1
|
Bondarev AD, Jonsson J, Chubarev VN, Tarasov VV, Lagunas-Rangel FA, Schiöth HB. Recent developments of topoisomerase inhibitors: Clinical trials, emerging indications, novel molecules and global sales. Pharmacol Res 2024; 209:107431. [PMID: 39307213 DOI: 10.1016/j.phrs.2024.107431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 11/11/2024]
Abstract
The nucleic acid topoisomerases (TOP) are an evolutionary conserved mechanism to solve topological problems within DNA and RNA that have been historically well-established as a chemotherapeutic target. During investigation of trends within clinical trials, we have identified a very high number of clinical trials involving TOP inhibitors, prompting us to further evaluate the current status of this class of therapeutic agents. In total, we have identified 233 unique molecules with TOP-inhibiting activity. In this review, we provide an overview of the clinical drug development highlighting advances in current clinical uses and discussing novel drugs and indications under development. A wide range of bacterial infections, along with solid and hematologic neoplasms, represent the bulk of clinically approved indications. Negative ADR profile and drug resistance among the antibacterial TOP inhibitors and anthracycline-mediated cardiotoxicity in the antineoplastic TOP inhibitors are major points of concern, subject to continuous research efforts. Ongoing development continues to focus on bacterial infections and cancer; however, there is a degree of diversification in terms of novel drug classes and previously uncovered indications, such as glioblastoma multiforme or Clostridium difficile infections. Preclinical studies show potential in viral, protozoal, parasitic and fungal infections as well and suggest the emergence of a novel target, TOP IIIβ. We predict further growth and diversification of the field thanks to the large number of experimental TOP inhibitors emerging.
Collapse
Affiliation(s)
- Andrey D Bondarev
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jörgen Jonsson
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Vladimir N Chubarev
- Advanced Molecular Technologies, Limited Liability Company (LLC), Moscow 354340, Russia
| | - Vadim V Tarasov
- Advanced Molecular Technologies, Limited Liability Company (LLC), Moscow 354340, Russia
| | - Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia.
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Jiang Y, Li T, Qiao XY, Luo H. Prenatal ultrasound diagnosis of an isolated right transverse facial cleft: A case report. Asian J Surg 2024; 47:4956-4957. [PMID: 38834469 DOI: 10.1016/j.asjsur.2024.05.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024] Open
Affiliation(s)
- Yu Jiang
- Department of Ultrasound, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Tao Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; Department of Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiao-Yong Qiao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; Department of Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hong Luo
- Department of Ultrasound, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| |
Collapse
|
3
|
Peng Y, Zhao P, Li Z, Mu N, Tao S, Feng Y, Cheng X, Zhang W. Genome-wide characterization of single-stranded DNA in rice. PLANT PHYSIOLOGY 2024; 196:1268-1283. [PMID: 38917225 DOI: 10.1093/plphys/kiae357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024]
Abstract
Single-stranded DNA (ssDNA) is essential for various DNA-templated processes in both eukaryotes and prokaryotes. However, comprehensive characterizations of ssDNA still lag in plants compared to nonplant systems. Here, we conducted in situ S1-sequencing, with starting gDNA ranging from 5 µg to 250 ng, followed by comprehensive characterizations of ssDNA in rice (Oryza sativa L.). We found that ssDNA loci were substantially associated with a subset of non-B DNA structures and functional genomic loci. Subtypes of ssDNA loci had distinct epigenetic features. Importantly, ssDNA may act alone or partly coordinate with non-B DNA structures, functional genomic loci, or epigenetic marks to actively or repressively modulate gene transcription, which is genomic region dependent and associated with the distinct accumulation of RNA Pol II. Moreover, distinct types of ssDNA had differential impacts on the activities and evolution of transposable elements (TEs) (especially common or conserved TEs) in the rice genome. Our study showcases an antibody-independent technique for characterizing non-B DNA structures or functional genomic loci in plants. It lays the groundwork and fills a crucial gap for further exploration of ssDNA, non-B DNA structures, or functional genomic loci, thereby advancing our understanding of their biology in plants.
Collapse
Affiliation(s)
- Yulian Peng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Pengtao Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Zhaoguo Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Ning Mu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Shentong Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Yilong Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Xuejiao Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| |
Collapse
|
4
|
Shinziya H, Menon RS, Das AK. A rapid investigation of near-infrared (NIR) fluorescent switch-on probes for detection and in cellulo tracking of G-quadruplex and double-stranded DNA. RSC Adv 2024; 14:30631-30646. [PMID: 39324042 PMCID: PMC11423286 DOI: 10.1039/d4ra06207h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
This review provides a comprehensive overview of the recent advancements in Near Infrared (NIR) fluorescence switch-on probes designed for the detection and in cellulo tracking of G-quadruplex and double-stranded DNA (dsDNA). G-quadruplexes, non-canonical DNA structures, play pivotal roles in regulating various biological processes, making them critical targets for therapeutic and diagnostic applications. The unique properties of NIR fluorescence probes, such as deep tissue penetration, minimal photodamage, and low autofluorescence background, offer significant advantages for bioimaging. We critically analyze the design strategies, photophysical properties, and binding mechanisms of various NIR fluorescence switch-on probes. Additionally, we discuss their efficacy and specificity in identifying G-quadruplexes and dsDNA within cellular environments. Key challenges and future directions for improving the sensitivity, selectivity, and biocompatibility of these probes are also highlighted. This review aims to underscore the potential of NIR fluorescence probes in advancing our understanding of DNA dynamics and their applications in biomedical research.
Collapse
Affiliation(s)
- Hazeena Shinziya
- Department of Chemistry, Christ University Hosur Road Bangalore Karnataka 560029 India
| | - Revathi S Menon
- Department of Chemistry, Christ University Hosur Road Bangalore Karnataka 560029 India
| | - Avijit Kumar Das
- Department of Chemistry, Christ University Hosur Road Bangalore Karnataka 560029 India
| |
Collapse
|
5
|
Wong SH, Kopf SN, Caroprese V, Zosso Y, Morzy D, Bastings MMC. Modulating the DNA/Lipid Interface through Multivalent Hydrophobicity. NANO LETTERS 2024; 24:11210-11216. [PMID: 39054892 PMCID: PMC11403765 DOI: 10.1021/acs.nanolett.4c02564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Lipids and nucleic acids are two of the most abundant components of our cells, and both molecules are widely used as engineering materials for nanoparticles. Here, we present a systematic study of how hydrophobic modifications can be employed to modulate the DNA/lipid interface. Using a series of DNA anchors with increasing hydrophobicity, we quantified the capacity to immobilize double-stranded (ds) DNA to lipid membranes in the liquid phase. Contrary to electrostatic effects, hydrophobic anchors are shown to be phase-independent if sufficiently hydrophobic. For weak anchors, the overall hydrophobicity can be enhanced following the concept of multivalency. Finally, we demonstrate that structural flexibility and anchor orientation overrule the effect of multivalency, emphasizing the need for careful scaffold design if strong interfaces are desired. Together, our findings guide the design of tailored DNA/membrane interfaces, laying the groundwork for advancements in biomaterials, drug delivery vehicles, and synthetic membrane mimics for biomedical research and nanomedicine.
Collapse
Affiliation(s)
- Siu Ho Wong
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
| | - Sarina Nicole Kopf
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
| | - Vincenzo Caroprese
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
| | - Yann Zosso
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
| | - Diana Morzy
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
| | - Maartje M C Bastings
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
- Interfaculty Bioengineering Institute, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
6
|
Sangeeta, Bhattacherjee A. Nick Induced Dynamics in Supercoiled DNA Facilitates the Protein Target Search Process. J Phys Chem B 2024; 128:8246-8258. [PMID: 39146491 DOI: 10.1021/acs.jpcb.4c03810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
A DNA nick, defined as a discontinuity in a double-stranded DNA molecule where the phosphodiester bond between adjacent nucleotides of one strand is absent due to enzyme action, serves as an effective mechanism to alleviate stress in supercoiled DNA. This stress release is essential for the smooth operation of transcriptional machinery. However, the underlying mechanisms and their impact on protein search dynamics, which are crucial for initiating transcription, remain unclear. Through extensive computer simulations, we unravel the molecular picture, demonstrating that intramolecular stress release due to a DNA nick is driven by a combination of writhing and twisting motions, depending on the nick's position. This stress release is quantitatively manifested as a step-like increase in the linking number. Furthermore, we elucidate that the nicked supercoiled minicircles exhibit enhanced torsional dynamics, promoting rapid conformational changes and frequent shifts in the identities of juxtaposed DNA sites on the plectoneme. The dynamics of the juxtaposition sites facilitates communication between protein and DNA, resulting in faster protein diffusion compared with native DNA with the same topology. Our findings highlight the mechanistic intricacies and underscore the importance of DNA nicks in facilitating transcription elongation by actively managing torsional stress during DNA unwinding by the RNA polymerase.
