1
|
Abdelsalam E, Ibrahim AM, El-Rashedy AA, Abdel-Aziz MS, Kutkat O, El-Hady FKA. Combating COVID-19 and its co-infection by Aspergillus tamarii SP73-EGY using in vitro and in silico Studies. Sci Rep 2025; 15:685. [PMID: 39753574 PMCID: PMC11698736 DOI: 10.1038/s41598-024-77854-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/25/2024] [Indexed: 01/06/2025] Open
Abstract
The COVID-19 pandemic has caused significant mortality and morbidity for millions of people. Severe Acute Respiratory Syndrome-2 (SARS-CoV-2) virus is capable of causing severe and fatal diseases. We evaluated the antiviral properties of Aspergillus tamarii SP73-EGY isolate extract against low pathogenic coronavirus (229E), Adeno-7- and Herpes-2 viruses. The extract showed a high selectivity index (SI = 43.4) and a significant inhibition of 229E (IC50 = 8.205 μg/ml). It was stronger than the drug control, remdesivir (IC50 = 38.2 μg/ml, SI = 7.29). However, the extract showed minimal efficacy against Adeno-7- and Herpes-2-Viruses (IC50 = 22.52, 47.79 μg/ml, and SI = 6.75, 5.08, respectively). It exhibited profound efficacy against the highly pathogenic SARS-CoV-2 (IC50 = 8.306 μg/ml, SI = 42.2). Kojic acid, the primary component of the extract, showed substantial antiviral activity against SARS-CoV-2 (IC50 = 23.4 μg/ml, SI = 5.6), Remdesivir (IC50 = 4.55 μg/ml, SI = 61.45). Therefore, the extract demonstrated the most notable antiviral characteristics against coronavirus infection. Co-infecting microorganisms may contribute to immune system deterioration and airway injury caused by SARS-CoV-2. The extract showed significant efficacy against E. coli and P. aeruginosa, with an inhibition range of 3.5-10 mm at a concentration of 200 mg/ml. A molecular docking study showed that hexadecanoic, Kojic, octanoic acids, and 4(4-Methylbenzylidene)cyclohexane-1,3-dione have stronger binding affinity to the SARS-CoV-2 Mpro than Remdesivir. Molecular dynamics simulations were employed to examine the structural stability and flexibility of these complexes. This confirmed the high binding affinities of Kojic acid and 4(4-Methylbenzylidene)cyclohexane-1,3-dione, thereby proving their potential as novel anti-SARS-CoV-2.
Collapse
Affiliation(s)
- Eman Abdelsalam
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth St, Dokki-Giza, Egypt
| | - Amal Mosad Ibrahim
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth St, Dokki-Giza, Egypt
| | - Ahmed A El-Rashedy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth St, Dokki-Giza, Egypt
| | | | - Omnia Kutkat
- Centre of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environment Research and Climate Change Institute, National Research Centre, Giza, 12622, Egypt
| | - Faten K Abd El-Hady
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth St, Dokki-Giza, Egypt
| |
Collapse
|
2
|
Tantanasrigul P, Sripha A, Chongmelaxme B. The Efficacy of Topical Cosmetic Containing Alpha-Arbutin 5% and Kojic Acid 2% Compared With Triple Combination Cream for the Treatment of Melasma: A Split-Face, Evaluator-Blinded Randomized Pilot Study. J Cosmet Dermatol 2024. [PMID: 39555866 DOI: 10.1111/jocd.16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/22/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND While the gold standard treatment for melasma is triple combination cream (TCC), arbutin and kojic acid demonstrate their benefits and may be used as an alternative. AIMS To investigate the efficacy of cream containing alpha-arbutin 5% and kojic acid 2% (AAK) compared with TCC for melasma treatment. PATIENTS/METHODS A split-faced, randomized study was conducted among 30 participants with melasma, and all were randomized to receive AAK or TCC on each side of their face for 12-week along with 4-week follow-up period. The melanin index (MI), modified Melasma Area Severity Index (mMASI), and physician global assessment (PGA) scores were used to measure the effectiveness of interventions. Recurrence of melasma after treatment discontinuation was evaluated by MI and mMASI. Patient satisfactions and adverse effects were also evaluated. In the analysis, the mean difference (MD) was used for MI and mMASI, while Wilcoxon signed-rank test was for the PGA scores, adverse effects, and patient satisfaction. RESULTS The MD of MI and mMASI scores were not different between groups (mMASI [p = 0.344] and MI [p = 0.268]). The PGA scores only showed improvement on the TCC-treated side (p = 0.032). Compared to the AKK group, the subjects with TCC showed higher severity of recurrence (MI [p = 0.004] and mMASI [p = 0.045]). No difference in patient satisfaction score between the groups, but erythema and stinging were higher in the TCC group. CONCLUSIONS The AAK cream appeared to be effective for melasma treatment, highlighting a lower recurrent rate and fewer adverse events than standard therapy. TRIAL REGISTRATION thaiclinicaltrials.org: TCTR20230124004.
Collapse
Affiliation(s)
- Pimpa Tantanasrigul
- Department of Medical Services, Ministry of Public Health, Institute of Dermatology, Bangkok, Thailand
| | - Apinya Sripha
- Department of Medical Services, Ministry of Public Health, Institute of Dermatology, Bangkok, Thailand
| | - Bunchai Chongmelaxme
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Moussa AY, Abbas H, Zewail M, Gaafar PME, Ibrahim N. Green preparation and evaluation of the anti-psoriatic activity of vesicular elastic nanocarriers of kojic acid from Aspergillus oryzae N12: Repurposing of a dermo-cosmetic lead. Arch Pharm (Weinheim) 2024; 357:e2400410. [PMID: 39180243 DOI: 10.1002/ardp.202400410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/26/2024]
Abstract
Psoriasis is a skin disorder characterized by impaired epidermal differentiation that is regularly treated by systemic drugs with undesirable side effects. Based on its anti-inflammatory, antiproliferative and anti-melanoma attributes, the fungal metabolite kojic acid represents an attractive candidate for anti-psoriatic research. The present work aims to investigate an efficient topical bio-friendly vesicular system loaded with kojic acid isolated from Aspergillus oryzae as an alternative way for the management of psoriasis to avoid systemic toxicity. Kojic acid-loaded spanlastics were prepared by ethanol injection technique, employing span 60 along with brij 35 and cremophor rh40 as edge activators, with the complete in vitro characterization of the developed nanoplatform. The selected formulation displayed a spherical morphology, an optimum particle size of 234.2 ± 1.65 nm, high entrapment efficiency (87.4% ± 0.84%) and significant sustained drug release compared with the drug solution. In vivo studies highlighted the superior relief of psoriasis symptoms and the ability to maintain healthy skin with the least changes in mRNA expression of inflammatory cytokines, achieved by the developed nanoplatform compared to kojic acid solution. Moreover, the in vivo histopathological studies confirmed the safety of the topically applied spanlastics. In addition, the molecular mechanism was approached through in vitro assessment of cathepsin S and PDE-4 inhibitory activities and in silico investigation of kojic acid docking in several anti-psoriatic drug targets. Our results suggest that a topically applied vesicular system loaded with kojic acid could lead to an expansion in the dermo-cosmetic use of kojic acid as a natural bio-friendly alternative for systemic anti-psoriatic drugs.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Mariam Zewail
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Passent M E Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Nehal Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Lin H, Li F, Kang J, Xie S, Qin X, Gao J, Chen Z, Cao W, Zheng H, Song W. In Vitro In Silico Screening Strategy and Mechanism of Novel Tyrosinase Inhibitory Peptides from Nacre of Hyriopsis cumingii. Mar Drugs 2024; 22:420. [PMID: 39330301 PMCID: PMC11433014 DOI: 10.3390/md22090420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
For thousands of years, pearl and nacre powders have been important traditional Chinese medicines known for their skin whitening effects. To prepare the enzymatic hydrolysates of Hyriopsis cumingii nacre powder (NP-HCH), complex enzymatic hydrolysis by pineapple protease and of neutral protease was carried out after the powder was pre-treated with a high-temperature and high-pressure method. The peptides were identified using LC-MS/MS and picked out through molecular docking and molecular dynamics simulations. Subsequently, the tyrosinase inhibitory and antioxidant properties of novel tyrosinase inhibitory peptides were investigated in vitro. In addition, the enzymatic activity of tyrosinase in B16F10 cells as well as melanin content and antioxidant enzyme levels were also examined. The results showed that a tyosinase inhibitory peptide (Tyr-Pro-Asn-Pro-Tyr, YPNPY) with an efficient IC50 value of 0.545 ± 0.028 mM was identified. The in vitro interaction results showed that YPNPY is a reversible competitive inhibitor of tyrosinase, suggesting that it binds to the free enzyme. The B16F10 cell whitening test revealed that YPNPY can reduce the melanin content of B16F10 cells by directly inhibiting the activity of intracellular tyrosinase. Additionally, it indirectly affects melanin production by acting as an antioxidant. These results suggest that YPNPY could be widely used as a tyrosinase inhibitor in whitening foods and drugs.
