1
|
Tu X, Zou Z, Li J, Zeng S, Luo Z, Li G, Gao Y, Zhang K. Artificial intelligence-enabled discovery of a RIPK3 inhibitor with neuroprotective effects in an acute glaucoma mouse model. Chin Med J (Engl) 2025; 138:172-184. [PMID: 39719694 PMCID: PMC11745860 DOI: 10.1097/cm9.0000000000003387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Retinal ganglion cell (RGC) death caused by acute ocular hypertension is an important characteristic of acute glaucoma. Receptor-interacting protein kinase 3 (RIPK3) that mediates necroptosis is a potential therapeutic target for RGC death. However, the current understanding of the targeting agents and mechanisms of RIPK3 in the treatment of glaucoma remains limited. Notably, artificial intelligence (AI) technologies have significantly advanced drug discovery. This study aimed to discover RIPK3 inhibitor with AI assistance. METHODS An acute ocular hypertension model was used to simulate pathological ocular hypertension in vivo . We employed a series of AI methods, including large language and graph neural network models, to identify the target compounds of RIPK3. Subsequently, these target candidates were validated using molecular simulations (molecular docking, absorption, distribution, metabolism, excretion, and toxicity [ADMET] prediction, and molecular dynamics simulations) and biological experiments (Western blotting and fluorescence staining) in vitro and in vivo . RESULTS AI-driven drug screening techniques have the potential to greatly accelerate drug development. A compound called HG9-91-01, identified using AI methods, exerted neuroprotective effects in acute glaucoma. Our research indicates that all five candidates recommended by AI were able to protect the morphological integrity of RGC cells when exposed to hypoxia and glucose deficiency, and HG9-91-01 showed a higher cell survival rate compared to the other candidates. Furthermore, HG9-91-01 was found to protect the retinal structure and reduce the loss of retinal layers in an acute glaucoma model. It was also observed that the neuroprotective effects of HG9-91-01 were highly correlated with the inhibition of PANoptosis (apoptosis, pyroptosis, and necroptosis). Finally, we found that HG9-91-01 can regulate key proteins related to PANoptosis, indicating that this compound exerts neuroprotective effects in the retina by inhibiting the expression of proteins related to apoptosis, pyroptosis, and necroptosis. CONCLUSION AI-enabled drug discovery revealed that HG9-91-01 could serve as a potential treatment for acute glaucoma.
Collapse
Affiliation(s)
- Xing Tu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510530, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510623, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixing Zou
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510530, China
| | - Jiahui Li
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510530, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510623, China
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Simiao Zeng
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510530, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510623, China
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Zhengchao Luo
- Department of Big Data and Biomedical AI, College of Future Technology, Peking University, Beijing 100871, China
| | - Gen Li
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Yuanxu Gao
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510530, China
- Institute for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macao Special Administrative Region 999078, China
| | - Kang Zhang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510530, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510623, China
- Institute for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macao Special Administrative Region 999078, China
| |
Collapse
|
2
|
Zhou K, Wu S, Wu Z, Ran R, Song W, Dong H, Zhang H. Integrating bioinformatics and experimental validation to Investigate IRF1 as a novel biomarker for nucleus pulposus cells necroptosis in intervertebral disc degeneration. Sci Rep 2024; 14:30138. [PMID: 39627301 PMCID: PMC11615235 DOI: 10.1038/s41598-024-81681-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a prevalent spinal disorder and the principal cause of lower back pain (LBP). Diverse forms of programmed cell death (PCD) have been identified as the key phenotypes of the disease and have the potential to serve as new indicators for the diagnosis and prognosis of IDD. However, the mechanism underlying necroptosis in IDD remains unclear. This study aimed to identify novel biomarkers that promote nucleus pulposus cell necroptosis in IDD using bioinformatic analysis and experimental validation. We analyzed multiple datasets of IDD from the Gene Expression Omnibus (GEO) database to identify necroptosis-related IDD differential genes (NRDEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed, followed by logistic least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive (SVM) algorithms to identify key genes. Gene set enrichment analysis (GSEA) and logistic regression analysis were used to ascertain the potential functions of these genes and to identify key genes, respectively. We then constructed mRNA-miRNA, mRNA-TF, mRNA-drug, and functional similarity gene interaction networks for the seven key genes identified. We used IDD clinical samples and necroptotic cell model to validate our findings. Immunohistochemical staining, RT-qPCR, and western blotting results indicated that IRF1 may be a hub necroptosis-related gene. To further elucidate the function of IRF1, we constructed IRF1 knockdown and overexpression models, which revealed that IRF1 promotes necroptosis in rat nucleus pulposus cells, increases mitochondrial ROS levels, and decreases ATP levels. These findings provide new insights into the development of necroptosis in IDD and, for the first time, validate the role of IRF1 as a novel biomarker for the diagnosis and treatment of IDD.
Collapse
Affiliation(s)
- Kaisheng Zhou
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Shaobo Wu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Zuolong Wu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Rui Ran
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Wei Song
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Hao Dong
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Haihong Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
3
|
Mannion J, Gifford V, Bellenie B, Fernando W, Ramos Garcia L, Wilson R, John SW, Udainiya S, Patin EC, Tiu C, Smith A, Goicoechea M, Craxton A, Moraes de Vasconcelos N, Guppy N, Cheung KMJ, Cundy NJ, Pierrat O, Brennan A, Roumeliotis TI, Benstead-Hume G, Alexander J, Muirhead G, Layzell S, Lyu W, Roulstone V, Allen M, Baldock H, Legrand A, Gabel F, Serrano-Aparicio N, Starling C, Guo H, Upton J, Gyrd-Hansen M, MacFarlane M, Seddon B, Raynaud F, Roxanis I, Harrington K, Haider S, Choudhary JS, Hoelder S, Tenev T, Meier P. A RIPK1-specific PROTAC degrader achieves potent antitumor activity by enhancing immunogenic cell death. Immunity 2024; 57:1514-1532.e15. [PMID: 38788712 PMCID: PMC11236506 DOI: 10.1016/j.immuni.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/14/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) functions as a critical stress sentinel that coordinates cell survival, inflammation, and immunogenic cell death (ICD). Although the catalytic function of RIPK1 is required to trigger cell death, its non-catalytic scaffold function mediates strong pro-survival signaling. Accordingly, cancer cells can hijack RIPK1 to block necroptosis and evade immune detection. We generated a small-molecule proteolysis-targeting chimera (PROTAC) that selectively degraded human and murine RIPK1. PROTAC-mediated depletion of RIPK1 deregulated TNFR1 and TLR3/4 signaling hubs, accentuating the output of NF-κB, MAPK, and IFN signaling. Additionally, RIPK1 degradation simultaneously promoted RIPK3 activation and necroptosis induction. We further demonstrated that RIPK1 degradation enhanced the immunostimulatory effects of radio- and immunotherapy by sensitizing cancer cells to treatment-induced TNF and interferons. This promoted ICD, antitumor immunity, and durable treatment responses. Consequently, targeting RIPK1 by PROTACs emerges as a promising approach to overcome radio- or immunotherapy resistance and enhance anticancer therapies.
Collapse
Affiliation(s)
- Jonathan Mannion
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Valentina Gifford
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Benjamin Bellenie
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Winnie Fernando
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Laura Ramos Garcia
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Rebecca Wilson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Sidonie Wicky John
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Savita Udainiya
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Emmanuel C Patin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Crescens Tiu
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Angel Smith
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Maria Goicoechea
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Andrew Craxton
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Cambridge CB2 1QR, UK
| | | | - Naomi Guppy
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Kwai-Ming J Cheung
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Nicholas J Cundy
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Olivier Pierrat
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Alfie Brennan
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | | | - Graeme Benstead-Hume
- Functional Proteomics Group, The Institute of Cancer Research, London SW3 6JB, UK
| | - John Alexander
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Gareth Muirhead
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Scott Layzell
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, UK
| | - Wenxin Lyu
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Victoria Roulstone
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Mark Allen
- Biological Services Unit, The Institute of Cancer Research, London SW3 6JB, UK
| | - Holly Baldock
- Biological Services Unit, The Institute of Cancer Research, London SW3 6JB, UK
| | - Arnaud Legrand
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Florian Gabel
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | | | - Chris Starling
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Hongyan Guo
- Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, USA
| | - Jason Upton
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Mads Gyrd-Hansen
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Marion MacFarlane
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Cambridge CB2 1QR, UK
| | - Benedict Seddon
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, UK
| | - Florence Raynaud
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Ioannis Roxanis
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Kevin Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Jyoti S Choudhary
- Functional Proteomics Group, The Institute of Cancer Research, London SW3 6JB, UK
| | - Swen Hoelder
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Tencho Tenev
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
4
|
Preedy MK, White MRH, Tergaonkar V. Cellular heterogeneity in TNF/TNFR1 signalling: live cell imaging of cell fate decisions in single cells. Cell Death Dis 2024; 15:202. [PMID: 38467621 PMCID: PMC10928192 DOI: 10.1038/s41419-024-06559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/13/2024]
Abstract
Cellular responses to TNF are inherently heterogeneous within an isogenic cell population and across different cell types. TNF promotes cell survival by activating pro-inflammatory NF-κB and MAPK signalling pathways but may also trigger apoptosis and necroptosis. Following TNF stimulation, the fate of individual cells is governed by the balance of pro-survival and pro-apoptotic signalling pathways. To elucidate the molecular mechanisms driving heterogenous responses to TNF, quantifying TNF/TNFR1 signalling at the single-cell level is crucial. Fluorescence live-cell imaging techniques offer real-time, dynamic insights into molecular processes in single cells, allowing for detection of rapid and transient changes, as well as identification of subpopulations, that are likely to be missed with traditional endpoint assays. Whilst fluorescence live-cell imaging has been employed extensively to investigate TNF-induced inflammation and TNF-induced cell death, it has been underutilised in studying the role of TNF/TNFR1 signalling pathway crosstalk in guiding cell-fate decisions in single cells. Here, we outline the various opportunities for pathway crosstalk during TNF/TNFR1 signalling and how these interactions may govern heterogenous responses to TNF. We also advocate for the use of live-cell imaging techniques to elucidate the molecular processes driving cell-to-cell variability in single cells. Understanding and overcoming cellular heterogeneity in response to TNF and modulators of the TNF/TNFR1 signalling pathway could lead to the development of targeted therapies for various diseases associated with aberrant TNF/TNFR1 signalling, such as rheumatoid arthritis, metabolic syndrome, and cancer.
Collapse
Affiliation(s)
- Marcus K Preedy
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, D3308, Dover Street, Manchester, M13 9PT, England, UK
| | - Michael R H White
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, D3308, Dover Street, Manchester, M13 9PT, England, UK.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 8 Medical Drive, MD7, Singapore, 117596, Singapore.
| |
Collapse
|
5
|
Deng X, Wang L, Zhai Y, Liu Q, Du F, Zhang Y, Zhao W, Wu T, Tao Y, Deng J, Cao Y, Hao P, Ren J, Shen Y, Yu Z, Zheng Y, Zhang H, Wang H. RIPK1 plays a crucial role in maintaining regulatory T-Cell homeostasis by inhibiting both RIPK3- and FADD-mediated cell death. Cell Mol Immunol 2024; 21:80-90. [PMID: 38082146 PMCID: PMC10757712 DOI: 10.1038/s41423-023-01113-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/13/2023] [Indexed: 01/01/2024] Open
Abstract
Regulatory T (Treg) cells play an essential role in maintaining immune balance across various physiological and pathological conditions. However, the mechanisms underlying Treg homeostasis remain incompletely understood. Here, we report that RIPK1 is crucial for Treg cell survival and homeostasis. We generated mice with Treg cell-specific ablation of Ripk1 and found that these mice developed fatal systemic autoimmunity due to a dramatic reduction in the Treg cell compartment caused by excessive cell death. Unlike conventional T cells, Treg cells with Ripk1 deficiency were only partially rescued from cell death by blocking FADD-dependent apoptosis. However, simultaneous removal of both Fadd and Ripk3 completely restored the homeostasis of Ripk1-deficient Treg cells by blocking two cell death pathways. Thus, our study highlights the critical role of RIPK1 in regulating Treg cell homeostasis by controlling both apoptosis and necroptosis, thereby providing novel insights into the mechanisms of Treg cell homeostasis.