Collapse
Affiliation(s)
- Sangeeta
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arnab Bhattacherjee
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
7
|
Annecke HTP, Eidelpes R, Feyrer H, Ilgen J, Gürdap CO, Dasgupta R, Petzold K. Optimising in-cell NMR acquisition for nucleic acids. JOURNAL OF BIOMOLECULAR NMR 2024:10.1007/s10858-024-00448-5. [PMID: 39162911 DOI: 10.1007/s10858-024-00448-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024]
Abstract
Understanding the structure and function of nucleic acids in their native environment is crucial to structural biology and one focus of in-cell NMR spectroscopy. Many challenges hamper in-cell NMR in human cell lines, e.g. sample decay through cell death and RNA degradation. The resulting low signal intensities and broad line widths limit the use of more complex NMR experiments, reducing the possible structural and dynamic information that can be extracted. Here, we optimize the detection of imino proton signals, indicators of base-pairing and therefore secondary structure, of a double-stranded DNA oligonucleotide in HeLa cells, using selective excitation. We demonstrate the reproducible quantification of in-cell selective longitudinal relaxation times (selT1), which are reduced compared to the in vitro environment, as a result of interactions with the complex cellular environment. By measuring the intracellular selT1, we optimize the existing proton pulse sequences, and shorten measurement time whilst enhancing the signal gained per unit of time. This exemplifies an advantage of selective excitation over conventional methods like jump-return water suppression for in-cell NMR. Furthermore, important experimental controls are discussed, including intracellular quantification, supernatant control measurements, as well as the processing of lowly concentrated in-cell NMR samples. We expect that robust and fast in-cell NMR experiments of nucleic acids will facilitate the study of structure and dynamics and reveal their functional correlation.
Collapse
Affiliation(s)
- Henry T P Annecke
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, 171 65, Stockholm, Sweden
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Reiner Eidelpes
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, 171 65, Stockholm, Sweden
| | - Hannes Feyrer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, 171 65, Stockholm, Sweden
| | - Julian Ilgen
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, 171 65, Stockholm, Sweden
| | - Cenk Onur Gürdap
- Department of Women's and Children's Health, Karolinska Institutet, 171 65, Solna, Sweden
- Science for Life Laboratory, 171 65, Solna, Sweden
| | - Rubin Dasgupta
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, 171 65, Stockholm, Sweden.
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden.
- Science for Life Laboratory, 171 65, Solna, Sweden.
- Center of Excellence for the Chemical Mechanisms of Life, Uppsala University, 752 37, Uppsala, Sweden.
| |
Collapse
|
8
|
Borroto MC, Michaud C, Hudon C, Agrawal PB, Agre K, Applegate CD, Beggs AH, Bjornsson HT, Callewaert B, Chen MJ, Curry C, Devinsky O, Dudding-Byth T, Fagan K, Finnila CR, Gavrilova R, Genetti CA, Hiatt SM, Hildebrandt F, Wojcik MH, Kleefstra T, Kolvenbach CM, Korf BR, Kruszka P, Li H, Litwin J, Marcadier J, Platzer K, Blackburn PR, Reijnders MRF, Reutter H, Schanze I, Shieh JT, Stevens CA, Valivullah Z, van den Boogaard MJ, Klee EW, Campeau PM. A Genotype/Phenotype Study of KDM5B-Associated Disorders Suggests a Pathogenic Effect of Dominantly Inherited Missense Variants. Genes (Basel) 2024; 15:1033. [PMID: 39202393 PMCID: PMC11353349 DOI: 10.3390/genes15081033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Bi-allelic disruptive variants (nonsense, frameshift, and splicing variants) in KDM5B have been identified as causative for autosomal recessive intellectual developmental disorder type 65. In contrast, dominant variants, usually disruptive as well, have been more difficult to implicate in a specific phenotype, since some of them have been found in unaffected controls or relatives. Here, we describe individuals with likely pathogenic variants in KDM5B, including eight individuals with dominant missense variants. This study is a retrospective case series of 21 individuals with variants in KDM5B. We performed deep phenotyping and collected the clinical information and molecular data of these individuals' family members. We compared the phenotypes according to variant type and to those previously described in the literature. The most common features were developmental delay, impaired intellectual development, behavioral problems, autistic behaviors, sleep disorders, facial dysmorphism, and overgrowth. DD, ASD behaviors, and sleep disorders were more common in individuals with dominant disruptive KDM5B variants, while individuals with dominant missense variants presented more frequently with renal and skin anomalies. This study extends our understanding of the KDM5B-related neurodevelopmental disorder and suggests the pathogenicity of certain dominant KDM5B missense variants.
Collapse
Affiliation(s)
- Maria Carla Borroto
- Centre de Recherche Azrieli du CHU Sainte-Justine, University of Montreal, Montreal, QC H3T 1C5, Canada (C.H.)
| | - Coralie Michaud
- Centre de Recherche Azrieli du CHU Sainte-Justine, University of Montreal, Montreal, QC H3T 1C5, Canada (C.H.)
| | - Chloé Hudon
- Centre de Recherche Azrieli du CHU Sainte-Justine, University of Montreal, Montreal, QC H3T 1C5, Canada (C.H.)
| | - Pankaj B. Agrawal
- The Manton Center for Orphan Disease Research, Divisions of Newborn Medicine and of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine Agre
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55902, USA
| | - Carolyn D. Applegate
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.D.A.)
| | - Alan H. Beggs
- The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.H.B.)
| | - Hans T. Bjornsson
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.D.A.)
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
- Department of Genetics and Molecular Medicine, Landspitali University Hospital, 101 Reykjavik, Iceland
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Mei-Jan Chen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Cynthia Curry
- Genetic Medicine, University of California San Francisco/Fresno, Fresno, CA 93701, USA
| | - Orrin Devinsky
- Departments of Neurology, Neuroscience, Neurosurgery and Psychiatry, NYU School of Medicine, New York, NY 10016, USA
| | | | - Kelly Fagan
- UCSF Benioff Children’s Hospital, San Francisco, CA 93940, USA
| | - Candice R. Finnila
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA
| | - Ralitza Gavrilova
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55902, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55902, USA
| | - Casie A. Genetti
- The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.H.B.)
| | - Susan M. Hiatt
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA
| | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Monica H. Wojcik
- The Manton Center for Orphan Disease Research, Divisions of Newborn Medicine and of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Caroline M. Kolvenbach
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Bruce R. Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Hong Li
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jessica Litwin
- Department of Neurology, University of California, San Francisco Benioff Children’s Hospital, San Francisco, CA 94158, USA
| | - Julien Marcadier
- Division of Medical Genetics, Alberta Children’s Hospital, Calgary, AB T3B 6A8, Canada
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | | | - Margot R. F. Reijnders
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Heiko Reutter
- Institute of Human Genetics, University Hospital of Bonn, 53127 Bonn, Germany
| | - Ina Schanze
- Institute of Human Genetics, 39120 Magdeburg, Germany
| | - Joseph T. Shieh
- Division of Medical Genetics, Department of Pediatrics, University of California, San Francisco Benioff Childen’s Hospital, San Francisco, CA 94143, USA
| | - Cathy A. Stevens
- Department of Pediatrics, University of Tennessee College of Medicine, Chattanooga, TN 38103, USA
| | - Zaheer Valivullah
- Center for Mendelian Genomics, Broad Institute Harvard, Cambridge, MA 02142, USA
| | | | - Eric W. Klee
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55902, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55902, USA
| | - Philippe M. Campeau
- Centre de Recherche Azrieli du CHU Sainte-Justine, University of Montreal, Montreal, QC H3T 1C5, Canada (C.H.)