Collapse
Affiliation(s)
- Haisheng Lin
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Fei Li
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiaao Kang
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shaohe Xie
- Guangdong Shaohe Pearl Co., Ltd., Shantou 515041, China
| | - Xiaoming Qin
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jialong Gao
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zhongqin Chen
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wenhong Cao
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Huina Zheng
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wenkui Song
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
5
|
Pisano L, Turco M, Supuran CT. Biomedical applications of tyrosinases and tyrosinase inhibitors. Enzymes 2024; 56:261-280. [PMID: 39304289 DOI: 10.1016/bs.enz.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Tyrosinase is involved in several human diseases, among which hypopigmentation and depigmentation conditions (vitiligo, idiopathic guttate hypomelanosis, pityriasis versicolor, pityriasis alba) and hyperpigmentations (melasma, lentigines, post-inflammatory and periorbital hyperpigmentation, cervical idiopathic poikiloderma and acanthosis nigricans). There are increasing evidences that tyrosinase plays a relevant role in the formation and progression of melanoma, a difficult to treat skin tumor. Hydroquinone, azelaic acid and tretinoin (all-trans-retinoic acid) are clinically used in the management of some hyperpigmentations, whereas many novel chemotypes acting as tyrosinase inhibitors with potential antimelanoma action are being investigated. Kojic acid, hydroquinone, its glycosylated derivative arbutin, or the resorcinol derivative rucinol are used in cosmesis in creams as skin whitening agents, whereas no antimelanoma tyrosinase inhibitor reached clinical trials so far, although thiamidol is a recently approved new tyrosinase inhibitor for the treatment of melasma. Kojic acid and vitamin C are used for avoiding vegetable/food oxidative browning due to the tyrosinase-catalyzed reactions, whereas bacterial enzymes show potential in biotechnological applications, for the production of mixed melanins, for protein cross-linking reactions, for producing phenol(s) biosensors, of for the production of L-DOPA, an anti-Parkinson's disease drug.
Collapse
Affiliation(s)
- Luigi Pisano
- Section of Dermatology, Health Sciences Department, University of Florence, Florence, Italy
| | - Martina Turco
- Health Sciences Department (DSS), University of Florence, Florence, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
6
|
Pourhajibagher M, Javanmard Z, Bahador A. Molecular docking and antimicrobial activities of photoexcited inhibitors in antimicrobial photodynamic therapy against Enterococcus faecalis biofilms in endodontic infections. AMB Express 2024; 14:94. [PMID: 39215887 PMCID: PMC11365891 DOI: 10.1186/s13568-024-01751-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) is a promising approach to combat antibiotic resistance in endodontic infections. It eliminates residual bacteria from the root canal space and reduces the need for antibiotics. To enhance its effectiveness, an in silico and in vitro study was performed to investigate the potential of targeted aPDT using natural photosensitizers, Kojic acid and Parietin. This approach aims to inhibit the biofilm formation of Enterococcus faecalis, a frequent cause of endodontic infections, by targeting the Ace and Esp proteins. After determining the physicochemical characteristics of Ace and Esp proteins and model quality assessment, the molecular dynamic simulation was performed to recognize the structural variations. The stability and physical movement of the protein-ligand complexes were evaluated. In silico molecular docking was conducted, followed by ADME/Tox profiling, pharmacokinetics characteristics, and assessment of drug-likeness properties of the natural photosensitizers. The study also investigated the changes in the expression of genes (esp and ace) involved in E. faecalis biofilm formation. The results showed that both Kojic acid and Parietin complied with Lipinski's rule of five and exhibited drug-like properties. In silico analysis indicated stable complexes between Ace and Esp proteins and the natural photosensitizers. The molecular docking studies demonstrated good binding affinity. Additionally, the expression of the ace and esp genes was significantly downregulated in aPDT using Kojic acid and Parietin with blue light compared to the control group. This investigation concluded that Kojic acid and Parietin with drug-likeness could efficiently interact with Ace and Esp proteins with a strong binding affinity. Hence, natural photosensitizers-mediated aPDT can be considered a promising adjunctive treatment against endodontic infections.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Javanmard
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
7
|
Ali W, Choe K, Park JS, Ahmad R, Park HY, Kang MH, Park TJ, Kim MO. Kojic acid reverses LPS-induced neuroinflammation and cognitive impairment by regulating the TLR4/NF-κB signaling pathway. Front Pharmacol 2024; 15:1443552. [PMID: 39185307 PMCID: PMC11341365 DOI: 10.3389/fphar.2024.1443552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Intense neuroinflammation contributes to neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Lipopolysaccharides (LPSs) are an integral part of the cell wall of Gram-negative bacteria that act as pathogen-associated molecular patterns (PAMPs) and potentially activate the central nervous system's (CNS) immune system. Microglial cells are the local macrophages of the CNS and have the potential to induce and control neuroinflammation. This study aims to evaluate the anti-inflammatory and antioxidant effect of kojic acid against the toxic effects of LPSs, such as neuroinflammation-induced neurodegeneration and cognitive decline. The C57BL/6N mice were subjected to LPS injection for 2 weeks on alternate days (each mouse received 0.25 mg/kg/i.p. for a total of seven doses), and kojic acid was administered orally for 3 weeks consecutively (50 mg/kg/mouse, p. o). Bacterial endotoxins, or LPSs, are directly attached to TLR4 surface receptors of microglia and astrocytes and alter the cellular metabolism of immune cells. Intraperitoneal injection of LPS triggers the toll-like receptor 4 (TLR4), phospho-nuclear factor kappa B (p-NFκB), and phospho-c-Jun n-terminal kinase (p-JNK) protein expressions in the LPS-treated group, but these expression levels were significantly downregulated in the LPS + KA-treated mice brains. Prolong neuroinflammation leads to the generation of reactive oxygen species (ROS) followed by a decrease in nuclear factor erythroid-2-related factor 2 (Nrf2) and the enzyme hemeoxygenase 1 (HO-1) expression in LPS-subjected mouse brains. Interestingly, the levels of both Nrf-2 and HO-1 increased in the LPS + KA-treated mice group. In addition, kojic acid inhibited LPS-induced TNF-α and IL-1β production in mouse brains. These results indicated that kojic acid may suppress LPS-induced neuroinflammation and oxidative stress in male wild-type mice brains (in both the cortex and the hippocampus) by regulating the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Waqar Ali
