1
|
Green KJ, Pokorny J, Jarrell B. Dangerous liaisons: Loss of keratinocyte control over melanocytes in melanomagenesis. Bioessays 2024; 46:e2400135. [PMID: 39233509 DOI: 10.1002/bies.202400135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Melanomas arise from transformed melanocytes, positioned at the dermal-epidermal junction in the basal layer of the epidermis. Melanocytes are completely surrounded by keratinocyte neighbors, with which they communicate through direct contact and paracrine signaling to maintain normal growth control and homeostasis. UV radiation from sunlight reshapes this communication network to drive a protective tanning response. However, repeated rounds of sun exposure result in accumulation of mutations in melanocytes that have been considered as primary drivers of melanoma initiation and progression. It is now clear that mutations in melanocytes are not sufficient to drive tumor formation-the tumor environment plays a critical role. This review focuses on changes in melanocyte-keratinocyte communication that contribute to melanoma initiation and progression, with a particular focus on recent mechanistic insights that lay a foundation for developing new ways to intercept melanoma development.
Collapse
Affiliation(s)
- Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, USA
| | - Jenny Pokorny
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Brieanna Jarrell
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, USA
| |
Collapse
|
2
|
Huang F, Liu Q, Lu Y. Magnolia biondii flower extract attenuates UVB-induced skin damage through high-mobility group box protein B1. Int J Cosmet Sci 2024; 46:775-785. [PMID: 38685711 DOI: 10.1111/ics.12959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/15/2024] [Accepted: 02/19/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Magnolia biondii, a plant containing many magnolian-like compounds in its flowers or buds, exhibits anti-inflammatory and antiallergic effects; however, no study has addressed its effect on alleviating ultraviolet light (UV)-induced skin damage. We thus aimed at studying the effects of M. biondii flower extract (MB) on UVB-induced skin damage and determine the relationship between cell damage and damage-associated molecular patterns (DAMPs). METHODS Reconstructed epidermal models and foreskin samples were selected to detect cellular reactions after UVB irradiation and MB treatment. MTT, haematoxylin-eosin and immunofluorescence staining were used to examine total viability, sunburned cells and expression and migration of DAMPs at 16 or 48 h. Prostaglandin E2 (PGE-2) and interleukin 8 (IL-8) levels were measured using enzyme-linked immunosorbent assays. A clinical UVB-damaged test was carried out on human arms subjected to MB pre- or post-treatment. Human skin probes were used to measure erythema, melanin, ITA° and transepidermal water loss (TEWL), while skin photos were captured using the VISIA system. RESULTS MB is rich in lignans such as magnolin, pinoresinol dimethyl ether and fargesin, and shows weak UV absorption at 280-320 nm. Coculturing with MB for 16 or 48 h after UVB irradiation improved the tissue viability and structure of Skinovo-Epi, and reduced the expression and migration of high mobility group box protein B1 (HMGB1) as well as the expression of IL-8 and PGE-2. In the excised foreskin treated with MB after UVB irradiation, the generation of 8-hidroxy-2-deoxyguanosine and nuclear transfer of HMGB1 were reduced. When pre-treated with MB for 3 days, UVB-induced skin erythema and ITA° were significantly decreased. When post-treated with MB for 5 days, a decrease in skin erythema, melanin and TEWL values and an increase in skin ITA° were observed. CONCLUSIONS Treatment with MB attenuated UVB-induced skin damage, such as erythema, pigmentation and skin barrier function, by improving the tissue viability and structure and reducing sunburned cells and skin inflammation. This effect may be related to DNA damage, which causes the migration of HMGB1 from the nucleus to the outside of the cell to induce skin inflammation.
Collapse
Affiliation(s)
- Fang Huang
- Technology Innovation Center, JAKA Biotech. Co., Ltd., Shanghai, China
| | - Qing Liu
- Technology Innovation Center, JAKA Biotech. Co., Ltd., Shanghai, China
| | - Yina Lu
- Technology Innovation Center, JAKA Biotech. Co., Ltd., Shanghai, China
| |
Collapse
|
3
|
Limbu SL, Purba TS, Harries M, Kundu R, Bhogal RK, Paus R. Dandruff lesional scalp skin exhibits epidermal T cell infiltration and a weakened hair follicle immune privilege. Int J Cosmet Sci 2024; 46:717-733. [PMID: 38488328 DOI: 10.1111/ics.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/05/2024] [Accepted: 02/05/2024] [Indexed: 09/25/2024]
Abstract
OBJECTIVE Dandruff is characterised by the presence of perivascular leukocytes and mild inflammation; however, the immune microenvironment of dandruff-affected scalp skin and the potential changes to the hair follicle's (HF) physiological immune privilege (HF IP) remain unknown. Here, we characterised the HF immune microenvironment and immune privilege status in dandruff-affected scalp skin. METHODS We assessed relevant key parameters in healthy versus dandruff-affected human scalp biopsies using quantitative immunohistomorphometry, laser capture microdissection, and RNA sequencing. RESULTS The number of epidermal CD4+ and CD8+ T cells was increased in lesional dandruff scalp skin, while the number of MHC class II+/CD1a+ Langerhans cells was decreased in the infundibulum. The number of intrafollicular and perifollicular CD4+ T cells and CD8+ T cells, perifollicular CD68+ macrophages, and tryptase+ mast cells remained unchanged. Interestingly, MHC class Ia and ß2-microglobulin protein expression were significantly increased specifically in the suprabulbar outer root sheath (ORS) compartment of dandruff-associated HFs. RNAseq analysis of laser capture micro-dissected suprabulbar ORS compartment revealed antigen presentation pathway as the top regulated canonical pathway, along with the upregulation of HF-IP genes such as HLA-C, HLA-DP, and TAP1, which are normally down-regulated in healthy HFs. Intrafollicular protein expression of known HF IP guardians (CD200 and α-MSH) and 'danger signals' (MICA and CXCL10) remained unaltered at the IP sites of dandruff lesional HFs compared to non-lesional and healthy HFs. Instead, the expression of macrophage migration inhibiting factor (MIF), another HF IP guardian, was reduced. CONCLUSION Together, this work shows that dandruff is associated with epidermal T-cell infiltration and a weakened HF IP in the suprabulbar ORS of HFs in dandruff lesional scalp.
Collapse
Affiliation(s)
- Susan L Limbu
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Talveen S Purba
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Matthew Harries
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
- Department of Dermatology, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | | | | | - Ralf Paus
- Centre for Dermatology Research, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami, Coral Gables, Florida, USA
- Monasterium Laboratory, Münster, Germany
- CUTANEON, Hamburg, Germany
| |
Collapse
|
4
|
Zhang Y, Hu Y, Lei L, Jiang L, Fu C, Chen M, Wu S, Duan X, Chen J, Zeng Q. UVB-induced TRPS1 regulates MITF transcription activity to promote skin pigmentation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167445. [PMID: 39074626 DOI: 10.1016/j.bbadis.2024.167445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Hyperpigmented dermatoses are characterized by increased skin pigmentation caused by genetic, environmental factors and inflammation, which lasts a long time and is difficult to treat. Ultraviolet (UV), especially ultraviolet B (UVB), is the primary external factor inducing skin pigmentation. However, the specific regulatory mechanisms are not fully understood. Through analysis of GEO datasets from four UV-exposed skin cell/tissue samples, we found that TRPS1 is the only gene differentially expressed in multiple datasets (GSE22083, GSE67098 and GSE70280) and highly positively correlated with the expression of key melanogenesis genes. Consistently, we observed that TRPS1 is highly expressed in sun-exposed skin tissues compared to non-exposed skin. Additionally, the expression of TRPS1 was also significantly upregulated after UVB irradiation in isolated skin tissues and melanocytes, while knockdown of TRPS1 expression inhibited the UVB-induced melanogenesis. Further research revealed that overexpression of TRPS1 increased melanin content and tyrosinase activity in MNT1 cells, as well as upregulated the expression levels of key melanogenesis genes (MITF, TYR, TYRP1, DCT). In contrast, inhibition of TRPS1 expression showed the opposite effect. Moreover, we found that TRPS1 can bind to the promoter region of MITF, inhibiting the expression of MITF can antagonize the melanogenesis induced by TRPS1. In conclusion, UVB-induced TRPS1 promotes melanogenesis by activating the transcriptional activity of MITF.
Collapse
Affiliation(s)
- Yushan Zhang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yibo Hu
- Clinical Research Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Lei
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling Jiang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chuhan Fu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Menglu Chen
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Songjiang Wu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolei Duan
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Chen
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qinghai Zeng
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
5
|
Guo MS, Wu Q, Xia Y, Wu J, Wang X, Yuen GKW, Dong TT, Gao J, Tsim KWK. Cholinergic Signaling Mediated by Muscarinic Receptors Triggers the Ultraviolet-Induced Release of Melanosome in Cultured Melanoma Cells. Pigment Cell Melanoma Res 2024. [PMID: 39344704 DOI: 10.1111/pcmr.13201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
In skin, melanin is synthesized and stored in melanosomes. In epidermal melanocytes, melanosomes are transported to and internalized by the neighboring keratinocytes, subsequently leading to skin pigmentation. Ultraviolet (UV) radiation induces the release of acetylcholine (ACh) from keratinocytes, which in turn activates ACh receptors (AChRs) on nearby melanocytes, forming a proposed "skin synapse". Here, we illustrated that the UV-induced melanosome release from cultured B16F10 melanoma cells could be mediated by co-actions of ACh. In the cell cultures, UV exposure robustly elicited melanosome release. Applied bethanechol (BeCh), an agonist of muscarinic AChR (mAChR), could significantly enhance the release. In parallel, the intracellular Ca2+ mobilization was regulated. The applied antagonists of M1 and/or M3 mAChRs could block the UV-induced melanosome release and the mobilization of intracellular Ca2+. The phosphorylation of PKC, triggered by UV and BeCh treatments, could be suppressed by the applied mAChR antagonists. The expressions of tethering complex for exocytosis, for example, Sec8, Exo70, and Rab11b, as well as synaptotagmin, were increased under UV exposure together with mAChR agonist: The inductions were fully abolished by M1 or M3 antagonist. Here, we hypothesize that the cholinergic signaling is playing roles in UV-induced exocytosis of melanosomes.
Collapse
Affiliation(s)
- Maggie Suisui Guo
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Qiyun Wu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yingjie Xia
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jiahui Wu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiaoyang Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Gary Ka Wing Yuen
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tina Tingxia Dong
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
| | - Jin Gao
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Neurobiology and Cellular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Karl Wah Keung Tsim
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
| |
Collapse
|
6
|
Lu L, He H, Feng J, Hu Z, Zhang S, Yang L, Liu Y, Wang T. Post-translational modification in the pathogenesis of vitiligo. Immunol Res 2024:10.1007/s12026-024-09545-x. [PMID: 39320694 DOI: 10.1007/s12026-024-09545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Vitiligo is a chronic dermatological condition marked by the loss of skin pigmentation. Its complex etiology involves multiple factors and has not been completely elucidated. Protein post-translational modification pathways have been proven to play a significant role in inflammatory skin diseases, yet research in the context of vitiligo remains limited. This review focuses on the role of post-translational modifications in vitiligo pathogenesis, especially their impact on cellular signaling pathways related to immune response and melanocyte survival. Current therapeutic strategies targeting these pathways are discussed, emphasizing the potential for novel treatments in vitiligo management.
Collapse
Affiliation(s)
- Lu Lu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Huimin He
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Jindi Feng
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Zhonghui Hu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Shiyu Zhang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Lu Yang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Yuehua Liu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China.
| | - Tao Wang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China.
| |
Collapse
|
7
|
Kwon H, Lee JH, Yoo JM, Nguyen H, An H, Chang SE, Song Y. Semaxanib, a VEGF inhibitor, suppresses melanogenesis by modulating CRTC3 independently of VEGF signaling. J Dermatol Sci 2024; 115:121-129. [PMID: 39127591 DOI: 10.1016/j.jdermsci.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/27/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Dysregulation of melanogenesis contributes to the development of skin hyperpigmentation diseases, which poses a treatment challenge. Following the establishment of CRTC3 screening methods to explore small molecules inhibiting melanogenesis for the topical treatment of hyperpigmentation diseases, we identified a candidate molecule, semaxanib. OBJECTIVE To explore the antimelanogenic effects of semaxanib, a vascular endothelial growth factor receptor (VEGFR) 2 inhibitor, for potential applications in hyperpigmentation management and to unravel the role of VEGF signaling in melanocyte biology by investigating mechanism of action of semaxanib. METHODS Mouse-derived spontaneously immortalized melanocytes, B16F10, and normal human primary epidermal melanocytes cells were treated with semaxanib, and cellular responses were assessed using cell viability assays and melanin content measurements. Molecular mechanisms were investigated using transcriptional activity assays, reverse-transcription polymerase chain reaction, and immunoblotting analysis. In vivo studies were conducted using an epidermis-humanized transgenic mouse model and ex vivo human skin tissues. RESULTS Semaxanib ameliorated melanin content in cultured melanocytes by downregulating the expression of melanogenesis-associated genes by suppressing the CRTC3/microphthalmia-associated transcription factors. Topical application of semaxanib reduced melanin accumulation in the ultraviolet B-stimulated ex vivo human epidermis and tail of K14-stem cell factor transgenic mice. Mechanistically, the antimelanogenic effect induced by semaxanib was associated with SIK2-CRTC3-MITF rather than VEGF signaling in melanocytes. CONCLUSION Semaxanib emerges as a promising candidate for the development of therapeutics for hyperpigmentation, potentially working independently of VEGF signaling in human melanocytes.
