1
|
Chen Y, Xiao J, Zhu X, Fan X, Peng M, Mu Y, Wang C, Xia L, Zhou M. Exploiting conjugated linoleic acid for health: a recent update. Food Funct 2024. [PMID: 39639784 DOI: 10.1039/d4fo04911j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Conjugated linoleic acid (CLA) is widely used as a dietary supplement due to its reported benefits in enhancing immunity, regulating inflammation, treating obesity, and preventing cancer. However, there is a lack of comprehensive studies on its mechanisms and dose-effect relationships. Moreover, there are insufficient in-depth studies on CLA's new functions, safety, side effects, and clinical utility. This review systematically examines the structure and sources of CLA, summarizes its role in improving human health, and critically reviews the potential mechanisms behind these benefits. It also analyzes the side effects of CLA and addresses issues related to dosing and oxidative decomposition in CLA research. Additionally, the potential of using CLA-producing probiotics to manage diseases is explored. This review can guide and promote further research on CLA's functions and support the development of CLA dietary supplements. It will accelerate the development of CLA nutritional and medical foods, contribute to the improvement of human health, and have important social meaning and economic value.
Collapse
Affiliation(s)
- Yang Chen
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Junfeng Xiao
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Xiaoqing Zhu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Xin Fan
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Mingye Peng
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Yang Mu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Chao Wang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Lusha Xia
- Department of gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430068, China
| | - Mengzhou Zhou
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| |
Collapse
|
2
|
Mahmoud NN, Hamad S, Shraim S. Inflammation-Modulating Biomedical Interventions for Diabetic Wound Healing: An Overview of Preclinical and Clinical Studies. ACS OMEGA 2024; 9:44860-44875. [PMID: 39554458 PMCID: PMC11561615 DOI: 10.1021/acsomega.4c02251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/15/2024] [Accepted: 07/01/2024] [Indexed: 11/19/2024]
Abstract
A diabetic wound exemplifies the challenge of chronic, nonhealing wounds. Elevated blood sugar levels in diabetes profoundly disrupt macrophage function, impairing crucial activities such as phagocytosis, immune response, cell migration, and blood vessel formation, all essential for effective wound healing. Moreover, the persistent presence of pro-inflammatory cytokines and reactive oxygen species, coupled with a decrease in anti-inflammatory factors, exacerbates the delay in wound healing associated with diabetes. This review emphasizes the dysfunctional inflammatory responses underlying diabetic wounds and explores preclinical studies of inflammation-modulating bioactives and biomaterials that show promise in expediting diabetic wound healing. Additionally, this review provides an overview of selected clinical studies employing biomaterials and bioactive molecules, shedding light on the gap between extensive preclinical research and limited clinical studies in this field.
Collapse
Affiliation(s)
- Nouf N. Mahmoud
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Salma Hamad
- International
School of London Qatar, Doha 18511, Qatar
| | - Sawsan Shraim
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
| |
Collapse
|
3
|
Nicolaou A, Kendall AC. Bioactive lipids in the skin barrier mediate its functionality in health and disease. Pharmacol Ther 2024; 260:108681. [PMID: 38897295 DOI: 10.1016/j.pharmthera.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Our skin protects us from external threats including ultraviolet radiation, pathogens and chemicals, and prevents excessive trans-epidermal water loss. These varied activities are reliant on a vast array of lipids, many of which are unique to skin, and that support physical, microbiological and immunological barriers. The cutaneous physical barrier is dependent on a specific lipid matrix that surrounds terminally-differentiated keratinocytes in the stratum corneum. Sebum- and keratinocyte-derived lipids cover the skin's surface and support and regulate the skin microbiota. Meanwhile, lipids signal between resident and infiltrating cutaneous immune cells, driving inflammation and its resolution in response to pathogens and other threats. Lipids of particular importance include ceramides, which are crucial for stratum corneum lipid matrix formation and therefore physical barrier functionality, fatty acids, which contribute to the acidic pH of the skin surface and regulate the microbiota, as well as the stratum corneum lipid matrix, and bioactive metabolites of these fatty acids, involved in cell signalling, inflammation, and numerous other cutaneous processes. These diverse and complex lipids maintain homeostasis in healthy skin, and are implicated in many cutaneous diseases, as well as unrelated systemic conditions with skin manifestations, and processes such as ageing. Lipids also contribute to the gut-skin axis, signalling between the two barrier sites. Therefore, skin lipids provide a valuable resource for exploration of healthy cutaneous processes, local and systemic disease development and progression, and accessible biomarker discovery for systemic disease, as well as an opportunity to fully understand the relationship between the host and the skin microbiota. Investigation of skin lipids could provide diagnostic and prognostic biomarkers, and help identify new targets for interventions. Development and improvement of existing in vitro and in silico approaches to explore the cutaneous lipidome, as well as advances in skin lipidomics technologies, will facilitate ongoing progress in skin lipid research.