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Mastricht, Netherlands
| | - Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Riaz Ahmad
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyun Young Park
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Mastricht, Netherlands
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
| | - Min Hwa Kang
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Tae Ju Park
- Haemato-oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences (MVLS), University of Glasgow, Glasgow, United Kingdom
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Alz-Dementia Korea Co., Jinju, Republic of Korea
| |
Collapse
|
8
|
Li F, Lin H, Qin X, Gao J, Chen Z, Cao W, Zheng H, Xie S. In Silico Identification and Molecular Mechanism of Novel Tyrosinase Inhibitory Peptides Derived from Nacre of Pinctada martensii. Mar Drugs 2024; 22:359. [PMID: 39195475 PMCID: PMC11355249 DOI: 10.3390/md22080359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Pearl and nacre powders have been valuable traditional Chinese medicines with whitening properties for thousands of years. We utilized a high-temperature and high-pressure method along with compound enzyme digestion to prepare the enzymatic hydrolysates of nacre powder of Pinctada martensii (NP-PMH). The peptides were identified using LC-MS/MS and screened through molecular docking and molecular dynamics simulations. The interactions between peptides and tyrosinase were elucidated through enzyme kinetics, circular dichroism spectropolarimetry, and isothermal titration calorimetry. Additionally, their inhibitory effects on B16F10 cells were explored. The results showed that a tyrosinase-inhibitory peptide (Ala-His-Tyr-Tyr-Asp, AHYYD) was identified, which inhibited tyrosinase with an IC50 value of 2.012 ± 0.088 mM. The results of the in vitro interactions showed that AHYYD exhibited a mixed-type inhibition of tyrosinase and also led to a more compact enzyme structure. The binding reactions of AHYYD with tyrosinase were spontaneous, leading to the formation of a new set of binding sites on the tyrosinase. The B16F10 cell-whitening assay revealed that AHYYD could reduce the melanin content of the cells by directly inhibiting the activity of intracellular tyrosinase. Additionally, it indirectly affects melanin production by acting as an antioxidant. These results suggest that AHYYD could be widely used as a tyrosinase inhibitor in whitening foods and pharmaceuticals.
Collapse
Affiliation(s)
- Fei Li
- College of Food Science and Technology, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China; (F.L.); (X.Q.); (J.G.); (Z.C.); (W.C.); (H.Z.)
| | - Haisheng Lin
- College of Food Science and Technology, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China; (F.L.); (X.Q.); (J.G.); (Z.C.); (W.C.); (H.Z.)
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoming Qin
- College of Food Science and Technology, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China; (F.L.); (X.Q.); (J.G.); (Z.C.); (W.C.); (H.Z.)
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jialong Gao
- College of Food Science and Technology, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China; (F.L.); (X.Q.); (J.G.); (Z.C.); (W.C.); (H.Z.)
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zhongqin Chen
- College of Food Science and Technology, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China; (F.L.); (X.Q.); (J.G.); (Z.C.); (W.C.); (H.Z.)
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wenhong Cao
- College of Food Science and Technology, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China; (F.L.); (X.Q.); (J.G.); (Z.C.); (W.C.); (H.Z.)
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Huina Zheng
- College of Food Science and Technology, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China; (F.L.); (X.Q.); (J.G.); (Z.C.); (W.C.); (H.Z.)
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Shaohe Xie
- Guangdong Shaohe Pearl Co., Ltd., Shantou 515041, China;
| |
Collapse
|
9
|
Muller B, Flament F, Jouni H, Sextius P, Tachon R, Wang Y, Wang H, Qiu H, Qiu J, Amar D, Delaunay C, Jablonski NG, Passeron T. A Bayesian network meta-analysis of 14 molecules inhibiting UV daylight-induced pigmentation. J Eur Acad Dermatol Venereol 2024; 38:1566-1574. [PMID: 38433524 DOI: 10.1111/jdv.19910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION Hyperpigmentation disorders are very frequent, affect the quality of life and may become a psychological burden for afflicted patients. Many anti-pigmenting or depigmenting agents are available with various efficacy and almost no comparative data. 2-mercaptonicotinoyl glycine (2-MNG) was recently proposed as a viable candidate showing safe and effective results on hyperpigmentation control in vitro and in vivo. OBJECTIVES A Bayesian network meta-analysis (BNMA) was conducted to map and rank the anti-pigmenting and depigmenting efficacy of 2-MNG 0.5% on UV daylight (UVDL)-induced pigmentation together with 13 other reference molecules. A comparison in the kinetics of 2-MNG 0.5% was also performed. METHODOLOGY Fourteen studies were conducted, for each, on 15-30 women of skin phototype III in Shanghai, China and Paris, France. The products were applied on mini zone, in randomized and blinded protocol, on the back, 5 days a week during 6 weeks, at a dose of 4 mg/cm2. During the second week, volunteers were exposed under to varying minimum erythemal dose of UVDL during 4 consecutive days-adapted to obtain a similar induction of skin pigmentation regardless of the population. Assessments were performed instrumentally using Chromameter®. Ascorbic acid 7% was used as a positive control for all experiments. A Bayesian network meta-analysis was then established to map and follow the kinetics of 2-MNG 0.5% performance with 13 reference molecules (glutathione 2%, kojic acid 1%, hydroquinone 4%, ascorbyl glucoside 2%, niacinamide 4%, etc.). RESULTS 2-MNG 0.5% dominated the ranking at all time points with a significant high probability of strong efficacy against UVDL-induced pigmentation. Ascorbic acid 7% ranks second after 4 days of irradiations (D12) whereas hydroquinone 4% ranks second 1 month after irradiations (D40). In the kinetics, 2-MNG at 0.5% was effective as from the end of irradiations (D12) to the study endpoint (D40). This suggested an immediate and persistent efficacy across all timepoints evaluated. CONCLUSION The BNMA revealed a rapid and lasting efficacy of 2-MNG 0.5% on the anti-pigmenting and depigmenting phases of the clinical protocol. 2-MNG 0.5% ranked first, with immediate and lasting effect compared to 13 other references. This study is the first allowing comparison between reference anti-pigmenting and depigmenting agents and will help clinicians for proposing the most effective approach for their patients.