| |
Collapse
|
9
|
Yan Z, Hou J, Leng B, Yao G, Ma C, Sun Y, Liu Q, Zhang F, Mu C, Liu X. Genome-Wide Identification and Characterization of Maize Long-Chain Acyl-CoA Synthetases and Their Expression Profiles in Different Tissues and in Response to Multiple Abiotic Stresses. Genes (Basel) 2024; 15:983. [PMID: 39202344 PMCID: PMC11354158 DOI: 10.3390/genes15080983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Long-chain acyl-CoA synthetases (LACSs) are essential enzymes that activate free fatty acids to fatty acyl-CoA thioesters, playing key roles in fatty acid (FA) catabolism, lipid synthesis and storage, epidermal wax synthesis, and stress tolerance. Despite their importance, comprehensive information about LACS genes in maize, a primary food crop, remains scarce. In the present work, eleven maize LACS genes were identified and mapped across five chromosomes. Three pairs of segmentally duplicated genes were detected in the maize LACS gene family, which underwent significant purifying selection (Ka/Ks < 1). Subsequently, phylogenetic analysis indicated that ZmLACS genes were divided into four subclasses, as supported by highly conserved motifs and gene structures. On the basis of the PlantCARE database, analysis of the ZmLACS promoter regions revealed various cis-regulatory elements related to tissue-specific expression, hormonal regulation, and abiotic stress response. RT-qPCR analysis showed that ZmLACS genes exhibit tissue-specific expression patterns and respond to diverse abiotic stresses including drought and salt, as well as phytohormone abscisic acid. Furthermore, using the STRING database, several proteins involved in fatty acid and complex lipid synthesis were identified to be the potential interaction partners of ZmLACS proteins, which was also confirmed by the yeast two-hybrid (Y2H) assay, enhancing our understanding of wax biosynthesis and regulatory mechanisms in response to abiotic stresses in maize. These findings provide a comprehensive understanding of ZmLACS genes and offer a theoretical foundation for future research on the biological functions of LACS genes in maize environmental adaptability.
Collapse
Affiliation(s)
- Zhenwei Yan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jing Hou
- School of Agriculture, Ludong University, Yantai 264001, China
| | - Bingying Leng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Guoqi Yao
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan 250300, China
| | - Yue Sun
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiantong Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Fajun Zhang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chunhua Mu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xia Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
10
|
Yan Z, Hou J, Leng B, Yao G, Ma C, Sun Y, Zhang F, Mu C, Liu X. Genome-Wide Investigation of the CRF Gene Family in Maize and Functional Analysis of ZmCRF9 in Response to Multiple Abiotic Stresses. Int J Mol Sci 2024; 25:7650. [PMID: 39062894 PMCID: PMC11276700 DOI: 10.3390/ijms25147650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The cytokinin response factors (CRFs) are pivotal players in regulating plant growth, development, and responses to diverse stresses. Despite their significance, comprehensive information on CRF genes in the primary food crop, maize, remains scarce. In this study, a genome-wide analysis of CRF genes in maize was conducted, resulting in the identification of 12 members. Subsequently, we assessed the chromosomal locations, gene duplication events, evolutionary relationships, conserved motifs, and gene structures of all ZmCRF members. Analysis of ZmCRF promoter regions indicated the presence of cis-regulatory elements associated with plant growth regulation, hormone response, and various abiotic stress responses. The expression patterns of maize CRF genes, presented in heatmaps, exhibited distinctive patterns of tissue specificity and responsiveness to multiple abiotic stresses. qRT-PCR experiments were conducted on six selected genes and confirmed the involvement of ZmCRF genes in the plant's adaptive responses to diverse environmental challenges. In addition, ZmCRF9 was demonstrated to positively regulate cold and salt tolerance. Ultimately, we explored the putative interaction partners of ZmCRF proteins. In summary, this systematic overview and deep investigation of ZmCRF9 provides a solid foundation for further exploration into how these genes contribute to the complex interplay of plant growth, development, and responses to stress.
Collapse
Affiliation(s)
- Zhenwei Yan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Jing Hou
- School of Agriculture, Ludong University, Yantai 264001, China;
| | - Bingying Leng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Guoqi Yao
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan 250300, China;
| | - Yue Sun
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China;
| | - Fajun Zhang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Chunhua Mu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Xia Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| |
Collapse
|
11
|
Ellenbroek BD, Kahler JP, Evers SR, Pomplun SJ. Synthetic Peptides: Promising Modalities for the Targeting of Disease-Related Nucleic Acids. Angew Chem Int Ed Engl 2024; 63:e202401704. [PMID: 38456368 DOI: 10.1002/anie.202401704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
DNA and RNA play pivotal roles in life processes by storing and transferring genetic information, modulating gene expression, and contributing to essential cellular machinery such as ribosomes. Dysregulation and mutations in nucleic acid-related processes are implicated in numerous diseases. Despite the critical impact on health of nucleic acid mutations or dysregulation, therapeutic compounds addressing these biomolecules remain limited. Peptides have emerged as a promising class of molecules for biomedical research, offering potential solutions for challenging drug targets. This review focuses on the use of synthetic peptides to target disease-related nucleic acids. We discuss examples of peptides targeting double-stranded DNA, including the clinical candidate Omomyc, and compounds designed for regulatory G-quadruplexes. Further, we provide insights into both library-based screenings and the rational design of peptides to target regulatory human RNA scaffolds and viral RNAs, emphasizing the potential of peptides in addressing nucleic acid-related diseases.
Collapse
Affiliation(s)
| | | | - Sophie R Evers
- Leiden University, 2333 CC, Leiden, The Netherlands
- Present address, Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, 8057, Zurich, Switzerland
| | | |
Collapse
|
12
|
Monavari SM, Memarian N. A DFTB study on the electronic response of encapsulated DNA nucleobases onto chiral CNTs as a sequencer. Sci Rep 2024; 14:10826. [PMID: 38734799 DOI: 10.1038/s41598-024-61677-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
Sequencing the DNA nucleobases is essential in the diagnosis and treatment of many diseases related to human genes. In this article, the encapsulation of DNA nucleobases with some of the important synthesized chiral (7, 6), (8, 6), and (10, 8) carbon nanotubes were investigated. The structures were modeled by applying density functional theory based on tight binding method (DFTB) by considering semi-empirical basis sets. Encapsulating DNA nucleobases on the inside of CNTs caused changes in the electronic properties of the selected chiral CNTs. The results confirmed that van der Waals (vdW) interactions, π-orbitals interactions, non-bonded electron pairs, and the presence of high electronegative atoms are the key factors for these changes. The result of electronic parameters showed that among the CNTs, CNT (8, 6) is a suitable choice in sequencing guanine (G) and cytosine (C) DNA nucleobases. However, they are not able to sequence adenine (A) and thymine (T). According to the band gap energy engineering approach and absorption energy, the presence of G and C DNA nucleobases decreased the band gap energy of CNTs. Hence selected CNTs suggested as biosensor substrates for sequencing G and C DNA nucleobases.
Collapse
Affiliation(s)
| | - Nafiseh Memarian
- Faculty of Physics, Semnan University, P.O. Box: 35195-363, Semnan, Iran.
| |
Collapse
|
13
|
Węgrzyn E, Mejdrová I, Müller FM, Nainytė M, Escobar L, Carell T. RNA-Templated Peptide Bond Formation Promotes L-Homochirality. Angew Chem Int Ed Engl 2024; 63:e202319235. [PMID: 38407532 DOI: 10.1002/anie.202319235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
The world in which we live is homochiral. The ribose units that form the backbone of DNA and RNA are all D-configured and the encoded amino acids that comprise the proteins of all living species feature an all-L-configuration at the α-carbon atoms. The homochirality of α-amino acids is essential for folding of the peptides into well-defined and functional 3D structures and the homochirality of D-ribose is crucial for helix formation and base-pairing. The question of why nature uses only encoded L-α-amino acids is not understood. Herein, we show that an RNA-peptide world, in which peptides grow on RNAs constructed from D-ribose, leads to the self-selection of homo-L-peptides, which provides a possible explanation for the homo-D-ribose and homo-L-amino acid combination seen in nature.