Collapse
Affiliation(s)
- Xiaoxue Deng
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lingxia Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yunze Zhai
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qiuyue Liu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Fengxue Du
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yu Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenxing Zhao
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tingtao Wu
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yiwen Tao
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie Deng
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200433, China
| | - Yongbing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200433, China
| | - Pei Hao
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiazi Ren
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yunli Shen
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zuoren Yu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Haikun Wang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
6
|
Schorn F, Werthenbach JP, Hoffmann M, Daoud M, Stachelscheid J, Schiffmann LM, Hildebrandt X, Lyu SI, Peltzer N, Quaas A, Vucic D, Silke J, Pasparakis M, Kashkar H. cIAPs control RIPK1 kinase activity-dependent and -independent cell death and tissue inflammation. EMBO J 2023; 42:e113614. [PMID: 37789765 PMCID: PMC10646551 DOI: 10.15252/embj.2023113614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023] Open
Abstract
Cellular inhibitor of apoptosis proteins (cIAPs) are RING-containing E3 ubiquitin ligases that ubiquitylate receptor-interacting protein kinase 1 (RIPK1) to regulate TNF signalling. Here, we established mice simultaneously expressing enzymatically inactive cIAP1/2 variants, bearing mutations in the RING domains of cIAP1/2 (cIAP1/2 mutant RING, cIAP1/2MutR ). cIap1/2MutR/MutR mice died during embryonic development due to RIPK1-mediated apoptosis. While expression of kinase-inactive RIPK1D138N rescued embryonic development, Ripk1D138N/D138N /cIap1/2MutR/MutR mice developed systemic inflammation and died postweaning. Cells expressing cIAP1/2MutR and RIPK1D138N were still susceptible to TNF-induced apoptosis and necroptosis, implying additional kinase-independent RIPK1 activities in regulating TNF signalling. Although further ablation of Ripk3 did not lead to any phenotypic improvement, Tnfr1 gene knock-out prevented early onset of systemic inflammation and premature mortality, indicating that cIAPs control TNFR1-mediated toxicity independent of RIPK1 and RIPK3. Beyond providing novel molecular insights into TNF-signalling, the mouse model established in this study can serve as a useful tool to further evaluate ongoing therapeutic protocols using inhibitors of TNF, cIAPs and RIPK1.
Collapse
Affiliation(s)
- Fabian Schorn
- Faculty of Medicine and University Hospital of Cologne, Institute for Molecular ImmunologyUniversity of CologneCologneGermany
| | - J Paul Werthenbach
- Faculty of Medicine and University Hospital of Cologne, Institute for Molecular ImmunologyUniversity of CologneCologneGermany
| | - Mattes Hoffmann
- Faculty of Medicine and University Hospital of Cologne, Institute for Molecular ImmunologyUniversity of CologneCologneGermany
| | - Mila Daoud
- Faculty of Medicine and University Hospital of Cologne, Institute for Molecular ImmunologyUniversity of CologneCologneGermany
| | - Johanna Stachelscheid
- Faculty of Medicine and University Hospital of Cologne, Institute for Molecular ImmunologyUniversity of CologneCologneGermany
| | - Lars M Schiffmann
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral, Cancer and Transplantation SurgeryUniversity of CologneCologneGermany
| | - Ximena Hildebrandt
- Faculty of Medicine and University Hospital of Cologne, Department of Translational GenomicsUniversity of CologneCologneGermany
| | - Su Ir Lyu
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology and Center for Integrated Oncology (CIO) Cologne BonnUniversity of CologneCologneGermany
| | - Nieves Peltzer
- Faculty of Medicine and University Hospital of Cologne, Department of Translational GenomicsUniversity of CologneCologneGermany
| | - Alexander Quaas
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology and Center for Integrated Oncology (CIO) Cologne BonnUniversity of CologneCologneGermany
| | - Domagoj Vucic
- Department of Immunology DiscoveryGenentechSouth San FranciscoCAUSA
| | - John Silke
- The Walter and Eliza Hall Institute for Medical ResearchMelbourneVic.Australia
| | - Manolis Pasparakis
- Institute for GeneticsUniversity of CologneCologneGermany
- Faculty of Medicine and University Hospital of Cologne, Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Hamid Kashkar
- Faculty of Medicine and University Hospital of Cologne, Institute for Molecular ImmunologyUniversity of CologneCologneGermany
- Faculty of Medicine and University Hospital of Cologne, Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| |
Collapse
|
7
|
Kim N, Park CJ, Kim Y, Ryu S, Cho H, Nam Y, Han M, Shin JS, Sim T. Identification of Pyrido[3,4-d]pyrimidine derivatives as RIPK3-Mediated necroptosis inhibitors. Eur J Med Chem 2023; 259:115635. [PMID: 37494773 DOI: 10.1016/j.ejmech.2023.115635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023]
Abstract
Necroptosis executed by RIPK3-mediated phosphorylation of MLKL is a programmed necrotic cell death and implicated with various diseases such as sterile inflammation. We designed and synthesized pyrido[3,4-d]pyrimidine derivatives as novel necroptosis inhibitors capable of suppressing the phosphorylation of MLKL. Our SAR studies reveal that 20 possesses comparable inhibitory activity against RIPK3-mediated pMLKL in HT-29 cells relative to GSK872 (2), a representative selective RIPK3 inhibitor. Based on biochemical kinase assay results, 20 is comparable to GSK872 (2) with regard to activity against RIPK3 and less potent against RIPK1 than GSK872, indicating selectivity of 20 towards RIPK3 over RIPK1 is higher than that of GSK872. In HT-29 cells, 20 inhibits necroptosis via MLKL oligomerization impediment. Moreover, 20 suppresses migration and invasion of AsPC-1 cells by necroptosis induced- CXCL5 secretion downregulation. Significantly, 20 could relieve the TNFα-induced systemic inflammatory response syndrome in vivo. Taken together, this study would provide a useful insight into the design of novel necroptosis inhibitors possessing RIPK3-mediated pMLKL inhibitory activity.
Collapse
Affiliation(s)
- Namkyoung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chan-Jung Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Younghoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - SeongShick Ryu
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hanna Cho
- Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yunju Nam
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Myeonggil Han
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
8
|
Cheng KJ, Mohamed EHM, Syafruddin SE, Ibrahim ZA. Interleukin-1 alpha and high mobility group box-1 secretion in polyinosinic:polycytidylic-induced colorectal cancer cells occur via RIPK1-dependent mechanism and participate in tumourigenesis. J Cell Commun Signal 2023; 17:189-208. [PMID: 35534784 PMCID: PMC10030748 DOI: 10.1007/s12079-022-00681-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022] Open
Abstract
Pathogenic infections have significant roles in the pathogenesis of colorectal cancer (CRC). These infections induce the secretion of various damage-associated molecular patterns (DAMPs) including interleukin-1 alpha (IL-1α) and high mobility group box-1 (HMGB1). Despite their implication in CRC pathogenesis, the mechanism(s) that modulate the secretion of IL-1α and HMGB1, along with their roles in promoting CRC tumourigenesis remain poorly understood. To understand the secretory mechanism, HT-29 and SW480 cells were stimulated with infectious mimetics; polyinosinic:polycytidylic acid [Poly(I:C)], lipopolysaccharide (LPS) and pro-inflammatory stimuli; tumour necrosis factor-alpha (TNF-α). IL-1α and HMGB1 secretion levels upon stimulation were determined via ELISA. Mechanism(s) mediating IL-1α and HMGB1 secretion in CRC cells were characterized using pharmacological inhibitors and CRISPR-Cas9 gene editing targeting relevant pathways. Recombinant IL-1α and HMGB1 were utilized to determine their impact in modulating pro-tumourigenic properties of CRC cells. Pharmacological inhibition showed that Poly(I:C)-induced IL-1α secretion was mediated through endoplasmic reticulum (ER) stress and RIPK1 signalling pathway. The secretion of HMGB1 was RIPK1-dependent but independent of ER stress. RIPK1-targeted CRC cell pools exhibited decreased cell viability upon Poly(I:C) stimulation, suggesting a potential role of RIPK1 in CRC cells survival. IL-1α has both growth-promoting capabilities and stimulates the production of pro-metastatic mediators, while HMGB1 only exhibits the latter; with its redox status having influence. We demonstrated a potential role of RIPK1-dependent signalling pathway in mediating the secretion of IL-1α and HMGB1 in CRC cells, which in turn enhances CRC tumorigenesis. RIPK1, IL-1α and HMGB1 may serve as potential therapeutic targets to mitigate CRC progression.
Collapse
Affiliation(s)
- Kim Jun Cheng
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia
| | - Zaridatul Aini Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Ganini C, Montanaro M, Scimeca M, Palmieri G, Anemona L, Concetti L, Melino G, Bove P, Amelio I, Candi E, Mauriello A. No Time to Die: How Kidney Cancer Evades Cell Death. Int J Mol Sci 2022; 23:6198. [PMID: 35682876 PMCID: PMC9181490 DOI: 10.3390/ijms23116198] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
The understanding of the pathogenesis of renal cell carcinoma led to the development of targeted therapies, which dramatically changed the overall survival rate. Nonetheless, despite innovative lines of therapy accessible to patients, the prognosis remains severe in most cases. Kidney cancer rarely shows mutations in the genes coding for proteins involved in programmed cell death, including p53. In this paper, we show that the molecular machinery responsible for different forms of cell death, such as apoptosis, ferroptosis, pyroptosis, and necroptosis, which are somehow impaired in kidney cancer to allow cancer cell growth and development, was reactivated by targeted pharmacological intervention. The aim of the present review was to summarize the modality of programmed cell death in the pathogenesis of renal cell carcinoma, showing in vitro and in vivo evidence of their potential role in controlling kidney cancer growth, and highlighting their possible therapeutic value.
Collapse
Affiliation(s)
- Carlo Ganini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100 Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Giampiero Palmieri
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Lucia Anemona
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Livia Concetti
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Pierluigi Bove
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Ivano Amelio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100 Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.G.); (M.M.); (M.S.); (G.P.); (L.A.); (L.C.); (G.M.); (P.B.); (I.A.); (E.C.)
| |
Collapse
|
10
|
The Lck inhibitor, AMG-47a, blocks necroptosis and implicates RIPK1 in signalling downstream of MLKL. Cell Death Dis 2022; 13:291. [PMID: 35365636 PMCID: PMC8976052 DOI: 10.1038/s41419-022-04740-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022]
Abstract
Necroptosis is a form of caspase-independent programmed cell death that arises from disruption of cell membranes by the mixed lineage kinase domain-like (MLKL) pseudokinase after its activation by the upstream kinases, receptor interacting protein kinase (RIPK)-1 and RIPK3, within a complex known as the necrosome. Dysregulated necroptosis has been implicated in numerous inflammatory pathologies. As such, new small molecule necroptosis inhibitors are of great interest, particularly ones that operate downstream of MLKL activation, where the pathway is less well defined. To better understand the mechanisms involved in necroptosis downstream of MLKL activation, and potentially uncover new targets for inhibition, we screened known kinase inhibitors against an activated mouse MLKL mutant, leading us to identify the lymphocyte-specific protein tyrosine kinase (Lck) inhibitor AMG-47a as an inhibitor of necroptosis. We show that AMG-47a interacts with both RIPK1 and RIPK3, that its ability to protect from cell death is dependent on the strength of the necroptotic stimulus, and that it blocks necroptosis most effectively in human cells. Moreover, in human cell lines, we demonstrate that AMG-47a can protect against cell death caused by forced dimerisation of MLKL truncation mutants in the absence of any upstream signalling, validating that it targets a process downstream of MLKL activation. Surprisingly, however, we also found that the cell death driven by activated MLKL in this model was completely dependent on the presence of RIPK1, and to a lesser extent RIPK3, although it was not affected by known inhibitors of these kinases. Together, these results suggest an additional role for RIPK1, or the necrosome, in mediating human necroptosis after MLKL is phosphorylated by RIPK3 and provide further insight into reported differences in the progression of necroptosis between mouse and human cells.