Collapse
Affiliation(s)
- Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| |
Collapse
|
4
|
Kazimierska K, Szabłowska-Gadomska I, Rudziński S, Kośla K, Płuciennik E, Bobak Ł, Zambrowicz A, Kalinowska-Lis U. Biologically Active Sheep Colostrum for Topical Treatment and Skin Care. Int J Mol Sci 2024; 25:8091. [PMID: 39125660 PMCID: PMC11311297 DOI: 10.3390/ijms25158091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Colostrum is gaining popularity in cosmetic products. The present study compared the composition and selected biological properties of colostrum from Polish sheep (colostrum 1) and Swiss sheep (colostrum 2), particularly those that can affect healthy or diseased skin. The antioxidant activity of the colostrums was measured using ABTS and DPPH assays. The effect on the proliferation of human skin fibroblasts, neonatal epidermal keratinocytes, and human diabetic fibroblast (dHF) cells isolated from diabetic foot ulcers was also assayed in vitro by MTT and Presto Blue tests, respectively. The colostrum simulated dHF cell proliferation by up to 115.4%. The highest used concentration of colostrum 1 stimulated normal fibroblast proliferation by 191.2% (24 h) and 222.2% (48 h). Both colostrums inhibited epidermal keratinocyte viability. The influence of the colostrums on the expression of genes related to proliferation (Ki67) and immune response (IL-6, PTGS-2, TSG-6) in dHF cells were compared. Colostrum 1 increased the rate of wound closure (scar test). Analysis of total fat, protein and fatty acid content found the Polish colostrum to be a richer source of fat than the Swiss colostrum, which contained a larger amount of protein. Both colostrums exhibit properties that suggest they could be effective components in cosmetic or medicinal formulations for skin care, especially supporting its regeneration, rejuvenation, and wound healing.
Collapse
Affiliation(s)
- Kinga Kazimierska
- Department of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Ilona Szabłowska-Gadomska
- Laboratory for Cell Research and Application, Center for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (I.S.-G.); (S.R.)
| | - Stefan Rudziński
- Laboratory for Cell Research and Application, Center for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (I.S.-G.); (S.R.)
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Łukasz Bobak
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Science, 51-640 Wrocław, Poland; (Ł.B.); (A.Z.)
| | - Aleksandra Zambrowicz
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Science, 51-640 Wrocław, Poland; (Ł.B.); (A.Z.)
| | - Urszula Kalinowska-Lis
- Department of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, 90-419 Lodz, Poland;
| |
Collapse
|
5
|
Bu L, Wang M, Liu X, Zhang M, Zhang Y, Zhang X, Liang F, Huang B, Huang J, Wu S, Tang X, Wang X, Zhang L. Emu oil alleviates atopic dermatitis-like responses by inhibiting Cdc42 signaling of keratinocyte. Int Immunopharmacol 2024; 139:112706. [PMID: 39032473 DOI: 10.1016/j.intimp.2024.112706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Emu oil is the oil extracted from the body fat of the Australian bird emu. Although previous studies have reported that emu oil has anti-inflammatory effects, the effect and mechanism of emu oil on the treatment of atopic dermatitis have not been reported. Here, 2, 4-dinitrofluorobenzene was used to induce atopic dermatitis-like appearance on the back skin of C57BL/6 mice. And then, the effect of emu oil in the atopic dermatitis treatment was evaluated. We found that emu oil reduced the transdermal water loss in the atopic dermatitis model. Additionally, the epidermal thickness treated with emu oil was significantly thinner. The number of mast cells and inflammatory cells were significantly decreased. The thymic stromal lymphopoietin (TSLP), which is secreted by keratinocyte, was decreased significantly after treatment. Moreover, the serum levels of cytokines TSLP, interleukin-4, interleukin-13, and immunoglobulin (Ig) E were decreased after emu oil treatment. Surprisingly, we found that the high level of Cdc42 expression in the atopic dermatitis, which was decreased after emu oil treatment. To detect the role of Cdc42 in atopic dermatitis, we constructed atopic dermatitis model in mice with sustained activation of Cdc42 signaling. Furthermore, we have confirmed that emu oil demonstrates anti-inflammatory effects in atopic dermatitis by inhibiting the expression of Cdc42 signaling in keratinocytes. In conclusion, we discovered a new role of Cdc42 in the development of atopic dermatitis, which mediated the therapeutic effect of emu oil on atopic dermatitis.