Collapse
Affiliation(s)
- HyeJi Kwon
- Department of Brain Sciences, Brain Korea 21 project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jeong Hyeon Lee
- Department of Dermatology, Brain Korea 21 project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jae Min Yoo
- Department of Dermatology, Brain Korea 21 project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Huonggiang Nguyen
- Department of Brain Sciences, Brain Korea 21 project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hongchan An
- College of Pharmacy and Insitute of Pharmaceutical Sciences, CHA University Pocheon, Gyeonggi-do, Korea.
| | - Sung Eun Chang
- Department of Dermatology, Brain Korea 21 project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
| | - Youngsup Song
- Department of Brain Sciences, Brain Korea 21 project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
8
|
Peeva E, Yamaguchi Y, Ye Z, King B, Picardo M, Sloan A, Ezzedine K, Del Duca E, Estrada Y, Hassan-Zahraee M, He W, Hyde C, Bar J, Facheris P, Guttman-Yassky E. Efficacy and safety of ritlecitinib in vitiligo patients across Fitzpatrick skin types with biomarker analyses. Exp Dermatol 2024; 33:e15177. [PMID: 39304339 DOI: 10.1111/exd.15177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Efficacy and safety of ritlecitinib (an oral JAK3/TEC family kinase inhibitor) were evaluated in patients with nonsegmental vitiligo (NSV) across Fitzpatrick skin types (FSTs). Patients with FST I-III ('light skin'; n = 247) and FST IV-VI ('dark skin'; n = 117) received once-daily ritlecitinib 50 mg (with/without 4-week loading dose), low-dose ritlecitinib or placebo for 24 weeks. At baseline, patients with light skin displayed higher CLM-1 and NCR1 serum levels than patients with dark skin (p < 0.05). At 24 weeks, ritlecitinib 50 mg improved the extent of depigmentation measured by percent change from baseline in facial-vitiligo area scoring index (placebo-adjusted mean difference [90% CI]) in patients with light (-15.2 [-24.7, -5.8]; p = 0.004) and dark (-37.4 [-50.3, -24.4]; p < 0.0001) skin, with continuous re-pigmentation through week 48. Treatment-emergent adverse events were similar across FSTs. At weeks 4 and 24, ritlecitinib 50 mg reduced CXCL11 serum levels (p < 0.001) in patients with light skin, whereas patients with dark skin had increased levels at week 4 (p = 0.05) and no significant change at week 24. Ritlecitinib 50 mg decreased IL-9 and IL-22 expression levels in dark skin compared with light skin (qPCR; p < 0.05). These differences in immune dysregulations may explain why NSV patients with dark skin respond to therapy earlier than patients with light skin.
Collapse
Affiliation(s)
- Elena Peeva
- Inflammation and Immunology Research Unit, Pfizer, Cambridge, Massachusetts, USA
| | - Yuji Yamaguchi
- Inflammation and Immunology Research Unit, Pfizer, Collegeville, Pennsylvania, USA
| | - Zhan Ye
- Inflammation and Immunology Research Unit, Pfizer, Cambridge, Massachusetts, USA
| | - Brett King
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mauro Picardo
- Istituto Dermopatico dell Immacolata, IDI, IRCCS, Rome, Italy
- Cutaneous Physiopathology Laboratory, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Abigail Sloan
- Clinical Statistics, Pfizer, Cambridge, Massachusetts, USA
| | - Khaled Ezzedine
- Department of Dermatology, Hôpital Henri Mondor, Créteil, France
| | - Ester Del Duca
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine, New York, New York, USA
| | - Yeriel Estrada
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine, New York, New York, USA
| | - Mina Hassan-Zahraee
- Inflammation and Immunology Research Unit, Pfizer, Cambridge, Massachusetts, USA
| | - Wen He
- Inflammation and Immunology Research Unit, Pfizer, Cambridge, Massachusetts, USA
| | - Craig Hyde
- Inflammation and Immunology Research Unit, Pfizer, Cambridge, Massachusetts, USA
| | - Johnathan Bar
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine, New York, New York, USA
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paola Facheris
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine, New York, New York, USA
- Dermatology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Emma Guttman-Yassky
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine, New York, New York, USA
| |
Collapse
|
9
|
Xu Y, Cohen E, Johnson CN, Parent CA, Coulombe PA. Repeated stress to the skin amplifies neutrophil infiltration in a keratin 17- and PKCα-dependent manner. PLoS Biol 2024; 22:e3002779. [PMID: 39159283 PMCID: PMC11361748 DOI: 10.1371/journal.pbio.3002779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/29/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
Neutrophils are the first immune cells to reach inflamed sites and contribute to the pathogenesis of chronic inflammatory skin diseases. Yet, little is known about the pattern of neutrophil infiltration in inflamed skin in vivo and the mechanisms mediating their recruitment. Here, we provide insight into the dynamics of neutrophil infiltration in skin in response to acute or repeated inflammatory stress, highlighting a novel keratinocyte- and keratin 17 (K17)-dependent mechanism that regulates neutrophil recruitment to inflamed skin. We used the phorbol ester TPA and UVB, alone or in combination, to induce sterile inflammation in mouse skin. A single TPA treatment results in a neutrophil influx in the dermis that peaks at 12 h and resolves within 24 h. A subsequent TPA treatment or a UVB challenge, when applied 24 h but not 48 h later, accelerates, amplifies, and prolongs neutrophil infiltration. This transient amplification response (TAR) is mediated by local signals in inflamed skin, can be recapitulated in ex vivo culture, and involves the K17-dependent sustainment of protein kinase Cα (PKCα) activity and release of chemoattractants by stressed keratinocytes. K17 binds RACK1, a scaffold protein essential for PKCα activity. The N-terminal head domain of K17 is crucial for its association with RACK1 and regulation of PKCα activity. Analysis of RNAseq data reveals a signature consistent with TAR and PKCα activation in inflammatory skin diseases. These findings uncover a novel, keratin-dependent mechanism that amplifies neutrophil recruitment in skin under stress, with direct implications for inflammatory skin disorders.
Collapse
Affiliation(s)
- Yang Xu
- Graduate Program in Pharmacology and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Erez Cohen
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Craig N. Johnson
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Carole A. Parent
- Graduate Program in Pharmacology and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Life Science Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Pierre A. Coulombe
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
10
|
Huang X, Zhao P, Zhang G, Su X, Li H, Gong H, Ma X, Liu F. Application of Non-Pharmacologic Therapy in Hair Loss Treatment and Hair Regrowth. Clin Cosmet Investig Dermatol 2024; 17:1701-1710. [PMID: 39071847 PMCID: PMC11283242 DOI: 10.2147/ccid.s471754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Purpose Alopecia significantly affects the appearance and psychology of patients, and pharmacological therapies and hair transplantation are the main treatments for alopecia, but both have limitations. This review aimed to summarize the non-pharmacological therapies that promote hair growth and regeneration. Patients and Methods This is a non-systematic review. Multiple databases was searched with relevant data published between 1997 and 2024. Searching and screening followed the PRISMA guidelines. Results Novel therapeutic modalities, such as gas molecules, platelet-rich plasma, laser, and microneedling, can change the microenvironment of hair follicles, activate hair follicle stem cells, and promote hair growth and regeneration. Conclusion This paper reviews research on the application of non-pharmacological therapies in alopecia treatment and hair regeneration, with a view to providing an important basis for future research on alopecia treatment and the postoperative treatment of patients after hair transplantation.
Collapse
Affiliation(s)
- Xinlyu Huang
- Department of Dermatology, Venereology and Cosmetology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Pengxiang Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, People’s Republic of China
| | - Gongjie Zhang
- Department of Dermatology, Venereology and Cosmetology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xiangxi Su
- Department of Dermatology, Venereology and Cosmetology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Hanlin Li
- Department of Dermatology, Venereology and Cosmetology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Huizi Gong
- Department of Dermatology, Venereology and Cosmetology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xuemei Ma
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, People’s Republic of China
| | - Fang Liu
- Department of Dermatology, Venereology and Cosmetology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
11
|
He X, Li P, Zhao S, Liu H, Tang W, Xie J, Tang J. Kunzea Ericoides (Kanuka) Leaf Extracts Show Moisturisation, Antioxidant, and UV Protection Effects in HaCaT Cells and Anti-melanogenesis Effects in B16F10 Cells. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04989-1. [PMID: 39009952 DOI: 10.1007/s12010-024-04989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/17/2024]
Abstract
Kunzea ericoides (kanuka) products are well-known for their potent medicinal values in antioxidant and anti-inflammatory applications. The present study identified various compounds, such as chlorogenic acid, gallic acid, quercetin, and (E)-ferulic acid in the kanuka leaf extract, showing its potential use in maintaining skin health. The influence of kanuka leaf extract upon epidermal cells concerning cytotoxicity and in vitro activities of moisturisation, antioxidation, UV protection, and anti-melanogenesis effects were explored in the study. Kanuka leaf extract demonstrated significant promotion in the proliferation of HaCaT and B16F10 cells. After incubation with kanuka leaf extract, the content of ROS and DPPH in HaCaT was significantly decreased; at the same time, more SOD was produced. Furthermore, hyaluronidase-1 (HYAL-1) and HYAL-4 expressions were inhibited, while the aquaporin 3 (AQP-3) content was significantly increased in HaCaT. Kanuka leaf extract also inhibited the expressions of matrix metalloproteinases-1 (MMP-1) and MMP-14 in UV-induced HaCaT cells. In the B16F10 cell line, melanin and tyrosinase production were decreased under the presence of kanuka leaf extract, and the expressions of microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (TYRP-1), and TYRP-2 were also inhibited. The study validated kanuka leaf extract as an effective natural product against photoaging and melanogenesis.
Collapse
Affiliation(s)
- Xuefeng He
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Peishan Li
- Department of Dermatology, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, People's Republic of China
| | - Shixin Zhao
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Hengdeng Liu
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Weijian Tang
- Shanghai Urganic Bio-Technology Co., Ltd, Shanghai, 200000, People's Republic of China
| | - Julin Xie
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Jinming Tang
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
12
|
Pu Y, Pu S, Chen Y, Kong Q, Liu X, Zhao Q, Xu K, Liu J, Li M, Xu X, Qiao X, Su B, Chen J, Yang Z. Weakened tanning ability is an important mechanism for evolutionary skin lightening in East Asians. J Genet Genomics 2024; 51:703-713. [PMID: 38461943 DOI: 10.1016/j.jgg.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
The evolution of light-skin pigmentation among Eurasians is considered as an adaptation to the high-latitude environments. East Asians are ideal populations for studying skin color evolution because of the complex environment of East Asia. Here, we report a strong selection signal for the pigmentation gene phenylalanine hydroxylase (PAH) in light-skinned Han Chinese individuals. The intron mutation rs10778203 in PAH is enriched in East Asians and is significantly associated with skin color of the back of the hand in Han Chinese males (P < 0.05). In vitro luciferase and transcription factor binding assays show that the ancestral allele of rs10778203 could bind to SMAD2 and has a significant enhancer activity for PAH. However, the derived T allele (the major allele in East Asians) of rs10778203 decreases the binding activity of transcription factors and enhancer activity. Meanwhile, the derived T allele of rs10778203 shows a weaker ultraviolet radiation response in A375 cells and zebrafish embryos. Furthermore, rs10778203 decreases melanin production in transgenic zebrafish embryos after ultraviolet B (UVB) treatment. Collectively, PAH is a potential pigmentation gene that regulates skin tanning ability. Natural selection has enriched the adaptive allele, resulting in weakened tanning ability in East Asians, suggesting a unique genetic mechanism for evolutionary skin lightening in East Asians.