Collapse
|
11
|
Lamade AM, Wu L, Dar HH, Mentrup HL, Shrivastava IH, Epperly MW, St Croix CM, Tyurina YY, Anthonymuthu TS, Yang Q, Kapralov AA, Huang Z, Mao G, Amoscato AA, Hier ZE, Artyukhova MA, Shurin G, Rosenbaum JC, Gough PJ, Bertin J, VanDemark AP, Watkins SC, Mollen KP, Bahar I, Greenberger JS, Kagan VE, Whalen MJ, Bayır H. Inactivation of RIP3 kinase sensitizes to 15LOX/PEBP1-mediated ferroptotic death. Redox Biol 2022; 50:102232. [PMID: 35101798 PMCID: PMC8804265 DOI: 10.1016/j.redox.2022.102232] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 01/02/2023] Open
Abstract
Ferroptosis and necroptosis are two pro-inflammatory cell death programs contributing to major pathologies and their inhibition has gained attention to treat a wide range of disease states. Necroptosis relies on activation of RIP1 and RIP3 kinases. Ferroptosis is triggered by oxidation of polyunsaturated phosphatidylethanolamines (PUFA-PE) by complexes of 15-Lipoxygenase (15LOX) with phosphatidylethanolamine-binding protein 1 (PEBP1). The latter, also known as RAF kinase inhibitory protein, displays promiscuity towards multiple proteins. In this study we show that RIP3 K51A kinase inactive mice have increased ferroptotic burden and worse outcome after irradiation and brain trauma rescued by anti-ferroptotic compounds Liproxstatin-1 and Ferrostatin 16-86. Given structural homology between RAF and RIP3, we hypothesized that PEBP1 acts as a necroptosis-to-ferroptosis switch interacting with either RIP3 or 15LOX. Using genetic, biochemical, redox lipidomics and computational approaches, we uncovered that PEBP1 complexes with RIP3 and inhibits necroptosis. Elevated expression combined with higher affinity enables 15LOX to pilfer PEBP1 from RIP3, thereby promoting PUFA-PE oxidation and ferroptosis which sensitizes Rip3K51A/K51A kinase-deficient mice to total body irradiation and brain trauma. This newly unearthed PEBP1/15LOX-driven mechanism, along with previously established switch between necroptosis and apoptosis, can serve multiple and diverse cell death regulatory functions across various human disease states.
Collapse
Affiliation(s)
- Andrew M Lamade
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA; Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, 130 Desoto St, Pittsburgh, PA, 15261, USA
| | - Limin Wu
- Neuroscience Center and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St. Boston, MA, 02114, USA
| | - Haider H Dar
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, 130 Desoto St, Pittsburgh, PA, 15261, USA
| | - Heather L Mentrup
- Division of Pediatric General and Thoracic Surgery, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Indira H Shrivastava
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, 130 Desoto St, Pittsburgh, PA, 15261, USA; Department of Computational and Systems Biology, University of Pittsburgh, 800 Murdoch I Bldg, 3420 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Claudette M St Croix
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3550 Terrace St, Pittsburgh, PA, 15261, USA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, 130 Desoto St, Pittsburgh, PA, 15261, USA
| | - Tamil S Anthonymuthu
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA; Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, 130 Desoto St, Pittsburgh, PA, 15261, USA
| | - Qin Yang
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA; Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, 130 Desoto St, Pittsburgh, PA, 15261, USA
| | - Aleksandr A Kapralov
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, 130 Desoto St, Pittsburgh, PA, 15261, USA
| | - Zhentai Huang
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, 130 Desoto St, Pittsburgh, PA, 15261, USA
| | - Gaowei Mao
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, 130 Desoto St, Pittsburgh, PA, 15261, USA
| | - Andrew A Amoscato
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, 130 Desoto St, Pittsburgh, PA, 15261, USA
| | - Zachary E Hier
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA; Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, 130 Desoto St, Pittsburgh, PA, 15261, USA
| | - Margarita A Artyukhova
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, 130 Desoto St, Pittsburgh, PA, 15261, USA
| | - Galina Shurin
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, 130 Desoto St, Pittsburgh, PA, 15261, USA
| | - Joel C Rosenbaum
- Department of Biological Sciences, University of Pittsburgh, 4249 5th Ave, Pittsburgh, PA, 15213, USA
| | - Peter J Gough
- Inzen Therapeutics, 790 Memorial Dr Ste 2C, Cambridge, MA, 02139, USA
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-inflammation Therapeutic Area, GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, PA, 19426, USA
| | - Andrew P VanDemark
- Department of Biological Sciences, University of Pittsburgh, 4249 5th Ave, Pittsburgh, PA, 15213, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3550 Terrace St, Pittsburgh, PA, 15261, USA
| | - Kevin P Mollen
- Division of Pediatric General and Thoracic Surgery, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh, 800 Murdoch I Bldg, 3420 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, 130 Desoto St, Pittsburgh, PA, 15261, USA; Children's Neuroscience Institute, Children's Hospital of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
| | - Michael J Whalen
- Neuroscience Center and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St. Boston, MA, 02114, USA.
| | - Hülya Bayır
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA; Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, 130 Desoto St, Pittsburgh, PA, 15261, USA; Children's Neuroscience Institute, Children's Hospital of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
12
|
Islam T, Afonso MB, Rodrigues CMP. The role of RIPK3 in liver mitochondria bioenergetics and function. Eur J Clin Invest 2022; 52:e13648. [PMID: 34219227 DOI: 10.1111/eci.13648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/03/2021] [Accepted: 07/03/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Receptor-interacting protein kinase 3 (RIPK3) is a key player of regulated necrosis or necroptosis, an inflammatory form of cell death possibly governing outcomes in chronic liver diseases, such as nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. METHODS This narrative review is based on literature search using PubMed. RESULTS RIPK3 activation depends on post-transcriptional modifications, including phosphorylation, hence coordinating the assembly of macromolecular death complex named 'necrosome', which may also involve diverse mitochondrial components. Curiously, recent studies suggested a potential link between RIPK3 and mitochondrial bioenergetics. RIPK3 can modulate mitochondrial function and quality through the regulation of mitochondrial reactive oxygen species production, sequestration of metabolic enzymes and resident mitochondrial proteins, activity of mitochondrial respiratory chain complexes, mitochondrial biogenesis and fatty acid oxidation. CONCLUSIONS Since mitochondrial dysfunction and RIPK3-mediated necroptosis are intimately involved in chronic liver disease pathogenesis, understanding the role of RIPK3 in mitochondrial bioenergetics and its potential translational application are of great interest.
Collapse
Affiliation(s)
- Tawhidul Islam
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Marta B Afonso
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
13
|
Li X, Cai Y, Luo J, Ding J, Yao G, Xiao X, Tang Y, Liang Z. Metformin attenuates hypothalamic inflammation via downregulation of RIPK1-independent microglial necroptosis in diet-induced obese mice. Cell Death Discov 2021; 7:338. [PMID: 34750365 PMCID: PMC8575871 DOI: 10.1038/s41420-021-00732-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 12/21/2022] Open
Abstract
Necroptosis, a form of programmed cell death, accounts for many inflammations in a wide range of diseases. Diet-induced obesity is manifested by low-grade inflammation in the mediobasal hypothalamus (MBH), and microglia are implicated as critical responsive components for this process. Here, we demonstrate that microglial necroptosis plays a pivotal role in obesity-related hypothalamic inflammation, facilitating proinflammatory cytokine production, such as TNF-α and IL-1β. Treatment with the anti-diabetic drug metformin effectively reduces the obese phenotypes in the high-fat diet (HFD)-fed mice, attributing to remission of hypothalamic inflammation partly through repressing microglial necroptosis. Importantly, using the receptor-interacting protein kinase 1 inhibitor, necrostatin-1s, could not suppress the microglial inflammation nor prevent body weight gain in the obese mice, indicating that the microglial necroptosis is RIPK1-independent. Altogether, these findings offer new insights into hypothalamic inflammation in diet-induced obesity and provide a novel mechanism of action for metformin in obesity treatment.
Collapse
Affiliation(s)
- Xuan Li
- Department of Gerontology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
- Shenzhen Iinstitute of Advanced Technology, Chinese academy of sciences, Shenzhen, 518035, China
| | - You Cai
- Department of Neurology, Institute of Translational Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518039, China
| | - Jiao Luo
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, 518121, China
| | - Jingyun Ding
- Department of Gerontology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Guojun Yao
- Department of Gerontology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Xiaohua Xiao
- Department of Gerontology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Yizhe Tang
- Department of Neurology, Shenzhen Institute of Translational Medicine, Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Zhen Liang
- Shenzhen People's Hospital, Shenzhen, 518020, China.
| |
Collapse
|
14
|
Shao Y, Wang X, Zhou Y, Jiang Y, Wu R, Lu C. Pterostilbene attenuates RIPK3-dependent hepatocyte necroptosis in alcoholic liver disease via SIRT2-mediated NFATc4 deacetylation. Toxicology 2021; 461:152923. [PMID: 34474091 DOI: 10.1016/j.tox.2021.152923] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022]
Abstract
Receptor-interacting protein kinase (RIPK) 3-dependent necroptosis plays a critical role in alcoholic liver disease. RIPK3 also facilitates steatosis, oxidative stress, and inflammation. Pterostilbene (PTS) has favorable hepatoprotective activities. The present study was aimed to reveal the therapeutic effects of PTS on ethanol-induced hepatocyte necroptosis and further illustrate possible molecular mechanisms. Human hepatocytes LO2 were incubated with 100 mM ethanol for 24 h to mimic alcoholic hepatocyte injury. Results showed that PTS at 20 μM reduced damage-associated molecular patterns (DAMPs) release, including IL-1α and high-mobility group box 1 (HMGB1), and blocked necroptotic signaling, evidenced by decreased RIPK1 and RIPK3 expression. Trypan blue staining visually showed that PTS reduced nonviable hepatocytes after ethanol exposure, which was counteracted by adenovirus-mediated ectopic overexpression of RIPK3 but not RIPK1. Besides, PTS inhibited ethanol-induced hepatocyte steatosis via restricting lipogenesis and enhancing lipolysis, decreased oxidative stress via rescuing mitochondrial membrane potential, reducing oxidative system, and enhancing antioxidant system, and relieved inflammation evidenced by decreased expression of proinflammatory factors. Notably, RIPK3 overexpression diminished these protective effects of PTS. Subsequent work indicated that PTS suppressed the expression and nuclear translocation of nuclear factor of activated T-cells 4 (NFATc4), an acetylated protein, in ethanol-exposed hepatocytes, while NFATc4 overexpression impaired the negative regulation of PTS on RIPK3 and DAMPs release. Further, PTS rescued sirtuin 2 (SIRT2) expression, and SIRT2 knockdown abrogated the inhibitory effects of PTS on nuclear translocation and acetylation status of NFATc4 in ethanol-incubated hepatocytes. In conclusion, PTS attenuated RIPK3-dependent hepatocyte necroptosis after ethanol exposure via SIRT2-mediated NFATc4 deacetylation.
Collapse
Affiliation(s)
- Yunyun Shao
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Xinqi Wang
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Ying Zhou
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yiming Jiang
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Ruoman Wu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
15
|
Wu W, Wang X, Berleth N, Deitersen J, Wallot-Hieke N, Böhler P, Schlütermann D, Stuhldreier F, Cox J, Schmitz K, Seggewiß S, Peter C, Kasof G, Stefanski A, Stühler K, Tschapek A, Gödecke A, Stork B. The Autophagy-Initiating Kinase ULK1 Controls RIPK1-Mediated Cell Death. Cell Rep 2021; 31:107547. [PMID: 32320653 DOI: 10.1016/j.celrep.2020.107547] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 06/04/2019] [Accepted: 03/31/2020] [Indexed: 12/19/2022] Open
Abstract
Autophagy, apoptosis, and necroptosis are stress responses governing the ultimate fate of a cell. However, the crosstalk between these cellular stress responses is not entirely understood. Especially, it is not clear whether the autophagy-initiating kinase ULK1 and the cell-death-regulating kinase RIPK1 are involved in this potential crosstalk. Here, we identify RIPK1 as a substrate of ULK1. ULK1-dependent phosphorylation of RIPK1 reduces complex IIb/necrosome assembly and tumor necrosis factor (TNF)-induced cell death, whereas deprivation of ULK1 enhances TNF-induced cell death. We observe that ULK1 phosphorylates multiple sites of RIPK1, but it appears that especially phosphorylation of S357 within the intermediate domain of RIPK1 mediates this cell-death-inhibiting effect. We propose that ULK1 is a regulator of RIPK1-mediated cell death.