Collapse
Affiliation(s)
- Lingwei Bu
- Department of Histology and Embryology,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
| | - Mei Wang
- Department of Histology and Embryology,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
| | - Xiaoran Liu
- Guangzhou Dublin International College of Life Sciences and Technology, South China Agricultural University, Guangzhou, China
| | - Min Zhang
- Department of Histology and Embryology,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
| | - Yarui Zhang
- Department of Histology and Embryology,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
| | - Xinyue Zhang
- Department of Histology and Embryology,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
| | - Fengting Liang
- Department of Histology and Embryology,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
| | - Bingli Huang
- GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China; School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianyuan Huang
- Department of Histology and Embryology,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
| | - Shenhua Wu
- Department of Histology and Embryology,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
| | - Xueting Tang
- GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China; School of Public Health, Southern Medical University, Guangzhou, China
| | - Xueer Wang
- Department of Histology and Embryology,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China; Changji Branch Hospital of The First Affiliated Hospital of Xinjiang Medical University, Changji, China; Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Lin Zhang
- Department of Histology and Embryology,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Wong TK, Choi YG, Li PH, Chow BKC, Kumar M. MRGPRX2 antagonist GE1111 attenuated DNFB-induced atopic dermatitis in mice by reducing inflammatory cytokines and restoring skin integrity. Front Immunol 2024; 15:1406438. [PMID: 38817611 PMCID: PMC11137259 DOI: 10.3389/fimmu.2024.1406438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterised by itching, erythema, and epidermal barrier dysfunction. The pathogenesis of AD is complex and multifactorial; however,mast cell (MC) activation has been reported to be one of the crucial mechanisms in the pathogenesis of AD. The MC receptor Mas related G protein-coupled receptor-X2 (MRGPRX2) has been identified as a prominent alternative receptor to the IgE receptor in causing MC activation and the subsequent release of inflammatory mediators. The current study aimed to evaluate the therapeutic effect of a novel small molecule MRGPRX2 antagonist GE1111 in AD using in vitro and in vivo approaches. Methods We developed an in vitro cell culture disease model by using LAD-2 MC, HaCaT keratinocytes and RAW 264.7 macrophage cell lines. We challenged keratinocytes and macrophage cells with CST-14 treated MC supernatant in the presence and absence of GE1111 and measured the expression of tight junction protein claudin 1, inflammatory cytokines and macrophage phagocytosis activity through immunohistochemistry, western blotting, RT-qPCR and fluorescence imaging techniques. In addition to this, we developed a DFNB-induced AD model in mice and evaluated the protective effect and underlying mechanism of GE1111. Results and Discussion Our in vitro findings demonstrated a potential therapeutic effect of GE1111, which inhibits the expression of TSLP, IL-13, MCP-1, TNF-a, and IL-1ß in MC and keratinocytes. In addition to this, GE1111 was able to preserve the expression of claudin 1 in keratinocytes and the phagocytotic activity of macrophage cells. The in vivo results demonstrated that GE1111 treatment significantly reduced phenotypic changes associated with AD (skin thickening, scaling, erythema and epidermal thickness). Furthermore, immunohistochemical analysis demonstrated that GE1111 treatment preserved the expression of the tight junction protein Involucrin and reduced the expression of the inflammatory mediator periostin in the mouse model of AD. These findings were supported by gene and protein expression analysis, where GE1111 treatment reduced the expression of TSLP, IL-13, and IL-1ß, as well as downstream signalling pathways of MRGPRX2 in AD skin lesions. In conclusion, our findings provide compelling in vitro and in vivo evidence supporting the contribution of MRGPRX2-MC interaction with keratinocytes and macrophages in the pathogenesis of AD.