Collapse
Affiliation(s)
| | | | - Hussein Jouni
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Peggy Sextius
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | | | - Yang Wang
- L'Oréal Research and Innovation, Shanghai, China
| | - Hequn Wang
- L'Oréal Research and Innovation, Shanghai, China
| | - Huixia Qiu
- L'Oréal Research and Innovation, Shanghai, China
| | - Janney Qiu
- L'Oréal Research and Innovation, Shanghai, China
| | - David Amar
- L'Oréal Research and Innovation, Chevilly-Laure, France
| | | | - Nina G Jablonski
- Department of Anthropology, The Pennsylvania State University, University Park, Texas, USA
| | - Thierry Passeron
- Department of Dermatology, Université Côte d'Azur, CHU Nice, Nice, France
- Université Côte d'Azur, INSERM, Nice, France
| |
Collapse
|
10
|
Meng X, Tang N, Su W, Chen W, Zhang Y, Li H. Fermentation of DaiDai fruit and its biological activity. Front Microbiol 2024; 15:1443283. [PMID: 39077743 PMCID: PMC11284028 DOI: 10.3389/fmicb.2024.1443283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
DaiDai fruit, a medicinal and edible plant fruit, is abundant in biologically active compounds and has a long history of use in traditional Chinese medicine. This research focuses on utilizing fermentation to develop a functional DaiDai fruit fermentation broth. Lactobacillus, Bacillus subtilis and Saccharomyces cerevisiae were employed in the fermentation process. By conducting screenings of bacterial strains, single factor experiments, and response surface methodology, the total flavonoids, polysaccharides, polyphenols, and 1,1-diphenyl-2-trinitrophenylhydrazine (DPPH) free radical scavenging rate were used as the index for selection, ultimately identifying Lactobacillus L-13 as the optimal fermentation strain. The optimal fermentation conditions were determined to be a time of 108 h, a temperature of 43.6°C, and a solid-liquid ratio of 1:15.157 (w/v). Under these conditions, the total flavonoid content reached 412.01 mg/g, representing a 36.71% increase compared to conventional extraction methods. The contents of polysaccharides and polyphenols and the DPPH scavenging rate were also increased. The fermentation broth of DaiDai fruit exhibited inhibitory effects on tyrosinase and melanin production in mouse melanoma cells B16-F10 induced by α-MSH and anti-inflammatory properties in a zebrafish inflammation model. These indicate that the DaiDai fruit fermentation broth possesses anti-melanoma, whitening, and anti-inflammatory properties, showcasing significant potential for applications in medicine, cosmetics, and other industries.
Collapse
Affiliation(s)
- Xiangyu Meng
- School of Base Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Nan Tang
- School of Base Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenfeng Su
- School of Base Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Weiji Chen
- School of Base Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yue Zhang
- Qingdao Benyue Biological Technology Co., Ltd., Qingdao, China
| | - He Li
- School of Base Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
11
|
Ng WL, Tan JK, Gnanaraj C, Shah MD, Nor Rashid N, Abdullah I, Yong YS. Cytotoxicity of Physalis minima Linn (Solanaceae) fruit against HCT116 and HT29 colorectal cancer cell lines. Nat Prod Res 2024:1-6. [PMID: 38953123 DOI: 10.1080/14786419.2024.2370521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/15/2024] [Indexed: 07/03/2024]
Abstract
The pantropical Physalis minima are traditionally used for the prevention and treatment of various illnesses, diseases, and cancers. While most earlier studies on the species have focused on the phytochemistry of the leaf and stem extracts, recent studies have indicated that its fruit may contain bioactive compounds of medical interest. In this study, we investigated the cytotoxicity of extracts from the fruit of P. minima against colorectal cancer cell lines and revealed its phytochemical profile via high-resolution tandem mass spectrometry analysis. Following a 24-h treatment with the fruit extract, cytoplasm shrinkage and nucleus condensation were observed in the colorectal cancer cell lines HCT116 and HT29, indicating the induction of programmed cell death. Phytochemically, 71 putative metabolites were identified. Some of these metabolites have been reported to inhibit cancers to varying degrees, further supporting the correlation of the putative metabolites with the cytotoxicity against colorectal cancer cells demonstrated in this study.
Collapse
Affiliation(s)
- Wei Lun Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Selangor, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan, Kuala Lumpur, Malaysia
| | - Charles Gnanaraj
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Perak, Malaysia
| | | | - Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Iskandar Abdullah
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yoong Soon Yong
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
- Centre of Research for Advanced Aquaculture, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Kumar S, Lal B, Singh G, Muskan, Tittal RK, Singh J, Vikas D G, Sharma R. 5-Aminoisophthalate-based kojic acid-appended bis-1,2,3-triazole: a fluorescent chemosensor for Cu 2+ sensing and in silico study. RSC Adv 2024; 14:20908-20922. [PMID: 38962096 PMCID: PMC11220489 DOI: 10.1039/d4ra02372b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024] Open
Abstract
A new, easy-to-prepare, and highly selective fluorescent chemosensor, i.e., 5-aminoisophthalate-based kojic acid-appended bis-1,2,3-triazole, was synthesized from an alkyne of 5-aminoisophthalic acid and azido-kojic acid using Cu(i)-catalyzed click chemistry and then successfully characterized. The alkyne structure of 5-aminoisophthalic acid, 1, was supported by the single-crystal X-ray crystallographic data. The fluorescent probe 3 was found to be highly selective for Cu2+ ions supported by the Job's plot with a stoichiometric ligand : metal ratio of 2 : 1, exhibiting almost a two-fold enhancement in the emission intensity upon the addition of Cu2+ ions (0-25 μM) with a detection limit of 8.82 μM. A comparison with LODs from previously developed chemosensors for Cu2+ ions was also conducted. Reversibility analysis indicated that probe 3 could be used as both a reusable sensor and as a scavenger of copper ions. DFT calculations with the basis sets B3LYP/6-311G(d,p) and LanL2DZ were employed for geometrical optimizations of structures of the alkyne 1, azide 2, probe 3, and complex 3.Cu2+. Hirshfeld surface analysis revealed significant intermolecular interactions in compound 1. Additionally, molecular docking for the antimicrobial activity showed the better antibacterial efficacy of probe 3.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Chemistry, National Institute of Technology Kurukshetra Haryana 136119 India +91-1744-233-542
- School of Applied Sciences, Om Sterling Global University Hisar Haryana 125001 India
| | - Bajrang Lal
- Department of Chemistry, National Institute of Technology Kurukshetra Haryana 136119 India +91-1744-233-542
| | - Gurleen Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara Punjab 144411 India
| | - Muskan
- Department of Chemistry, University of Delhi Delhi 110007 India
| | - Ram Kumar Tittal
- Department of Chemistry, National Institute of Technology Kurukshetra Haryana 136119 India +91-1744-233-542
| | - Jandeep Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara Punjab 144411 India
| | - Ghule Vikas D
- Department of Chemistry, National Institute of Technology Kurukshetra Haryana 136119 India +91-1744-233-542
| | - Renu Sharma
- School of Applied Sciences, Om Sterling Global University Hisar Haryana 125001 India
| |
Collapse
|
13
|
Haghsay Khashechi E, Afaghmehr A, Heydari N, Barfar A, Shokri J. Laser-mediated Solutions: Breaking Barriers in Transdermal Drug Delivery. AAPS PharmSciTech 2024; 25:142. [PMID: 38898170 DOI: 10.1208/s12249-024-02849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Skin diseases pose challenges in treatment due to the skin's complex structure and protective functions. Topical drug delivery has emerged as a preferred method for treating these conditions, offering localized therapy with minimal systemic side effects. However, the skin's barrier properties frequently limit topical treatments' efficacy by preventing drug penetration into deeper skin layers. In recent years, laser-assisted drug delivery (LADD) has gained attention as a promising strategy to overcome these limitations. LADD involves using lasers to create microchannels in the skin, facilitating the deposition of drugs and enhancing their penetration into the target tissue. Several lasers, such as fractional CO2, have been tested to see how well they work at delivering drugs. Despite the promising outcomes demonstrated in preclinical and clinical studies, several challenges persist in implementing LADD, including limited penetration depth, potential tissue damage, and the cost of LADD systems. Furthermore, selecting appropriate laser parameters and drug formulations is crucial to ensuring optimal therapeutic outcomes. Nevertheless, LADD holds significant potential for improving treatment efficacy for various skin conditions, including skin cancers, scars, and dermatological disorders. Future research efforts should focus on optimizing LADD techniques, addressing safety concerns, and exploring novel drug formulations to maximize the therapeutic benefits of this innovative approach. With continued advancements in laser technology and pharmaceutical science, LADD has the potential to revolutionize the field of dermatology and enhance patient care.