Collapse
Affiliation(s)
- Wenxian Wu
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Xiaojing Wang
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Niklas Berleth
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jana Deitersen
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Nora Wallot-Hieke
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Philip Böhler
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - David Schlütermann
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Fabian Stuhldreier
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jan Cox
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Katharina Schmitz
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Sabine Seggewiß
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christoph Peter
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Gary Kasof
- Cell Signaling Technology, Danvers, MA 01923, USA
| | - Anja Stefanski
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University, Düsseldorf, Germany
| | - Astrid Tschapek
- Institute of Cardiovascular Physiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Axel Gödecke
- Institute of Cardiovascular Physiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
16
|
Speir M, Djajawi TM, Conos SA, Tye H, Lawlor KE. Targeting RIP Kinases in Chronic Inflammatory Disease. Biomolecules 2021; 11:biom11050646. [PMID: 33924766 PMCID: PMC8146010 DOI: 10.3390/biom11050646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic inflammatory disorders are characterised by aberrant and exaggerated inflammatory immune cell responses. Modes of extrinsic cell death, apoptosis and necroptosis, have now been shown to be potent drivers of deleterious inflammation, and mutations in core repressors of these pathways underlie many autoinflammatory disorders. The receptor-interacting protein (RIP) kinases, RIPK1 and RIPK3, are integral players in extrinsic cell death signalling by regulating the production of pro-inflammatory cytokines, such as tumour necrosis factor (TNF), and coordinating the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome, which underpin pathological inflammation in numerous chronic inflammatory disorders. In this review, we firstly give an overview of the inflammatory cell death pathways regulated by RIPK1 and RIPK3. We then discuss how dysregulated signalling along these pathways can contribute to chronic inflammatory disorders of the joints, skin, and gastrointestinal tract, and discuss the emerging evidence for targeting these RIP kinases in the clinic.
Collapse
Affiliation(s)
- Mary Speir
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Tirta M. Djajawi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Stephanie A. Conos
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Hazel Tye
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
| | - Kate E. Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
- Correspondence: ; Tel.: +61-85722700
| |
Collapse
|
17
|
Khan I, Yousif A, Chesnokov M, Hong L, Chefetz II. A decade of cell death studies: Breathing new life into necroptosis. Pharmacol Ther 2021; 220:107717. [DOI: 10.1016/j.pharmthera.2020.107717] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022]
|
18
|
Meng Y, Sandow JJ, Czabotar PE, Murphy JM. The regulation of necroptosis by post-translational modifications. Cell Death Differ 2021; 28:861-883. [PMID: 33462412 PMCID: PMC7937688 DOI: 10.1038/s41418-020-00722-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/30/2023] Open
Abstract
Necroptosis is a caspase-independent, lytic form of programmed cell death whose errant activation has been widely implicated in many pathologies. The pathway relies on the assembly of the apical protein kinases, RIPK1 and RIPK3, into a high molecular weight cytoplasmic complex, termed the necrosome, downstream of death receptor or pathogen detector ligation. The necrosome serves as a platform for RIPK3-mediated phosphorylation of the terminal effector, the MLKL pseudokinase, which induces its oligomerization, translocation to, and perturbation of, the plasma membrane to cause cell death. Over the past 10 years, knowledge of the post-translational modifications that govern RIPK1, RIPK3 and MLKL conformation, activity, interactions, stability and localization has rapidly expanded. Here, we review current knowledge of the functions of phosphorylation, ubiquitylation, GlcNAcylation, proteolytic cleavage, and disulfide bonding in regulating necroptotic signaling. Post-translational modifications serve a broad array of functions in modulating RIPK1 engagement in, or exclusion from, cell death signaling, whereas the bulk of identified RIPK3 and MLKL modifications promote their necroptotic functions. An enhanced understanding of the modifying enzymes that tune RIPK1, RIPK3, and MLKL necroptotic functions will prove valuable in efforts to therapeutically modulate necroptosis.
Collapse
Affiliation(s)
- Yanxiang Meng
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jarrod J Sandow
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
19
|
Impact of myeloid RIPK1 gene deletion on atherogenesis in ApoE-deficient mice. Atherosclerosis 2021; 322:51-60. [PMID: 33706083 DOI: 10.1016/j.atherosclerosis.2021.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/23/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Targeting macrophage death is a promising strategy for stabilizing atherosclerotic plaques. Recently, necroptosis was identified as a form of regulated necrosis in atherosclerosis. Receptor-interacting serine/threonine-protein kinase (RIPK)1 is an upstream regulator of RIPK3, which is a crucial kinase for necroptosis induction. We aimed to investigate the impact of myeloid-specific RIPK1 gene deletion on atherogenesis. METHODS RIPK1F/FLysM-Cre+ApoE-/- and RIPK1+/+LysM-Cre+ApoE-/- mice were fed a western-type diet (WD) for 16 or 24 weeks to induce plaque formation. RESULTS After 16 weeks WD, plaque area and percentage necrosis in RIPK1F/FLysM-Cre+ApoE-/- mice were significantly decreased as compared to plaques of RIPK1+/+LysM-Cre+ApoE-/- mice. Moreover, plaques of RIPK1F/FLysM-Cre+ApoE-/- mice showed more apoptosis and a decreased macrophage content. After 24 weeks WD, plaque size and percentage necrosis were no longer different between the two groups. Free apoptotic cells strongly accumulated in plaques of RIPK1F/FLysM-Cre+ApoE-/- mice. In addition to apoptosis, necroptosis was upregulated in plaques of RIPK1F/FLysM-Cre+ApoE-/- mice. In vitro, TNF-α triggered apoptosis in RIPK1F/FLysM-Cre+ApoE-/-, but not in RIPK1+/+LysM-Cre+ApoE-/- macrophages. Moreover, RIPK1F/FLysM-Cre+ApoE-/- macrophages were not protected against RIPK3-dependent necroptosis. CONCLUSIONS The impact of myeloid RIPK1 gene deletion depends on the stage of atherogenesis. At 16 weeks WD, myeloid RIPK1 gene deletion resulted in increased apoptosis, thereby slowing down plaque progression. However, despite decreased macrophage content, plaque and necrotic core size were no longer reduced after 24 weeks of WD, most likely due to the accumulation of free apoptotic and necroptotic cells.
Collapse
|
20
|
Malireddi RKS, Kesavardhana S, Karki R, Kancharana B, Burton AR, Kanneganti TD. RIPK1 Distinctly Regulates Yersinia-Induced Inflammatory Cell Death, PANoptosis. Immunohorizons 2020; 4:789-796. [PMID: 33310881 DOI: 10.4049/immunohorizons.2000097] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 01/18/2023] Open
Abstract
Bacterial pathogens from the genus Yersinia cause fatal sepsis and gastritis in humans. Innate immune signaling and inflammatory cell death (pyroptosis, apoptosis, and necroptosis [PANoptosis]) serve as a first line of antimicrobial host defense. The receptor-interacting protein kinase 1 (RIPK1) is essential for Yersinia-induced pyroptosis and apoptosis and an effective host response. However, it is not clear whether RIPK1 assembles a multifaceted cell death complex capable of regulating caspase-dependent pyroptosis and apoptosis or whether there is cross-talk with necroptosis under these conditions. In this study, we report that Yersinia activates PANoptosis, as evidenced by the concerted activation of proteins involved in PANoptosis. Genetic deletion of RIPK1 abrogated the Yersinia-induced activation of the inflammasome/pyroptosis and apoptosis but enhanced necroptosis. We also found that Yersinia induced assembly of a RIPK1 PANoptosome complex capable of regulating all three branches of PANoptosis. Overall, our results demonstrate a role for the RIPK1 PANoptosome in Yersinia-induced inflammatory cell death and host defense.
Collapse
Affiliation(s)
| | - Sannula Kesavardhana
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | | | - Amanda R Burton
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | | |
Collapse
|
21
|
Liu L, Lalaoui N. 25 years of research put RIPK1 in the clinic. Semin Cell Dev Biol 2020; 109:86-95. [PMID: 32938551 DOI: 10.1016/j.semcdb.2020.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/09/2023]
Abstract
Receptor Interacting Protein Kinase 1 (RIPK1) is a key regulator of inflammation. To warrant cell survival and appropriate immune responses, RIPK1 is post-translationally regulated by ubiquitylations, phosphorylations and caspase-8-mediated cleavage. Dysregulations of these post-translational modifications switch on the pro-death function of RIPK1 and can cause inflammatory diseases in humans. Conversely, activation of RIPK1 cytotoxicity can be advantageous for cancer treatment. Small molecules targeting RIPK1 are under development for the treatment of cancer, inflammatory and neurogenerative disorders. We will discuss the molecular mechanisms controlling the functions of RIPK1, its pathologic role in humans and the therapeutic opportunities in targeting RIPK1, specifically in the context of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Lin Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia.
| |
Collapse
|
22
|
Cuny GD, Degterev A. RIPK protein kinase family: Atypical lives of typical kinases. Semin Cell Dev Biol 2020; 109:96-105. [PMID: 32732131 DOI: 10.1016/j.semcdb.2020.06.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 01/11/2023]
Abstract
Receptor Interacting Protein Kinases (RIPKs) are a family of Ser/Thr/Tyr kinases whose functions, regulation and pathophysiologic roles have remained an enigma for a long time. In recent years, these proteins garnered significant interest due to their roles in regulating a variety of host defense functions including control of inflammatory gene expression, different forms of cell death, and cutaneous and intestinal barrier functions. In addition, there is accumulating evidence that while these kinases seemingly follow typical kinase blueprints, their functioning in cells can take forms that are atypical for protein kinases. Lastly, while these kinases generally belong to distinct areas of innate immune regulation, there are emerging overarching themes that may unify the functions of this kinase family. Our review seeks to discuss the biology of RIPKs, and how typical and atypical features of this family informs the activity of a rapidly growing repertoire of RIPK inhibitors.
Collapse
Affiliation(s)
- Gregory D Cuny
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA.
| | - Alexei Degterev
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
23
|
Ariana A, Alturki NA, Hajjar S, Stumpo DJ, Tiedje C, Alnemri ES, Gaestel M, Blackshear PJ, Sad S. Tristetraprolin regulates necroptosis during tonic Toll-like receptor 4 (TLR4) signaling in murine macrophages. J Biol Chem 2020; 295:4661-4672. [PMID: 32094226 DOI: 10.1074/jbc.ra119.011633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/10/2020] [Indexed: 11/06/2022] Open
Abstract
The necrosome is a protein complex required for signaling in cells that results in necroptosis, which is also dependent on tumor necrosis factor receptor (TNF-R) signaling. TNFα promotes necroptosis, and its expression is facilitated by mitogen-activated protein (MAP) kinase-activated protein kinase 2 (MK2) but is inhibited by the RNA-binding protein tristetraprolin (TTP, encoded by the Zfp36 gene). We have stimulated murine macrophages from WT, MyD88 -/-, Trif -/-, MyD88 -/- Trif -/-, MK2 -/-, and Zfp36 -/- mice with graded doses of lipopolysaccharide (LPS) and various inhibitors to evaluate the role of various genes in Toll-like receptor 4 (TLR4)-induced necroptosis. Necrosome signaling, cytokine production, and cell death were evaluated by immunoblotting, ELISA, and cell death assays, respectively. We observed that during TLR4 signaling, necrosome activation is mediated through the adaptor proteins MyD88 and TRIF, and this is inhibited by MK2. In the absence of MK2-mediated necrosome activation, lipopolysaccharide-induced TNFα expression was drastically reduced, but MK2-deficient cells became highly sensitive to necroptosis even at low TNFα levels. In contrast, during tonic TLR4 signaling, WT cells did not undergo necroptosis, even when MK2 was disabled. Of note, necroptosis occurred only in the absence of TTP and was mediated by the expression of TNFα and activation of JUN N-terminal kinase (JNK). These results reveal that TTP plays an important role in inhibiting TNFα/JNK-induced necrosome signaling and resultant cytotoxicity.
