishes a targeted therapeutic strategy. Furthermore, evaluating signaling pathways and critical molecules involved in melanoma pathogenesis remains insufficient. This study emphasizes the novel approaches of CAR T-cell immunoediting and presents new insights into the molecular signaling pathways associated with melanoma.
Collapse
Affiliation(s)
- Fatemeh Hajibabaie
- Department of Biology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; Department of Medical Biotechnology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Navid Abedpoor
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran; Department of Medical Biotechnology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, 2713, Qatar; Biomedical Research Center, Qatar University, Doha, 2713, Qatar.
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran; Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, EH9 3JL, UK.
| |
Collapse
|
3
|
de Eguileor M, Grimaldi A, Pulze L, Acquati F, Morsiani C, Capri M. Amyloid fil rouge from invertebrate up to human ageing: a focus on Alzheimer Disease. Mech Ageing Dev 2022; 206:111705. [DOI: 10.1016/j.mad.2022.111705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
|
4
|
Skin-Whitening and Antiwrinkle Proprieties of Maackia amurensis Methanolic Extract Lead Compounds. Processes (Basel) 2022. [DOI: 10.3390/pr10050855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
(1) Background: This study aimed to investigate the feasibility of using Maackia amurensis branch extract as a cosmetic ingredient with skin-whitening and antiwrinkle effects. (2) Methods: The skin-whitening effect of M. amurensis branch extract was confirmed by investigating α-melanocyte-stimulating hormone (α-MSH)-induced melanin synthesis and melanogenic protein expression in B16F1 cells. The antiwrinkle effect of M. amurensis branch extract was verified by assessing matrix metalloproteinase (MMP)-1 expression and soluble collagen content in CCD-986sk cells. The major compounds in M. amurensis branch extract were identified through isolation and characterization and confirmed by high-performance liquid chromatography analysis. (3) Results: M. amurensis branch extract significantly inhibited α-MSH-induced melanin synthesis by 49%, 42%, and 18% at 50, 37.5, and 25 μg/mL concentrations, respectively, compared with the negative control (NC). M. amurensis branch extract also significantly reduced the expression of the microphthalmia-associated transcription factor, tyrosinase-related protein (TRP)-1, TRP-2, and tyrosinase in B16F1 cells. Furthermore, M. amurensis branch extracts decreased ultraviolet A-induced MMP-1 expression and increased soluble collagen synthesis in CCD-986sk cells. In addition, the major compounds present in M. amurensis branch extract were found to be formononetin, genistein, trans-resveratrol, piceatannol, and tectoridin. (4) Conclusions: M. amurensis branch extract has skin-whitening and antiwrinkle properties. Therefore, it can be used as an ingredient in functional cosmetics with skin-whitening and antiwrinkle effects.
Collapse
|
5
|
Najem A, Wouters J, Krayem M, Rambow F, Sabbah M, Sales F, Awada A, Aerts S, Journe F, Marine JC, Ghanem GE. Tyrosine-Dependent Phenotype Switching Occurs Early in Many Primary Melanoma Cultures Limiting Their Translational Value. Front Oncol 2021; 11:780654. [PMID: 34869032 PMCID: PMC8635994 DOI: 10.3389/fonc.2021.780654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/20/2021] [Indexed: 01/16/2023] Open
Abstract
The use of patient-derived primary cell cultures in cancer preclinical assays, including drug screens and genotoxic studies, has increased in recent years. However, their translational value is constrained by several limitations, including variability that can be caused by the culture conditions. Here, we show that the medium composition commonly used to propagate primary melanoma cultures has limited their representability of their tumor of origin and their cellular plasticity, and modified their sensitivity to therapy. Indeed, we established and compared cultures from different melanoma patients propagated in parallel in low-tyrosine (Ham's F10) or in high-tyrosine (Ham's F10 supplemented with tyrosine or RPMI1640 or DMEM) media. Tyrosine is the precursor of melanin biosynthesis, a process particularly active in differentiated melanocytes and melanoma cells. Unexpectedly, we found that the high tyrosine concentrations promoted an early phenotypic drift towards either a mesenchymal-like or senescence-like phenotype, and prevented the establishment of cultures of melanoma cells harboring differentiated features, which we show are frequently present in human clinical biopsies. Moreover, the invasive phenotype emerging in these culture conditions appeared irreversible and, as expected, associated with intrinsic resistance to MAPKi. In sharp contrast, differentiated melanoma cell cultures retained their phenotypes upon propagation in low-tyrosine medium, and importantly their phenotypic plasticity, a key hallmark of melanoma cells. Altogether, our findings underline the importance of culturing melanoma cells in low-tyrosine-containing medium in order to preserve their phenotypic identity of origin and cellular plasticity.