Collapse
Affiliation(s)
- Trevor K. Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Faculty of Health Sciences, McMaster University, Hamliton, ON, Canada
| | - Ye Gi Choi
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Philip H. Li
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Billy K. C. Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mukesh Kumar
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Mohammad S, Karim MR, Iqbal S, Lee JH, Mathiyalagan R, Kim YJ, Yang DU, Yang DC. Atopic dermatitis: Pathophysiology, microbiota, and metabolome - A comprehensive review. Microbiol Res 2024; 281:127595. [PMID: 38218095 DOI: 10.1016/j.micres.2023.127595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/11/2023] [Accepted: 12/24/2023] [Indexed: 01/15/2024]
Abstract
Atopic dermatitis (AD) is a prevalent inflammatory skin condition that commonly occurs in children. Genetics, environment, and defects in the skin barrier are only a few of the factors that influence how the disease develops. As human microbiota research has advanced, more scientific evidence has shown the critical involvement of the gut and skin bacteria in the pathogenesis of atopic dermatitis. Microbiome dysbiosis, defined by changed diversity and composition, as well as the development of pathobionts, has been identified as a potential cause for recurring episodes of atopic dermatitis. Gut dysbiosis causes "leaky gut syndrome" by disrupting the epithelial lining of the gut, which allows bacteria and other endotoxins to enter the bloodstream and cause inflammation. The same is true for the disruption of cutaneous homeostasis caused by skin dysbiosis, which enables bacteria and other pathogens to reach deeper skin layers or even systemic circulation, resulting in inflammation. Furthermore, it is now recognized that the gut and skin microbiota releases both beneficial and toxic metabolites. Here, this review covers a range of topics related to AD, including its pathophysiology, the microbiota-AD connection, commonly used treatments, and the significance of metabolomics in AD prevention, treatment, and management, recognizing its potential in providing valuable insights into the disease.
Collapse
Affiliation(s)
- Shahnawaz Mohammad
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Md Rezaul Karim
- Department of Biopharmaceutical Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Safia Iqbal
- Department of Biopharmaceutical Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Department of Microbiology, Varendra Institute of Biosciences, Affiliated by Rajshahi University, Natore, Rajshahi 6400, Bangladesh
| | - Jung Hyeok Lee
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Yeon Ju Kim
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Dong Uk Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
8
|
Zhang T, Rao X, Song S, Tian K, Wang Y, Wang C, Bai X, Liu P. WLJP-025p, a homogeneous Lonicera japonica polysaccharide, attenuates atopic dermatitis by regulating the MAPK/NFκB/AP-1 axis via Act1. Int J Biol Macromol 2024; 256:128435. [PMID: 38016605 DOI: 10.1016/j.ijbiomac.2023.128435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Atopic dermatitis (AD) is usually treated with steroids, but long-term use is not an effective cure because side effects and disease aggravation. Therefore, more effective and safer treatments are needed. Using dexamethasone as the positive control, the mechanism of action of water-extracted homogeneous honeysuckle Lonicera japonica polysaccharide (WLJP-025p) to alleviate AD was studied. Mice were administered 2,4-dinitrochlorobenzene in their bare back and right ear to mimic an AD model. The efficacy of WLJP-025p in AD was assessed by measuring right ear thickness and skin lesion scores, pathological observation (haematoxylin-eosin and toluidine blue staining), and serum IgE and IL-1β concentrations. The expression of relevant genes and proteins in the serum and back skin was detected using RT-qPCR, ELISA, western blotting, and immunofluorescence. Molecular docking and dynamic simulation of WLJP-025p and Act1 were performed. WLJP-025p considerably alleviated skin hyperplasia and pathological abnormalities in AD mice and inhibited the expression of Act1, Nucleus-P65, Nucleus-AP-1, and MAPK-related proteins in skin tissues. WLJP-025p formed a stable conformation with Act1, inhibited splenic Th17 differentiation, IL-17 release, and upregulated the expression of related skin barrier proteins. In conclusion, WLJP-025p affects the inflammation regulation via the MAPK/NFκB/AP-1 axis by binding to Act1, promotes the recovery of epithelial barrier function, and alleviates AD in mice.