Collapse
Affiliation(s)
- Ardeshir Ariana
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Norah A Alturki
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Stephanie Hajjar
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Deborah J Stumpo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Christopher Tiedje
- Department of Cellular and Molecular Medicine, University of Copenhagen, The Maersk Tower, 7.3, Blegdamsvej 3B, Copenhagen DK-2200, Denmark.,Institute of Cell Biochemistry, Hannover Medical School, Germany, 30623
| | - Emad S Alnemri
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, Philadelphia, Pennsylvania 19107
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Germany, 30623
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Subash Sad
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada .,University of Ottawa, Ottawa Centre for Infection, Immunity and Inflammation, Ontario K1H 8M5, Canada
| |
Collapse
|
24
|
Inhibitors Targeting RIPK1/RIPK3: Old and New Drugs. Trends Pharmacol Sci 2020; 41:209-224. [PMID: 32035657 DOI: 10.1016/j.tips.2020.01.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/13/2019] [Accepted: 01/02/2020] [Indexed: 12/26/2022]
Abstract
The scaffolding function of receptor-interacting protein kinase 1 (RIPK1) regulates prosurvival signaling and inflammatory gene expression, while its kinase activity mediates both apoptosis and necroptosis; the latter involving RIPK3 kinase activity. The mutual transition between the scaffold and kinase functions of RIPK1 is regulated by (de)ubiquitylation and (de)phosphorylation. RIPK1-mediated cell death leads to disruption of epithelial barriers and/or release of damage-associated molecular patterns (DAMPs), cytokines, and chemokines, propagating inflammatory and degenerative diseases. Many drug development programs have pursued targeting RIPK1, and to a lesser extent RIPK3 kinase activity. In this review, we classify existing and novel small-molecule drugs based on their pharmacodynamic (PD) type I, II, and III binding mode. Finally, we discuss their applicability and therapeutic potential in inflammatory and degenerative experimental disease models.
Collapse
|
25
|
Wang L, Chang X, Feng J, Yu J, Chen G. TRADD Mediates RIPK1-Independent Necroptosis Induced by Tumor Necrosis Factor. Front Cell Dev Biol 2020; 7:393. [PMID: 32039207 PMCID: PMC6987388 DOI: 10.3389/fcell.2019.00393] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/24/2019] [Indexed: 01/10/2023] Open
Abstract
As a programmed necrotic cell death, necroptosis has the intrinsic initiators, including receptor-interacting serine/threonine-protein kinase 1 (RIPK1), RIPK3 and mixed-lineage kinase domain-like protein (MLKL), which combine to form necroptotic signaling pathway and mediate necroptosis induced by various necroptotic stimuli, such as tumor necrosis factor (TNF). Although chemical inhibition of RIPK1 blocks TNF-induced necroptosis, genetic elimination of RIPK1 does not suppress but facilitate necroptosis triggered by TNF. Moreover, RIPK3 has been reported to mediate the RIPK1-independent necroptosis, but the involved mechanism is unclear. In this study, we found that TRADD was essential for TNF-induced necroptosis in RIPK1-knockdown L929 and HT-22 cells. Mechanistic study demonstrated that TRADD bound RIPK3 to form new protein complex, which then promoted RIPK3 phosphorylation via facilitating RIPK3 oligomerization, leading to RIPK3-MLKL signaling pathway activation. Therefore, TRADD acted as a partner of RIPK3 to initiate necroptosis in RIPK1-knockdown L929 and HT-22 cells in response to TNF stimulation. In addition, TRADD was critical for the accumulation of reactive oxygen species (ROS), which contributed to RIPK1-independent necroptosis triggered by TNF. Collectively, our data demonstrate that TRADD acts as the new target protein for TNF-induced RIPK3 activation and the subsequent necroptosis in a RIPK1-independent manner.
Collapse
Affiliation(s)
- Lili Wang
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Xixi Chang
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Jinli Feng
- Department of Neurology, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiyun Yu
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China.,Beijing Zhendandingtai Biotechnology Co., Ltd, Beijing, China
| | - Guozhu Chen
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
26
|
Nirmala JG, Lopus M. Cell death mechanisms in eukaryotes. Cell Biol Toxicol 2019; 36:145-164. [PMID: 31820165 DOI: 10.1007/s10565-019-09496-2] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Like the organism they constitute, the cells also die in different ways. The death can be predetermined, programmed, and cleanly executed, as in the case of apoptosis, or it can be traumatic, inflammatory, and sudden as many types of necrosis exemplify. Nevertheless, there are a number of cell deaths-some of them bearing a resemblance to apoptosis and/or necrosis, and many, distinct from each-that serve a multitude of roles in either supporting or disrupting the homoeostasis. Apoptosis is coordinated by death ligands, caspases, b-cell lymphoma-2 (Bcl-2) family proteins, and their downstream effectors. Events that can lead to apoptosis include mitotic catastrophe and anoikis. Necrosis, although it has been considered an abrupt and uncoordinated cell death, has many molecular events associated with it. There are cell death mechanisms that share some standard features with necrosis. These include methuosis, necroptosis, NETosis, pyronecrosis, and pyroptosis. Autophagy, generally a catabolic pathway that operates to ensure cell survival, can also kill the cell through mechanisms such as autosis. Other cell-death mechanisms include entosis, ferroptosis, lysosome-dependent cell death, and parthanatos.
Collapse
Affiliation(s)
- J Grace Nirmala
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, 400098, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, 400098, India.
| |
Collapse
|
27
|
Molecular Insights into the Mechanism of Necroptosis: The Necrosome As a Potential Therapeutic Target. Cells 2019; 8:cells8121486. [PMID: 31766571 PMCID: PMC6952807 DOI: 10.3390/cells8121486] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
Necroptosis, or regulated necrosis, is an important type of programmed cell death in addition to apoptosis. Necroptosis induction leads to cell membrane disruption, inflammation and vascularization. It plays important roles in various pathological processes, including neurodegeneration, inflammatory diseases, multiple cancers, and kidney injury. The molecular regulation of necroptotic pathway has been intensively studied in recent years. Necroptosis can be triggered by multiple stimuli and this pathway is regulated through activation of receptor-interacting protein kinase 1 (RIPK1), RIPK3 and pseudokinase mixed lineage kinase domain-like (MLKL). A better understanding of the mechanism of regulation of necroptosis will further aid to the development of novel drugs for necroptosis-associated human diseases. In this review, we focus on new insights in the regulatory machinery of necroptosis. We further discuss the role of necroptosis in different pathologies, its potential as a therapeutic target and the current status of clinical development of drugs interfering in the necroptotic pathway.
Collapse
|
28
|
Liu Y, Liu T, Lei T, Zhang D, Du S, Girani L, Qi D, Lin C, Tong R, Wang Y. RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review). Int J Mol Med 2019; 44:771-786. [PMID: 31198981 PMCID: PMC6658002 DOI: 10.3892/ijmm.2019.4244] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 06/11/2019] [Indexed: 12/27/2022] Open
Abstract
Necroptosis is a type of programmed cell death with necrotic morphology, occurring in a variety of biological processes, including inflammation, immune response, embryonic development and metabolic abnormalities. The current nomenclature defines necroptosis as cell death mediated by signal transduction from receptor‑interacting serine/threonine kinase (RIP) 1 to RIP3 (hereafter called RIP1/RIP3). However, RIP3‑dependent cell death would be a more precise definition of necroptosis. RIP3 is indispensable for necroptosis, while RIP1 is not consistently involved in the signal transduction. Notably, deletion of RIP1 even promotes RIP3‑mediated necroptosis under certain conditions. Necroptosis was previously thought as an alternate process of cell death in case of apoptosis inhibition. Currently, necroptosis is recognized to serve a pivotal role in regulating various physiological processes. Of note, it mediates a variety of human diseases, such as ischemic brain injury, immune system disorders and cancer. Targeting and inhibiting necroptosis, therefore, has the potential to be used for therapeutic purposes. To date, research has elucidated the suppression of RIP1/RIP3 via effective inhibitors and highlighted their potential application in disease therapy. The present review focused on the molecular mechanisms of RIP1/RIP3‑mediated necroptosis, explored the functions of RIP1/RIP3 in necroptosis, discussed their potential as a novel therapeutic target for disease therapy, and provided valuable suggestions for further study in this field.
Collapse
Affiliation(s)
- Yuping Liu
- Health Management Center, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072
| | - Ting Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054
| | - Tiantian Lei
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054
| | - Dingding Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054
- Key Laboratory for Genetics of Human Disease, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072
| | - Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054
| | - Lea Girani
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Dandan Qi
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054
| | - Chen Lin
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Yi Wang
- Health Management Center, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
29
|
Moerke C, Jaco I, Dewitz C, Müller T, Jacobsen AV, Gautheron J, Fritsch J, Schmitz J, Bräsen JH, Günther C, Murphy JM, Kunzendorf U, Meier P, Krautwald S. The anticonvulsive Phenhydan ® suppresses extrinsic cell death. Cell Death Differ 2019; 26:1631-1645. [PMID: 30442947 PMCID: PMC6748113 DOI: 10.1038/s41418-018-0232-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/27/2022] Open
Abstract
Different forms of regulated cell death-like apoptosis and necroptosis contribute to the pathophysiology of clinical conditions including ischemia-reperfusion injury, myocardial infarction, sepsis, and multiple sclerosis. In particular, the kinase activity of the receptor-interacting serine/threonine protein kinase 1 (RIPK1) is crucial for cell fate in inflammation and cell death. However, despite its involvement in pathological conditions, no pharmacologic inhibitor of RIPK1-mediated cell death is currently in clinical use. Herein, we screened a collection of clinical compounds to assess their ability to modulate RIPK1-mediated cell death. Our small-scale screen identified the anti-epilepsy drug Phenhydan® as a potent inhibitor of death receptor-induced necroptosis and apoptosis. Accordingly, Phenhydan® blocked activation of necrosome formation/activation as well as death receptor-induced NF-κB signaling by influencing the membrane function of cells, such as lipid raft formation, thus exerting an inhibitory effect on pathophysiologic cell death processes. By targeting death receptor signaling, the already FDA-approved Phenhydan® may provide new therapeutic strategies for inflammation-driven diseases caused by aberrant cell death.
Collapse
Affiliation(s)
- Caroline Moerke
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Isabel Jaco
- Toby Robins Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | - Christin Dewitz
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Tammo Müller
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Annette V Jacobsen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jérémie Gautheron
- Université Pierre et Marie Curie, UMR_S 938, Inserm, 75012, Paris, France
| | - Jürgen Fritsch
- Institute for Clinical Microbiology and Hygiene, University of Regensburg, 93053, Regensburg, Germany
| | - Jessica Schmitz
- Department of Pathology, University of Hannover, 30625, Hannover, Germany
| | - Jan Hinrich Bräsen
- Department of Pathology, University of Hannover, 30625, Hannover, Germany
| | - Claudia Günther
- Department of Medicine 1, Friedrich-Alexander-University, 91052, Erlangen, Germany
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Ulrich Kunzendorf
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Pascal Meier
- Toby Robins Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | - Stefan Krautwald
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany.
| |
Collapse
|
30
|
Qian A, Xu J, Wu C, Liu S, Zhang M. Hypothermia Inhibits Cerebral Necroptosis and NOD-Like Receptor Pyrin Domain Containing 3 Pathway in a Swine Model of Cardiac Arrest. J Surg Res 2019; 244:468-476. [PMID: 31330290 DOI: 10.1016/j.jss.2019.05.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 05/09/2019] [Accepted: 05/29/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Targeted temperature management (TTM) is commonly used in hypothermia after cardiopulmonary resuscitation (CPR), and its mechanism to improve cerebral function is complex. This study aimed to investigate the effects of TTM on necroptosis and the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome in the brain tissue of pigs after CPR. MATERIALS AND METHODS Ventricular fibrillation was induced, and CPR was performed 10 min later in nine pigs in the normothermia group and nine pigs in the TTM group. The body temperature in the TTM group was dropped to 33°C after CPR and maintained for 24 h, whereas in the normothermia group, it was maintained at 38°C. Before CPR and at 30 h after CPR, serum neuron-specific enolase and S-100β were measured. At 30 h after CPR, pigs were euthanized, and brain tissues were collected for measurement of receptor-interacting protein kinase (RIPIK) 1, RIPK3, mixed lineage kinase domain-like (MLKL), NLRP3, cysteinyl aspartate-specific proteinase (caspase)-1, interleukin (IL)-1β, and IL-18. RESULTS Serum neuron-specific enolase and S-100β were increased significantly (P < 0.05) in the two CPR-treated groups compared with the sham group and more obviously in the normothermia group. In addition, the expression of RIPK3, phosphorylated MLKL, and NLRP3 in brain tissues was increased. The expression of RIPK3, phosphorylated MLKL, NLRP3, and caspase-1 as well as the levels of IL-1β and IL-18 were lower (P < 0.05) in the TTM group compared with the normothermia group. CONCLUSIONS Necroptosis and the NLRP3 pathway were activated after CPR. TTM may attenuate postresuscitation brain injury through the regulation of necroptosis and the NLRP3 pathway.