Collapse
Affiliation(s)
- Ahmad Najem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Jasper Wouters
- Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics KU Leuven, Leuven, Belgium
| | - Mohammad Krayem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Florian Rambow
- Center for Cancer Biology, VIB-KU Leuven, Leuven, Belgium.,Department of Oncology KU Leuven, Leuven, Belgium
| | - Malak Sabbah
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - François Sales
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.,Department of Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ahmad Awada
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.,Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Stein Aerts
- Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics KU Leuven, Leuven, Belgium
| | - Fabrice Journe
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.,Department of Human Anatomy and Experimental Oncology, Université de Mons, Mons, Belgium
| | - Jean-Christophe Marine
- Center for Cancer Biology, VIB-KU Leuven, Leuven, Belgium.,Department of Oncology KU Leuven, Leuven, Belgium
| | - Ghanem E Ghanem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
6
|
Schomberg J, Wang Z, Farhat A, Guo KL, Xie J, Zhou Z, Liu J, Kovacs B, Liu-Smith F. Luteolin inhibits melanoma growth in vitro and in vivo via regulating ECM and oncogenic pathways but not ROS. Biochem Pharmacol 2020; 177:114025. [PMID: 32413425 DOI: 10.1016/j.bcp.2020.114025] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
Abstract
Luteolin inhibited growth of several cancer cells in vitro in previous studies, with limited in vivo studies, and no comprehensive understanding of molecular mechanisms at genomics level. This study identified luteolin as an effective agent to inhibit melanoma cell growth in vitro and in vivo. Molecular studies and genomic profiling were used to identify the mechanism of action of luteolin in melanoma cells. As a ROS (reactive oxygen species) scavenger, luteolin unexpectedly induced ROS; but co-treatment with antioxidants NAC or mito-TEMPO did not rescue cell growth inhibition, although the levels of ROS levels were reduced. Next, we profiled luteolin-induced differentially expressed genes (DEGs) in 4 melanoma cell lines using RNA-Seq, and performed pathway analysis using a combination of bioinformatics software including PharmetRx which was especially effective in discovering pharmacological pathways for potential drugs. Our results show that luteolin induces changes in three main aspects: the cell-cell interacting pathway (extracellular matrix, ECM), the oncogenic pathway and the immune response signaling pathway. Based on these results, we further validated that luteolin was especially effective in inhibiting cell proliferation when cells were seeded at low density, concomitantly with down-regulation of fibronectin accumulation. In conclusion, through extensive DEG profiling in a total of 4 melanoma cell lines, we found that luteolin-mediated growth inhibition in melanoma cells was perhaps not through ROS induction, but likely through simultaneously acting on multiple pathways including the ECM (extracellular matrix) pathway, the oncogenic signaling and the immune response pathways. Further investigations on the mechanisms of this promising compound are warranted and likely result in application to cancer patients as its safety pharmacology has been validated in autism patients.