Collapse
Affiliation(s)
- Youwei Pu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Siyu Pu
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanyan Chen
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Qinghong Kong
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xuyang Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Qi Zhao
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ke Xu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jiuming Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mengyuan Li
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaoyu Xu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaoyang Qiao
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jing Chen
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zhaohui Yang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
13
|
Liu W, Wang Y, Qiu H, Chen D, Wu S, Ji Q, Chang B, Li Y, Zhao H, Tan Y, Gu Y. Long-term ultraviolet B irradiation at 297 nm with light-emitting diode improves bone health via vitamin D regulation. BIOMEDICAL OPTICS EXPRESS 2024; 15:4081-4100. [PMID: 39022556 PMCID: PMC11249673 DOI: 10.1364/boe.520348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 07/20/2024]
Abstract
Ultraviolet radiation is the primary determinant for vitamin D synthesis. Sunlight is inefficient and poses a risk, particularly for long-term exposure. In this study, we screened the most favorable wavelength for vitamin D synthesis among four types of narrowband light-emitting diodes (LEDs) and then irradiated osteoporosis rats with the optimal wavelength for 3-12 months. The 297 nm narrowband LED was the most efficient. Long-term radiation increased vitamin D levels in all osteoporotic rats and improved bone health. No skin damage was observed during irradiation. Our findings provide an efficient and safe method of vitamin D supplementation.
Collapse
Affiliation(s)
- Wenwen Liu
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ying Wang
- Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Haixia Qiu
- Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Defu Chen
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Shengnan Wu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Quanbo Ji
- Department of Orthopaedics, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Biao Chang
- Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yunqi Li
- Department of Gastroenterology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hongyou Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yizhou Tan
- Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ying Gu
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
14
|
Milner SM. Sunburn. EPLASTY 2024; 24:QA17. [PMID: 39233706 PMCID: PMC11374383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Affiliation(s)
- Stephen M Milner
- Professor of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland (Ret)
| |
Collapse
|
15
|
Lambert KA, Clements CM, Mukherjee N, Pacheco TR, Shellman SX, Henen MA, Vögeli B, Goldstein NB, Birlea S, Hintzsche J, Caryotakis G, Tan AC, Zhao R, Norris DA, Robinson WA, Wang Y, VanTreeck JG, Shellman YG. SASH1 S519N Variant Links Skin Hyperpigmentation and Premature Hair Graying to Dysfunction of Melanocyte Lineage. J Invest Dermatol 2024:S0022-202X(24)00393-2. [PMID: 38848986 DOI: 10.1016/j.jid.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 06/09/2024]
Abstract
A better understanding of human melanocyte (MC) and MC stem cell biology is essential for treating MC-related diseases. This study employed an inherited pigmentation disorder carrying the SASH1S519N variant in a Hispanic family to investigate SASH1 function in the MC lineage and the underlying mechanism for this disorder. We used a multidisciplinary approach, including clinical examinations, human cell assays, yeast 2-hybrid screening, and biochemical techniques. Results linked early hair graying to the SASH1S519N variant, a previously unrecognized clinical phenotype in hyperpigmentation disorders. In vitro, we identified SASH1 as a regulator in MC stem cell maintenance and discovered that TNKS2 is crucial for SASH1's role. In addition, the S519N variant is located in one of multiple tankyrase-binding motifs and alters the binding kinetics and affinity of the interaction. In summary, this disorder links both gain and loss of pigmentation in the same individual, hinting to accelerated aging in human MC stem cells. The findings offer insights into the roles of SASH1 and TNKS2 in MC stem cell maintenance and the molecular mechanisms of pigmentation disorders. We propose that a comprehensive clinical evaluation of patients with MC-related disorders should include an assessment and history of hair pigmentation loss.
Collapse
Affiliation(s)
- Karoline A Lambert
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Christopher M Clements
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Nabanita Mukherjee
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Theresa R Pacheco
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Samantha X Shellman
- Department of Computer Science, University of Colorado Boulder, Boulder, Colorado, USA
| | - Morkos A Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Nathaniel B Goldstein
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Stanca Birlea
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA; Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Griffin Caryotakis
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA; Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Aik-Choon Tan
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA; Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - David A Norris
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - William A Robinson
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Yizhou Wang
- Department of Chemistry, College of Arts and Sciences, Emory University, Atlanta, Georgia, USA
| | - Jillian G VanTreeck
- College of Biological Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| | - Yiqun G Shellman
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA; Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
16
|
Liu J, Bitsue HK, Yang Z. Skin colour: A window into human phenotypic evolution and environmental adaptation. Mol Ecol 2024; 33:e17369. [PMID: 38713101 DOI: 10.1111/mec.17369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
As modern humans ventured out of Africa and dispersed around the world, they faced novel environmental challenges that led to geographic adaptations including skin colour. Over the long history of human evolution, skin colour has changed dramatically, showing tremendous diversity across different geographical regions, for example, the majority of individuals from the expansive lands of Africa have darker skin, whereas the majority of people from Eurasia exhibit lighter skin. What adaptations did lighter skin confer upon modern humans as they migrated from Africa to Eurasia? What genetic mechanisms underlie the diversity of skin colour observed in different populations? In recent years, scientists have gradually gained a deeper understanding of the interactions between pigmentation gene and skin colour through population-based genomic studies of different groups around the world, particularly in East Asia and Africa. In this review, we summarize our current understanding of 26 skin colour-related pigmentation genes and 48 SNPs that influence skin colour. Important pigmentation genes across three major populations are described in detail: MFSD12, SLC24A5, PDPK1 and DDB1/CYB561A3/TMEM138 influence skin colour in African populations; OCA2, KITLG, SLC24A2, GNPAT and PAH are key to the evolution of skin pigmentation in East Asian populations; and SLC24A5, SLC45A2, TYR, TYRP1, ASIP, MC1R and IRF4 significantly contribute to the lightening of skin colour in European populations. We summarized recent findings in genomic studies of skin colour in populations that implicate diverse geographic environments, local adaptation among populations, gene flow and multi-gene interactions as factors influencing skin colour diversity.
Collapse
Affiliation(s)
- Jiuming Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Habtom K Bitsue
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhaohui Yang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Zhang XZ, Ma XD, Wang WT, Peng F, Hou YM, Shen YX, Sun YQ, Chen JF, Yin YJ, Zeng YY, Yu Y, Zhou P, Zhang FH, He YF, Shen YF. Comparative skin histological and transcriptomic analysis of Rana kukunoris with two different skin colors. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101217. [PMID: 38412702 DOI: 10.1016/j.cbd.2024.101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024]
Abstract
This study compares the skin structures of Rana kukunoris with two different skin colors living in the same area of Haibei in the Northeastern Qinghai-Tibet Plateau. The skin thickness of the khaki R. kukunoris was significantly greater than that of the brown R. kukunoris (P < 0.01), and significantly more mucous and granular glands were present on the dorsal skin of the khaki frog (P < 0.05). Meanwhile, the melanocytes on the dorsal skin of the brown frog were significantly larger than those on the khaki one (P < 0.05). Morphological changes in the expansion and aggregation of melanocytes seemed to deepen the skin color of R. kukunoris. Moreover, transcriptome sequencing identified tyrosine metabolism, melanogenesis, and riboflavin metabolism as the main pathways involved in melanin formation and metabolism in brown R. kukunoris. TYR, MC1R was upregulated as the skin color of R. kukunoris was deepened and contributed to melanin production and metabolism. In contrast, the khaki frog had significantly more upregulated genes and metabolic pathways related to autoimmunity. The khaki frog appeared to defend against ultraviolet (UV) radiation-induced damage by secreting mucus and small molecular peptides, whereas the brown frog protected itself by distributing a large amount of melanin. Hence, the different skin colors of R. kukunoris might represent different adaptation strategies for survival in the intense UV radiation environment of the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Xu-Ze Zhang
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810001, China; Key Laboratory of Resource Chemistry and Eco-environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, Qinghai Minzu University, Xining 810007, China.
| | - Xiao-Dong Ma
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China; Key Laboratory of Resource Chemistry and Eco-environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, Qinghai Minzu University, Xining 810007, China
| | - Wan-Ting Wang
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China
| | - Fei Peng
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China
| | - Ye-Mao Hou
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China
| | - Yue-Xia Shen
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China
| | - Yu-Qi Sun
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China
| | - Jin-Fang Chen
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China
| | - Yi-Jin Yin
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China
| | - Yu-Ye Zeng
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China
| | - Yi Yu
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China
| | - Peng Zhou
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810001, China
| | - Fu-Hao Zhang
- Key Laboratory of Resource Chemistry and Eco-environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, Qinghai Minzu University, Xining 810007, China; College of Pharmaceutical, Qinghai Minzu University, Xining 810007, China
| | - Yan-Feng He
- Key Laboratory of Resource Chemistry and Eco-environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, Qinghai Minzu University, Xining 810007, China; College of Pharmaceutical, Qinghai Minzu University, Xining 810007, China.
| | - Ying-Fang Shen
- College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China; Key Laboratory of Resource Chemistry and Eco-environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, Qinghai Minzu University, Xining 810007, China.
| |
Collapse
|
18
|
Ouyang J, Hu N, Wang H. Petanin Potentiated JNK Phosphorylation to Negatively Regulate the ERK/CREB/MITF Signaling Pathway for Anti-Melanogenesis in Zebrafish. Int J Mol Sci 2024; 25:5939. [PMID: 38892131 PMCID: PMC11173099 DOI: 10.3390/ijms25115939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Petanin, an acylated anthocyanin from the Solanaceae family, shows potential in tyrosinase inhibitory activity and anti-melanogenic effects; however, its mechanism remains unclear. Therefore, to investigate the underlying mechanism of petanin's anti-melanogenic effects, the enzyme activity, protein expression and mRNA transcription of melanogenic and related signaling pathways in zebrafish using network pharmacology, molecular docking and molecular dynamics simulation were combined for analysis. The results showed that petanin could inhibit tyrosinase activity and melanogenesis, change the distribution and arrangement of melanocytes and the structure of melanosomes, reduce the activities of catalase (CAT) and peroxidase (POD) and enhance the activity of glutathione reductase (GR). It also up-regulated JNK phosphorylation, inhibited ERK/RSK phosphorylation and down-regulated CREB/MITF-related protein expression and mRNA transcription. These results were consistent with the predictions provided through network pharmacology and molecular docking. Thus, petanin could inhibit the activity of tyrosinase and the expression of tyrosinase by inhibiting and negatively regulating the tyrosinase-related signaling pathway ERK/CREB/MITF through p-JNK. In conclusion, petanin is a good tyrosinase inhibitor and anti-melanin natural compound with significant market prospects in melanogenesis-related diseases and skin whitening cosmetics.
Collapse
Affiliation(s)
- Jian Ouyang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (J.O.); (N.H.)
- Huzhou China-Science Innovation Centre of Plateau Biology, Huzhou 313000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Hu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (J.O.); (N.H.)
| | - Honglun Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China; (J.O.); (N.H.)
- Huzhou China-Science Innovation Centre of Plateau Biology, Huzhou 313000, China
| |
Collapse
|
19
|
Hasse S, Sommer MC, Guenther S, Schulze C, Bekeschus S, von Woedtke T. Exploring the Influence of Cold Plasma on Epidermal Melanogenesis In Situ and In Vitro. Int J Mol Sci 2024; 25:5186. [PMID: 38791225 PMCID: PMC11120903 DOI: 10.3390/ijms25105186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Epidermal melanin synthesis determines an individual's skin color. In humans, melanin is formed by melanocytes within the epidermis. The process of melanin synthesis strongly depends on a range of cellular factors, including the fine-tuned interplay with reactive oxygen species (ROS). In this context, a role of cold atmospheric plasma (CAP) on melanin synthesis was proposed due to its tunable ROS generation. Herein, the argon-driven plasma jet kINPen® MED was employed, and its impact on melanin synthesis was evaluated by comparison with known stimulants such as the phosphodiesterase inhibitor IBMX and UV radiation. Different available model systems were employed, and the melanin content of both cultured human melanocytes (in vitro) and full-thickness human skin biopsies (in situ) were analyzed. A histochemical method detected melanin in skin tissue. Cellular melanin was measured by NIR autofluorescence using flow cytometry, and a highly sensitive HPLC-MS method was applied, which enabled the differentiation of eu- and pheomelanin by their degradation products. The melanin content in full-thickness human skin biopsies increased after repeated CAP exposure, while there were only minor effects in cultured melanocytes compared to UV radiation and IBMX treatment. Based on these findings, CAP does not appear to be a useful option for treating skin pigmentation disorders. On the other hand, the risk of hyperpigmentation as an adverse effect of CAP application for wound healing or other dermatological diseases seems to be neglectable.