Collapse
Affiliation(s)
- Anyu Qian
- Department of Emergency Medicine, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Jiefeng Xu
- Department of Emergency Medicine, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Chunshuang Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Shaoyun Liu
- Department of Emergency Medicine, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Mao Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.
| |
Collapse
|
31
|
Qiu X, Zhuang M, Lu Z, Liu Z, Cheng D, Zhu C, Liu J. RIPK1 suppresses apoptosis mediated by TNF and caspase-3 in intervertebral discs. J Transl Med 2019; 17:135. [PMID: 31029152 PMCID: PMC6487042 DOI: 10.1186/s12967-019-1886-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 04/16/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Low back pain has become a serious social and economic burden and the leading cause of disability worldwide. Among a variety of pathophysiological triggers, intervertebral disc (IVD) degeneration plays a primary underlying role in causing such pain. Specifically, multiple independent endplate changes have been implicated in the initiation and progression of IVD degeneration. METHODS In this study, we built a signaling network comprising both well-characterized IVD pathology-associated proteins as well as some potentially correlated proteins that have been associated with one or more of the currently known pathology-associated proteins. We then screened for the potential IVD degeneration-associated proteins using patients' normal and degenerative endplate specimens. Short hairpin RNAs for receptor interacting serine/threonine kinase 1 (RIPK1) were constructed to examine the effects of RIPK1 knockdown in primary chondrocyte cells and in animal models of caudal vertebra intervertebral disc degeneration in vivo. RESULTS RIPK1 was identified as a potential IVD degeneration-associated protein based on IVD pathology-associated signaling networks and the patients' degenerated endplate specimens. Construction of the short hairpin RNAs was successful, with short-term RIPK1 knockdown triggering inflammation in the primary chondrocytes, while long-term knockdown triggered apoptosis through cleavage of the caspase 3 pathway, down-regulated NF-κB and mitogen-activating protein kinase (MAPK)s cascades, and decreased cell survival and inflammation. Animal models of caudal vertebra intervertebral disc degeneration further demonstrated that apoptosis was induced by up-regulation of tumor necrosis factor (TNF) accompanied by down-regulation of NF-κB and MAPKs cascades that are dependent on caspase and RIPK1. CONCLUSIONS These results provide proof-of-concept for developing novel therapies to combat IVD degeneration through interfering with RIPK1-mediated apoptosis signaling pathways especially in patients with RIPK1 abnormality.
Collapse
Affiliation(s)
- Xubin Qiu
- Department of Spine, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Tianning District, Changzhou, 213003 Jiangsu China
| | - Ming Zhuang
- Department of Spine, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Tianning District, Changzhou, 213003 Jiangsu China
| | - Ziwen Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Zhiwei Liu
- Department of Spine, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Tianning District, Changzhou, 213003 Jiangsu China
| | - Dong Cheng
- Department of Spine, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Tianning District, Changzhou, 213003 Jiangsu China
| | - Chenlei Zhu
- Department of Spine, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Tianning District, Changzhou, 213003 Jiangsu China
| | - Jinbo Liu
- Department of Spine, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Tianning District, Changzhou, 213003 Jiangsu China
| |
Collapse
|
32
|
RHIM-based protein:protein interactions in microbial defence against programmed cell death by necroptosis. Semin Cell Dev Biol 2018; 99:86-95. [PMID: 29738881 DOI: 10.1016/j.semcdb.2018.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/16/2018] [Accepted: 05/04/2018] [Indexed: 11/22/2022]
Abstract
The Receptor-interacting protein kinase Homotypic Interaction Motif (RHIM) is an amino acid sequence that mediates multiple protein:protein interactions in the mammalian programmed cell death pathway known as necroptosis. At least one key RHIM-based complex has been shown to have a functional amyloid fibril structure, which provides a stable hetero-oligomeric platform for downstream signaling. RHIMs and related motifs are present in immunity-related proteins across nature, from viruses to fungi to metazoans. Necroptosis is a hallmark feature of cellular clearance of infection. For this reason, numerous pathogens, including viruses and bacteria, have developed varied methods to modulate necroptosis, focusing on inhibiting RHIM:RHIM interactions, and thus their downstream cell death effects. This review will discuss current understanding of RHIM:RHIM interactions in normal cellular activation of necroptosis, from a structural and cell biology perspective. It will compare the mechanisms by which pathogens subvert these interactions in order to maintain their replicative and infective cycles and consider the similarities between RHIMs and other functional amyloid-forming proteins associated with cell death and innate immunity. It will discuss the implications of the heteromeric nature and structure of RHIM-based amyloid complexes in the context of other functional amyloids.
Collapse
|
33
|
Coornaert I, Hofmans S, Devisscher L, Augustyns K, Van Der Veken P, De Meyer GRY, Martinet W. Novel drug discovery strategies for atherosclerosis that target necrosis and necroptosis. Expert Opin Drug Discov 2018; 13:477-488. [PMID: 29598451 DOI: 10.1080/17460441.2018.1457644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Formation and enlargement of a necrotic core play a pivotal role in atherogenesis. Since the discovery of necroptosis, which is a regulated form of necrosis, prevention of necrotic cell death has become an attractive therapeutic goal to reduce plaque formation. Areas covered: This review highlights the triggers and consequences of (unregulated) necrosis and necroptosis in atherosclerosis. The authors discuss different pharmacological strategies to inhibit necrotic cell death in advanced atherosclerotic plaques. Expert opinion: Addition of a necrosis or necroptosis inhibitor to standard statin therapy could be a promising strategy for primary prevention of cardiovascular disease. However, a necrosis inhibitor cannot block all necrosis stimuli in atherosclerotic plaques. A necroptosis inhibitor could be more effective, because necroptosis is mediated by specific proteins, termed receptor-interacting serine/threonine-protein kinases (RIPK) and mixed lineage kinase domain-like pseudokinase (MLKL). Currently, only RIPK1 inhibitors have been successfully used in atherosclerotic mouse models to inhibit necroptosis. However, because RIPK1 is involved in both necroptosis and apoptosis, and also RIPK1-independent necroptosis can occur, we feel that targeting RIPK3 and MLKL could be a more attractive therapeutic approach to inhibit necroptosis. Therefore, future challenges will consist of developing RIPK3 and MLKL inhibitors applicable in both preclinical and clinical settings.
Collapse
Affiliation(s)
- Isabelle Coornaert
- a Laboratory of Physiopharmacology , University of Antwerp , Wilrijk , Belgium
| | - Sam Hofmans
- b Laboratory of Medicinal Chemistry , University of Antwerp , Wilrijk , Belgium
| | - Lars Devisscher
- b Laboratory of Medicinal Chemistry , University of Antwerp , Wilrijk , Belgium
| | - Koen Augustyns
- b Laboratory of Medicinal Chemistry , University of Antwerp , Wilrijk , Belgium
| | | | - Guido R Y De Meyer
- a Laboratory of Physiopharmacology , University of Antwerp , Wilrijk , Belgium
| | - Wim Martinet
- a Laboratory of Physiopharmacology , University of Antwerp , Wilrijk , Belgium
| |
Collapse
|
34
|
Wójcik M, Bobowiec R, Lisiecka U, Śmiech A. Expression of receptor interacting protein 1 and receptor interacting protein 3 oval cells in a rat model of hepatocarcinogenesis. Exp Ther Med 2018; 15:4448-4456. [PMID: 29731829 DOI: 10.3892/etm.2018.5988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/08/2018] [Indexed: 01/25/2023] Open
Abstract
When apoptosis is suppressed in a neoplastic state, necroptosis may enable an anticancer response. In the present study, the association between apoptosis and necroptosis was assessed in a partial hepatectomy (PH)/diethylnitrosamine (DEN) rat model of hepatocarcinogenesis. Isolated oval cells (OCs) were analysed at 24, 48 and 72 h and at the first and second week of incubation. Phenotypic studies, apoptosis and necroptosis detection and proliferative activity assays were also performed on the OCs. The OCs were isolated from non-neoplastic (PH) and neoplastic (PH/DEN) livers, which expressed receptor interacting protein (RIP) 1 and RIP3. Western blot analysis revealed that the RIP1 and RIP3 expression in the PH/DEN OCs started to increase at 72 h and continually increased to the end of cell culture. Compared with the PH OCs, the cells isolated from PH/DEN rats exhibited significantly less potential for apoptosis (P<0.05). There were a minimal number of apoptotic PH/DEN OCs (2.82±1.1%) at 72 h. In addition, the PH/DEN OCs demonstrated progressive proliferative activity during incubation, which was significantly increased compared with the PH OCs at ≥72 h. The present study revealed that PH/DEN OCs, which trigger hepatic cancer, have a high proliferative activity and suppress apoptosis. It was also observed that, based on the expression of RIP3 and RIP1, necroptosis may be maintained and may serve as an alternative pathway for programmed PH/DEN OC death.
Collapse
Affiliation(s)
- Marta Wójcik
- Department of Pathophysiology, Faculty of Veterinary Medicine, University of Life Sciences, 20-033 Lublin, Poland
| | - Ryszard Bobowiec
- Department of Pathophysiology, Faculty of Veterinary Medicine, University of Life Sciences, 20-033 Lublin, Poland
| | - Urszula Lisiecka
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences, 20-033 Lublin, Poland
| | - Anna Śmiech
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Life Sciences, 20-033 Lublin, Poland
| |
Collapse
|
35
|
Fuchslocher Chico J, Falk-Paulsen M, Luzius A, Saggau C, Ruder B, Bolik J, Schmidt-Arras D, Linkermann A, Becker C, Rosenstiel P, Rose-John S, Adam D. The enhanced susceptibility of ADAM-17 hypomorphic mice to DSS-induced colitis is not ameliorated by loss of RIPK3, revealing an unexpected function of ADAM-17 in necroptosis. Oncotarget 2018; 9:12941-12958. [PMID: 29560122 PMCID: PMC5849186 DOI: 10.18632/oncotarget.24410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/25/2018] [Indexed: 12/27/2022] Open
Abstract
The disintegrin metalloprotease ADAM17 has a critical role in intestinal inflammation and regeneration in mice, as illustrated by the dramatically increased susceptibility of ADAM17 hypomorphic (ADAM17ex/ex) mice to dextran sulfate sodium (DSS)-induced colitis. Similarly, necroptosis has been implicated in inflammatory responses in the intestine. In this study, we have investigated the contribution of necroptosis to ADAM17-regulated intestinal inflammation in vivo by crossing ADAM17ex/ex mice with mice that lack the necroptotic core protein RIPK3. Despite the loss of RIPK3, ADAM17ex/ex/RIPK3−/− mice showed the same increased susceptibility as ADAM17ex/ex mice in both acute and chronic models of DSS-induced colitis. Mice of both genotypes revealed comparable results with regard to weight loss, disease activity index and colitis-associated changes of inner organs. Histopathological analyses confirmed similar tissue destruction, loss of barrier integrity, immune cell infiltration, and cell death; serum analyses revealed similar levels of the pro-inflammatory cytokine KC. Resolving these unexpected findings, ADAM17ex/ex mice did not show phosphorylation of RIPK3 and its necroptotic interaction partner MLKL during DSS-induced colitis, although both proteins were clearly expressed. Consistent with these findings, murine embryonic fibroblasts derived from ADAM17ex/ex mice were protected from tumor necrosis factor (TNF)-induced necroptosis and failed to show phosphorylation of MLKL and RIPK3 after induction of necroptosis by TNF, revealing a novel, undescribed role of the protease ADAM17 in necroptosis.
Collapse
Affiliation(s)
| | - Maren Falk-Paulsen
- Institut für Klinische Molekularbiologie, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Anne Luzius
- Institut für Klinische Molekularbiologie, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Carina Saggau
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Barbara Ruder
- Medizinische Klinik 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Julia Bolik
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Dirk Schmidt-Arras
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Andreas Linkermann
- Medizinische Klinik und Poliklinik III, Universitätsklinikum Carl Gustav Carus, 01307 Dresden, Germany
| | - Christoph Becker
- Medizinische Klinik 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Philip Rosenstiel
- Institut für Klinische Molekularbiologie, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Stefan Rose-John
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| |
Collapse
|
36
|
Chenette EJ, Martin SJ. 50 years of The FEBS Journal: looking back as well as ahead. FEBS J 2018; 284:4162-4171. [PMID: 29251437 DOI: 10.1111/febs.14328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this last issue of 2017, we're celebrating the 50th anniversary of The FEBS Journal. This Editorial considers how the journal has grown and changed from volume 1, issue 1 and outlines our exciting plans for the future.