Collapse
Affiliation(s)
- Tao Zhang
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, China
| | - Xiuming Rao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Shiyuan Song
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Keke Tian
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yuqi Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Chaoyu Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xinyu Bai
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| | - Ping Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
9
|
Nadora D, Burney W, Chaudhuri RK, Galati A, Min M, Fong S, Lo K, Chambers CJ, Sivamani RK. Prospective Randomized Double-Blind Vehicle-Controlled Study of Topical Coconut and Sunflower Seed Oil-Derived Isosorbide Diesters on Atopic Dermatitis. Dermatitis 2024; 35:S62-S69. [PMID: 38394048 DOI: 10.1089/derm.2023.0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Background: Preliminary studies support the use of topical coconut and sunflower seed oil for atopic dermatitis (AD). However, standardized topical formulations of fatty acids from these sources have not been studied. Objective: This study investigates whether coconut oil- and sunflower seed oil-derived isosorbide diesters can be used in conjunction with colloidal oatmeal to improve itch, AD severity, and the need for topical steroids in adults. Methods: This was a single-center, 4-week, randomized, double-blind, and vehicle-controlled study conducted between 2021 and 2022. Thirty-two male and female adults with mild-to-moderate AD were enrolled and completed the study. Participants were randomized to receive either 0.1% colloidal oatmeal (vehicle) or isosorbide diesters (IDEAS, 4% isosorbide dicaprylate and 4% isosorbide disunflowerseedate) along with 0.1% colloidal oatmeal. The main outcomes of the study were changes in the visual analogue rating of itch and 75% improvement in the Eczema Area and Severity Index score (EASI 75) at 4 weeks. Other measures included the use of topical steroids and the relative abundance of skin Staphylococcus aureus. Results: Participants in the IDEAS group had a 65.6% improvement in itch compared with 43.8% in the vehicle group (P = 0.013). In total, 56.5% and 25% of the those in the IDEAS and vehicle groups, respectively, achieved EASI 75 at 4 weeks (P = 0.07). There was no difference in skin hydration or transepidermal water loss. The relative abundance of S. aureus was decreased in the IDEAS group at week 4 compared with no change in the vehicle group (P = 0.044). Topical corticosteroid use increased in the vehicle group compared with a decrease in the IDEAS group at week 1 (292.5% vs 24.8%; P value = 0.039) and week 2 (220% vs 46%; P value = 0.08). Conclusions: Topical application of emollients containing coconut oil- and sunflower seed oil-derived fatty esters may improve itch, reduce topical steroid use, and reduce the relative abundance of S. aureus in mild-to-moderate AD. CTR number: NCT04831892.