Collapse
Affiliation(s)
- Sybille Hasse
- Leibniz Institute for Plasma Science and Technology e.V. (INP), a Member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.-C.S.); (S.B.); (T.v.W.)
| | - Marie-Christine Sommer
- Leibniz Institute for Plasma Science and Technology e.V. (INP), a Member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.-C.S.); (S.B.); (T.v.W.)
| | - Sebastian Guenther
- Institute of Pharmacy, Department Pharmaceutical Biology, Greifswald University, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany; (S.G.); (C.S.)
| | - Christian Schulze
- Institute of Pharmacy, Department Pharmaceutical Biology, Greifswald University, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany; (S.G.); (C.S.)
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology e.V. (INP), a Member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.-C.S.); (S.B.); (T.v.W.)
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology e.V. (INP), a Member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.-C.S.); (S.B.); (T.v.W.)
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Centre, Walther-Rathenau-Str. 48, 17489 Greifswald, Germany
| |
Collapse
|
20
|
Bishnoi A, Parsad D. Phototherapy for vitiligo: A narrative review on the clinical and molecular aspects, and recent literature. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12968. [PMID: 38632705 DOI: 10.1111/phpp.12968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Vitiligo is characterized by depigmented patches resulting from loss of melanocytes. Phototherapy has emerged as a prominent treatment option for vitiligo, utilizing various light modalities to induce disease stability and repigmentation. AIMS AND METHODS This narrative review aims to explore the clinical applications and molecular mechanisms of phototherapy in vitiligo. RESULTS AND DISCUSSION The review evaluates existing literature on phototherapy for vitiligo, analyzing studies on hospital-based and home-based phototherapy, as well as outcomes related to stabilization and repigmentation. Narrowband ultra-violet B, that is, NBUVB remains the most commonly employed, studied and effective phototherapy modality for vitiligo. Special attention is given to assessing different types of lamps, dosimetry, published guidelines, and the utilization of targeted phototherapy modalities. Additionally, the integration of phototherapy with other treatment modalities, including its use as a depigmenting therapy in generalized/universal vitiligo, is discussed. Screening for anti-nuclear antibodies and tailoring approaches for non-photo-adapters are also examined. CONCLUSION In conclusion, this review provides a comprehensive overview of phototherapy for vitiligo treatment. It underscores the evolving landscape of phototherapy and offers insights into optimizing therapeutic outcomes and addressing the challenges ahead. By integrating clinical evidence with molecular understanding, phototherapy emerges as a valuable therapeutic option for managing vitiligo, with potential for further advancements in the field.
Collapse
Affiliation(s)
- Anuradha Bishnoi
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Davinder Parsad
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
21
|
Hu Y, Liu L, Xu Z, Huang D, Chen H, Zhang J, Chen L, Dai X, Zhang L, Luan C, Ju M, Chen K. Comparing the efficacy of 308-nm light-emitting diode and 308-nm excimer lamp for treating vitiligo: A randomized controlled trial. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12972. [PMID: 38752300 DOI: 10.1111/phpp.12972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND In previous studies, the 308-nm light-emitting diode (LED) has been proven safe and effective for treating vitiligo. However, direct comparisons between the 308-nm LED and 308-nm excimer lamp (308-nm MEL) for the treatment of vitiligo are lacking. OBJECTIVE To compare the efficacy of the 308-nm LED and 308-nm MEL for treating nonsegmental stable vitiligo. PATIENTS AND METHODS This randomized controlled trial was conducted between January 2018 and August 2023. Enrolled patients were randomly assigned to either the 308-nm LED or the 308-nm MEL groups, both receiving 16 treatment sessions. Adverse events that occurred during the treatment were documented. RESULTS In total, 269 stable vitiligo patches from 174 patients completed the study. A total of 131 lesions were included in the 308-nm LED group, and 138 lesions were included in the 308-nm MEL group. After 16 treatment sessions, 38.17% of the vitiligo patches in the 308-nm LED group achieved repigmentation of at least 50% versus 38.41% in the 308-nm MEL group. The two devices exhibited similar results in terms of efficacy for a repigmentation of at least 50% (p = .968). The incidence of adverse effects with the two phototherapy devices was comparable (p = .522). CONCLUSIONS Treatment of vitiligo with the 308-nm LED had a similar efficacy rate to the 308-nm MEL, and the incidence of adverse effects was comparable between the two devices.
Collapse
Affiliation(s)
- Yu Hu
- Department of Physiotherapy, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Lihao Liu
- Department of Physiotherapy, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Zhuohong Xu
- Department of Physiotherapy, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Dan Huang
- Department of Physiotherapy, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Hongying Chen
- Department of Physiotherapy, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Jiaan Zhang
- Department of Physiotherapy, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Lihao Chen
- Department of Physiotherapy, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Xiaoxi Dai
- Department of Physiotherapy, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Liangliang Zhang
- Department of Physiotherapy, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Chao Luan
- Department of Physiotherapy, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Mei Ju
- Department of Physiotherapy, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Kun Chen
- Department of Physiotherapy, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| |
Collapse
|
22
|
de Dormael R, Sextius P, Bourokba N, Mainguene E, Tachon R, Gaurav K, Jouni H, Bastien P, Diridollou S. 2-Mercaptonicotinoyl glycine prevents UV-induced skin darkening and delayed tanning in healthy subjects: A randomized controlled clinical study. J Cosmet Dermatol 2024; 23:1745-1752. [PMID: 38372022 DOI: 10.1111/jocd.16200] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/22/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Chronic nonextreme sun exposure induces two mechanisms of skin pigmentation, causing immediate darkening and delayed tanning. A new molecule, 2-mercaptonicotinoyl glycine (2-MNG), has been shown in vitro to inhibit both immediate darkening and new melanin synthesis via covalent conjugation of the thiol group of 2-MNG to melanin precursors. OBJECTIVE To evaluate 2-MNG in preventing both mechanisms in vivo. METHODS In a randomized, intra-individual and controlled study, 33 subjects with melanin-rich skin were exposed to UV daylight on designated areas on the back and treated with a cosmetic formula containing 0.5% or 1% 2-MNG alone or 0.5% 2-MNG in association with lipohydroxy acid (LHA, 0.3%) plus Mexoryl-SX (MSX, 1.5%). The respective vehicles were used as controls and 4-n-butyl-resorcinol (4-n-BR, 2.5%) as a positive reference. RESULTS 2-MNG alone significantly reduced immediate darkening and inhibited new melanin production when compared with vehicle, with higher performance at 1% than at 0.5%. 2-MNG at 0.5% in association with LHA and MSX showed significantly higher performance than 2-MNG 0.5% alone. 2-MNG at 0.5% and 1% showed significantly better performance than 4-n-BR. CONCLUSIONS 2-MNG inhibited both UV-induced skin pigmentation mechanisms in vivo. The association of 2-MNG with LHA plus MSX showed the highest efficacy on melanin-rich skin with pigmentation induced by UV exposure.
Collapse
Affiliation(s)
| | - P Sextius
- L'Oréal Research and Innovation, France
| | | | - E Mainguene
- L'Oréal Research and Innovation, Shanghai, China
| | - R Tachon
- L'Oréal Research and Innovation, Sakado, Takatsu-ku Kawasaki, Japan
| | - K Gaurav
- L'Oréal Research and Innovation, Chembur, Mumbai, India
| | - H Jouni
- L'Oréal Research and Innovation, France
| | - P Bastien
- L'Oréal Research and Innovation, France
| | | |
Collapse
|
23
|
Lee EJ, Ryu JH, Baek JH, Boo YC. Skin Color Analysis of Various Body Parts (Forearm, Upper Arm, Elbow, Knee, and Shin) and Changes with Age in 53 Korean Women, Considering Intrinsic and Extrinsic Factors. J Clin Med 2024; 13:2500. [PMID: 38731031 PMCID: PMC11084701 DOI: 10.3390/jcm13092500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Background/Objectives: Skin color is innately determined by race and other genetic factors, and it also undergoes acquired changes due to various intrinsic and extrinsic factors. Previous studies on skin color have mainly focused on the face, and research has recently expanded to other body parts. However, there is limited information about the age-dependent changes in the skin color of these body parts. The purpose of this study is to analyze the differences in skin color between various body parts and the changes in skin color of each body part with age. Methods: This study examined the skin color of 53 Korean women subjects evenly distributed in age from the 20s to 60s on several body parts: forearm, upper arm, elbow (extended or folded), knee (extended or folded), thigh, and shin. The lightness (L*), redness (a*), and yellowness (b*) were measured using a spectrophotometer, and the individual typology angle (ITA°) was calculated from the L* and b* values. The melanin index and erythema index were measured using the mexameter. Results: The results showed that the elbow skin had the lowest L* and ITA° values and the highest a* and b* values among the examined body parts, followed by the knee. The melanin index and erythema index were also high in the skin of these body parts. In the analysis of age-dependent changes in the skin color of various body parts, the forearm skin exhibited the most notable decrease in the L* and ITA° values and increases in the a* and b* values, followed by upper-arm skin. The melanin and erythema indices in the forearm also increased as the subjects aged, whereas those in the elbow and knee rather decreased with age. Conclusions: This study suggests that differences in intrinsic and extrinsic skin aging in various body parts may be expressed as different changes in skin color and raises the need for cosmetic and dermatological research to identify the physiological significance of these changes.
Collapse
Affiliation(s)
- Eun Ju Lee
- Skin Research Center, Dermapro Ltd., Seoul 06570, Republic of Korea; (E.J.L.); (J.H.R.)
| | - Ja Hyun Ryu
- Skin Research Center, Dermapro Ltd., Seoul 06570, Republic of Korea; (E.J.L.); (J.H.R.)
| | - Ji Hwoon Baek
- Skin Research Center, Dermapro Ltd., Seoul 06570, Republic of Korea; (E.J.L.); (J.H.R.)
| | - Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
24
|
Cho J, Bejaoui M, Tominaga K, Isoda H. Comparative Analysis of Olive-Derived Phenolic Compounds' Pro-Melanogenesis Effects on B16F10 Cells and Epidermal Human Melanocytes. Int J Mol Sci 2024; 25:4479. [PMID: 38674064 PMCID: PMC11050296 DOI: 10.3390/ijms25084479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Olive leaf contains plenty of phenolic compounds, among which oleuropein (OP) is the main component and belongs to the group of secoiridoids. Additionally, phenolic compounds such as oleocanthal (OL) and oleacein (OC), which share a structural similarity with OP and two aldehyde groups, are also present in olive leaves. These compounds have been studied for several health benefits, such as anti-cancer and antioxidant effects. However, their impact on the skin remains unknown. Therefore, this study aims to compare the effects of these three compounds on melanogenesis using B16F10 cells and human epidermal cells. Thousands of gene expressions were measured by global gene expression profiling with B16F10 cells. We found that glutaraldehyde compounds derived from olive leaves have a potential effect on the activation of the melanogenesis pathway and inducing differentiation in B16F10 cells. Accordingly, the pro-melanogenesis effect was investigated by means of melanin quantification, mRNA, and protein expression using human epidermal melanocytes (HEM). This study suggests that secoiridoid and its derivates have an impact on skin protection by promoting melanin production in both human and mouse cell lines.
Collapse
Affiliation(s)
- Juhee Cho
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan; (J.C.)
| | - Meriem Bejaoui
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan; (J.C.)
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
| | - Kenichi Tominaga
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan; (J.C.)
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
25
|
Dobroshi K. Using an intense pulsed light (IPL) module for the treatment of pigmented lesions. J Cosmet Dermatol 2024; 23 Suppl 1:27-32. [PMID: 38587313 DOI: 10.1111/jocd.16285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Pigmented lesions are largely benign and may lead to extreme distress. Various light and lasers may be used to treat pigmentation, often Q-switched lasers are considered the method of choice, while intense pulsed light (IPL) devices may offer a less invasive treatment with a shorter downtime. OBJECTIVE The purpose of this study is to evaluate the safety and efficacy of a narrowband IPL module for the treatment of pigmented lesions. METHODS A retrospective study of 20 patients with pigmented lesions underwent treatment with an IPL module. Treatment was assessed by blinded evaluation of clinical photographs using a GAIS scale of 0-10, as well as through patient satisfaction ratings on a scale of 0-10. Throughout the treatment, pain levels and adverse events were monitored. RESULTS The mean GAIS score was 7.55 ± 1.15 (mean ± SD), and the mean patient satisfaction score was 7.3 ± 1.26 (mean ± SD). There was a strong positive correlation between GAIS and patient satisfaction scores (r = 0.83), and no significant difference between them (p-value = 0.516). The number of treatments did not significantly affect GAIS and patient satisfaction scores (p-values 0.364 and 0.126). Additional positive unexpected outcomes were improved skin firmness and reduced wrinkles. CONCLUSION The results of the study indicate that the IPL module is both safe and effective in treating pigmented lesions and may have the potential to stimulate collagen production.