Collapse
Affiliation(s)
- John Schomberg
- Afecta Pharmaceuticals, Inc., 2102 Business Center Dr, Irvine, CA 92612, United States.
| | - Zi Wang
- Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, Hunan, China.
| | - Ahmed Farhat
- Department of Medicine, University of California Irvine, Irvine, CA 92697, United States.
| | - Katherine L Guo
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90024, United States.
| | - Jun Xie
- Department of Medicine, University of California Irvine, Irvine, CA 92697, United States; Department of Epidemiology, University of California Irvine, Irvine, CA 92697, United States
| | - Zhidong Zhou
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, United States.
| | - Jing Liu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, Hunan, China.
| | - Bruce Kovacs
- Afecta Pharmaceuticals, Inc., 2102 Business Center Dr, Irvine, CA 92612, United States.
| | - Feng Liu-Smith
- Department of Medicine, University of California Irvine, Irvine, CA 92697, United States; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, United States; Department of Epidemiology, University of California Irvine, Irvine, CA 92697, United States.
| |
Collapse
|
7
|
Vandghanooni S, Eskandani M. Natural polypeptides-based electrically conductive biomaterials for tissue engineering. Int J Biol Macromol 2020; 147:706-733. [PMID: 31923500 DOI: 10.1016/j.ijbiomac.2019.12.249] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/28/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
Abstract
Fabrication of an appropriate scaffold is the key fundamental step required for a successful tissue engineering (TE). The artificial scaffold as extracellular matrix in TE has noticeable role in the fate of cells in terms of their attachment, proliferation, differentiation, orientation and movement. In addition, chemical and electrical stimulations affect various behaviors of cells such as polarity and functionality. Therefore, the fabrication approach and materials used for the preparation of scaffold should be more considered. Various synthetic and natural polymers have been used extensively for the preparation of scaffolds. The electrically conductive polymers (ECPs), moreover, have been used in combination with other polymers to apply electric fields (EF) during TE. In this context, composites of natural polypeptides and ECPs can be taken into account as context for the preparation of suitable scaffolds with superior biological and physicochemical features. In this review, we overviewed the simultaneous usage of natural polypeptides and ECPs for the fabrication of scaffolds in TE.
Collapse
Affiliation(s)
- Somayeh Vandghanooni
- Research Center for Pharmaceutical Nanotechnology, Biomedicine institute, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Obrador E, Liu-Smith F, Dellinger RW, Salvador R, Meyskens FL, Estrela JM. Oxidative stress and antioxidants in the pathophysiology of malignant melanoma. Biol Chem 2019; 400:589-612. [PMID: 30352021 DOI: 10.1515/hsz-2018-0327] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
Abstract
The high number of somatic mutations in the melanoma genome associated with cumulative ultra violet (UV) exposure has rendered it one of the most difficult of cancers to treat. With new treatment approaches based on targeted and immune therapies, drug resistance has appeared as a consistent problem. Redox biology, including reactive oxygen and nitrogen species (ROS and RNS), plays a central role in all aspects of melanoma pathophysiology, from initiation to progression and to metastatic cells. The involvement of melanin production and UV radiation in ROS/RNS generation has rendered the melanocytic lineage a unique system for studying redox biology. Overall, an elevated oxidative status has been associated with melanoma, thus much effort has been expended to prevent or treat melanoma using antioxidants which are expected to counteract oxidative stress. The consequence of this redox-rebalance seems to be two-fold: on the one hand, cells may behave less aggressively or even undergo apoptosis; on the other hand, cells may survive better after being disseminated into the circulating system or after drug treatment, thus resulting in metastasis promotion or further drug resistance. In this review we summarize the current understanding of redox signaling in melanoma at cellular and systemic levels and discuss the experimental and potential clinic use of antioxidants and new epigenetic redox modifiers.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| | - Feng Liu-Smith
- Department of Epdemiology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA
| | | | - Rosario Salvador
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| | - Frank L Meyskens
- Department of Epdemiology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
| | - José M Estrela
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
9
|