Collapse
Affiliation(s)
- Ewa Węgrzyn
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Ivana Mejdrová
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Felix M Müller
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Milda Nainytė
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Luis Escobar
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| |
Collapse
|
14
|
Thomas DM, Knight R, Gilbert JA, Cornelis MC, Gantz MG, Burdekin K, Cummiskey K, Sumner SCJ, Pathmasiri W, Sazonov E, Gabriel KP, Dooley EE, Green MA, Pfluger A, Kleinberg S. Transforming Big Data into AI-ready data for nutrition and obesity research. Obesity (Silver Spring) 2024; 32:857-870. [PMID: 38426232 PMCID: PMC11180473 DOI: 10.1002/oby.23989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 03/02/2024]
Abstract
OBJECTIVE Big Data are increasingly used in obesity and nutrition research to gain new insights and derive personalized guidance; however, this data in raw form are often not usable. Substantial preprocessing, which requires machine learning (ML), human judgment, and specialized software, is required to transform Big Data into artificial intelligence (AI)- and ML-ready data. These preprocessing steps are the most complex part of the entire modeling pipeline. Understanding the complexity of these steps by the end user is critical for reducing misunderstanding, faulty interpretation, and erroneous downstream conclusions. METHODS We reviewed three popular obesity/nutrition Big Data sources: microbiome, metabolomics, and accelerometry. The preprocessing pipelines, specialized software, challenges, and how decisions impact final AI- and ML-ready products were detailed. RESULTS Opportunities for advances to improve quality control, speed of preprocessing, and intelligent end user consumption were presented. CONCLUSIONS Big Data have the exciting potential for identifying new modifiable factors that impact obesity research. However, to ensure accurate interpretation of conclusions arising from Big Data, the choices involved in preparing AI- and ML-ready data need to be transparent to investigators and clinicians relying on the conclusions.
Collapse
Affiliation(s)
- Diana M. Thomas
- Department of Mathematical Sciences, United States Military Academy, West Point, NY 10996
| | - Rob Knight
- Bioinformatics and Systems Biology Program, University of San Diego, La Jolla, CA 92037
| | - Jack A. Gilbert
- Department of Pediatrics and Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037
| | - Marilyn C. Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Marie G. Gantz
- RTI International, Biostatics and Epidemiology Division, Research Triangle Park, NC 27709
| | - Kate Burdekin
- RTI International, Biostatics and Epidemiology Division, Research Triangle Park, NC 27709
| | - Kevin Cummiskey
- Department of Mathematical Sciences, United States Military Academy, West Point, NY 10996
| | - Susan C. J. Sumner
- Department of Nutrition, Nutrition Research Institute, UNC Chapel Hill, 500 Laureate Way, Kannapolis, NC 28081
| | - Wimal Pathmasiri
- Department of Nutrition, Nutrition Research Institute, UNC Chapel Hill, 500 Laureate Way, Kannapolis, NC 28081
| | - Edward Sazonov
- Electrical and Computer Engineering Department, The University of Alabama, Tuscaloosa, AL 35487
| | - Kelley Pettee Gabriel
- Department of Epidemiology, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Erin E. Dooley
- Department of Epidemiology, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Mark A. Green
- Department of Geography & Planning, University of Liverpool, Liverpool, L69 3BX, UK
| | - Andrew Pfluger
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, NY 10996
| | - Samantha Kleinberg
- Computer Science Department, Stevens Institute of Technology, Hoboken, NJ 07030
| |
Collapse
|
15
|
Cebeci YE, Erturk RA, Ergun MA, Baysan M. Improving somatic exome sequencing performance by biological replicates. BMC Bioinformatics 2024; 25:124. [PMID: 38519906 PMCID: PMC10958848 DOI: 10.1186/s12859-024-05742-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) technologies offer fast and inexpensive identification of DNA sequences. Somatic sequencing is among the primary applications of NGS, where acquired (non-inherited) variants are based on comparing diseased and healthy tissues from the same individual. Somatic mutations in genetic diseases such as cancer are tightly associated with genomic instability. Genomic instability increases heterogenity, complicating sequencing efforts further, a task already challenged by the presence of short reads and repetitions in human DNA. This leads to low concordance among studies and limits reproducibility. This limitation is a significant problem since identified mutations in somatic sequencing are major biomarkers for diagnosis and the primary input of targeted therapies. Benchmarking studies were conducted to assess the error rates and increase reproducibility. Unfortunately, the number of somatic benchmarking sets is very limited due to difficulties in validating true somatic variants. Moreover, most NGS benchmarking studies are based on relatively simpler germline (inherited) sequencing. Recently, a comprehensive somatic sequencing benchmarking set was published by Sequencing Quality Control Phase 2 (SEQC2). We chose this dataset for our experiments because it is a well-validated, cancer-focused dataset that includes many tumor/normal biological replicates. Our study has two primary goals. First goal is to determine how replicate-based consensus approaches can improve the accuracy of somatic variant detection systems. Second goal is to develop highly predictive machine learning (ML) models by employing replicate-based consensus variants as labels during the training phase. RESULTS Ensemble approaches that combine alternative algorithms are relatively common; here, as an alternative, we study the performance enhancement potential of biological replicates. We first developed replicate-based consensus approaches that utilize the biological replicates available in this study to improve variant calling performance. Subsequently, we trained ML models using these biological replicates and achieved performance comparable to optimal ML models, those trained using high-confidence variants identified in advance. CONCLUSIONS Our replicate-based consensus approach can be used to improve variant calling performance and develop efficient ML models. Given the relative ease of obtaining biological replicates, this strategy allows for the development of efficient ML models tailored to specific datasets or scenarios.
Collapse
Affiliation(s)
- Yunus Emre Cebeci
- Department of Computer Engineering, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Rumeysa Aslihan Erturk
- Department of Computer Engineering, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Mehmet Arif Ergun
- Department of Computer Engineering, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Mehmet Baysan
- Department of Computer Engineering, Istanbul Technical University, 34469, Istanbul, Turkey.
| |
Collapse
|
16
|
Szymczyk A, Popiołek M, Krzemiński J, Olszewski M, Ziółkowski R, Malinowska E. Identification of medium- and mechanism-related pitfalls towards improved performance and applicability of electrochemical mercury(II) aptasensors. Mikrochim Acta 2024; 191:189. [PMID: 38457045 DOI: 10.1007/s00604-024-06272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
The importance of understanding the mercury (II) ion interactions with thymine-rich DNA sequences is the reason for multiple comparative investigations carried out with the use of optical detection techniques directly in the depth of solution. However, the results of such investigations have limited applicability in the interpretation of the Hg2+ binding phenomenon by DNA sequences in thin, interfacial (electrode/solution), self-organized monolayers immobilized on polarizable surfaces, often used for sensing purposes in electrochemical biosensors. Overlooking the careful optimization of the measurement conditions is the source of discrepancies in the interpretation of the registered electrochemical signal. In this study, the chosen effects accompanying the efficiency of surface related recognition of Hg2+ by polyThymine DNA sequences labelled with methylene blue were investigated by voltammetry, QCM and spectro-electrochemical techniques. As was shown, the composition of the biosensing layer and buffers or the analytical procedures have a significant impact on the registered electrochemical readout which translates into signal stability, the biosensor's working parameters or even the mechanism of detection. After elucidation of the above factors, the complete and ready-to-use biosensor-based analytical solution was proposed offering subpicomolar mercury ion determination with high selectivity (also in aqueous real samples), reusability, and high signal stability even after long-term storage. The developed procedures were successfully used during the miniaturization process with self-prepared (PVD) elastic transducers. The obtained sensor, together with the simplicity of its use, low manufacturing cost, and attractive analytical parameters (i.e., LOD < < Hg2+ WHO limit) can present an interesting alternative for on-site mercury ion detection in environmental samples.
Collapse
Affiliation(s)
- Anna Szymczyk
- Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664, Warsaw, Poland
- Doctoral School, Warsaw University of Technology, Plac Politechniki 1, 00-661, Warsaw, Poland
| | - Martyna Popiołek
- Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664, Warsaw, Poland
| | - Jakub Krzemiński
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland
| | - Marcin Olszewski
- Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-664, Warsaw, Poland
| | - Robert Ziółkowski
- Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664, Warsaw, Poland.
| | - Elżbieta Malinowska
- Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664, Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland
| |
Collapse
|
17
|
Lee AJ, Rackers JA, Pathak S, Bricker WP. Building an ab initio solvated DNA model using Euclidean neural networks. PLoS One 2024; 19:e0297502. [PMID: 38358990 PMCID: PMC10868815 DOI: 10.1371/journal.pone.0297502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/06/2024] [Indexed: 02/17/2024] Open
Abstract
Accurately modeling large biomolecules such as DNA from first principles is fundamentally challenging due to the steep computational scaling of ab initio quantum chemistry methods. This limitation becomes even more prominent when modeling biomolecules in solution due to the need to include large numbers of solvent molecules. We present a machine-learned electron density model based on a Euclidean neural network framework that includes a built-in understanding of equivariance to model explicitly solvated double-stranded DNA. By training the machine learning model using molecular fragments that sample the key DNA and solvent interactions, we show that the model predicts electron densities of arbitrary systems of solvated DNA accurately, resolves polarization effects that are neglected by classical force fields, and captures the physics of the DNA-solvent interaction at the ab initio level.