Collapse
Affiliation(s)
- Krenar Dobroshi
- Alma Mater Europaea College of Medical Sciences "Rezonanca", Prishtina, Kosovo
| |
Collapse
|
26
|
Bertrand JU, Petit V, Aktary Z, de la Grange P, Elkoshi N, Sohier P, Delmas V, Levy C, Larue L. Loss of Dicer in Newborn Melanocytes Leads to Premature Hair Graying and Changes in Integrin Expression. J Invest Dermatol 2024; 144:601-611. [PMID: 37739336 DOI: 10.1016/j.jid.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/24/2023]
Abstract
Premature hair graying occurs owing to the depletion of melanocyte stem cells in the hair follicle, which can be accelerated by stress caused by genetic or environmental factors. However, the connection between stress and melanocyte stem cell loss is not fully understood. MicroRNAs are molecules that control gene expression by regulating mRNA stability and translation and are produced by the enzyme Dicer, which is repressed under stress. In this study, using 2 mouse genetic models and human and mouse cell lines, we found that the inactivation of Dicer in melanocytes leads to misplacement of these cells within the hair follicle, resulting in a lack of melanin transfer to keratinocytes in the growing hair and the exhaustion of the melanocyte stem cell pool. We also show that miR-92b, which regulates ItgaV mRNA and protein levels, plays a role in altering melanocyte migration. Overall, our findings suggest that the Dicer-miR92b-ItgaV pathway serves as a major signaling pathway linking stress to premature hair greying.
Collapse
Affiliation(s)
- Juliette U Bertrand
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France
| | - Valérie Petit
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France
| | - Zackie Aktary
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France
| | | | - Nadav Elkoshi
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Pierre Sohier
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France
| | - Véronique Delmas
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France
| | - Carmit Levy
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Lionel Larue
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France.
| |
Collapse
|
27
|
Trisnawaty S, Gunadi JW, Ratnawati H, Lesmana R. Carotenoids in red fruit ( Pandanus conoideus Lam.) have a potential role as an anti‑pigmentation agent (Review). Biomed Rep 2024; 20:54. [PMID: 38357234 PMCID: PMC10865171 DOI: 10.3892/br.2024.1742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
Melasma is a persistent condition characterized by excessive melanin production in the skin. The management of melasma necessitates a protracted treatment duration, which is associated with diminished levels of patient satisfaction. One effective strategy for mitigating occurrence of melasma is consumption of nutricosmetics with depigmentation properties. The present review aimed to investigate the potential of red fruit as a depigmentation agent. Carotenoids serve a crucial role in human nutrition as a precursor to vitamin A. Carotenoids serve as scavengers of reactive oxygen species generated by ultraviolet radiation. Carotenoids promote skin health. Red fruit, a fruit originating from Papua (Indonesia) has anti-pigmentation properties associated with its ability to block melanogenesis through various protein pathways such as PKA, ERK, and AKT signaling pathways. The consumption of food rich in carotenoids, such as red fruit, has advantageous properties to reduce hyperpigmentation and skin brightening.
Collapse
Affiliation(s)
- Sri Trisnawaty
- Master Program of Skin Ageing and Aesthetic Medicine, Faculty of Medicine, Universitas Kristen Maranatha, Bandung, West Java 40164, Indonesia
| | - Julia Windi Gunadi
- Department of Physiology, Faculty of Medicine, Universitas Kristen Maranatha, Bandung, West Java 40164, Indonesia
- Maranatha Biomedical Research Laboratory, Faculty of Medicine, Universitas Kristen Maranatha, Bandung, West Java 40164, Indonesia
| | - Hana Ratnawati
- Department of Histology, Faculty of Medicine, Universitas Kristen Maranatha, Bandung, West Java 40164, Indonesia
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java 45363, Indonesia
| |
Collapse
|
28
|
Ju HJ, Bae JM. Bridging Molecular Mechanism and Clinical Practice in Vitiligo Treatment: An Updated Review. Dermatology 2024; 240:474-486. [PMID: 38417409 DOI: 10.1159/000537810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/11/2024] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND Treatment of vitiligo seeks to achieve three goals: cessation of disease progression, regeneration of pigmentation, and prevention of recurrence. SUMMARY Number of nonsurgical interventions are available that suppress the autoimmune response and regenerate the melanocytes from the reservoir: phototherapy including psoralen and ultraviolet A, narrowband ultraviolet B, and 308-nm excimer and 311-nm Titanium:Sapphire lasers; topical agents including topical calcineurin inhibitors, topical corticosteroids, and topical 5-fluorouracil; and systemic agents including corticosteorids, mycophenolate mofetil, cyclosporine, methotrexate, minocycline, afamelanotide, and antioxidants. In recent years, a great advance has been made in the understanding of pathogenesis of vitiligo, and JAK inhibitors are being investigated as a new treatment. Minimally invasive procedures such as fractional lasers or microneedling can help achieve the optimal treatment outcome when used properly. KEY MESSAGES Our review describes various treatment modalities for vitiligo based on their molecular mechanism of action. Bridging the gap between molecular mechanisms and therapeutic options would be a valuable reference for physicians in clinical practice.
Collapse
Affiliation(s)
- Hyun Jeong Ju
- Department of Dermatology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Min Bae
- Department of Dermatology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
29
|
Zhang Y, Shang C, Sun C, Wang L. Simultaneously regulating absorption capacities and antioxidant activities of four stilbene derivatives utilizing substitution effect: A theoretical and experimental study against UVB radiation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123325. [PMID: 37678043 DOI: 10.1016/j.saa.2023.123325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/29/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
With the continued depletion of the ozone layer, the sun protection consciousness of humans has gradually enhanced. Long-term ultraviolet (UV) rays exposure will lead to skin tanning, even skin cancer in severe cases, and generate free radicals to cause skin aging. To better protect human skin against UV rays, this work explores the absorption capacities and antioxidant activities of four stilbene derivatives (EHDB, EDMB, EAPD, and HPTP) through the computational chemistry method and DPPH radical scavenging experiment. The research results indicate that their absorption spectra cover the entire UV region, and can effectively protect against UVB radiation. Moreover, three prevailing antioxidant mechanisms: hydrogen atom transfer, sequential proton loss electron transfer, and single electron transfer followed by proton transfer mechanisms, were used to evaluate their antioxidant activities in the ground state. It can be concluded that the O1H1 sites of EHDB and HPTP are the most active, and the SPLET mechanism is the most preferred for the four compounds in ethanol solvent. Furthermore, the DPPH radical scavenging experiment compensates for the theoretical calculation deficiency in the excited state, revealing that the EHDB and HPTP are the most suitable for sunscreen due to their excellent performance on antioxidant capacities, whether before or after sunlight. This work will facilitate EHDB and HPTP to be applied in sunscreen and provide a novel idea in sunscreen research.
Collapse
Affiliation(s)
- Yajie Zhang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Changjiao Shang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Chaofan Sun
- College of Science, Northeast Forestry University, Harbin 150040, China.
| | - Lingling Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
30
|
Wang X, Wu W, Chen J, Li C, Li S. Management of the refractory vitiligo patient: current therapeutic strategies and future options. Front Immunol 2024; 14:1294919. [PMID: 38239366 PMCID: PMC10794984 DOI: 10.3389/fimmu.2023.1294919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
Vitiligo is an autoimmune disease that leads to disfiguring depigmented lesions of skin and mucosa. Although effective treatments are available for vitiligo, there are still some patients with poor responses to conventional treatment. Refractory vitiligo lesions are mostly located on exposed sites such as acral sites and lips, leading to significant life stress. Understanding the causes of refractory vitiligo and developing targeted treatments are essential to enhance vitiligo outcomes. In this review, we summarized recent treatment approaches and some potential methods for refractory vitiligo. Janus kinase inhibitors have shown efficacy in refractory vitiligo. A variety of surgical interventions and fractional carbon dioxide laser have been widely applied to combination therapies. Furthermore, melanocyte regeneration and activation therapies are potentially effective strategies. Patients with refractory vitiligo should be referred to psychological monitoring and interventions to reduce the potential pathogenic effects of chronic stress. Finally, methods for depigmentation and camouflage may be beneficial in achieving uniform skin color and improved quality of life. Our ultimate focus is to provide alternative options for refractory vitiligo and to bring inspiration to future research.
Collapse
Affiliation(s)
| | | | | | | | - Shuli Li
- *Correspondence: Shuli Li, ; Chunying Li,
| |
Collapse
|
31
|
Kim SH, Na C, Yun CY, Kim JG, Baek ST, An HJ, Lee JD, Lee SW, Jung JK, Hwang BY, Han SB, Kim Y. Targeting phosphorylation circuits on CREB and CRTCs as the strategy to prevent acquired skin hyperpigmentation. Int J Biol Sci 2024; 20:312-330. [PMID: 38164184 PMCID: PMC10750286 DOI: 10.7150/ijbs.86536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/08/2023] [Indexed: 01/03/2024] Open
Abstract
Background: The cAMP response element-binding protein (CREB) and CREB-regulated transcription coactivators (CRTCs) cooperate in the transcriptional activation of microphthalmia-associated transcription factor subtype M (MITF-M) that is a master regulator in the biogenesis, pigmentation and transfer of melanosomes at epidermal melanocytes. Here, we propose the targeting of phosphorylation circuits on CREB and CRTCs in the expression of MITF-M as the rationale to prevent skin hyperpigmentation by elucidating the inhibitory activity and mechanism of yakuchinone A (Yaku A) on facultative melanogenesis. Methods: We employed human epidermal melanocyte cell, mouse skin, and mouse melanoma cell, and applied Western blotting, reverse transcription-polymerase chain reaction, immunoprecipitation and confocal microscopy to conduct this study. Results: This study suggested that α-melanocyte stimulating hormone (α-MSH)-induced melanogenic programs could switch on the axis of protein kinase A-salt inducible kinases (PKA-SIKs) rather than that of PKA-AMP activated protein kinase (PKA-AMPK) during the dephosphorylation of CRTCs in the expression of MITF-M. SIK inhibitors rather than AMPK inhibitors stimulated melanin production in melanocyte cultures in the absence of extracellular melanogenic stimuli, wherein SIK inhibitors increased the dephosphorylation of CRTCs but bypassed the phosphorylation of CREB for the expression of MITF-M. Treatment with Yaku A prevented ultraviolet B (UV-B)-irradiated skin hyperpigmentation in mice and inhibited melanin production in α-MSH- or SIK inhibitor-activated melanocyte cultures. Mechanistically, Yaku A suppressed the expression of MITF-M via dually targeting the i) cAMP-dependent dissociation of PKA holoenzyme at the upstream from PKA-catalyzed phosphorylation of CREB coupled with PKA-SIKs axis-mediated dephosphorylation of CRTCs in α-MSH-induced melanogenic programs, and ii) nuclear import of CRTCs after SIK inhibitor-induced dephosphorylation of CRTCs. Conclusions: Taken together, the targeting phosphorylation circuits on CREB and CRTCs in the expression of MITF-M could be a suitable strategy to prevent pigmentary disorders in the skin.