Wu QY, Wong ZCF, Wang C, Fung AHY, Wong EOY, Chan GKL, Dong TTX, Chen Y, Tsim KWK. Isoorientin derived from Gentiana veitchiorum Hemsl. flowers inhibits melanogenesis by down-regulating MITF-induced tyrosinase expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 57:129-136. [PMID: 30668315 DOI: 10.1016/j.phymed.2018.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/27/2018] [Accepted: 12/09/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Gentiana is a genus of flowering plants in Gentianaceae family, which comprises of 1,600 species. The roots of few species of Gentiana, also known as Long Dan Cao in Chinese, are traditionally used in herbal remedies for a wide variety of liver-associated diseases. The medicinal part of Gentiana is root; however, the trumpet-shaped flowers are seldom being used. PURPOSE We investigated the anti-melanogenesis effect of water extract of Gentiana veitchiorum Hemsl. flowers, and isoorientin was identified to be the active compound. STUDY DESIGN We tested the anti-melanogenesis effects of extracts deriving from different parts of G. veitchiorum, followed by identification of active ingredients within the extracts. The mechanism of inhibitory effect on melanogenesis, triggered by isoorientin, was elucidated by in vitro analyses. METHODS HPLC was applied to identify the components in water extracts from different parts of G. veitchiorum. The cytotoxicity of extracts and pure compounds in cultured B16F10 murine melanoma cells was determined by MTT and trypan blue assays. Melanin assay, tyrosinase assay, RT-PCR, luciferase assay and western blot were used to analyze the effect of isoorientin in melanin content, tyrosinase activity, as well as the expressions of those related genes and proteins. RESULTS We identified an inhibitory effect on melanogenesis from water extract of G. veitchiorum flowers in B16F10 cells. Isoorientin, a major flavone in the extract, was identified to be an active ingredient causing reduction in melanin content in a dose-dependent manner. Such reduction was suggested to be a result of suppressed expression of tyrosinase (TYR), tyrosinase related protein-1 (TRP1) and DOPA-chrome tautomerase (DCT). Isoorientin also suppressed the expression of microphthalmia- associated transcription factor (MITF) through the phosphorylation of cAMP response element-binding protein (CREB). CONCLUSION These findings indicate that isoorientin derived from G. veitchiorum flowers may be a potential skin lightening agent for the treatment of skin pigmentary disorders.
Collapse
Affiliation(s)
- Qi-Yun Wu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China; Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Zack Chun-Fai Wong
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Cheng Wang
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China; Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Aster Hei-Yiu Fung
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Emily Oi-Ying Wong
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Gallant Kar-Lun Chan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China; Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Tina Ting-Xia Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China; Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Yicun Chen
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China; Shantou University Medical College, Xinling Road, Shantou, Guangdong Province, China
| | - Karl Wah-Keung Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China; Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China.
| |
Collapse
|
10
|
A cancer registry-based analysis on the non-white populations reveals a critical role of the female sex in early-onset melanoma. Cancer Causes Control 2018. [PMID: 29524010 DOI: 10.1007/s10552-018-1022-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Most melanoma studies have been performed in the white population who exhibits the highest incidence rate due to their skin sensitivity to UV radiation. Previous publications have shown that young women (approximately under the menopausal age) exhibit higher incidence rates than men of the same age, and the causes are mostly attributed to their sun behavior or indoor tanning. In our recent publications, we suggested that higher risk in younger women was due to pathophysiological factors, such as hormonal impact, and thus this higher risk in young women should be shared across ethnicities regardless of their skin color or UV behavior. METHODS A total of 13,208 non-white melanoma patients from SEER and 15,226 from WHO CI5-Plus were extracted for analysis. Age-specific incidence rates, female-to-male incidence rate ratios, and p values were calculated. RESULTS As observed in the white population, younger women and older men showed higher melanoma incidence rates than their peers of the other gender in all ethnic groups. The highest female-to-male incidence rate ratios were observed in the pubescent and reproductive ages. Previously this gender discrepancy in the white population was attributed to the preference of skin tanning in young females. There is no evidence to show that darker-skinned young females adopt a similar tanning preference. Thus the age-dependent gender difference in the risk of melanoma is shared across ethnic groups and is perhaps independent of UV behavior. CONCLUSIONS Our results highlight the importance of gender as one of the melanoma risk factors beyond traditional UV radiation, which warrants further investigation and may provide a base for an improved prevention strategy.