Collapse
Affiliation(s)
- Alex J. Lee
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, United States of America
| | - Joshua A. Rackers
- Center for Computing Research, Sandia National Laboratories, Albuquerque, NM, United States of America
| | - Shivesh Pathak
- Center for Computing Research, Sandia National Laboratories, Albuquerque, NM, United States of America
| | - William P. Bricker
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, United States of America
| |
Collapse
|
18
|
Zheng YY, Dartawan R, Wu Y, Wu C, Zhang H, Lu J, Hu A, Vangaveti S, Sheng J. Structural effects of inosine substitution in telomeric DNA quadruplex. Front Chem 2024; 12:1330378. [PMID: 38312345 PMCID: PMC10834636 DOI: 10.3389/fchem.2024.1330378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
The telomeric DNA, a distal region of eukaryotic chromosome containing guanine-rich repetitive sequence of (TTAGGG)n, has been shown to adopt higher-order structures, specifically G-quadruplexes (G4s). Previous studies have demonstrated the implication of G4 in tumor inhibition through chromosome maintenance and manipulation of oncogene expression featuring their G-rich promoter regions. Besides higher order structures, several regulatory roles are attributed to DNA epigenetic markers. In this work, we investigated how the structural dynamics of a G-quadruplex, formed by the telomeric sequence, is affected by inosine, a prevalent modified nucleotide. We used the standard (TTAGGG)n telomere repeats with guanosine mutated to inosine at each G position. Sequences (GGG)4, (IGG)4, (GIG)4, (GGI)4, (IGI)4, (IIG)4, (GII)4, and (III)4, bridged by TTA linker, are studied using biophysical experiments and molecular modeling. The effects of metal cations in quadruplex folding were explored in both Na+ and K+ containing buffers using CD and UV-melting studies. Our results show that antiparallel quadruplex topology forms with the native sequence (GGG)4 and the terminal modified DNAs (IGG)4 and (GGI)4 in both Na+ and K+ containing buffers. Specifically, quadruplex hybrid was observed for (GGG)4 in K+ buffer. Among the other modified sequences, (GIG)4, (IGI)4 and (GII)4 show parallel features, while (IIG)4 and (III)4 show no detectable conformation in the presence of either Na+ or K+. Our studies indicate that terminal lesions (IGG)4 and (GGI)4 may induce certain unknown conformations. The folding dynamics become undetectable in the presence of more than one inosine substitution except (IGI)4 in both buffer ions. In addition, both UV melting and CD melting studies implied that in most cases the K+ cation confers more thermodynamic stability compared to Na+. Collectively, our conformational studies revealed the diverse structural polymorphisms of G4 with position dependent G-to-I mutations in different ion conditions.
Collapse
Affiliation(s)
- Ya Ying Zheng
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Ricky Dartawan
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Yuhan Wu
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Chengze Wu
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Hope Zhang
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Jeanne Lu
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Ashley Hu
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Sweta Vangaveti
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Jia Sheng
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| |
Collapse
|
19
|
Van Hofwegen DJ, Hovde CJ, Minnich SA. Comparison of Yersinia enterocolitica DNA Methylation at Ambient and Host Temperatures. EPIGENOMES 2023; 7:30. [PMID: 38131902 PMCID: PMC10742451 DOI: 10.3390/epigenomes7040030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Pathogenic bacteria recognize environmental cues to vary gene expression for host adaptation. Moving from ambient to host temperature, Yersinia enterocolitica responds by immediately repressing flagella synthesis and inducing the virulence plasmid (pYV)-encoded type III secretion system. In contrast, shifting from host to ambient temperature requires 2.5 generations to restore motility, suggesting a link to the cell cycle. We hypothesized that differential DNA methylation contributes to temperature-regulated gene expression. We tested this hypothesis by comparing single-molecule real-time (SMRT) sequencing of Y. enterocolitica DNA from cells growing exponentially at 22 °C and 37 °C. The inter-pulse duration ratio rather than the traditional QV scoring was the kinetic metric to compare DNA from cells grown at each temperature. All 565 YenI restriction sites were fully methylated at both temperatures. Among the 27,118 DNA adenine methylase (Dam) sites, 42 had differential methylation patterns, while 17 remained unmethylated regardless of the temperature. A subset of the differentially methylated Dam sites localized to promoter regions of predicted regulatory genes including LysR-type and PadR-like transcriptional regulators and a cyclic-di-GMP phosphodiesterase. The unmethylated Dam sites localized with a bias to the replication terminus, suggesting they were protected from Dam methylase. No cytosine methylation was detected at Dcm sites.
Collapse
Affiliation(s)
| | | | - Scott A. Minnich
- Department of Animal Veterinary and Food Science, University of Idaho, Moscow, ID 83843, USA; (D.J.V.H.); (C.J.H.)
| |
Collapse
|
20
|
Maria C, Rauter AP. Nucleoside analogues: N-glycosylation methodologies, synthesis of antiviral and antitumor drugs and potential against drug-resistant bacteria and Alzheimer's disease. Carbohydr Res 2023; 532:108889. [PMID: 37517197 DOI: 10.1016/j.carres.2023.108889] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
Nucleosides have gained significant attention since the discovery of the structure of DNA. Nucleoside analogues may be synthesized through multiple synthetic pathways, however the N-glycosylation of a nucleobase is the most common method. Amongst the different classical N-glycosylation methodologies, the Vorbrüggen glycosylation is the most popular method. This review focuses on the synthesis and therapeutic applications of several FDA approved nucleoside analogues as antiviral and anticancer agents. Moreover, this review also focuses on the potential of these compounds as new antibacterial and anti-Alzheimer's disease agents, offering an overview of the most recent research in these fields.
Collapse
Affiliation(s)
- Catarina Maria
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
| | - Amélia P Rauter
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
| |
Collapse
|
21
|
Spencer DM, Svenungsson E, Gunnarsson I, Caricchio R, Pisetsky DS. The expression of antibodies to Z-DNA in the blood of patients with systemic lupus erythematosus: Relationship to autoantibodies to B-DNA. Clin Immunol 2023; 255:109763. [PMID: 37673226 DOI: 10.1016/j.clim.2023.109763] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
To explore the antibody response to Z-DNA, a DNA conformation with a zig-zag structure, blood of patients with systemic lupus erythematosus (SLE) and otherwise healthy individuals (NHS) were assayed by ELISA using brominated poly(dGdC), a synthetic Z-DNA antigen. These studies showed that SLE patients commonly express antibodies to Z-DNA; NHS also had binding in this assay. In SLE blood, levels of antibodies to Z-DNA were related to those to B-DNA using calf thymus DNA as a source of B-DNA; cross-reactivity was demonstrated by adsorption experiments using DNA cellulose. As shown by dissociation assays, antibody binding of SLE anti-Z-DNA is sensitive to the effects of ionic strength, suggesting electrostatic binding. Since Z-DNA structure can be found in bacterial DNA as well as bacterial biofilms, these findings suggest that, in SLE, anti-DNA antibody responses can result from stimulation by DNA of bacterial origin, with cross-reactivity leading to autoreactivity.