Collapse
Affiliation(s)
| | - Seamus J Martin
- The FEBS Journal Editorial Office, Cambridge, UK.,Department of Genetics, The Smurfit Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
37
|
Kers J, Leemans JC, Linkermann A. An Overview of Pathways of Regulated Necrosis in Acute Kidney Injury. Semin Nephrol 2018; 36:139-52. [PMID: 27339380 DOI: 10.1016/j.semnephrol.2016.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Necrosis is the predominant form of regulated cell death in acute kidney injury (AKI) and represents results in the formation of casts that appear in the urine sedimentation, referred to as muddy brown casts, which are part of the diagnosis of AKI. Pathologists referred to this typical feature as acute tubular necrosis. We are only beginning to understand the dynamics and the molecular pathways that underlie such typical necrotic morphology. In this review, we provide an overview of candidate pathways and summarize the emerging evidence for the relative contribution of these pathways of regulated necrosis, such as necroptosis, ferroptosis, mitochondrial permeability transition-mediated regulated necrosis, parthanatos, and pyroptosis. Inhibitors of each of these pathways are available, and clinical trials may be started after the detection of the most promising drug targets, which will be discussed here. With the global burden of AKI in mind, inhibitiors of regulated necrosis represent promising means to prevent this disease.
Collapse
Affiliation(s)
- Jesper Kers
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Jaklien C Leemans
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Andreas Linkermann
- Clinic for Nephrology and Hypertension, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
38
|
Chang X, Wang L, Wang Z, Wu S, Zhu X, Hu S, Wang Y, Yu J, Chen G. TRADD mediates the tumor necrosis factor-induced apoptosis of L929 cells in the absence of RIP3. Sci Rep 2017; 7:16111. [PMID: 29170425 PMCID: PMC5701027 DOI: 10.1038/s41598-017-16390-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/09/2017] [Indexed: 01/01/2023] Open
Abstract
Receptor-interacting protein kinase 3 (RIP3) is a critical initiator in mediating necroptosis induced by tumor necrosis factor alpha (TNFα) in L929 cells, so knockdown of RIP3 inhibits TNFα-induced L929 cell necroptosis. However, RIP3 knockdown was shown to switch TNFα-induced necroptosis to apoptosis in L929 cells in other studies. Therefore, whether RIP3 knockdown blocks the TNFα-induced death of L929 cells is controversial. In this study, TNFα activated caspase pathway and induced cell death in RIP3 knockdown L929 cells, and the RIP3-independent cell death had been blocked by Z-VAD-FMK (pan-caspase inhibitor) or caspase 8 knockdown, demonstrating that RIP3 knockdown switched TNFα-induced necroptosis to caspase-dependent apoptosis. Although both TNF receptor type 1-associated death domain protein (TRADD) and RIP1 have been reported to mediate TNFα-induced apoptosis, the knockdown of TRADD, but not RIP1, suppressed TNFα-induced activation of the caspase pathway and subsequent apoptosis in RIP3 knockdown L929 cells. In addition, TRADD bound and activated caspase 8 during the RIP3-independent apoptosis process, indicating that TRADD initiates RIP3-independent apoptosis by activating the caspase pathway. Collectively, we identified the target and mechanism underlying RIP3-independent apoptosis and elucidated the coordinated roles of RIP3 and TRADD in mediating the programmed cell death of L929 cells following TNFα stimulation.
Collapse
Affiliation(s)
- Xixi Chang
- Department of Frontier for Biological Treatment, Beijing Institute of Basic Medical Science, Beijing, 100850, China
| | - Lili Wang
- Department of Frontier for Biological Treatment, Beijing Institute of Basic Medical Science, Beijing, 100850, China
| | - Zicheng Wang
- Department of Frontier for Biological Treatment, Beijing Institute of Basic Medical Science, Beijing, 100850, China
| | - Shuai Wu
- Department of Frontier for Biological Treatment, Beijing Institute of Basic Medical Science, Beijing, 100850, China
| | - Xiaoming Zhu
- Department of Frontier for Biological Treatment, Beijing Institute of Basic Medical Science, Beijing, 100850, China
| | - Shiping Hu
- Department of Frontier for Biological Treatment, Beijing Institute of Basic Medical Science, Beijing, 100850, China
| | - Yu Wang
- Department of Frontier for Biological Treatment, Beijing Institute of Basic Medical Science, Beijing, 100850, China.
| | - Jiyun Yu
- Department of Frontier for Biological Treatment, Beijing Institute of Basic Medical Science, Beijing, 100850, China.
| | - Guozhu Chen
- Department of Frontier for Biological Treatment, Beijing Institute of Basic Medical Science, Beijing, 100850, China.
| |
Collapse
|
39
|
Honarpisheh M, Foresto-Neto O, Desai J, Steiger S, Gómez LA, Popper B, Boor P, Anders HJ, Mulay SR. Phagocytosis of environmental or metabolic crystalline particles induces cytotoxicity by triggering necroptosis across a broad range of particle size and shape. Sci Rep 2017; 7:15523. [PMID: 29138474 PMCID: PMC5686194 DOI: 10.1038/s41598-017-15804-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/02/2017] [Indexed: 01/09/2023] Open
Abstract
In crystallopathies, crystals or crystalline particles of environmental and metabolic origin deposit within tissues, induce inflammation, injury and cell death and eventually lead to organ-failure. The NLRP3-inflammasome is involved in mediating crystalline particles-induced inflammation, but pathways leading to cell death are still unknown. Here, we have used broad range of intrinsic and extrinsic crystal- or crystalline particle-sizes and shapes, e.g. calcium phosphate, silica, titanium dioxide, cholesterol, calcium oxalate, and monosodium urate. As kidney is commonly affected by crystallopathies, we used human and murine renal tubular cells as a model system. We showed that all of the analysed crystalline particles induce caspase-independent cell death. Deficiency of MLKL, siRNA knockdown of RIPK3, or inhibitors of necroptosis signaling e.g. RIPK-1 inhibitor necrostatin-1s, RIPK3 inhibitor dabrafenib, and MLKL inhibitor necrosulfonamide, partially protected tubular cells from crystalline particles cytotoxicity. Furthermore, we identify phagocytosis of crystalline particles as an upstream event in their cytotoxicity since a phagocytosis inhibitor, cytochalasin D, prevented their cytotoxicity. Taken together, our data confirmed the involvement of necroptosis as one of the pathways leading to cell death in crystallopathies. Our data identified RIPK-1, RIPK3, and MLKL as molecular targets to limit tissue injury and organ failure in crystallopathies.
Collapse
Affiliation(s)
- Mohsen Honarpisheh
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, München, Munich, 80336, Germany
| | - Orestes Foresto-Neto
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, München, Munich, 80336, Germany
| | - Jyaysi Desai
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, München, Munich, 80336, Germany
| | - Stefanie Steiger
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, München, Munich, 80336, Germany
| | - Lidia Anguiano Gómez
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, München, Munich, 80336, Germany
| | - Bastian Popper
- Biomedical Center (BMC), Department for Cell Biology, Ludwig-Maximilians University, Munich, 82152, Germany
| | - Peter Boor
- Institute of Pathology & Dept. of Nephrology, University Clinic of RWTH Aachen, Aachen, 52074, Germany
| | - Hans-Joachim Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, München, Munich, 80336, Germany.
| | - Shrikant R Mulay
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, München, Munich, 80336, Germany.
| |
Collapse
|
40
|
Sun W, Wu X, Gao H, Yu J, Zhao W, Lu JJ, Wang J, Du G, Chen X. Cytosolic calcium mediates RIP1/RIP3 complex-dependent necroptosis through JNK activation and mitochondrial ROS production in human colon cancer cells. Free Radic Biol Med 2017; 108:433-444. [PMID: 28414098 DOI: 10.1016/j.freeradbiomed.2017.04.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 01/13/2023]
Abstract
Necroptosis is a form of programmed necrosis mediated by signaling complexes with receptor-interacting protein 1 (RIP1) and RIP3 kinases as the main mediators. However, the underlying execution pathways of this phenomenon have yet to be elucidated in detail. In this study, a RIP1/RIP3 complex was formed in 2-methoxy-6-acetyl-7-methyljuglone (MAM)-treated HCT116 and HT29 colon cancer cells. With this formation, mitochondrial reactive oxygen species (ROS) levels increased, mitochondrial depolarization occurred, and ATP concentrations decreased. This process was identified as necroptosis. This finding was confirmed by experiments showing that MAM-induced cell death was attenuated by the pharmacological or genetic blockage of necroptosis signaling, including RIP1 inhibitor necrostatin-1s (Nec-1s) and siRNA-mediated gene silencing of RIP1 and RIP3, but was unaffected by caspase inhibitor z-vad-fmk or necrosis inhibitor 2-(1H-Indol-3-yl)-3-pentylamino-maleimide (IM54). Transmission electron microscopy (TEM) analysis further revealed the ultrastructural features of MAM-induced necroptosis. MAM-induced RIP1/RIP3 complex triggered necroptosis through cytosolic calcium (Ca2+) accumulation and sustained c-Jun N-terminal kinase (JNK) activation. Both calcium chelator BAPTA-AM and JNK inhibitor SP600125 could attenuate necroptotic features, including mitochondrial ROS elevation, mitochondrial depolarization, and ATP depletion. 2-thenoyltrifluoroacetone (TTFA), which is a mitochondrial complex II inhibitor, was found to effectively reverse both MAM induced mitochondrial ROS generation and cell death, indicating the complex II was the ROS-producing site. The essential role of mitochondrial ROS was confirmed by the protective effect of overexpression of manganese superoxide dismutase (MnSOD). MAM-induced necroptosis was independent of TNFα, p53, MLKL, and lysosomal membrane permeabilization. In summary, our study demonstrated that RIP1/RIP3 complex-triggered cytosolic calcium accumulation is a critical mediator in MAM-induced necroptosis through sustained JNK activation and mitochondrial ROS production. Our study also provided new insights into the molecular regulation of necroptosis in human colon cancer cells.
Collapse
Affiliation(s)
- Wen Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiaxia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hongwei Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Wenwen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
41
|
Abstract
Although suggested that “fetal” cell-free DNA (cfDNA) is derived from trophoblast cells, the exact origin is unclear. The studies in this report sought to demonstrate that placental tissue releases cfDNA in parallel with cell death, that the size range of cfDNA is similar to that found in maternal plasma, and that the cfDNA fragments are able to stimulate a proinflammatory cytokine response. Placentas were harvested from near term pregnant CD-1 mice and cultured in DMEM/Ham’s F12/FBS media in 8% or 21% O2. After centrifugation to remove cells and cellular debris, the cfDNA was extracted from the media and quantified by DNA spectrophotometry. The cfDNA fragments were sized using a 1.5% TAE gel. Cell death was quantified by lactate dehydrogenase assay; and tissue homogenates were used to quantify caspase activity and BAX expression. Cultured RAW-264.7 macrophage cells were used to determine IL6 stimulation by cfDNA. The cfDNA levels released in 8% O2 (placental normoxia) were not significantly different from explants cultured in 21% O2 (placental hyperoxia). The cfDNA fragments ranged in size from < 100 –< 400 bp. The cfDNA release increased when cultured with LPS, whereas it decreased with trolox (vitamin E analog). Explant release of cfDNA increased in parallel with cell death. The cfDNA release and cell death of trophoblast appears to involve components of the apoptosis signaling pathway as suggested by LPS enhancement of placental caspase activity, suppression of cfDNA release by a pan-caspase inhibitor and the trend toward increased Bax protein expression. Studies with cultured macrophage cells confirmed the ability of cfDNA to stimulate an IL6 response. In summary, these studies have confirmed the ability of placental tissue to release significant amounts of cfDNA, a phenomenon that appears to be mediated, at least in part, by apoptosis; and that the cfDNA released by the placental explants is able to stimulate a significant proinflammatory response. Thus, these studies provide support for the hypothesis that cell-free fetal DNA released by placental tissue potentially plays a mechanistically important role during the events leading to the onset of parturition.