Collapse
Affiliation(s)
| | | | - Niloofar Heydari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ashkan Barfar
- Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
- Department of pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Shokri
- Department of pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Wang Z, Zheng Y, Hu Y, Yang L, Liu X, Zhao R, Gao M, Li Z, Feng Y, Xu Y, Li N, Yang J, Wang Q, An L. Improvement of antibacterial activity of polysaccharides via chemical modification: A review. Int J Biol Macromol 2024; 269:132163. [PMID: 38729490 DOI: 10.1016/j.ijbiomac.2024.132163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Antibiotic residue and bacterial resistance induced by antibiotic abuse have seriously threatened food safety and human healthiness. Thus, the development and application of safe, high-efficiency, and environmentally friendly antibiotic alternatives are urgently necessary. Apart from antitumor, antivirus, anti-inflammatory, gut microbiota regulation, immunity improvement, and growth promotion activities, polysaccharides also have antibacterial activity, but such activity is relatively low, which cannot satisfy the requirements of food preservation, clinical sterilization, livestock feeding, and agricultural cultivation. Chemical modification not only provides polysaccharides with better antibacterial activity, but also promotes easy operation and large-scale production. Herein, the enhancement of the antibacterial activity of polysaccharides via acetylation, sulfation, phosphorylation, carboxymethylation, selenation, amination, acid graft, and other chemical modifications is reviewed. Meanwhile, a new trend on the application of loading chemically modified polysaccharides into nanostructures is discussed. Furthermore, possible limitations and future recommendations for the development and application of chemically modified polysaccharides with better antibacterial activity are suggested.
Collapse
Affiliation(s)
- Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yi Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yiwei Hu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Libo Yang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056038, China.
| | - Xirui Liu
- School of Foreign Languages, Henan University of Technology, Zhengzhou 450001, China
| | - Renyong Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zhitao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yingjie Feng
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Yongming Xu
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Na Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China.
| | - Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Lemei An
- Department of Rheumatology and Clinical Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
15
|
Bai H, Wang S, Wang ZM, Zhu LL, Yan HB, Wang YB, Wang XY, Peng L, Liu JZ. Investigation of bioactive compounds and their correlation with the antioxidant capacity in different functional vinegars. Food Res Int 2024; 184:114262. [PMID: 38609241 DOI: 10.1016/j.foodres.2024.114262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
There are complex and diverse substances in traditional vinegars, some of which have been identified as biologically active factors, but the variety of functional compounds is currently restricted. In this study, it was aimed to determine the bioactive compounds in 10 typical functional vinegars. The findings shown that total flavonoids (0.21-7.19 mg rutin equivalent/mL), total phenolics (0.36-3.20 mg gallic acid equivalent/mL), and antioxidant activities (DPPH: 3.17-47.63 mmol trolox equivalent/L, ABTS: 6.85-178.29 mmol trolox equivalent/L) varied among different functional vinegars. In addition, the concentrations of the polysaccharides (1.17-44.87 mg glucose equivalent/mL) and total saponins (0.67-12.46 mg oleanic acid equivalent/mL) were determined, which might play key role for the function of tested vinegars. A total of 8 organic acids, 7 polyphenol compounds and 124 volatile compounds were measured and tentatively identified. The protocatechuic acid (4.81-485.72 mg/L), chlorogenic acid (2.69-7.52 mg/L), and epicatechin (1.18-97.42 mg/L) were important polyphenol compounds in the functional vinegars. Redundancy analysis indicated that tartaric acid, oxalic acid and chlorogenic acid were significantly positively correlated with antioxidant capacity. Various physiologically active ingredients including cyclo (Pro-Leu), cyclo (Phe-Pro), cyclo (Phe-Val), cyclo (Pro-Val), 1-monopalmitin and 1-eicosanol were firstly detected in functional vinegars. Principle component analysis revealed that volatiles profile of bergamot Monascus aromatic vinegar and Hengshun honey vinegar exhibited distinctive differences from other eight vinegar samples. Moreover, the partial least squares regression analysis demonstrated that 11 volatile compounds were positively correlated with the antioxidant activity of vinegars, which suggested these compounds might be important functional substances in tested vinegars. This study explored several new functionally active compounds in different functional vinegars, which could widen the knowledge of bioactive factor in vinegars and provide new ideas for further development of functional vinegar beverages.