Collapse
Affiliation(s)
- Song-Hee Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Changseon Na
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Cheng-Yong Yun
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
- R&D Center, The Skin's Co. Ltd, Jecheon 27116, Korea
| | - Jun Gu Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | | | - Hyun Jin An
- R&D Center, Yeomyung Biochem Co. Ltd, Cheongju 28172, Korea
| | - Jae Duk Lee
- R&D Center, Yeomyung Biochem Co. Ltd, Cheongju 28172, Korea
| | - Seung Wha Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Jae-Kyung Jung
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Youngoo Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| |
Collapse
|
32
|
Jo SJ, Kim SR, Lee SH, Seo YJ, Ahn HH, Lee JH, Oh SH, Jeong KH, Park KY, Bang CH, Kim MS, Jung JY, Ryoo YW, Kim SS, Suh DH. Knowledge and the behavioral patterns of photoprotection among Koreans with skin disease. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12945. [PMID: 38288772 DOI: 10.1111/phpp.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Photoprotection is crucial in preventing the development and progression of various skin diseases. However, patients with skin disease have limited awareness of photoprotection. We evaluated the knowledge and behavioral patterns of photoprotection among Koreans with skin diseases. METHODS A cross-sectional study was conducted in 11 general hospitals across South Korea. The study population consisted of patients aged 19 years or older who visited dermatologic clinics for their skin diseases. A self-administered questionnaire was used to collect patient demographics, knowledge of photoprotection, and photoprotective habits. RESULTS In this study, 1173 patients with skin cancer, hyperpigmentary disorders, hypopigmentary disorders, or other skin diseases participated. Females scored significantly higher in knowledge of photoprotection compared to males (mean score 8.4 vs. 7.8; p < .001), and younger patients (<50 years) scored higher than older patients (mean score 8.7 vs. 7.5; p < .001). Males also reported longer sun exposure times and lower usage of photoprotective measures (both p < .001). Patients with skin cancer had the lowest mean knowledge score (7.1 ± 2.6) and were less likely to use photoprotective measures compared to other groups (p < .001). In contrast, patients with hyperpigmentation actively avoided sun exposure compared with other groups (p < 0.001). CONCLUSIONS Knowledge of photoprotection among Korean patients with skin diseases varied depending on the gender, age, and type of skin disease. Their photoprotective behaviors were inadequate, especially among males and those with skin cancer. These findings emphasize the importance of educating and tailoring photoprotection strategies for patients with skin diseases.
Collapse
Affiliation(s)
- Seong Jin Jo
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Seong Rae Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Si Hyung Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Young-Joon Seo
- Department of Dermatology, School of Medicine, Chungnam National University, Daejun, Korea
| | - Hyo Hyun Ahn
- Department of Dermatology, Korea University College of Medicine, Seoul, Korea
| | - Jong Hee Lee
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ki-Heon Jeong
- Department of Dermatology, Kyung Hee University College of Medicine, Seoul, Korea
| | - Kui Young Park
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Chul Hwan Bang
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min-Soo Kim
- Department of Dermatology, Veterans Health Service Medical Center, Seoul, Korea
| | | | - Young Wook Ryoo
- Department of Dermatology, Keimyung University School of Medicine, Daegu, Korea
| | - Sang Seok Kim
- Department of Dermatology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Dae Hun Suh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
- Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
33
|
Galache TR, Sena MM, Tassinary JAF, Pavani C. Photobiomodulation for melasma treatment: Integrative review and state of the art. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12935. [PMID: 38018017 DOI: 10.1111/phpp.12935] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
PURPOSE Photobiomodulation therapy (PBM) is a versatile technique for treating skin diseases. Melasma, a chronic hyperpigmentation condition, has recently been associated with vascular features and dermal photoaging and poses significant management challenges. We review the recent literature on melasma etiology and the evidence supporting PBM as a therapeutic modality for melasma treatment. METHODS We conducted a comprehensive literature search in three different databases from May to August 2023, focusing on studies published in the past 10 years. The inclusion criteria comprised full-text studies investigating low-power lasers and/or light-emitting diodes (LEDs) in in vitro or in vivo models, as well as clinical trials. We excluded studies discussing alternative melasma therapies or lacking experimental data. We identified additional studies by searching the reference lists of the selected articles. RESULTS We identified nine relevant studies. Clinical studies, in agreement with in vitro experiments and animal models, suggest that PBM effectively reduces melasma-associated hyperpigmentation. Specific wavelengths (red: 630 nm; amber: 585 and 590 nm; infrared: 830 and 850 nm) at radiant exposures between 1 and 20 J/cm2 exert modulatory effects on tyrosinase activity, gene expression, and protein synthesis of melanocytic pathway components, and thus significantly reduce the melanin content. Additionally, PBM is effective in improving the dermal structure and reducing erythema and neovascularization, features recently identified as pathological components of melasma. CONCLUSION PBM emerges as a promising, contemporary, and non-invasive procedure for treating melasma. Beyond its role in inhibiting melanogenesis, PBM shows potential in reducing erythema and vascularization and improving dermal conditions. However, robust and well-designed clinical trials are needed to determine optimal light parameters and to evaluate the effects of PBM on melasma thoroughly.
Collapse
Affiliation(s)
- Thais Rodrigues Galache
- Postgraduate Program in Biophotonics Medicine, Universidade Nove de Julho, UNINOVE, São Paulo, SP, Brazil
| | - Michelle Mota Sena
- Postgraduate Program in Biophotonics Medicine, Universidade Nove de Julho, UNINOVE, São Paulo, SP, Brazil
| | | | - Christiane Pavani
- Postgraduate Program in Biophotonics Medicine, Universidade Nove de Julho, UNINOVE, São Paulo, SP, Brazil
| |
Collapse
|
34
|
Park J, Kim D, Lee M, Park GD, Kim SR, Jiang Y, Jun W, Kim OK, Lee J. Unripe Pear Extract Suppresses UVB-Induced Skin Photoaging in Hairless Mice and Keratinocytes. J Med Food 2023; 26:902-910. [PMID: 38010847 DOI: 10.1089/jmf.2023.k.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Our study aimed to investigate whether unripe pear extract (UP) could provide protection against UVB-induced damage to both mouse skin and keratinocytes. We observed that UVB exposure, a common contributor to skin photoaging, led to wrinkle formation, skin dryness, and inflammation in mice. Nevertheless, these effects were mitigated in the groups of UVB-irradiated mice treated with UP. Moreover, UP treatment at 400 μg/mL increased the antioxidant enzyme activities (sodium dodecyl sulfate, 2.22-fold higher; catalase, 2.91-fold higher; GPx, 1.96-fold higher) along with sphingomyelin (1.58-fold higher) and hyaluronic acid (1.31-fold higher) levels in UVB-irradiated keratinocytes. In the keratinocytes irradiated with UVB, UP 400 μg/mL resulted in reduced cytokine production (TNF-α, 33.2%; IL-1β, 45.3%; IL-6, 33.4%) and the expression of inflammatory pathway-related proteins. The findings indicate that UP has a direct protective effect on UVB-irradiated keratinocytes and is also able to shield against photoaging induced by UVB. Hence, it is suggested that UP could contribute to improved skin health by averting skin photoaging.
Collapse
Affiliation(s)
- Jeongjin Park
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Korea
| | - Dakyung Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | | | - Soo Ro Kim
- Suheung Research Center, Seongnam, Korea
| | | | - Woojin Jun
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Korea
| | - Ok-Kyung Kim
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| |
Collapse
|
35
|
Burks HE, Pokorny JL, Koetsier JL, Roth-Carter QR, Arnette CR, Gerami P, Seykora JT, Johnson JL, Ren Z, Green KJ. Melanoma cells repress Desmoglein 1 in keratinocytes to promote tumor cell migration. J Cell Biol 2023; 222:e202212031. [PMID: 37733372 PMCID: PMC10512973 DOI: 10.1083/jcb.202212031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/25/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023] Open
Abstract
Melanoma is an aggressive cancer typically arising from transformation of melanocytes residing in the basal layer of the epidermis, where they are in direct contact with surrounding keratinocytes. The role of keratinocytes in shaping the melanoma tumor microenvironment remains understudied. We previously showed that temporary loss of the keratinocyte-specific cadherin, Desmoglein 1 (Dsg1), controls paracrine signaling between normal melanocytes and keratinocytes to stimulate the protective tanning response. Here, we provide evidence that melanoma cells hijack this intercellular communication by secreting factors that keep Dsg1 expression low in the surrounding keratinocytes, which in turn generate their own paracrine signals that enhance melanoma spread through CXCL1/CXCR2 signaling. Evidence suggests a model whereby paracrine signaling from melanoma cells increases levels of the transcriptional repressor Slug, and consequently decreases expression of the Dsg1 transcriptional activator Grhl1. Together, these data support the idea that paracrine crosstalk between melanoma cells and keratinocytes resulting in chronic keratinocyte Dsg1 reduction contributes to melanoma cell movement associated with tumor progression.
Collapse
Affiliation(s)
- Hope E. Burks
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jenny L. Pokorny
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jennifer L. Koetsier
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Quinn R. Roth-Carter
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Christopher R. Arnette
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Pedram Gerami
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - John T. Seykora
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jodi L. Johnson
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ziyou Ren
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Kathleen J. Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
36
|
Lin X, Meng X, Lin J. The possible role of Wnt/β-catenin signalling in vitiligo treatment. J Eur Acad Dermatol Venereol 2023; 37:2208-2221. [PMID: 36912722 DOI: 10.1111/jdv.19022] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023]
Abstract
Vitiligo is a common chronic skin disease which has an adverse impact on patients' life. Its pathogenesis is complex, involving autoimmunity and oxidative stress (OS). Autoimmunity leads to the loss of epidermal melanocytes and the formation of the depigmented patches of the disease. Treatment of vitiligo should control the exaggerated immune response to arrest the progress of active disease, and then promote melanocytes to repigmentation. Wnt/β-catenin signalling pathway has been of recent interest in vitiligo. Wnt/β-catenin signalling pathway is downregulated in vitiligo. Upregulation of Wnt/β-catenin signalling possibly control vitiligo autoimmune response by protecting melanocyte from OS damage, inhibiting CD8+ T cell effector cell differentiation and enhancing Treg. Wnt/β-catenin signalling plays a critical role in the melanocyte regeneration by driving the differentiation of melanocyte stem cells (McSCs) into melanocytes. Promoting Wnt/β-catenin signalling can not only arrest the progress of active disease of vitiligo but also promote repigmentation. Some of the main effective therapies for vitiligo are likely to work by activating Wnt/β-catenin signalling. Agents that can enhance the effect of Wnt/β-catenin signalling may become potential candidates for the development of new drugs for vitiligo treatment.
Collapse
Affiliation(s)
- Xiran Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xianmin Meng
- Department of Pathology and Laboratory Medicine, Axia Women's Health, Oaks, Pennsylvania, USA
| | - Jingrong Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
37
|
Park S, Han N, Lee J, Lee JN, An S, Bae S. Anti-Melanogenic Effects of Lilium lancifolium Root Extract via Downregulation of PKA/CREB and MAPK/CREB Signaling Pathways in B16F10 Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:3666. [PMID: 37960022 PMCID: PMC10648933 DOI: 10.3390/plants12213666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
Hyperpigmentation disorders causing emotional distress require the topical use of depigmenting agents of natural origin. In this study, the anti-melanogenic effects of the Lilium lancifolium root extract (LRE) were investigated in B16F10 cells. Consequently, a non-cytotoxic concentration of the extract reduced intracellular melanin content and tyrosinase activity in a dose-dependent manner, correlating with the diminished expression of core melanogenic enzymes within cells. LRE treatment also inhibited cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB)/microphthalmia-associated transcription factor signaling, which regulates the expression of tyrosinase-related genes. Upon examining these findings from a molecular mechanism perspective, LRE treatment suppressed the phosphorylation of protein kinase A (PKA), p38, and extracellular signal-related kinase (ERK), which are upstream regulators of CREB. In addition, L-phenylalanine and regaloside A, specifically identified within the LRE using liquid chromatography-mass spectrometry, exhibited inhibitory effects on melanin production. Collectively, these results imply that LRE potentially suppresses cAMP-mediated melanogenesis by downregulating PKA/CREB and mitogen-activated protein kinase (MAPK)/CREB signaling pathways. Therefore, it can be employed as a novel therapeutic ingredient of natural origin to ameliorate hyperpigmentation disorders.
Collapse
Affiliation(s)
- Seokmuk Park
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.P.); (N.H.)
| | - Nayeon Han
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.P.); (N.H.)