Collapse
|
11
|
Yuan TA, Yourk V, Farhat A, Ziogas A, Meyskens FL, Anton-Culver H, Liu-Smith F. A Case-Control Study of the Genetic Variability in Reactive Oxygen Species-Metabolizing Enzymes in Melanoma Risk. Int J Mol Sci 2018; 19:ijms19010242. [PMID: 29342889 PMCID: PMC5796190 DOI: 10.3390/ijms19010242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 11/16/2022] Open
Abstract
Recent studies have shown that ultraviolet (UV)-induced chemiexcitation of melanin fragments leads to DNA damage; and chemiexcitation of melanin fragments requires reactive oxygen species (ROS), as ROS excite an electron in the melanin fragments. In addition, ROS also cause DNA damages on their own. We hypothesized that ROS producing and metabolizing enzymes were major contributors in UV-driven melanomas. In this case-control study of 349 participants, we genotyped 23 prioritized single nucleotide polymorphisms (SNPs) in nicotinamide adenine dinucleotide phosphate (NADPH) oxidases 1 and 4 (NOX1 and NOX4, respectively), CYBA, RAC1, superoxide dismutases (SOD1, SOD2, and SOD3) and catalase (CAT), and analyzed their associated melanoma risk. Five SNPs, namely rs1049255 (CYBA), rs4673 (CYBA), rs10951982 (RAC1), rs8031 (SOD2), and rs2536512 (SOD3), exhibited significant genotypic frequency differences between melanoma cases and healthy controls. In simple logistic regression, RAC1 rs10951982 (odds ratio (OR) 8.98, 95% confidence interval (CI): 5.08 to 16.44; p < 0.001) reached universal significance (p = 0.002) and the minor alleles were associated with increased risk of melanoma. In contrast, minor alleles in SOD2 rs8031 (OR 0.16, 95% CI: 0.06 to 0.39; p < 0.001) and SOD3 rs2536512 (OR 0.08, 95% CI: 0.01 to 0.31; p = 0.001) were associated with reduced risk of melanoma. In multivariate logistic regression, RAC1 rs10951982 (OR 6.15, 95% CI: 2.98 to 13.41; p < 0.001) remained significantly associated with increased risk of melanoma. Our results highlighted the importance of RAC1, SOD2, and SOD3 variants in the risk of melanoma.
Collapse
Affiliation(s)
- Tze-An Yuan
- Program in Public Health, University of California Irvine, Irvine, CA 92697, USA.
| | - Vandy Yourk
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA.
| | - Ali Farhat
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA.
| | - Argyrios Ziogas
- Department of Epidemiology, School of Medicine, University of California, Irvine, CA 92697, USA.
| | - Frank L Meyskens
- Program in Public Health, University of California Irvine, Irvine, CA 92697, USA.
- Department of Epidemiology, School of Medicine, University of California, Irvine, CA 92697, USA.
- Chao Family Comprehensive Cancer Center, Irvine, CA 92697, USA.
| | - Hoda Anton-Culver
- Department of Epidemiology, School of Medicine, University of California, Irvine, CA 92697, USA.
| | - Feng Liu-Smith
- Department of Epidemiology, School of Medicine, University of California, Irvine, CA 92697, USA.