Collapse
Affiliation(s)
- Diane M Spencer
- Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Elisabet Svenungsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Roberto Caricchio
- Division of Rheumatology, University of Massachusetts Memorial Medical Center, Worcester, MA 01605, USA
| | - David S Pisetsky
- Medical Research Service, Durham Veterans Administration Medical Center, Durham, NC 27705, USA; Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
22
|
Cao Y, Bai J, Zou J, Du Y, Chen T. One-Pot Enzymatic Preparation of Oligonucleotides with an Expanded Genetic Alphabet via Controlled Pause and Restart of Primer Extension: Making Unnatural Out of Natural. ACS Synth Biol 2023; 12:2691-2706. [PMID: 37672623 DOI: 10.1021/acssynbio.3c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The genetic alphabet of life has been dramatically expanded via the development of unnatural base pairs (UBPs) that work as efficiently as natural base pairs in the storage and retrieval of genetic information. Among the most predominant UBPs, dNaM-dTPT3 and its analogues have been successfully employed to build semisynthetic cells with a functional six-letter genome. With the rapidly growing applications of UBPs in vitro and in vivo, there is an ever-increasing demand for DNA oligonucleotides containing unnatural bases (UBs) at desired positions. Conventional solid-phase synthesis of oligonucleotides has intrinsic limitations and needs to use unstable unnatural phosphoramidites and a DNA synthesizer, so it does not meet the daily urgent requirement for a few UB-containing DNA oligonucleotides in the laboratory. In this work, we develop a one-pot enzymatic method for preparing dNaM- or dTPT3-containing DNA oligonucleotides via controlled pause and restart of primer extension mediated by Klenow fragment (exo-). By systematic optimization of the reaction conditions, high efficiencies and product purities have been achieved. The universality of this method for preparing DNA oligonucleotides containing dNaM or dTPT3 in different sequence contexts is also demonstrated. This method allows convenient production of an arbitrary UB-containing DNA oligonucleotide in a single test tube with only two natural DNA oligonucleotides, stable nucleoside triphosphates, Klenow fragment (exo-), and other common reagents in the laboratory, providing the lowest cost and the highest simplicity for the enzymatic preparation of UB-containing oligonucleotides. Clearly, this method has great potential to facilitate the in vitro and in vivo applications of the UBPs.
Collapse
Affiliation(s)
- Yijun Cao
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jingsi Bai
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jinrong Zou
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
23
|
Fitoz A, Yazan Z. Experimental and theoretical approaches to interactions between DNA and purine metabolism products. Int J Biol Macromol 2023; 248:125961. [PMID: 37487992 DOI: 10.1016/j.ijbiomac.2023.125961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/13/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Deoxyribonucleic acid (DNA) is a significant target for small organic and inorganic drug molecules. Understanding the DNA interaction mechanism of these molecules is vital for new drug designs. In this work, interactions between xanthine (XT), theophylline (TP), and theobromine (TB) with calf-thymus double-strained DNA (dsDNA) were monitored via an experimental and theoretical approach. Experimentally, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques were used on the surface of the NiO/MWCNT/NNaM/PGE electrochemical platform in vitro. Kinetic parameters, including diffusion coefficients, surface concentrations, and standard heterogeneous rate constants, were measured in the absence and presence of DNA using scan rate studies. In the presence of DNA, kinetic parameters were observed to be reduced significantly. Thermodynamic parameters, such as DNA binding constants and standard free Gibbs energies, were calculated for each molecule using the CV and DPV techniques. Both techniques suggested a binding affinity order of XT > TB > TP. Theoretically, density functional theory was applied for geometry optimization, natural bond orbital analyses, and molecular orbital energies of XT, TP, and TB. Experimental and theoretical binding affinities confirm each other. The most energetically stable ligand-DNA complexes expressed that XT, TP, and TB interact with dsDNA via minor groove binding mode, using mostly hydrogen bonds.
Collapse
Affiliation(s)
- Alper Fitoz
- Ankara University, Faculty of Science, Department of Chemistry, 06560, Turkey
| | - Zehra Yazan
- Ankara University, Faculty of Science, Department of Chemistry, 06560, Turkey.
| |
Collapse
|
24
|
Żarczyńska M, Żarczyński P, Tomsia M. Nucleic Acids Persistence-Benefits and Limitations in Forensic Genetics. Genes (Basel) 2023; 14:1643. [PMID: 37628694 PMCID: PMC10454188 DOI: 10.3390/genes14081643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The analysis of genetic material may be the only way to identify an unknown person or solve a criminal case. Often, the conditions in which the genetic material was found determine the choice of the analytical method. Hence, it is extremely important to understand the influence of various factors, both external and internal, on genetic material. The review presents information on DNA and RNA persistence, depending on the chemical and physical factors affecting the genetic material integrity. One of the factors taken into account is the time elapsing to genetic material recovery. Temperature can both preserve the genetic material or lead to its rapid degradation. Radiation, aquatic environments, and various types of chemical and physical factors also affect the genetic material quality. The substances used during the forensic process, i.e., for biological trace visualization or maceration, are also discussed. Proper analysis of genetic material degradation can help determine the post-mortem interval (PMI) or time since deposition (TsD), which may play a key role in criminal cases.
Collapse
Affiliation(s)
- Małgorzata Żarczyńska
- School of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland; (M.Ż.); (P.Ż.)
| | - Piotr Żarczyński
- School of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland; (M.Ż.); (P.Ż.)
| | - Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland
| |
Collapse
|
25
|
Fedorova L, Crossley ER, Mulyar OA, Qiu S, Freeman R, Fedorov A. Profound Non-Randomness in Dinucleotide Arrangements within Ultra-Conserved Non-Coding Elements and the Human Genome. BIOLOGY 2023; 12:1125. [PMID: 37627009 PMCID: PMC10452674 DOI: 10.3390/biology12081125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Long human ultra-conserved non-coding elements (UCNEs) do not have any sequence similarity to each other or other characteristics that make them unalterable during vertebrate evolution. We hypothesized that UCNEs have unique dinucleotide (DN) composition and arrangements compared to the rest of the genome. A total of 4272 human UCNE sequences were analyzed computationally and compared with the whole genomes of human, chicken, zebrafish, and fly. Statistical analysis was performed to assess the non-randomness in DN spacing arrangements within the entire human genome and within UCNEs. Significant non-randomness in DN spacing arrangements was observed in the entire human genome. Additionally, UCNEs exhibited distinct patterns in DN arrangements compared to the rest of the genome. Approximately 83% of all DN pairs within UCNEs showed significant (>10%) non-random genomic arrangements at short distances (2-6 nucleotides) relative to each other. At the extremes, non-randomness in DN spacing distances deviated up to 40% from expected values and were frequently associated with GpC, CpG, ApT, and GpG/CpC dinucleotides. The described peculiarities in DN arrangements have persisted for hundreds of millions of years in vertebrates. These distinctive patterns may suggest that UCNEs have specific DNA conformations.
Collapse
Affiliation(s)
- Larisa Fedorova
- CRI Genetics LLC, Santa Monica, CA 90404, USA; (L.F.); (O.A.M.); (R.F.)
| | - Emily R. Crossley
- Program of Bioinformatics and Proteomics/Genomics, University of Toledo, Toledo, OH 43606, USA;
| | - Oleh A. Mulyar
- CRI Genetics LLC, Santa Monica, CA 90404, USA; (L.F.); (O.A.M.); (R.F.)
| | - Shuhao Qiu
- Department of Medicine, University of Toledo, Toledo, OH 43606, USA;
| | - Ryan Freeman
- CRI Genetics LLC, Santa Monica, CA 90404, USA; (L.F.); (O.A.M.); (R.F.)
| | - Alexei Fedorov
- CRI Genetics LLC, Santa Monica, CA 90404, USA; (L.F.); (O.A.M.); (R.F.)
- Program of Bioinformatics and Proteomics/Genomics, University of Toledo, Toledo, OH 43606, USA;
- Department of Medicine, University of Toledo, Toledo, OH 43606, USA;
| |
Collapse
|
26
|
Linko V, Keller A. Stability of DNA Origami Nanostructures in Physiological Media: The Role of Molecular Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301935. [PMID: 37093216 DOI: 10.1002/smll.202301935] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Programmable, custom-shaped, and nanometer-precise DNA origami nanostructures have rapidly emerged as prospective and versatile tools in bionanotechnology and biomedicine. Despite tremendous progress in their utilization in these fields, essential questions related to their structural stability under physiological conditions remain unanswered. Here, DNA origami stability is explored by strictly focusing on distinct molecular-level interactions. In this regard, the fundamental stabilizing and destabilizing ionic interactions as well as interactions involving various enzymes and other proteins are discussed, and their role in maintaining, modulating, or decreasing the structural integrity and colloidal stability of DNA origami nanostructures is summarized. Additionally, specific issues demanding further investigation are identified. This review - through its specific viewpoint - may serve as a primer for designing new, stable DNA objects and for adapting their use in applications dealing with physiological media.