Collapse
Affiliation(s)
- Hua Bai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Shuang Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Zong-Min Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China.
| | - Lan-Lan Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Hong-Bo Yan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Yan-Bo Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Xin-Yu Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Lin Peng
- School of Life Science, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Ji-Zhou Liu
- Shandong Xinfurui Agricultural Science and Technology Co., Ltd., Liaocheng, Shandong 252300, China
| |
Collapse
|
16
|
Mahmoud GAE, Abdel Shakor AB, Kamal-Eldin NA, Zohri ANA. Production of kojic acid by Aspergillus flavus OL314748 using box-Behnken statistical design and its antibacterial and anticancer applications using molecular docking technique. BMC Microbiol 2024; 24:140. [PMID: 38658810 PMCID: PMC11044385 DOI: 10.1186/s12866-024-03289-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Kojic acid is a wonderful fungal secondary metabolite that has several applications in the food, medical, and agriculture sectors. Many human diseases become resistant to normal antibiotics and normal treatments. We need to search for alternative treatment sources and understand their mode of action. Aspergillus flavus ASU45 (OL314748) was isolated from the caraway rhizosphere as a non-aflatoxin producer and identified genetically using 18S rRNA gene sequencing. After applying the Box-Behnken statistical design to maximize KA production, the production raised from 39.96 to 81.59 g/l utilizing (g/l) glucose 150, yeast extract 5, KH2PO4 1, MgSO4.7H2O 2, and medium pH 3 with a coefficient (R2) of 98.45%. Extracted KA was characterized using FTIR, XRD, and a scanning electron microscope. Crystalized KA was an effective antibacterial agent against six human pathogenic bacteria (Bacillus cereus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia, Serratia marcescens, and Serratia plymuthica). KA achieves high inhibition activity against Bacillus cereus, K. pneumonia, and S. plymuthica at 100 μg/ml concentration by 2.75, 2.85, and 2.85 compared with chloramphenicol which gives inhibition zones 1, 1.1, and 1.6, respectively. Crystalized KA had anticancer activity versus three types of cancer cell lines (Mcf-7, HepG2, and Huh7) and demonstrated high cytotoxic capabilities on HepG-2 cells that propose strong antitumor potent of KA versus hepatocellular carcinoma. The antibacterial and anticancer modes of action were illustrated using the molecular docking technique. Crystalized kojic acid from a biological source represented a promising microbial metabolite that could be utilized as an alternative antibacterial and anticancer agent effectively.
Collapse
Affiliation(s)
| | | | - Nahla A Kamal-Eldin
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, P.O 71516, Egypt
| | - Abdel-Naser A Zohri
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, P.O 71516, Egypt
| |
Collapse
|
17
|
Jia X, Song J, Wu Y, Feng S, Sun Z, Hu Y, Yu M, Han R, Zeng B. Strategies for the Enhancement of Secondary Metabolite Production via Biosynthesis Gene Cluster Regulation in Aspergillus oryzae. J Fungi (Basel) 2024; 10:312. [PMID: 38786667 PMCID: PMC11121810 DOI: 10.3390/jof10050312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The filamentous fungus Aspergillus oryzae (A. oryzae) has been extensively used for the biosynthesis of numerous secondary metabolites with significant applications in agriculture and food and medical industries, among others. However, the identification and functional prediction of metabolites through genome mining in A. oryzae are hindered by the complex regulatory mechanisms of secondary metabolite biosynthesis and the inactivity of most of the biosynthetic gene clusters involved. The global regulatory factors, pathway-specific regulatory factors, epigenetics, and environmental signals significantly impact the production of secondary metabolites, indicating that appropriate gene-level modulations are expected to promote the biosynthesis of secondary metabolites in A. oryzae. This review mainly focuses on illuminating the molecular regulatory mechanisms for the activation of potentially unexpressed pathways, possibly revealing the effects of transcriptional, epigenetic, and environmental signal regulation. By gaining a comprehensive understanding of the regulatory mechanisms of secondary metabolite biosynthesis, strategies can be developed to enhance the production and utilization of these metabolites, and potential functions can be fully exploited.
Collapse
Affiliation(s)
- Xiao Jia
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
- College of Materials and Energy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiayi Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang 110819, China
| | - Yijian Wu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Sai Feng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Zeao Sun
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Yan Hu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Mengxue Yu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Rui Han
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| |
Collapse
|
18
|
Lee JM, Lee JO, Kim Y, Jang YN, Yeon Park A, Kim SY, Han HS, Kim BJ, Yoo KH. Anti-melanogenic effect of exosomes derived from human dermal fibroblasts (BJ-5ta-Ex) in C57BL/6 mice and B16F10 melanoma cells. Pigment Cell Melanoma Res 2024; 37:232-246. [PMID: 37758515 DOI: 10.1111/pcmr.13135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Exosomes are involved in intercellular communication by transferring cargo between cells and altering the specific functions of the target cells. Recent studies have demonstrated the therapeutic effects of exosomes in several skin diseases. However, understanding of the effects of exosomes on anti-pigmentation is limited. Therefore, we investigated whether BJ-5ta exosomes (BJ-5ta-Ex) derived from human foreskin fibroblasts regulate melanogenesis and delineated the underlying mechanism. Interestingly, treatment with BJ-5ta-Ex induced decreased melanin content, tyrosinase (TYR) activity, and expression of melanogenesis-related genes, including microphthalmia-related transcription factor (MITF), TYR, tyrosinase-related protein-1 (TRP1), and tyrosinase-related protein-2 (TRP2). In addition, BJ-5ta-Ex downregulated the cAMP/PKA and GSK-3β/β-catenin signaling pathways and upregulated the MAPK/ERK signaling pathway. Notably, treatment with BJ-5ta-Ex inhibited α-melanocyte-stimulating hormone-induced melanosome transport and decreased the expression of key proteins involved in melanosome transport, namely, rab27a and melanophilin (MLPH). To further confirm the depigmenting effects of BJ-5ta-Ex, we conducted experiments using a three-dimensional reconstituted human full skin model and ultraviolet B (UVB)-irradiated mouse model. Treatment with BJ-5ta-Ex improved tissue brightness and reduced the distribution of melanosomes. In UVB-irradiated mouse ears, BJ-5ta-Ex reduced the number of active melanocytes and melanin granules. These results demonstrate that BJ-5ta-Ex can be useful for the clinical treatment of hyperpigmentation disorders.