Collapse
Affiliation(s)
- Dawnica Nadora
- From the Integrative Skin Science and Research, Sacramento, California, USA
- College of Medicine, California Northstate University, Elk Grove, California, USA
| | - Waqas Burney
- From the Integrative Skin Science and Research, Sacramento, California, USA
| | | | - Aidan Galati
- Pacific Skin Institute, Sacramento, California, USA
| | - Mildred Min
- From the Integrative Skin Science and Research, Sacramento, California, USA
- College of Medicine, California Northstate University, Elk Grove, California, USA
| | - Sydney Fong
- From the Integrative Skin Science and Research, Sacramento, California, USA
| | - Kenny Lo
- From the Integrative Skin Science and Research, Sacramento, California, USA
| | - Cindy J Chambers
- From the Integrative Skin Science and Research, Sacramento, California, USA
- College of Medicine, California Northstate University, Elk Grove, California, USA
- Pacific Skin Institute, Sacramento, California, USA
| | - Raja K Sivamani
- From the Integrative Skin Science and Research, Sacramento, California, USA
- College of Medicine, California Northstate University, Elk Grove, California, USA
- Pacific Skin Institute, Sacramento, California, USA
- Department of Dermatology, University of California-Davis, Sacramento, California, USA
| |
Collapse
|
10
|
Tai LR, Chiang YF, Huang KC, Chen HY, Ali M, Hsia SM. Hinokitiol as a modulator of TLR4 signaling and apoptotic pathways in atopic dermatitis. Biomed Pharmacother 2024; 170:116026. [PMID: 38128179 DOI: 10.1016/j.biopha.2023.116026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Atopic dermatitis (AD) poses a significant global health challenge, characterized by dysregulated inflammation and apoptotic processes. This study explores the therapeutic efficacy of hinokitiol, employing a comprehensive in vivo and in vitro approach. Assessment of inflammation-related markers in the animal model included observation of physical appearance, Western blotting, ELISA, and H&E staining. Additionally, the cell culture model enabled the evaluation of apoptosis and ROS levels using MTT assay, crystal violet staining, Western blot, and DCFDA assays. The results revealed hinokitiol's proficiency in ameliorating ear and skin morphology in the DNCB-induced AD model, mediated through the TLR4/MyD88 pathway. Notably, hinokitiol intervention led to a reduction in both M1 and M2 macrophage phenotypes. In vitro investigations demonstrated hinokitiol's ability to enhance cell viability and morphology under TNF-α and IFN-γ induction. Mechanistically, hinokitiol exhibited regulatory effects on apoptosis-related proteins, including Bax, Cytochrome c, Caspase-3, and PARP, thereby averting cellular damage. These findings suggest that hinokitiol is a promising natural compound with significant potential for alleviating inflammation and apoptosis in AD, indicating potential avenues for future therapeutic developments.
Collapse
Affiliation(s)
- Ling-Ray Tai
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Ko-Chieh Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt; Deaprtment of Obstertrics and Gynecology, University of Chicago, 60637, Chicago, IL, USA
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; School of Food Safety, Taipei Medical University, Taipei 11031, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
11
|
Flis Z, Szatkowski P, Pielichowska K, Molik E. The Potential of Sheep or Camel Milk Constituents to Contribute to Novel Dressings for Diabetic Wounds. Int J Mol Sci 2023; 24:17551. [PMID: 38139380 PMCID: PMC10744295 DOI: 10.3390/ijms242417551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Impaired wound healing is a complication of diabetes, which constitutes a serious problem in clinical practice. Currently, there is a high demand on the market for local treatment options for difficult-to-heal wounds caused by diabetes. The development of dressings that accelerate wound healing has recently been the subject of much research. Sheep and camel milk is gaining importance due to the content of many bioactive substances with health-promoting effects, such as insulin, LF, proline, or CLA. Sheep and camel milk proteins are a promising source of insulin, antidiabetic, and antihypertensive peptides. Numerous studies show that local administration of insulin has a significant impact on the healing of diabetic wounds. Sheep and camel milk, due to the highest LF content among ruminants, reduces autoimmune inflammatory processes and protects against bacterial and viral infections in the wound environment. Sheep's milk has the highest content of proline and CLA, and their addition to a hydrogel dressing can help in the development of an effective dressing material. The production of hydrogel dressings containing sheep and camel milk, which are naturally rich in the bioactive substances presented in this review, may be a promising step in the market of specialized dressings for difficult-to-heal diabetic wounds.
Collapse
Affiliation(s)
- Zuzanna Flis
- Department of Animal Nutrition and Biotechnology, and Fisheries, Faculty of Animal Science, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 31-059 Krakow, Poland
| | - Piotr Szatkowski
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, University of Science and Technology in Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland (K.P.)
| | - Kinga Pielichowska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, University of Science and Technology in Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland (K.P.)