- Chao Family Comprehensive Cancer Center, Irvine, CA 92697, USA.
| |
Collapse
|
12
|
Thomas NE, Edmiston SN, Kanetsky PA, Busam KJ, Kricker A, Armstrong BK, Cust AE, Anton-Culver H, Gruber SB, Luo L, Orlow I, Reiner AS, Gallagher RP, Zanetti R, Rosso S, Sacchetto L, Dwyer T, Parrish EA, Hao H, Gibbs DC, Frank JS, Ollila DW, Begg CB, Berwick M, Conway K. Associations of MC1R Genotype and Patient Phenotypes with BRAF and NRAS Mutations in Melanoma. J Invest Dermatol 2017; 137:2588-2598. [PMID: 28842324 PMCID: PMC5701875 DOI: 10.1016/j.jid.2017.07.832] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/08/2017] [Accepted: 07/23/2017] [Indexed: 11/21/2022]
Abstract
Associations of MC1R with BRAF mutations in melanoma have been inconsistent between studies. We sought to determine for 1,227 participants in the international population-based Genes, Environment, and Melanoma (GEM) study whether MC1R and phenotypes were associated with melanoma BRAF/NRAS subtypes. We used logistic regression adjusted by age, sex, and study design features and examined effect modifications. BRAF+ were associated with younger age, blond/light brown hair, increased nevi, and less freckling, and NRAS+ with older age relative to the wild type (BRAF-/NRAS-) melanomas (all P < 0.05). Comparing specific BRAF subtypes to the wild type, BRAF V600E was associated with younger age, blond/light brown hair, and increased nevi and V600K with increased nevi and less freckling (all P < 0.05). MC1R was positively associated with BRAF V600E cases but only among individuals with darker phototypes or darker hair (Pinteraction < 0.05) but inversely associated with BRAF V600K (Ptrend = 0.006) with no significant effect modification by phenotypes. These results support distinct etiologies for BRAF V600E, BRAF V600K, NRAS+, and wild-type melanomas. MC1R's associations with BRAF V600E cases limited to individuals with darker phenotypes indicate that MC1R genotypes specifically provide information about BRAF V600E melanoma risk in those not considered high risk based on phenotype. Our results also suggest that melanin pathways deserve further study in BRAF V600E melanomagenesis.
Collapse
Affiliation(s)
- Nancy E Thomas
- Department of Dermatology, University of North Carolina, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA.
| | - Sharon N Edmiston
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Peter A Kanetsky
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Klaus J Busam
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Anne Kricker
- Sydney School of Public Health, University of Sydney, Sydney, New South Wales, Australia
| | - Bruce K Armstrong
- Sydney School of Public Health, University of Sydney, Sydney, New South Wales, Australia
| | - Anne E Cust
- Sydney School of Public Health, University of Sydney, Sydney, New South Wales, Australia; Melanoma Institute Australia, North Sydney, Australia
| | - Hoda Anton-Culver
- Department of Epidemiology, University of California, Irvine, California, USA
| | - Stephen B Gruber
- Univeristy of Southern California Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Li Luo
- Department of Internal Medicine, University of New Mexico Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Anne S Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, USA
| | | | - Roberto Zanetti
- Piedmont Cancer Registry, Centre for Epidemiology and Prevention in Oncology in Piedmont, Turin, Italy
| | - Stefano Rosso
- Piedmont Cancer Registry, Centre for Epidemiology and Prevention in Oncology in Piedmont, Turin, Italy
| | - Lidia Sacchetto
- Department of Dermatology, University of North Carolina, Chapel Hill, North Carolina, USA; Politecnico di Torino, Turin, Italy
| | - Terence Dwyer
- George Institute for Global Health, Nuffield Department of Obstetrics and Gynecology, University of Oxford
| | - Eloise A Parrish
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Honglin Hao
- Department of Dermatology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David C Gibbs
- Department of Dermatology, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Epidemiology, Emory University, Atlanta, Georgia, USA
| | - Jill S Frank
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David W Ollila
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Colin B Begg
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Marianne Berwick
- Department of Internal Medicine, University of New Mexico Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Kathleen Conway
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
13
|