Collapse
Affiliation(s)
- Jung Min Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Jung Ok Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Yujin Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, South Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, South Korea
| | - You Na Jang
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - A Yeon Park
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, South Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, South Korea
| | - Su-Young Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, South Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, South Korea
| | - Hye Sung Han
- Department of Dermatology, Chung-Ang University Gwang-Myeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, South Korea
| | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, South Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, South Korea
| | - Kwang Ho Yoo
- Department of Dermatology, Chung-Ang University Gwang-Myeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, South Korea
| |
Collapse
|
19
|
Pourhajibagher M, Alaeddini M, Etemad-Moghadam S, Parker S, Bahador A. Effects of Kojic Acid-mediated Sonodynamic Therapy as a Matrix Metalloprotease-9 Inhibitor against Oral Squamous Cell Carcinoma: A Bioinformatics Screening and In Vitro Analysis. Curr Drug Discov Technol 2024; 21:e011223224137. [PMID: 38073102 DOI: 10.2174/0115701638266082231124055825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 08/30/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a type of cancer that is responsible for a significant amount of morbidity and mortality worldwide. Researchers are searching for promising therapeutic methods to manage this cancer. In this study, an in silico approach was used to evaluate the activity of sonodynamic therapy (SDT) based on the use of Kojic acid as a sonosensitizer to inhibit matrix metalloprotease-9 (MMP-9) in OSCC. MATERIALS AND METHODS The three-dimensional structure of MMP-9 was predicted and validated by computational approaches. The possible functional role of MMP-9 was determined in terms of Gene Ontology (GO) enrichment analysis. In silico, molecular docking was then performed to evaluate the binding energies of Kojic acid with MMP-9, and ADME parameters and toxicity risks were predicted. The pharmacokinetics and drug-likeness properties of Kojic acid were assessed. Moreover, after the determination of the cytotoxicity effect of Kojic acid-mediated SDT, the change of mmp-9 gene expression was assessed on OSCC cells. RESULTS The results of the study showed that Kojic acid could efficiently interact with MMP-9 protein with a strong binding affinity. Kojic acid obeyed Lipinski's rule of five without violation and exhibited drug-likeness. The cytotoxic effects of Kojic acid and ultrasound waves on the OSCC cells were dose-dependent, and the lowest expression level of the mmp-9 gene was observed in SDT. CONCLUSIONS Overall, Kojic acid-mediated SDT as an MMP-9 inhibitor can be a promising adjuvant treatment for OSCC. The study highlights the potential of In silico approaches to evaluate therapeutic methods for cancer treatment.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Alaeddini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahroo Etemad-Moghadam
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Steven Parker
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, United Kingdom
| | - Abbas Bahador
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran
| |
Collapse
|
20
|
Soliman AH, Youness RA, Sebak AA, Handoussa H. Phytochemical-derived tumor-associated macrophage remodeling strategy using Phoenix dactylifera L. boosted photodynamic therapy in melanoma via H19/iNOS/PD-L1 axis. Photodiagnosis Photodyn Ther 2023; 44:103792. [PMID: 37689125 DOI: 10.1016/j.pdpdt.2023.103792] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND The tumor microenvironment (TME) represents a barrier to PDT efficacy among melanoma patients. The aim of this study is to employ a novel muti-tactic TME-remodeling strategy via repolarization of tumor-associated macrophages (TAMs), the main TME immune cells in melanoma, from the pro-tumor M2 into the antitumor M1 phenotype using Phoenix dactylifera L. (date palm) in combination with PDT. METHODS Screening of different date cultivars was employed to choose extracts of selective toxicity to melanoma and TAMs, not normal macrophages. Potential extracts were then fractionated and characterized by gas chromatography-mass spectrometry (GC-MS). Finally, the efficacy and the potential molecular mechanism of the co-treatment were portrayed via quantitative real-time polymerase chain reaction (qRT-PCR) analysis. RESULTS Initial screening resulted in the selection of the two Phoenix dactylifera L. cultivars Safawi and Sukkari methanolic extracts. Sukkari showed superior capacity to revert TAM phenotype into M1 as well as more prominent upregulation of M1 markers and repression of melanoma immunosuppressive markers relative to positive control (resiquimod). Molecularly, it was shown that PDT of melanoma cells in the presence of the secretome of repolarized TAMs surpassed the monotherapy via the modulation of the H19/iNOS/PD-L1immune-regulatory axis. CONCLUSION This study highlights the potential utilization of nutraceuticals in combination with PDT in the treatment of melanoma to provide a dual activity through alleviating the immune suppressive TME and potentiating the anti-tumor responses.
Collapse
Affiliation(s)
- Aya H Soliman
- Department of Pharmaceutical Biology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, Main Entrance El Tagamoa El Khames, New Cairo 11511, Egypt.
| | - Rana A Youness
- Department of Pharmaceutical Biology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, Main Entrance El Tagamoa El Khames, New Cairo 11511, Egypt; Department of Biology and Biochemistry, Faculty of Biotechnology, German International University, New Administrative Capital, New Cairo 11835, Egypt
| | - Aya A Sebak
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11511, Egypt.
| | - Heba Handoussa
- Department of Pharmaceutical Biology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, Main Entrance El Tagamoa El Khames, New Cairo 11511, Egypt
| |
Collapse
|
21
|
Pourhajibagher M, Azimi Mohammadabadi M, Ghafari HA, Hodjat M, Bahador A. Evaluation of anti-biofilm effect of antimicrobial sonodynamic therapy-based periodontal ligament stem cell-derived exosome-loaded kojic acid on Enterococcus faecalis biofilm. J Med Microbiol 2023; 72. [PMID: 37910015 DOI: 10.1099/jmm.0.001772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Introduction. Antimicrobial sonodynamic therapy (aSDT) is an approach that uses ultrasound waves (UWs) and a sonosensitizer to generate reactive oxygen species (ROS) to damage microbial cells in biofilms. Using nano-carriers, such as exosomes (Exos), to deliver the sonosensitizer can potentially enhance the effectiveness of aSDT.Hypothesis/Gap Statement. aSDT can downregulate the expression of gelE and sprE genes, increasing the production of endogenous ROS and degradation of pre-formed Enterococcus faecalis biofilms.Aim. This study investigated the anti-biofilm effect of aSDT-based periodontal ligament stem cell-derived exosome-loaded kojic acid (KA@PDL-Exo) on pre-formed E. faecalis biofilms in root canals.Methodology. Following the isolation and characterization of PDL-Exo, KA@PDL-Exo was prepared and confirmed. The minimal biofilm inhibitory concentration (MBIC) of KA, PDL-Exo, KA@PDL-Exo and sodium hypochlorite (NaOCl) was determined, and their anti-biofilm effects were assessed with and without UWs. The binding affinity of KA with GelE and SprE proteins was evaluated using in silico molecular docking. Additionally, the study measured the generation of endogenous ROS and evaluated changes in the gene expression levels of gelE and sprE.Results. The results revealed a dose-dependent decrease in the viability of E. faecalis cells within biofilms. KA@PDL-Exo was the most effective, with an MBIC of 62.5 µg ml-1, while NaOCl, KA and PDL-Exo had MBIC values of 125, 250 and 500 µg ml-1, respectively. The use of KA@PDL-Exo-mediated aSDT resulted in a significant reduction of the E. faecalis biofilm (3.22±0.36 log10 c.f.u. ml-1; P<0.05). The molecular docking analysis revealed docking scores of -5.3 and -5.2 kcal mol-1 for GelE-KA an SprE-KA, respectively. The findings observed the most significant reduction in gene expression of gelE and sprE in the KA@PDL-Exo group, with a decrease of 7.9- and 9.3-fold, respectively, compared to the control group (P<0.05).Conclusion. The KA@PDL-Exo-mediated aSDT was able to significantly reduce the E. faecalis load in pre-formed biofilms, decrease the expression of gelE and srpE mRNA, and increase the generation of endogenous ROS. These findings imply that KA@PDL-Exo-mediated aSDT could be a promising anti-biofilm strategy that requires additional in vitro and in vivo investigations.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Azimi Mohammadabadi
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hassan-Ali Ghafari
- Department of Orthodontics, School of Dentistry, Shahed University, Tehran, Iran
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran
| |
Collapse
|
22
|
Felipe MTDC, Barbosa RDN, Bezerra JDP, Souza-Motta CMD. Production of kojic acid by Aspergillus species: Trends and applications. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2023.100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
23
|
Steparuk EV, Meshcheryakova EA, Viktorova VV, Ulitko MV, Obydennov DL, Sosnovskikh VY. Oxidative Ring-Opening Transformation of 5-Acyl-4-pyrones as an Approach for the Tunable Synthesis of Hydroxylated Pyrones and Furans. J Org Chem 2023; 88:11590-11602. [PMID: 37504952 DOI: 10.1021/acs.joc.3c00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A selective and tunable approach for oxidation of 4-pyrones has been developed via ring-opening transformations leading to various hydroxylated oxaheterocycles. The first step of the strategy includes the base-catalyzed epoxidation of 5-acyl-4-pyrones in the presence of hydrogen peroxide for the effective synthesis of pyrone epoxides in high yields. The epoxides bearing the CO2Et group are reactive molecules that can undergo both pyrone and oxirane ring-opening via deformylation to produce hydroxylated 2-pyrones or 4-pyrones. The acid-promoted transformation led to 3-hydroxy-4-pyrones (24-76% yields), whereas the K2CO3-catalyzed ring-opening process of 2-carbethoxy-4-pyrone epoxides proceeded as an attack of alcohol at the C-3 position bearing the CO2Et group to give functionalized 6-acyl-5-hydroxy-2-pyrones (27-87% yields). The base-catalyzed reaction of 2-aryl-4-pyrone epoxides was followed by ring contraction and the dearoylation process to produce 3-hydroxyfuran-2-carbaldehydes in 42-80% yields. The transformation of 3-aroylchromone epoxides led to flavonols and 3-hydroxybenzofuran-2-carbaldehyde in the acidic and basic conditions, respectively. The prepared hydroxylated heterocycles demonstrated high reactivity for further transformations and low cytotoxicity and are promising fluorophores or UV filters.