| | - Edyta Molik
- Department of Animal Nutrition and Biotechnology, and Fisheries, Faculty of Animal Science, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 31-059 Krakow, Poland
| |
Collapse
|
12
|
Garrós N, Bustos-Salgados P, Domènech Ò, Rodríguez-Lagunas MJ, Beirampour N, Mohammadi-Meyabadi R, Mallandrich M, Calpena AC, Colom H. Baricitinib Lipid-Based Nanosystems as a Topical Alternative for Atopic Dermatitis Treatment. Pharmaceuticals (Basel) 2023; 16:894. [PMID: 37375841 DOI: 10.3390/ph16060894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic autoimmune inflammatory skin disorder which causes a significant clinical problem due to its prevalence. The ongoing treatment for AD is aimed at improving the patient's quality of life. Additionally, glucocorticoids or immunosuppressants are being used in systemic therapy. Baricitinib (BNB) is a reversible Janus-associated kinase (JAK)-inhibitor; JAK is an important kinase involved in different immune responses. We aimed at developing and evaluating new topical liposomal formulations loaded with BNB for the treatment of flare ups. Three liposomal formulations were elaborated using POPC (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine), CHOL (Cholesterol) and CER (Ceramide) in different proportions: (i) POPC, (ii) POPC:CHOL (8:2, mol/mol) and (iii) POPC:CHOL:CER (3.6:2.4:4.0 mol/mol/mol). They were physiochemically characterized over time. In addition, an in vitro release study, ex vivo permeation and retention studies in altered human skin (AHS) were also performed. Histological analysis was used to study the tolerance of the formulations on the skin. Lastly, the HET-CAM test was also performed to evaluate the irritancy capacity of the formulations, and the modified Draize test was performed to evaluate the erythema and edema capacity of the formulations on the altered skin. All liposomes showed good physicochemical properties and were stable for at least one month. POPC:CHOL:CER had the highest flux and permeation, and the retention in the skin was equal to that of POPC:CHOL. The formulations exhibited no harmful or irritating effects, and the histological examination revealed no changes in structure. The three liposomes have shown promising results for the aim of the study.
Collapse
Affiliation(s)
- Núria Garrós
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 645 Diagonal Avenue, 08028 Barcelona, Spain
| | - Paola Bustos-Salgados
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Òscar Domènech
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 645 Diagonal Avenue, 08028 Barcelona, Spain
| | - María José Rodríguez-Lagunas
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 08028 Barcelona, Spain
| | - Negar Beirampour
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Roya Mohammadi-Meyabadi
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 645 Diagonal Avenue, 08028 Barcelona, Spain
| | - Mireia Mallandrich
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 645 Diagonal Avenue, 08028 Barcelona, Spain
| | - Ana C Calpena
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), 645 Diagonal Avenue, 08028 Barcelona, Spain
| | - Helena Colom
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| |
Collapse
|
13
|
Roy AC, Prasad A, Ghosh I. Phytochemical Profiling of Tupistra nutans Wall. ex Lindl. Inflorescence Extract and Evaluation of Its Antioxidant Activity and Toxicity in Hepatocarcinoma (HepG2) and Fibroblast (F111) Cells. Appl Biochem Biotechnol 2023; 195:172-195. [PMID: 36070165 DOI: 10.1007/s12010-022-04145-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
Tupistra nutans Wall. ex Lindl. is a medicinal plant found in the Eastern Himalayan region. Besides being used as a folk medicine for pain and high blood sugar, its inflorescence is consumed as a vegetable. However, its medicinal properties have not been proven in vitro and in vivo till now. Therefore, in this study, we reported the phytochemicals present in the methanolic extract of Tupistra nutans Wall. ex Lindl. inflorescence (METNI) and its comparative effect in liver carcinoma HepG2 cells against non-cancerous murine fibroblast F111 cells. Phytochemical profiling by gas chromatography-mass spectrometry (GC-MS) analysis showed that METNI was rich in unsaturated fatty acids, vitamin E, and anticancer compounds like diosgenin, linoleic acid, and palmitoleic acid. METNI was found to have in vitro antioxidant property as determined by DPPH and pyrogallol methods, and UV protection property as investigated by fluorescence-based and spectrophotometric methods. MTT assay revealed METNI caused significantly more cell proliferation inhibition in HepG2 (IC50 = 138 µg/ml) compared to F111 (IC50 = 347 µg/ml) cells. Although in both HepG2 and F111 cells METNI showed significant antioxidant activity, it led to intracellular ROS generation and cell cycle alteration at higher exposure. The obtained results suggest that Tupistra nutans can be a promising application for anticancer drug and skin care product development, but can be harmful if overconsumed.