Oliveira S, Coelho P, Prudêncio C, Vieira M, Soares R, Guerreiro SG, Fernandes R. Melanoma and obesity: Should antioxidant vitamins be addressed? Life Sci 2016; 165:83-90. [DOI: 10.1016/j.lfs.2016.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 01/14/2023]
|
14
|
Kim E, Leverage WT, Liu Y, Panzella L, Alfieri ML, Napolitano A, Bentley WE, Payne GF. Paraquat-Melanin Redox-Cycling: Evidence from Electrochemical Reverse Engineering. ACS Chem Neurosci 2016; 7:1057-67. [PMID: 27246915 DOI: 10.1021/acschemneuro.6b00007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disorder associated with oxidative stress and the death of melanin-containing neurons of the substantia nigra. Epidemiological evidence links exposure to the pesticide paraquat (PQ) to Parkinson's disease, and this link has been explained by a redox cycling mechanism that induces oxidative stress. Here, we used a novel electrochemistry-based reverse engineering methodology to test the hypothesis that PQ can undergo reductive redox cycling with melanin. In this method, (i) an insoluble natural melanin (from Sepia melanin) and a synthetic model melanin (having a cysteinyldopamine-melanin core and dopamine-melanin shell) were entrapped in a nonconducting hydrogel film adjacent to an electrode, (ii) the film-coated electrode was immersed in solutions containing PQ (putative redox cycling reductant) and a redox cycling oxidant (ferrocene dimethanol), (iii) sequences of input potentials (i.e., voltages) were imposed to the underlying electrode to systematically engage reductive and oxidative redox cycling, and (iv) output response currents were analyzed for signatures of redox cycling. The response characteristics of the PQ-melanin systems to various input potential sequences support the hypothesis that PQ can directly donate electrons to melanin. This observation of PQ-melanin redox interactions demonstrates an association between two components that have been individually linked to oxidative stress and Parkinson's disease. Potentially, melanin's redox activity could be an important component in understanding the etiology of neurological disorders such as Parkinson's disease.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute
for Bioscience and Biotechnology Research, University of Maryland 5115 Plant Sciences Building College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| | - W. Taylor Leverage
- Institute
for Bioscience and Biotechnology Research, University of Maryland 5115 Plant Sciences Building College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| | - Yi Liu
- Institute
for Bioscience and Biotechnology Research, University of Maryland 5115 Plant Sciences Building College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| | - Lucia Panzella
- Department
of Chemical Sciences, University of Naples Federico II Via Cintia
4, I-80126 Naples, Italy
| | - Maria Laura Alfieri
- Department
of Chemical Sciences, University of Naples Federico II Via Cintia
4, I-80126 Naples, Italy
| | - Alessandra Napolitano
- Department
of Chemical Sciences, University of Naples Federico II Via Cintia
4, I-80126 Naples, Italy
| | - William E. Bentley
- Institute
for Bioscience and Biotechnology Research, University of Maryland 5115 Plant Sciences Building College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| | - Gregory F. Payne
- Institute
for Bioscience and Biotechnology Research, University of Maryland 5115 Plant Sciences Building College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
15
|
Uzuncakmak TK, Yilmaz S, Karadag AS, Akdeniz N, Akalin I. Lentiginoses in polycythemia vera patient: Is there a role for JAK2 (V617F) mutation? JAKSTAT 2015; 4:e1071000. [PMID: 26413426 DOI: 10.1080/21623996.2015.1071000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/30/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022] Open
Abstract
Lentiginoses is a clinical feature in which lentigines are remarkably present in large numbers or when they occur in a distinctive distribution on apparently normal skin. This entity may be congenital or acquired and may cover a wide spectrum of diseases ranging from an isolated benign pigmentary disorder to numerous syndromes associated with molecular abnormalities.We present a 59-year-old female patient with multiple lentigines which first emerged 3 y ago concurrently with policytemia vera. The patient had found to be positive for Janus Kinase-2 (JAK-2) mutation. Over activation of the pathway due to JAK-2 V617F mutation is a well-known condition in myeloproliferative diseases but has not been reported in melanocytic disorders. Moreover, several signaling pathways have previously been defined with lentiginosis except JAK-STAT pathway. We want to draw attention to the potential effect of JAK-2 mutation in lentigogenesis with this case report.