- Dermato Bio, Inc., #505, Techno Cube, 13-18 Songdogwahak-ro 16beon-gil, Yeongsu-gu, Incheon 21984, Republic of Korea;
| | - Jungmin Lee
- Dermato Bio, Inc., #505, Techno Cube, 13-18 Songdogwahak-ro 16beon-gil, Yeongsu-gu, Incheon 21984, Republic of Korea;
| | - Jae-Nam Lee
- Department of Cosmetology, Graduate School of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
| | - Sungkwan An
- Eco Up Bio, Inc., 373 Chang-ui-ri, Seorak-myeon, Gapyeong-gun 477852, Republic of Korea;
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.P.); (N.H.)
| |
Collapse
|
38
|
Xu Y, Cohen E, Johnson CN, Parent CA, Coulombe PA. Keratin 17- and PKCα-dependent transient amplification of neutrophil influx after repeated stress to the skin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561954. [PMID: 37873256 PMCID: PMC10592713 DOI: 10.1101/2023.10.11.561954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Neutrophils contribute to the pathogenesis of chronic inflammatory skin diseases. Little is known about the source and identity of the signals mediating their recruitment in inflamed skin. We used the phorbol ester TPA and UVB, alone or in combination, to induce sterile inflammation in mouse skin and assess whether keratinocyte-derived signals impact neutrophil recruitment. A single TPA treatment results in a neutrophil influx in the dermis that peaks at 12h and resolves within 24h. A second TPA treatment or a UVB challenge, when applied at 24h but not 48h later, accelerates, amplifies, and prolongs neutrophil infiltration. This transient amplification response (TAR) is mediated by local signals in inflamed skin, can be recapitulated in ex vivo culture, and involves the K17-dependent sustainment of protein kinase Cα (PKCα) activity and release of neutrophil chemoattractants by stressed keratinocytes. We show that K17 binds RACK1, a scaffold essential for PKCα activity. Finally, analyses of RNAseq data reveal the presence of a transcriptomic signature consistent with TAR and PKCα activation in chronic inflammatory skin diseases. These findings uncover a novel, transient, and keratin-dependent mechanism that amplifies neutrophil recruitment to the skin under stress, with direct implications for inflammatory skin disorders.
Collapse
|
39
|
Tanemura A. Understanding of Pathomechanisms and Clinical Practice for Vitiligo. Ann Dermatol 2023; 35:333-341. [PMID: 37830414 PMCID: PMC10579571 DOI: 10.5021/ad.23.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 10/14/2023] Open
Abstract
Vitiligo is a disease caused by the acquired depletion of melanocytes and/or melanocyte precursor cells in response to genetic and environmental factors, resulting in depigmentation of the entire body. It is roughly divided into segmental and non-segmental vitiligo, and it has been found that abnormalities of melanocytes themselves and dysregulation of autoimmune responses to melanocytes are greatly involved in the pathology of non-segmental vitiligo. Segmental vitiligo pathology is largely unknown; however, it has been suggested that it may be caused by skin or melanocyte mosaicism. Treatments for vitiligo include topical therapy, ultraviolet therapy, and surgical transplantation, and it is extremely important to correctly understand the pathology to perform optimal treatment. In recent years, the development of vitiligo treatments using Janus kinase (JAK) inhibitors has progressed rapidly. We herein outline the latest pathology of vitiligo, from general vitiligo treatment to the progress of clinical trials using JAK inhibitors, along with what clinicians should consider in archiving precision medicine, including my own ideas thereon.
Collapse
Affiliation(s)
- Atsushi Tanemura
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
40
|
Lin M, Bao C, Chen L, Geng S, Wang H, Xiao Z, Gong T, Ji C, Cheng B. Tremella fuciformis polysaccharides alleviates UV-provoked skin cell damage via regulation of thioredoxin interacting protein and thioredoxin reductase 2. Photochem Photobiol Sci 2023; 22:2285-2296. [PMID: 37458972 DOI: 10.1007/s43630-023-00450-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/11/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION Skin is exposed to a wide range of environmental risk factors including ultraviolet (UV) and all kinds of pollutants. Excessive UV exposure contributes to many disorders, such as photoaging, skin inflammation, and carcinogenesis. Previous studies have shown that Tremella fuciformis polysaccharides (TFPS) have protective effects on oxidative stress in cells, but the specific protective mechanism has not been clarified. METHODS To determine the effects of TFPS on UV-irritated human skin, we conducted a variety of studies, including Cell Counting Kit-8 (CCK-8), trypan blue, Western blot, apoptosis assays, reactive oxygen species (ROS) detection in primary skin keratinocytes, and chronic UV-irradiated mouse model. RESULTS We first determined that TFPS protects human skin keratinocytes against UV radiation-induced apoptosis and ROS production. Moreover, TFPS regulates thioredoxin interacting protein (TXNIP) and thioredoxin reductase 2 (TXNRD2) levels in primary skin keratinocytes for photoprotection. Last, we found that topical TFPS treatment could alleviate the UV-induced skin damage in chronic UV-irradiated mouse model. CONCLUSION Collectively, our work indicates the beneficial role of TFPS in UV-induced skin cell damage and provides a novel therapeutic reagent to prevent or alleviate the progress of photoaging and other UV-provoked skin diseases.
Collapse
Affiliation(s)
- Mengting Lin
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Chengbei Bao
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Lihong Chen
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Shiling Geng
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Haiqing Wang
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Zhixun Xiao
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Ting Gong
- Central Laboratory, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
| | - Chao Ji
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China.
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China.
| | - Bo Cheng
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China.
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China.
| |
Collapse
|
41
|
Alton LA, Novelo M, Beaman JE, Arnold PA, Bywater CL, Kerton EJ, Lombardi EJ, Koh C, McGraw EA. Exposure to ultraviolet-B radiation increases the susceptibility of mosquitoes to infection with dengue virus. GLOBAL CHANGE BIOLOGY 2023; 29:5540-5551. [PMID: 37560790 DOI: 10.1111/gcb.16906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/11/2023] [Accepted: 07/15/2023] [Indexed: 08/11/2023]
Abstract
By 2100, greenhouse gases are predicted to reduce ozone and cloud cover over the tropics causing increased exposure of organisms to harmful ultraviolet-B radiation (UVBR). UVBR damages DNA and is an important modulator of immune function and disease susceptibility in humans and other vertebrates. The effect of UVBR on invertebrate immune function is largely unknown, but UVBR together with ultraviolet-A radiation impairs an insect immune response that utilizes melanin, a pigment that also protects against UVBR-induced DNA damage. If UVBR weakens insect immunity, then it may make insect disease vectors more susceptible to infection with pathogens of socioeconomic and public health importance. In the tropics, where UVBR is predicted to increase, the mosquito-borne dengue virus (DENV), is prevalent and a growing threat to humans. We therefore examined the effect of UVBR on the mosquito Aedes aegypti, the primary vector for DENV, to better understand the potential implications of increased tropical UVBR for mosquito-borne disease risk. We found that exposure to a UVBR dose that caused significant larval mortality approximately doubled the probability that surviving females would become infected with DENV, despite this UVBR dose having no effect on the expression of an effector gene involved in antiviral immunity. We also found that females exposed to a lower UVBR dose were more likely to have low fecundity even though this UVBR dose had no effect on larval size or activity, pupal cuticular melanin content, or adult mass, metabolic rate, or flight capacity. We conclude that future increases in tropical UVBR associated with anthropogenic global change may have the benefit of reducing mosquito-borne disease risk for humans by reducing mosquito fitness, but this benefit may be eroded if it also makes mosquitoes more likely to be infected with deadly pathogens.
Collapse
Affiliation(s)
- Lesley A Alton
- Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Mario Novelo
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Department of Entomology, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Julian E Beaman
- Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Pieter A Arnold
- Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Candice L Bywater
- Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Emily J Kerton
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Emily J Lombardi
- Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Cassandra Koh
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Elizabeth A McGraw
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Department of Biology, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
42
|
Ding M, Zhen Z, Ju M, Quzong S, Zeng X, Guo X, Li R, Xu M, Xu J, Li H, Zhang W. Metabolomic profiling between vitiligo patients and healthy subjects in plateau exhibited significant differences with those in plain. Clin Immunol 2023; 255:109764. [PMID: 37683903 DOI: 10.1016/j.clim.2023.109764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/22/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
Vitiligo is the most common disorder of depigmentation, which is caused by multiple factors like metabolic abnormality, oxidative stress and the disorders of immune. In recent years, several studies have used untargeted metabolomics to analyze differential metabolites in patients with vitiligo, however, the subjects in these studies were all in plain area. In our study, multivariate analysis indicated a distinct separation between the healthy subjects from plateau and plain areas in electrospray positive and negative ions modes, respectively. Similarly, a distinct separation between vitiligo patients and healthy controls from plateau and plain areas was detected in the two ions modes. Among the identified metabolites, the serum levels of sphingosine 1-phosphate (S1P) were markedly higher in vitiligo patients compare to healthy subjects in plain and markedly higher in healthy subjects in plateau compare to those in plain. There are significant differences in serum metabolome between vitiligo patients and healthy subjects in both plateau and plain areas, as well as in healthy subjects from plateau and plain areas. S1P metabolism alteration may be involved in the pathogenesis of vitiligo.
Collapse
Affiliation(s)
- Meilin Ding
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Zha Zhen
- Department of Dermatology and Venereology, People's Hospital of Tibet Autonomous Region, Xizang 850010, China
| | - Mei Ju
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Suolang Quzong
- Department of Dermatology and Venereology, People's Hospital of Tibet Autonomous Region, Xizang 850010, China
| | - Xuesi Zeng
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Xiaoxia Guo
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Rui Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Mingming Xu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Jingjing Xu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210042, China
| | - Hongyang Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| | - Wei Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| |
Collapse
|
43
|
Song F, Wang Y, Wei XG, Yang N, Sun W, Li K, Ma H, Mu J. Proteomic Analysis of Two Different Methods to Induce Skin Melanin Deposition Models in Guinea Pigs. Clin Cosmet Investig Dermatol 2023; 16:2341-2356. [PMID: 37663883 PMCID: PMC10474869 DOI: 10.2147/ccid.s420501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023]
Abstract
Objective In this study, we analyzed the differential expression and key signaling pathways of proteins in the skin of guinea pigs with melanin deposition caused by two different modeling methods by utilizing proteomics techniques. Methods Guinea pig skin melanin deposition models were: (1) induced by ultraviolet (UV) irradiation alone (U group), (2) induced by UV combined with progesterone injection (P group), and guinea pigs treated without any treatment were used as blank group (B group). H&E staining and Masson staining were used to observe the extent of skin damage and melanin deposition in guinea pigs. The differentially expressed proteins (DEPs) in the skin tissues of melanin-deposited guinea pigs were screened by proteomic techniques, the functions of DEPs were analyzed, and a protein-protein interaction network (PPI) was constructed. Results There was a significant difference in grayscale between the U and P groups of guinea pig skin before and after modeling (P < 0.01). H&E and Masson staining showed that the U and P groups both exhibited incomplete keratinization of the stratum corneum, increased proliferation of epidermal cells with large nuclei and disordered arrangement, neovascularization of the dermis, and increased the number of melanin particles in the epidermis of the U and P groups of guinea pigs compared with the B group. Proteomics analysis showed that there were 171 DEPs between the U and P groups. These DEPs focused on biological processes such as fibrillar collagen trimer, extracellular matrix containing collagen proteins, metalloproteinase activity, and peroxidase activity. Conclusion The melanin pigmentation model induced solely by UV radiation negatively regulates biological processes such as extracellular matrix and collagen synthesis, while inducing significant skin photoaging. The combination of progesterone injections and UV radiation-induced melanin pigmentation model can cause abnormal protein expression in fatty acid and phospholipid metabolism, possibly being closer to the environment of melasma formation.
Collapse
Affiliation(s)
- Fei Song
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Modernization of Minority Medicine, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Yan Wang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Xiao-ge Wei
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Modernization of Minority Medicine, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Nan Yang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Wenjing Sun
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Kaiying Li
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Huisheng Ma
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Key Laboratory of Modernization of Minority Medicine, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Jing Mu
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| |
Collapse
|
44
|
Feng Z, Qin Y, Jiang G. Reversing Gray Hair: Inspiring the Development of New Therapies Through Research on Hair Pigmentation and Repigmentation Progress. Int J Biol Sci 2023; 19:4588-4607. [PMID: 37781032 PMCID: PMC10535703 DOI: 10.7150/ijbs.86911] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/19/2023] [Indexed: 10/03/2023] Open
Abstract
Hair graying is a common and visible sign of aging resulting from decreased or absence of melanogenesis. Although it has been established that gray hair greatly impacts people's mental health and social life, there is no effective countermeasure other than hair dyes. It has long been thought that reversal of gray hair on a large scale is rare. However, a recent study reported that individual gray hair darkening is a common phenomenon, suggesting the possibility of large-scale reversal of gray hair. In this article, we summarize the regulation mechanism of melanogenesis and review existing cases of hair repigmentation caused by several factors, including monoclonal antibodies drugs, tyrosine kinase inhibitors (TKIs), immunomodulators, other drugs, micro-injury, and tumors, and speculate on the mechanisms behind them. This review offers some insights for further research into the modulation of melanogenesis and presents a novel perspective on the development of clinical therapies, with emphasis on topical treatments.