Collapse
Affiliation(s)
- Ashim Chandra Roy
- Biochemistry and Environmental Toxicology Laboratory, Lab. # 103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abhinav Prasad
- Biochemistry and Environmental Toxicology Laboratory, Lab. # 103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ilora Ghosh
- Biochemistry and Environmental Toxicology Laboratory, Lab. # 103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
14
|
Cytokines and chemokines modulation of itch. Neuroscience 2022; 495:74-85. [PMID: 35660453 DOI: 10.1016/j.neuroscience.2022.05.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/07/2022] [Accepted: 05/26/2022] [Indexed: 12/31/2022]
Abstract
Itch (pruritus) is a common cutaneous symptom widely associated with many skin complaints, and chronic itch can be a severe clinical problem. The onset and perpetuation of itch are linked to cytokines, such as interleukin (IL)-31, IL-4, IL-13, IL-33, thymic stromal lymphopoietin, and tumor necrosis factor-alpha, and chemokines, such as chemokine (C-C motif) ligand 2 and C-X-C motif chemokine ligand 10. This review highlights research that has attempted to determine the attributes of various cytokines and chemokines concerning the development and modulation of itch. Through such research, clinical approaches targeting cytokines and/or chemokines may arise, which may further the development of itch therapeutics.
Collapse
|
15
|
Lai QWS, Guo MSS, Wu KQ, Liao Z, Guan D, Dong TT, Tong P, Tsim KWK. Edible Bird's Nest, an Asian Health Food Supplement, Possesses Moisturizing Effect by Regulating Expression of Filaggrin in Skin Keratinocyte. Front Pharmacol 2021; 12:685982. [PMID: 34354585 PMCID: PMC8329658 DOI: 10.3389/fphar.2021.685982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Edible bird's nest (EBN) has been consumed as a Chinese delicacy for hundreds of years; the functions of which have been proposed to prevent lung disease, strengthen immune response, and restore skin youthfulness. To support the skin function of EBN, the water extract and the enzymatic digest of EBN with enriched digested peptides were tested in cultured keratinocyte, HaCaT cell line. The effects of EBN extract and digest in inducing proteins crucial for skin moisturizing were determined in both in vitro and ex vivo models. In cultured keratinocytes, the expressions of S100-fused type proteins contributing to skin barrier function in the stratum corneum, e.g. filaggrin and filaggrin-2, were determined in both mRNA and protein levels, which were markedly induced in the treatment of EBN extract or digest. The EBN-induced gene transcriptions of filaggrin and filaggrin-2 were mediated by activation of p38 MAPK pathway and various transcription factors, e.g. GATA3, PPARα, PPARβ, and PPARγ: these transcriptional factors were markedly activated by the digested products of EBN, as compared to the extract, in cultured keratinocytes. By using atomic force microscopy (AFM), the EBN-treated keratinocyte was shown to have more liquid-like morphology, as compared to a control cell. The EBN digest showed better induction on these moisturizing effects as compared to the extract. These lines of evidence therefore suggested the water moisturizing effect of EBN in skin function.
Collapse
Affiliation(s)
- Queenie Wing Sze Lai
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine R and D, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Maggie Sui Sui Guo
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine R and D, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Kevin Qiyun Wu
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine R and D, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhitao Liao
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Dongshi Guan
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Tina Tingxia Dong
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine R and D, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Penger Tong
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Karl Wah Keung Tsim
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine R and D, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
16
|
Zhang LJ. Recent progress at the psoriasis and atopic dermatitis research front: An experimental dermatology perspective. Exp Dermatol 2021; 30:756-764. [PMID: 34057758 DOI: 10.1111/exd.14388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ling-Juan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Atwood SX, Plikus MV. Fostering a healthy culture: Biological relevance of in vitro and ex vivo skin models. Exp Dermatol 2021; 30:298-303. [PMID: 33565670 DOI: 10.1111/exd.14296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Scott X Atwood
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.,Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA.,NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.,Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA.,NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|