Collapse
Affiliation(s)
- Veikko Linko
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P. O. Box 16100, Aalto, 00076, Finland
| | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| |
Collapse
|
27
|
Islam A, Shah SHU, Haider Z, Imran M, Amin A, Haider SK, Li MD. Biological Interfacial Materials for Organic Light-Emitting Diodes. MICROMACHINES 2023; 14:1171. [PMID: 37374756 PMCID: PMC10301977 DOI: 10.3390/mi14061171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
Organic optoelectronic devices have received appreciable attention due to their low cost, mechanical flexibility, band-gap engineering, lightness, and solution processability over a broad area. Specifically, realizing sustainability in organic optoelectronics, especially in solar cells and light-emitting devices, is a crucial milestone in the evolution of green electronics. Recently, the utilization of biological materials has appeared as an efficient means to alter the interfacial properties, and hence improve the performance, lifetime and stability of organic light-emitting diodes (OLEDs). Biological materials can be known as essential renewable bio-resources obtained from plants, animals and microorganisms. The application of biological interfacial materials (BIMs) in OLEDs is still in its early phase compared to the conventional synthetic interfacial materials; however, their fascinating features (such as their eco-friendly nature, biodegradability, easy modification, sustainability, biocompatibility, versatile structures, proton conductivity and rich functional groups) are compelling researchers around the world to construct innovative devices with enhanced efficiency. In this regard, we provide an extensive review of BIMs and their significance in the evolution of next-generation OLED devices. We highlight the electrical and physical properties of different BIMs, and address how such characteristics have been recently exploited to make efficient OLED devices. Biological materials such as ampicillin, deoxyribonucleic acid (DNA), nucleobases (NBs) and lignin derivatives have demonstrated significant potential as hole/electron transport layers as well as hole/electron blocking layers for OLED devices. Biological materials capable of generating a strong interfacial dipole can be considered as a promising prospect for alternative interlayer materials for OLED applications.
Collapse
Affiliation(s)
- Amjad Islam
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, China
- Department of Applied Physics, E-ICT-Culture-Sports Convergence Track, College of Science and Technology, Korea University-Sejong Campus, Sejong City 30019, Republic of Korea;
| | - Syed Hamad Ullah Shah
- Department of Applied Physics, E-ICT-Culture-Sports Convergence Track, College of Science and Technology, Korea University-Sejong Campus, Sejong City 30019, Republic of Korea;
| | - Zeeshan Haider
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea;
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Al Amin
- Department of Electrical Engineering, College of Engineering, Gyeongsang National University, Jinju-si 52828, Republic of Korea;
| | - Syed Kamran Haider
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea;
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, China
| |
Collapse
|
28
|
Kuila S, Singh AK, Shrivastava A, Dey S, Singha T, Roy L, Satpati B, Nanda J. Probing Molecular Chirality on the Self-Assembly and Gelation of Naphthalimide-Conjugated Dipeptides. J Phys Chem B 2023. [PMID: 37196104 DOI: 10.1021/acs.jpcb.3c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In this work, 1,8-naphthalimide (NMI)-conjugated three hybrid dipeptides constituted of a β-amino acid and an α-amino acid have been designed, synthesized, and purified. Here, in the design, the chirality of the α-amino acid was varied to study the effect of molecular chirality on the supramolecular assembly. Self-assembly and gelation of three NMI conjugates were studied in mixed solvent systems [water and dimethyl sulphoxide (DMSO)]. Interestingly, chiral NMI derivatives [NMI-βAla-lVal-OMe (NLV) and NMI-βAla-dVal-OMe (NDV)] formed self-supported gels, while the achiral NMI derivative [NMI-βAla-Aib-OMe, (NAA)] failed to form any kind of gel at 1 mM concentration and in a mixed solvent (70% water in DMSO medium). Self-assembly processes were thoroughly investigated using UV-vis spectroscopy, nuclear magnetic resonance (NMR), fluorescence, and circular dichroism (CD) spectroscopy. A J-type molecular assembly was observed in the mixed solvent system. The CD study indicated the formation of chiral assembled structures for NLV and NDV, which were mirror images of one another, and the self-assembled state by NAA was CD-silent. The nanoscale morphology of the three derivatives was studied using scanning electron microscopy (SEM). In the case of NLV and NDV, left- and right-handed fibrilar morphologies were observed, respectively. In contrast, a flake-like morphology was noticed for NAA. The DFT study indicated that the chirality of the α-amino acid influenced the orientation of π-π stacking interactions of naphthalimide units in the self-assembled structure that in turn regulated the helicity. This is a unique work where molecular chirality controls the nanoscale assembly as well as the macroscopic self-assembled state.
Collapse
Affiliation(s)
- Soumen Kuila
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Ajeet Kumar Singh
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Akash Shrivastava
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Sukantha Dey
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Tukai Singha
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Biswarup Satpati
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India
| | - Jayanta Nanda
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| |
Collapse
|
29
|
Qiao YP, Ren CL, Ma YQ. Two Different Ways of Stress Release in Supercoiled DNA Minicircles under DNA Nick. J Phys Chem B 2023; 127:4015-4021. [PMID: 37126597 DOI: 10.1021/acs.jpcb.2c08618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
It is generally believed that DNA nick is an effective way to release stress in supercoiled DNA, resulting from the twisting motion that individual strands rotate around the axis of the DNA helix. Here, we use MD simulations based on the oxDNA model to investigate the relaxation of 336 bp supercoiled minicircular DNA under DNA nick. Our simulations show that stress release, characterized by the abrupt decrease in linking number, may be induced by two types of DNA motion depending on the nick position. Except for the twisting motion, there is a writhing motion, that is, double strands collectively rotating with one plectoneme removal, which may occur in the process of DNA relaxation with the nick position in the loop region. Moreover, the writhing motion is more likely to occur in the DNA with relatively high hardness, such as C-G pairs. Our simulation results uncover the relationship between structural transformation, stress release, and DNA motion during the dynamic process under DNA nick, indicating the influence of nick position on the relaxation of the supercoiled DNA.
Collapse
Affiliation(s)
- Ye-Peng Qiao
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chun-Lai Ren
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
30
|
Sievers A, Sauer L, Bisch M, Sprengel J, Hausmann M, Hildenbrand G. Moderation of Structural DNA Properties by Coupled Dinucleotide Contents in Eukaryotes. Genes (Basel) 2023; 14:genes14030755. [PMID: 36981025 PMCID: PMC10048725 DOI: 10.3390/genes14030755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Dinucleotides are known as determinants for various structural and physiochemical properties of DNA and for binding affinities of proteins to DNA. These properties (e.g., stiffness) and bound proteins (e.g., transcription factors) are known to influence important biological functions, such as transcription regulation and 3D chromatin organization. Accordingly, the question arises of how the considerable variations in dinucleotide contents of eukaryotic chromosomes could still provide consistent DNA properties resulting in similar functions and 3D conformations. In this work, we investigate the hypothesis that coupled dinucleotide contents influence DNA properties in opposite directions to moderate each other's influences. Analyzing all 2478 chromosomes of 155 eukaryotic species, considering bias from coding sequences and enhancers, we found sets of correlated and anti-correlated dinucleotide contents. Using computational models, we estimated changes of DNA properties resulting from this coupling. We found that especially pure A/T dinucleotides (AA, TT, AT, TA), known to influence histone positioning and AC/GT contents, are relevant moderators and that, e.g., the Roll property, which is known to influence histone affinity of DNA, is preferably moderated. We conclude that dinucleotide contents might indirectly influence transcription and chromatin 3D conformation, via regulation of histone occupancy and/or other mechanisms.
Collapse
Affiliation(s)
- Aaron Sievers
- Kirchhoff Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany
- Institute for Human Genetics, University Hospital Heidelberg, INF 366, 69117 Heidelberg, Germany
| | - Liane Sauer
- Kirchhoff Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany
- Institute for Human Genetics, University Hospital Heidelberg, INF 366, 69117 Heidelberg, Germany
| | - Marc Bisch
- Kirchhoff Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany
| | - Jan Sprengel
- Kirchhoff Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany
| | - Georg Hildenbrand
- Kirchhoff Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany
- Faculty of Engeneering, University of Applied Science Aschaffenburg, Würzburger Str. 45, 63743 Aschaffenburg, Germany
| |
Collapse
|
31
|
Sabolová D, Sovová S, Janovec L, Timko E, Jager D, Tóthová J. Synthesis, characterization and DNA binding properties of 3,6-bis[(alkylamino)ureido]acridines. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
32
|
Gao A, Remsing RC, Weeks JD. Local Molecular Field Theory for Coulomb Interactions in Aqueous Solutions. J Phys Chem B 2023; 127:809-821. [PMID: 36669139 DOI: 10.1021/acs.jpcb.2c06988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Coulomb interactions play a crucial role in a wide array of processes in aqueous solutions but present conceptual and computational challenges to both theory and simulations. We review recent developments in an approach addressing these challenges─local molecular field (LMF) theory. LMF theory exploits an exact and physically suggestive separation of intermolecular Coulomb interactions into strong short-range and uniformly slowly varying long-range components. This allows us to accurately determine the averaged effects of the long-range components on the short-range structure using effective single particle fields and analytical corrections, greatly reducing the need for complex lattice summation techniques used in most standard approaches. The simplest use of these ideas in aqueous solutions leads to the short solvent (SS) model, where both solvent-solvent and solute-solvent Coulomb interactions have only short-range components. Here we use the SS model to give a simple description of pairing of nucleobases and biologically relevant ions in water.