Collapse
Affiliation(s)
- Mark Phillippe
- Vincent Center for Reproductive Biology, Department of Obstetrics & Gynecology, Massachusetts General Hospital, Boston, MA
- * E-mail:
| | - Sharareh Adeli
- Vincent Center for Reproductive Biology, Department of Obstetrics & Gynecology, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
42
|
Zhang S, Wang Y, Xie H, Yu Q, Wu J, Wu Y, Zhu Y. Necroptosis and microglia activation after chronic ischemic brain injury in mice. EUR J INFLAMM 2017. [DOI: 10.1177/1721727x17706855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Microglia, which are the resident macrophages and the first line of defense in the brain, can be activated within hours and migrate toward the injury sites after acute and chronic ischemic brain injury. However, a few studies have reported the interaction between microglia activation and necroptosis signaling following ischemic damage to the brain. In this study, chronic ischemic brain injury was induced by bilateral carotid artery stenosis (BCAS) and mice were sacrificed at 30 days after surgery. Ionized calcium-binding adaptor molecule 1 (IBA1) and glial fibrillary acidic protein (GFAP) immunostaining were performed to determine glial cell activation and inflammatory response. Tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ), and interleukin-1β (IL-1β) proteins from the brains were examined to confirm inflammatory cytokines after BCAS. RIP1 and RIP3 proteins were detected to determine necroptosis signaling by Western blot. The data suggested that inflammatory responses, microglia activation, and necroptosis signaling are features of brain tissue pathology following BCAS-induced chronic ischemic brain injury.
Collapse
Affiliation(s)
- Shehong Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuyang Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongyu Xie
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Yu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Junfa Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yulian Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Petrie EJ, Hildebrand JM, Murphy JM. Insane in the membrane: a structural perspective of MLKL function in necroptosis. Immunol Cell Biol 2017; 95:152-159. [DOI: 10.1038/icb.2016.125] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Emma J Petrie
- Cell Signalling and Cell Death Division, Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
- Department of Medical Biology, University of Melbourne Parkville Victoria Australia
| | - Joanne M Hildebrand
- Cell Signalling and Cell Death Division, Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
- Department of Medical Biology, University of Melbourne Parkville Victoria Australia
| | - James M Murphy
- Cell Signalling and Cell Death Division, Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
- Department of Medical Biology, University of Melbourne Parkville Victoria Australia
| |
Collapse
|
44
|
Hojo T, Siemieniuch MJ, Lukasik K, Piotrowska-Tomala KK, Jonczyk AW, Okuda K, Skarzynski DJ. Programmed necrosis - a new mechanism of steroidogenic luteal cell death and elimination during luteolysis in cows. Sci Rep 2016; 6:38211. [PMID: 27901113 PMCID: PMC5128806 DOI: 10.1038/srep38211] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022] Open
Abstract
Programmed necrosis (necroptosis) is an alternative form of programmed cell death that is regulated by receptor-interacting protein kinase (RIPK) 1 and 3-dependent, but is a caspase (CASP)-independent pathway. In the present study, to determine if necroptosis participates in bovine structural luteolysis, we investigated RIPK1 and RIPK3 expression throughout the estrous cycle, during prostaglandin F2α (PGF)-induced luteolysis in the bovine corpus luteum (CL), and in cultured luteal steroidogenic cells (LSCs) after treatment with selected luteolytic factors. In addition, effects of a RIPK1 inhibitor (necrostatin-1, Nec-1; 50 μM) on cell viability, progesterone secretion, apoptosis related factors and RIPKs expression, were evaluated. Expression of RIPK1 and RIPK3 increased in the CL tissue during both spontaneous and PGF-induced luteolysis (P < 0.05). In cultured LSCs, tumor necrosis factor α (TNF; 2.3 nM) in combination with interferon γ (IFNG; 2.5 nM) up-regulated RIPK1 mRNA and protein expression (P < 0.05). TNF + IFNG also up-regulated RIPK3 mRNA expression (P < 0.05), but not RIPK3 protein. Although Nec-1 prevented TNF + IFNG-induced cell death (P < 0.05), it did not affect CASP3 and CASP8 expression. Nec-1 decreased both RIPK1 and RIPK3 protein expression (P < 0.05). These findings suggest that RIPKs-dependent necroptosis is a potent mechanism responsible for bovine structural luteolysis induced by pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Takuo Hojo
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-748, Poland
| | - Marta J Siemieniuch
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-748, Poland
| | - Karolina Lukasik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-748, Poland
| | | | - Agnieszka W Jonczyk
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-748, Poland
| | - Kiyoshi Okuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan.,Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, 080-8555, Japan
| | - Dariusz J Skarzynski
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-748, Poland
| |
Collapse
|
45
|
Newton K, Wickliffe KE, Maltzman A, Dugger DL, Strasser A, Pham VC, Lill JR, Roose-Girma M, Warming S, Solon M, Ngu H, Webster JD, Dixit VM. RIPK1 inhibits ZBP1-driven necroptosis during development. Nature 2016; 540:129-133. [DOI: 10.1038/nature20559] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/25/2016] [Indexed: 12/31/2022]
|
46
|
Arora D, Siddiqui MH, Sharma PK, Shukla Y. Deltamethrin induced RIPK3-mediated caspase-independent non-apoptotic cell death in rat primary hepatocytes. Biochem Biophys Res Commun 2016; 479:217-223. [PMID: 27622324 DOI: 10.1016/j.bbrc.2016.09.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 09/09/2016] [Indexed: 02/09/2023]
Abstract
Deltamethrin (DLM), a synthetic pyrethroid insecticide, is used all over the world for indoor and field pest management. In the present study, we investigated the elicited pathogenesis of DLM-induced hepatotoxicity in rat primary hepatocytes. DLM-induced cell death was accompanied with increased ROS generation, decreased mitochondrial membrane potential and G2/M arrest. Pre-treatment with N-acetyl cysteine/butylated hydroxyanisole/IM54 could partly rescue hepatocytes suggesting that ROS might play a role in DLM-induced toxicity. Interestingly, DLM treatment resulted in a caspase-independent but non-apoptotic cell death. Pre-treatment with pan-caspase inhibitor (ZVAD-FMK) could not rescue hepatocytes. Unaltered caspase-3 activity and absence of cleaved caspase-3 also corroborated our findings. Further, LDH release and Transmission electron microscopy (TEM) analysis demonstrated that DLM incites membrane disintegrity and necrotic damage. Immunochemical staining revealed an increased expression of inflammatory markers (TNFα, NFκB, iNOS, COX-2) following DLM treatment. Moreover, the enhanced RIPK3 expression in DLM treated groups and prominent rescue from cell death by GSK-872 indicated that DLM exposure could induce programmed necrosis in hepatocytes. The present study demonstrates that DLM could induce hepatotoxicity via non-apoptotic mode of cell death.
Collapse
Affiliation(s)
- Deepika Arora
- Environmental Carcinogenesis & Proteomics Laboratory, Food, Drug & Chemical Toxicology Group, Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Mohammed Haris Siddiqui
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis & Proteomics Laboratory, Food, Drug & Chemical Toxicology Group, Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| | - Yogeshwer Shukla
- Environmental Carcinogenesis & Proteomics Laboratory, Food, Drug & Chemical Toxicology Group, Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
47
|
Suda J, Dara L, Yang L, Aghajan M, Song Y, Kaplowitz N, Liu ZX. Knockdown of RIPK1 Markedly Exacerbates Murine Immune-Mediated Liver Injury through Massive Apoptosis of Hepatocytes, Independent of Necroptosis and Inhibition of NF-κB. THE JOURNAL OF IMMUNOLOGY 2016; 197:3120-3129. [PMID: 27605011 DOI: 10.4049/jimmunol.1600690] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/16/2016] [Indexed: 12/21/2022]
Abstract
Receptor-interacting protein kinase (RIPK)1 has an essential role in the signaling pathways triggered by death receptors through activation of NF-κB and regulation of caspase-dependent apoptosis and RIPK3/mixed lineage kinase domain-like protein (MLKL)-mediated necroptosis. We examined the effect of RIPK1 antisense knockdown on immune-mediated liver injury in C57BL/6 mice caused by α-galactosylceramide (αGalCer), a specific activator for invariant NKT cells. We found that knockdown of RIPK1 markedly exacerbated αGalCer-mediated liver injury and induced lethality. This was associated with increased hepatic inflammation and massive apoptotic death of hepatocytes, as indicated by TUNEL staining and caspase-3 activation. Pretreatment with zVAD.fmk, a pan-caspase inhibitor, or neutralizing Abs against TNF, almost completely protected against the exacerbated liver injury and lethality. Primary hepatocytes isolated from RIPK1-knockdown mice were sensitized to TNF-induced cell death that was completely inhibited by adding zVAD.fmk. The exacerbated liver injury was not due to impaired hepatic NF-κB activation in terms of IκBα phosphorylation and degradation in in vivo and in vitro studies. Lack of RIPK1 kinase activity by pretreatment with necrostatin-1, a RIPK1 kinase inhibitor, or in the RIPK1 kinase-dead knock-in (RIPK1D138N) mice did not exacerbate αGalCer-mediated liver injury. Furthermore, RIPK3-knockout and MLKL-knockout mice behaved similarly as wild-type control mice in response to αGalCer, with or without knockdown of RIPK1, excluding a switch to RIPK3/MLKL-mediated necroptosis. Our findings reveal a critical kinase-independent platform role for RIPK1 in protecting against TNF/caspase-dependent apoptosis of hepatocytes in immune-mediated liver injury.
Collapse
Affiliation(s)
- Jo Suda
- Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Lily Dara
- Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Luoluo Yang
- Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033.,Department of Gastroenterology, Bethune First Hospital of Jilin University, Changchuan 130021, China
| | | | - Yong Song
- YSL Bioprocess Development Co., Pomona, CA 91767
| | - Neil Kaplowitz
- Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Zhang-Xu Liu
- Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033;
| |
Collapse
|
48
|
Affiliation(s)
- Shrikant R Mulay
- From Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Hans-Joachim Anders
- From Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
49
|
Justus SJ, Ting AT. Cloaked in ubiquitin, a killer hides in plain sight: the molecular regulation of RIPK1. Immunol Rev 2016; 266:145-60. [PMID: 26085213 DOI: 10.1111/imr.12304] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the past decade, studies have shown how instrumental programmed cell death (PCD) can be in innate and adaptive immune responses. PCD can be a means to maintain homeostasis, prevent or promote microbial pathogenesis, and drive autoimmune disease and inflammation. The molecular machinery regulating these cell death programs has been examined in detail, although there is still much to be explored. A master regulator of programmed cell death and innate immunity is receptor-interacting protein kinase 1 (RIPK1), which has been implicated in orchestrating various pathologies via the induction of apoptosis, necroptosis, and nuclear factor-κB-driven inflammation. These and other roles for RIPK1 have been reviewed elsewhere. In a reflection of the ability of tumor necrosis factor (TNF) to induce either survival or death response, this molecule in the TNF pathway can transduce either a survival or a death signal. The intrinsic killing capacity of RIPK1 is usually kept in check by the chains of ubiquitin, enabling it to serve in a prosurvival capacity. In this review, the intricate regulatory mechanisms responsible for restraining RIPK1 from killing are discussed primarily in the context of the TNF signaling pathway and how, when these mechanisms are disrupted, RIPK1 is free to unveil its program of cellular demise.
Collapse
Affiliation(s)
- Scott J Justus
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute and Tisch Cancer Institute, New York, NY, USA.,Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adrian T Ting
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute and Tisch Cancer Institute, New York, NY, USA
| |
Collapse
|
50
|
Moriwaki K, Chan FKM. Necroptosis-independent signaling by the RIP kinases in inflammation. Cell Mol Life Sci 2016; 73:2325-34. [PMID: 27048814 PMCID: PMC4889460 DOI: 10.1007/s00018-016-2203-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 10/22/2022]
Abstract
Recent advances have identified a signaling cascade involving receptor interacting protein kinase 1 (RIPK1), RIPK3 and the pseudokinase mixed lineage kinase domain-like (MLKL) that is crucial for induction of necroptosis, a non-apoptotic form of cell death. RIPK1-RIPK3-MLKL-mediated necroptosis has been attributed to cause many inflammatory diseases through the release of cellular damage-associated molecular patterns (DAMPs). In addition to necroptosis, emerging evidence suggests that these necroptosis signal adaptors can also facilitate inflammation independent of cell death. In particular, the RIP kinases can drive NF-κB and inflammasome activation independent of cell death. In this review, we will discuss recent discoveries that led to this realization and present arguments why cell death-independent signaling by the RIP kinases may have a more important role in inflammation than necroptosis.
Collapse
Affiliation(s)
- Kenta Moriwaki
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Francis Ka-Ming Chan
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|