Collapse
Affiliation(s)
- Zhaorui Feng
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| | - Yi Qin
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
45
|
Wang Y, Hu W, Lin F, Xu A. Generalized Vitiligo After Stem Cell Transplantation: A Case Report. Clin Cosmet Investig Dermatol 2023; 16:1945-1948. [PMID: 37519939 PMCID: PMC10386828 DOI: 10.2147/ccid.s420342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
Graft versus host disease (GVHD) is a complex immune-mediated pathophysiological process, which is caused by allogenic immune reactions between donors and recipients. No matter ac-ute or chronic GVHD, skin involvement is the most common, severe skin damage can lead to permanent disfigurement, which seriously affects the long-term quality of life of patients. We herein report a patient with generalized vitiligo after allogeneic peripheral hematopoietic stem cell transplantation (allo-HSCT) for aplastic anemia.
Collapse
Affiliation(s)
- Yunxia Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
- Department of Dermatology, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang Province, People’s Republic of China
- Department of Dermatology, Hangzhou Clinical College of Anhui Medical University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Wenting Hu
- Department of Dermatology, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Fuquan Lin
- Department of Dermatology, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang Province, People’s Republic of China
- Department of Dermatology, Hangzhou Clinical College of Anhui Medical University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Ai′e Xu
- Department of Dermatology, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
46
|
Stasiewicz A, Conde T, Gęgotek A, Domingues MR, Domingues P, Skrzydlewska E. Prevention of UVB Induced Metabolic Changes in Epidermal Cells by Lipid Extract from Microalgae Nannochloropsis oceanica. Int J Mol Sci 2023; 24:11302. [PMID: 37511067 PMCID: PMC10379835 DOI: 10.3390/ijms241411302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The exposure of skin cells to UV radiation leads to redox imbalances and inflammation. The present study investigates a lipid extract obtained from the microalga Nannochloropsis oceanica as a potential protector against UVB-induced disturbances in human keratinocytes. The findings of this study show that the Nannochloropsis oceanica extract significantly inhibits UVB-induced cell death while concurrently decreasing the activity of pro-oxidative enzymes (xanthine and NADPH oxidase) and reducing the levels of ROS. Furthermore, the extract augments the activity of antioxidant enzymes (superoxide dismutases and catalase), as well as glutathione/thioredoxin-dependent systems in UVB-irradiated cells. The expression of Nrf2 factor activators (p62, KAP1, p38) was significantly elevated, while no impact was observed on Nrf2 inhibitors (Keap1, Bach1). The antioxidant activity of the extract was accompanied by the silencing of overexpressed membrane transporters caused by UVB radiation. Furthermore, the Nannochloropsis oceanica extract exhibited anti-inflammatory effects in UVB-irradiated keratinocytes by decreasing the levels of TNFα, 8-iso prostaglandin F2, and 4-HNE-protein adducts. In conclusion, the lipid components of Nannochloropsis oceanica extract effectively prevent the pro-oxidative and pro-inflammatory effects of UVB radiation in keratinocytes, thereby stabilizing the natural metabolism of skin cells.
Collapse
Affiliation(s)
- Anna Stasiewicz
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland
| | - Tiago Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland
| |
Collapse
|
47
|
Wang W, Di T, Wang W, Jiang H. EGCG, GCG, TFDG, or TSA Inhibiting Melanin Synthesis by Downregulating MC1R Expression. Int J Mol Sci 2023; 24:11017. [PMID: 37446194 DOI: 10.3390/ijms241311017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Without affecting cell viability, epigallocatechin gallate (EGCG), gallocatechin gallate (GCG), theaflavine-3,3'-digallate (TFDG), or theasinensin A (TSA) have been found to effectively reduce intracellular melanin content and tyrosinase (TYR) activity. However, studies on the anti-melanogenic mechanism of the above samples remain weak, and the activities of these samples in regulating melanogenesis at the molecular level lack comparison. Using B16F10 cells with the α-melanocyte-stimulating hormone (α-MSH) stimulation and without the α-MSH stimulation as models, the effects of EGCG, GCG, TFDG, or TSA on cell phenotypes and expression of key targets related to melanogenesis were studied. The results showed that α-MSH always promoted melanogenesis with or without adding the four samples. Meanwhile, the anti-melanogenic activities of the four samples were not affected by whether the α-MSH was added in the medium or not and the added time of the α-MSH. On this basis, the 100 µg/mL EGCG, GCG, TFDG, or TSA did not affect the TYR catalytic activity but inhibited melanin formation partly through downregulating the melanocortin 1 receptor (MC1R), microphthalmia-associated transcription factor (MITF), and the TYR family. The downregulation abilities of catechins on the TYR family and MITF expression were stronger than those of dimers at both the transcription and translation levels, while the ability of dimers to downregulate the MC1R expression was stronger than that of catechins at both the transcription and translation levels to some extent. The results of molecular docking showed that these four samples could stably bind to MC1R protein. Taken together, this study offered molecular mechanisms for the anti-melanogenic activity of the EGCG, GCG, TFDG, and TSA, as potential effective components against the UV-induced tanning reactions, and a key target (MC1R) was identified.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
- College of Horticulture, Fujian Agriculture and Forestry University, Cangshan District, Fuzhou 350002, China
| | - Taimei Di
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| | - Weiwei Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| | - Heyuan Jiang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| |
Collapse
|
48
|
Zhang L, Zeng H, Jiang L, Fu C, Zhang Y, Hu Y, Zhang X, Zhu L, Zhang F, Huang J, Chen J, Zeng Q. Heat promotes melanogenesis by increasing the paracrine effects in keratinocytes via the TRPV3/Ca 2+/Hh signaling pathway. iScience 2023; 26:106749. [PMID: 37216091 PMCID: PMC10192915 DOI: 10.1016/j.isci.2023.106749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/10/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Global warming and rising temperature significantly increase the incidence of heat stress, which is known to affect the process of inflammation and aging. However, the effect of heat stress on skin melanogenesis is not fully known. We found that healthy foreskin tissues underwent significant pigmentation when exposed to 41°C. Furthermore, heat stress promoted melanogenesis in pigment cells by increasing the paracrine effects of keratinocytes. High-throughput RNA sequencing showed that heat stress activates the Hedgehog (Hh) signaling pathway in keratinocytes. The agonists of Hh signaling promote the paracrine effect of keratinocytes on melanogenesis. In addition, transient receptor potential vanilloid (TRPV) 3 agonists activate the Hh signaling in keratinocytes and augment its paracrine effect on melanogenesis. The heat-induced activation of Hh signaling is dependent on TRPV3-mediated Ca2+ influx. Heat exposure promotes melanogenesis by increasing the paracrine effects in keratinocytes via the TRPV3/Ca2+/Hh signaling pathway. Our findings provide insights into the mechanisms of heat-induced skin pigmentation.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hongliang Zeng
- Center of Medical Laboratory Animal, Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, P.R. China
| | - Ling Jiang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chuhan Fu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yushan Zhang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yibo Hu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiaolin Zhang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Lu Zhu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Fan Zhang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jinhua Huang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jing Chen
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Qinghai Zeng
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
49
|
Neale RE, Lucas RM, Byrne SN, Hollestein L, Rhodes LE, Yazar S, Young AR, Berwick M, Ireland RA, Olsen CM. The effects of exposure to solar radiation on human health. Photochem Photobiol Sci 2023; 22:1011-1047. [PMID: 36856971 PMCID: PMC9976694 DOI: 10.1007/s43630-023-00375-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 03/02/2023]
Abstract
This assessment by the Environmental Effects Assessment Panel (EEAP) of the Montreal Protocol under the United Nations Environment Programme (UNEP) evaluates the effects of ultraviolet (UV) radiation on human health within the context of the Montreal Protocol and its Amendments. We assess work published since our last comprehensive assessment in 2018. Over the last four years gains have been made in knowledge of the links between sun exposure and health outcomes, mechanisms, and estimates of disease burden, including economic impacts. Of particular note, there is new information about the way in which exposure to UV radiation modulates the immune system, causing both harms and benefits for health. The burden of skin cancer remains high, with many lives lost to melanoma and many more people treated for keratinocyte cancer, but it has been estimated that the Montreal Protocol will prevent 11 million cases of melanoma and 432 million cases of keratinocyte cancer that would otherwise have occurred in the United States in people born between 1890 and 2100. While the incidence of skin cancer continues to rise, rates have stabilised in younger populations in some countries. Mortality has also plateaued, partly due to the use of systemic therapies for advanced disease. However, these therapies are very expensive, contributing to the extremely high economic burden of skin cancer, and emphasising the importance and comparative cost-effectiveness of prevention. Photodermatoses, inflammatory skin conditions induced by exposure to UV radiation, can have a marked detrimental impact on the quality of life of sufferers. More information is emerging about their potential link with commonly used drugs, particularly anti-hypertensives. The eyes are also harmed by over-exposure to UV radiation. The incidence of cataract and pterygium is continuing to rise, and there is now evidence of a link between intraocular melanoma and sun exposure. It has been estimated that the Montreal Protocol will prevent 63 million cases of cataract that would otherwise have occurred in the United States in people born between 1890 and 2100. Despite the clearly established harms, exposure to UV radiation also has benefits for human health. While the best recognised benefit is production of vitamin D, beneficial effects mediated by factors other than vitamin D are emerging. For both sun exposure and vitamin D, there is increasingly convincing evidence of a positive role in diseases related to immune function, including both autoimmune diseases and infection. With its influence on the intensity of UV radiation and global warming, the Montreal Protocol has, and will have, both direct and indirect effects on human health, potentially changing the balance of the risks and benefits of spending time outdoors.
Collapse
Affiliation(s)
- R E Neale
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Public Health, University of Queensland, Brisbane, QLD, Australia.
| | - R M Lucas
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT, Australia
| | - S N Byrne
- School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - L Hollestein
- Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Netherlands Comprehensive Cancer Organisation, Utrecht, The Netherlands
| | - L E Rhodes
- Dermatology Research Centre, School of Biological Sciences, University of Manchester, Salford Royal Hospital, Northern Care Alliance NHS Trust, Manchester, UK
| | - S Yazar
- Garvan Medical Research Institute, Sydney, NSW, Australia
| | | | - M Berwick
- University of New Mexico Comprehensive Cancer Center, Albuquerque, USA
| | - R A Ireland
- School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - C M Olsen
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Frazer Institute, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
50
|
Gye H, Baek H, Han S, Kwon H, Nguyen TVT, Pham LTM, Kang S, Nho YH, Lee DW, Kim YH. Recombinant Lignin Peroxidase with Superior Thermal Stability and Melanin Decolorization Efficiency in a Typical Human Skin-Mimicking Environment. Biomacromolecules 2023. [PMID: 37075205 DOI: 10.1021/acs.biomac.3c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Recently, the desire for a safe and effective method for skin whitening has been growing in the cosmetics industry. Commonly used tyrosinase-inhibiting chemical reagents exhibit side effects. Thus, recent studies have focused on performing melanin decolorization with enzymes as an alternative due to the low toxicity of enzymes and their ability to decolorize melanin selectively. Herein, 10 different isozymes were expressed as recombinant lignin peroxidases (LiPs) from Phanerochaete chrysosporium (PcLiPs), and PcLiP isozyme 4 (PcLiP04) was selected due to its high stability and activity at pH 5.5 and 37 °C, which is close to human skin conditions. In vitro melanin decolorization results indicated that PcLiP04 exhibited at least 2.9-fold higher efficiency than that of well-known lignin peroxidase (PcLiP01) in a typical human skin-mimicking environment. The interaction force between melanin films measured by a surface forces apparatus (SFA) revealed that the decolorization of melanin by PcLiP04 harbors a disrupted structure, possibly interrupting π-π stacking and/or hydrogen bonds. In addition, a 3D reconstructed human pigmented epidermis skin model showed a decrease in melanin area to 59.8% using PcLiP04, which suggests that PcLiP04 exhibits a strong potential for skin whitening.
Collapse
Affiliation(s)
- Hyeryeong Gye
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Heeyeon Baek
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Seunghyun Han
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Haeun Kwon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Trang Vu Thien Nguyen
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Le Thanh Mai Pham
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Seunghyun Kang
- Bio Technology Lab, COSMAX BTI R&I Center, Seongnam 13486, Republic of Korea
| | - Youn Hwa Nho
- Bio Technology Lab, COSMAX BTI R&I Center, Seongnam 13486, Republic of Korea
| | - Dong Woog Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|