Collapse
Affiliation(s)
- Tugba Kevser Uzuncakmak
- Faculty of Medicine; Department of Dermatology and Venerology; Istanbul Medeniyet University ; Istanbul, Turkey
| | - Sarenur Yilmaz
- Faculty of Medicine; Department of Medical Genetics; Istanbul Medeniyet University ; Istanbul, Turkey
| | - Ayse Serap Karadag
- Faculty of Medicine; Department of Dermatology and Venerology; Istanbul Medeniyet University ; Istanbul, Turkey
| | - Necmettin Akdeniz
- Faculty of Medicine; Department of Dermatology and Venerology; Istanbul Medeniyet University ; Istanbul, Turkey
| | - Ibrahim Akalin
- Faculty of Medicine; Department of Medical Genetics; Istanbul Medeniyet University ; Istanbul, Turkey
| |
Collapse
|
16
|
Slominski RM, Zmijewski MA, Slominski AT. The role of melanin pigment in melanoma. Exp Dermatol 2015; 24:258-9. [PMID: 25496715 DOI: 10.1111/exd.12618] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2014] [Indexed: 02/04/2023]
Affiliation(s)
- Radomir M Slominski
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | |
Collapse
|
17
|
Ligtenberg MA, Çınar Ö, Holmdahl R, Mougiakakos D, Kiessling R. Methylcholanthrene-Induced Sarcomas Develop Independently from NOX2-Derived ROS. PLoS One 2015; 10:e0129786. [PMID: 26076008 PMCID: PMC4468117 DOI: 10.1371/journal.pone.0129786] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/12/2015] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) produced by the inducible NADPH oxidase type 2 (NOX2) complex are essential for clearing certain infectious organisms but may also have a role in regulating inflammation and immune response. For example, ROS is involved in myeloid derived suppressor cell (MDSC)- and regulatory T cell (T(reg)) mediated T- and NK-cell suppression. However, abundant ROS produced within the tumor microenvironment, or by the tumor itself may also yield oxidative stress, which can blunt anti-tumor immune responses as well as eventually leading to tumor toxicity. In this study we aimed to decipher the role of NOX2-derived ROS in a chemically (by methylcholanthrene (MCA)) induced sarcoma model. Superoxide production by NOX2 requires the p47(phox) (NCF1) subunit to organize the formation of the NOX2 complex on the cell membrane. Homozygous mutant mice (NCF1*/*) have a functional loss of their super oxide burst while heterozygous mice (NCF1*/+) retain this key function. Mice harboring either a homo- or a heterozygous mutation were injected intramuscularly with MCA to induce sarcoma formation. We found that NOX2 functionality does not determine tumor incidence in the tested MCA model. Comprehensive immune monitoring in tumor bearing mice showed that infiltrating immune cells experienced an increase in their oxidative state regardless of the NOX2 functionality. While MCA-induced sarcomas where characterized by a T(reg) and MDSC accumulation, no significant differences could be found between NCF1*/* and NCF1*/+ mice. Furthermore, infiltrating T cells showed an increase in effector-memory cell phenotype markers in both NCF1*/* and NCF1*/+ mice. Tumors established from both NCF1*/* and NCF1*/+ mice were tested for their in vitro proliferative capacity as well as their resistance to cisplatin and radiation therapy, with no differences being recorded. Overall our findings indicate that NOX2 activity does not play a key role in tumor development or immune cell infiltration in the chemically induced MCA sarcoma model.
Collapse
Affiliation(s)
- Maarten A. Ligtenberg
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Özcan Çınar
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Haematology and Oncology, University of Erlangen-Nuremberg, Nuremberg, Germany
| | - Rolf Kiessling
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|