Collapse
Affiliation(s)
- Elena V Steparuk
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation
| | - Ekaterina A Meshcheryakova
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation
| | - Viktoria V Viktorova
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation
| | - Maria V Ulitko
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation
| | - Dmitrii L Obydennov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation
| | - Vyacheslav Y Sosnovskikh
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation
| |
Collapse
|
24
|
Thawabteh AM, Jibreen A, Karaman D, Thawabteh A, Karaman R. Skin Pigmentation Types, Causes and Treatment-A Review. Molecules 2023; 28:4839. [PMID: 37375394 DOI: 10.3390/molecules28124839] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Human skin pigmentation and melanin synthesis are incredibly variable, and are impacted by genetics, UV exposure, and some drugs. Patients' physical appearance, psychological health, and social functioning are all impacted by a sizable number of skin conditions that cause pigmentary abnormalities. Hyperpigmentation, where pigment appears to overflow, and hypopigmentation, where pigment is reduced, are the two major classifications of skin pigmentation. Albinism, melasma, vitiligo, Addison's disease, and post-inflammatory hyperpigmentation, which can be brought on by eczema, acne vulgaris, and drug interactions, are the most common skin pigmentation disorders in clinical practice. Anti-inflammatory medications, antioxidants, and medications that inhibit tyrosinase, which prevents the production of melanin, are all possible treatments for pigmentation problems. Skin pigmentation can be treated orally and topically with medications, herbal remedies, and cosmetic products, but a doctor should always be consulted before beginning any new medicine or treatment plan. This review article explores the numerous types of pigmentation problems, their causes, and treatments, as well as the 25 plants, 4 marine species, and 17 topical and oral medications now on the market that have been clinically tested to treat skin diseases.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah 00972, Palestine
- General Safety Section, General Services Department, Birzeit University, Bir Zeit 71939, Palestine
| | - Alaa Jibreen
- Research and Development Department, Beit Jala Pharmaceutical Co., Ltd., Beit Jala 97300, Palestine
| | - Donia Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine
| | - Alà Thawabteh
- Medical Imaging Department, Faculty of Health Profession, Al-Quds University, Jerusalem 20002, Palestine
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
25
|
Lee HY, Chen CC, Pi CC, Chen CJ. Aspergillus oryzae Fermentation Extract Alleviates Inflammation in Mycoplasma pneumoniae Pneumonia. Molecules 2023; 28:molecules28031127. [PMID: 36770796 PMCID: PMC9920650 DOI: 10.3390/molecules28031127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The filamentous fungus Aspergillus oryzae, also known as koji mold, has been used for centuries in the production of fermented foods in East Asia. A. oryzae fermentation can produce enzymes and metabolites with various bioactivities. In this study, we investigated whether A. oryzae fermentation extract (AOFE) has any effect on Mycoplasma pneumoniae (Mp) pneumonia. We performed solid-state fermentation of A. oryzae and obtained the ethanol extract. AOFE was analyzed by HPLC, and the major component was identified to be kojic acid. In vitro, AOFE suppressed Mp growth and invasion into A549 lung epithelial cells as determined by the gentamicin protection assay. AOFE treatment also suppressed Mp-stimulated production of tumor necrosis factor (TNF)-α and interleukin (IL)-6 at mRNA and protein levels in murine MH-S alveolar macrophages. In a mouse model of Mp pneumonia, Mp infection induced a marked pulmonary infiltration of neutrophils, which was significantly reduced in mice pre-treated orally with AOFE. AOFE administration also suppressed the production of proinflammatory cytokines and chemokines in the lungs. Collectively, our results show that AOFE has the potential to be developed into a preventive/therapeutic agent for Mp pneumonia.
Collapse
Affiliation(s)
- Hui-Yu Lee
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | | | - Chia-Chen Pi
- King’s Ground Biotech Co., Ltd., Pintung 91252, Taiwan
| | - Chun-Jen Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Correspondence:
| |
Collapse
|
26
|
Kim T, Hyun CG. Imperatorin Positively Regulates Melanogenesis through Signaling Pathways Involving PKA/CREB, ERK, AKT, and GSK3β/β-Catenin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196512. [PMID: 36235048 PMCID: PMC9571183 DOI: 10.3390/molecules27196512] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
The present study investigated the melanogenic effects of imperatorin and isoimperatorin and the underlying mechanisms of imperatorin using a mouse melanoma B16F10 model. Interestingly, treatment with 25 μM of either imperatorin or isoimperatorin, despite their structural differences, did not produce differences in melanin content and intracellular tyrosinase activity. Imperatorin also activated the expression of melanogenic enzymes, such as tyrosinase (TYR) and tyrosinase-related proteins TYRP-1 and TYRP-2. Mechanistically, imperatorin increases melanin synthesis through the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA)/cAMP-responsive element-binding protein (CREB)-dependent upregulation of microphthalmia-associated transcription factor (MITF), which is a key transcription factor in melanogenesis. Furthermore, imperatorin exerted melanogenic effects by downregulating extracellular signal-regulated kinase (ERK) and upregulating phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT)/glycogen synthesis kinase-3β (GSK-3β). Moreover, imperatorin increased the content of β-catenin in the cell cytoplasm and nucleus by reducing the content of phosphorylated β-catenin (p-β-catenin). Finally, we tested the potential of imperatorin in topical application through primary human skin irritation tests. These tests were performed on the normal skin (upper back) of 31 volunteers to determine whether 25 or 50 µM of imperatorin had irritation or sensitization potential. During these tests, imperatorin did not induce any adverse reactions. Taken together, these findings suggest that the regulation of melanogenesis by imperatorin can be mediated by signaling pathways involving PKA/CREB, ERK, AKT, and GSK3β/β-catenin and that imperatorin could prevent the pathogenesis of pigmentation diseases when used as a topical agent.
Collapse
|