Collapse
Affiliation(s)
- Ang Gao
- Department of Physics, Beijing University of Posts and Telecommunications, Beijing, China 100876
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - John D Weeks
- Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
33
|
En A, Watanabe K, Ayusawa D, Fujii M. The key role of a basic domain of histone H2B N-terminal tail in the action of 5-bromodeoxyuridine to induce cellular senescence. FEBS J 2023; 290:692-711. [PMID: 35882390 DOI: 10.1111/febs.16584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023]
Abstract
5-Bromodeoxyuridine (BrdU), a thymidine analogue, is an interesting reagent that modulates various biological phenomena. BrdU, upon incorporation into DNA, causes destabilized nucleosome positioning which leads to changes in heterochromatin organization and gene expression in cells. We have previously shown that BrdU effectively induces cellular senescence, a phenomenon of irreversible growth arrest in mammalian cells. Identification of the mechanism of action of BrdU would provide a novel insight into the molecular mechanisms of cellular senescence. Here, we showed that a basic domain in the histone H2B N-terminal tail, termed the HBR (histone H2B repression) domain, is involved in the action of BrdU. Notably, deletion of the HBR domain causes destabilized nucleosome positioning and derepression of gene expression, as does BrdU. We also showed that the genes up-regulated by BrdU significantly overlapped with those by deletion of the HBR domain, the result of which suggested that BrdU and deletion of the HBR domain act in a similar way. Furthermore, we showed that decreased HBR domain function induced cellular senescence or facilitated the induction of cellular senescence. These findings indicated that the HBR domain is crucially involved in the action of BrdU, and also suggested that disordered nucleosome organization may be involved in the induction of cellular senescence.
Collapse
Affiliation(s)
- Atsuki En
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Kazuaki Watanabe
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Dai Ayusawa
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Michihiko Fujii
- Graduate School of Nanobioscience, Yokohama City University, Japan
| |
Collapse
|
34
|
Erenpreisa J, Giuliani A, Yoshikawa K, Falk M, Hildenbrand G, Salmina K, Freivalds T, Vainshelbaum N, Weidner J, Sievers A, Pilarczyk G, Hausmann M. Spatial-Temporal Genome Regulation in Stress-Response and Cell-Fate Change. Int J Mol Sci 2023; 24:2658. [PMID: 36769000 PMCID: PMC9917235 DOI: 10.3390/ijms24032658] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 02/04/2023] Open
Abstract
Complex functioning of the genome in the cell nucleus is controlled at different levels: (a) the DNA base sequence containing all relevant inherited information; (b) epigenetic pathways consisting of protein interactions and feedback loops; (c) the genome architecture and organization activating or suppressing genetic interactions between different parts of the genome. Most research so far has shed light on the puzzle pieces at these levels. This article, however, attempts an integrative approach to genome expression regulation incorporating these different layers. Under environmental stress or during cell development, differentiation towards specialized cell types, or to dysfunctional tumor, the cell nucleus seems to react as a whole through coordinated changes at all levels of control. This implies the need for a framework in which biological, chemical, and physical manifestations can serve as a basis for a coherent theory of gene self-organization. An international symposium held at the Biomedical Research and Study Center in Riga, Latvia, on 25 July 2022 addressed novel aspects of the abovementioned topic. The present article reviews the most recent results and conclusions of the state-of-the-art research in this multidisciplinary field of science, which were delivered and discussed by scholars at the Riga symposium.
Collapse
Affiliation(s)
| | - Alessandro Giuliani
- Istituto Superiore di Sanita Environment and Health Department, 00161 Roma, Italy
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Martin Falk
- Institute of Biophysics, The Czech Academy of Sciences, 612 65 Brno, Czech Republic
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Georg Hildenbrand
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
- Faculty of Engineering, University of Applied Science Aschaffenburg, 63743 Aschaffenburg, Germany
| | - Kristine Salmina
- Latvian Biomedicine Research and Study Centre, LV1067 Riga, Latvia
| | - Talivaldis Freivalds
- Institute of Cardiology and Regenerative Medicine, University of Latvia, LV1004 Riga, Latvia
| | - Ninel Vainshelbaum
- Latvian Biomedicine Research and Study Centre, LV1067 Riga, Latvia
- Doctoral Study Program, University of Latvia, LV1004 Riga, Latvia
| | - Jonas Weidner
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Aaron Sievers
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
- Institute for Human Genetics, University Hospital Heidelberg, 69117 Heidelberg, Germany
| | - Götz Pilarczyk
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
35
|
Haj Hasan A, Preet G, Milne BF, Ebel R, Jaspars M. Arabinofuranosyl Thymine Derivatives-Potential Candidates against Cowpox Virus: A Computational Screening Study. Int J Mol Sci 2023; 24:ijms24021751. [PMID: 36675269 PMCID: PMC9864678 DOI: 10.3390/ijms24021751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Cowpox is caused by a DNA virus known as the cowpox virus (CPXV) belonging to the Orthopoxvirus genus in the family Poxviridae. Cowpox is a zoonotic disease with the broadest host range among the known poxviruses. The natural reservoir hosts of CPXV are wild rodents. Recently, the cases of orthopoxviral infections have been increasing worldwide, and cowpox is considered the most common orthopoxviral infection in Europe. Cowpox is often a self-limiting disease, although cidofovir or anti-vaccinia gammaglobulin can be used in severe and disseminated cases of human cowpox. In this computational study, a molecular docking analysis of thymine- and arabinofuranosyl-thymine-related structures (1-21) on two cowpox-encoded proteins was performed with respect to the cidofovir standard and a 3D ligand-based pharmacophore model was generated. Three chemical structures (PubChem IDs: 123370001, 154137224, and 90413364) were identified as potential candidates for anti-cowpox agents. Further studies combining in vitro and in silico molecular dynamics simulations to test the stability of these promising compounds could effectively improve the future design of cowpox virus inhibitors, as molecular docking studies are not sufficient to consider a ligand a potential drug.
Collapse
Affiliation(s)
- Ahlam Haj Hasan
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Gagan Preet
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| | - Bruce Forbes Milne
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
- CFisUC, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| | - Rainer Ebel
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
- Correspondence:
| |
Collapse
|
36
|
Saon MS, Kirkpatrick CC, Znosko BM. Identification and characterization of RNA pentaloop sequence families. NAR Genom Bioinform 2023; 5:lqac102. [PMID: 36632613 PMCID: PMC9830547 DOI: 10.1093/nargab/lqac102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
One of the current methods for predicting RNA tertiary structure is fragment-based homology, which predicts tertiary structure from secondary structure. For a successful prediction, this method requires a library of the tertiary structures of small motifs clipped from previously solved RNA 3D structures. Because of the limited number of available tertiary structures, it is not practical to find structures for all sequences of all motifs. Identifying sequence families for motifs can fill the gaps because all sequences within a family are expected to have similar structural features. Currently, a collection of well-characterized sequence families has been identified for tetraloops. Because of their prevalence and biological functions, pentaloop structures should also be well-characterized. In this study, 10 pentaloop sequence families are identified. For each family, the common and distinguishing structural features are highlighted. These sequence families can be used to predict the tertiary structure of pentaloop sequences for which a solved structure is not available.
Collapse
Affiliation(s)
- Md Sharear Saon
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
| | | | - Brent M Znosko
- To whom correspondence should be addressed. Tel: +1 314 977 8567; Fax: +1 314 977 2521;
| |
Collapse
|
37
|
Oluwole OG, Henry M. Genomic medicine in Africa: a need for molecular genetics and pharmacogenomics experts. Curr Med Res Opin 2023; 39:141-147. [PMID: 36094413 DOI: 10.1080/03007995.2022.2124072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The large-scale implementation of genomic medicine in Africa has not been actualized. This overview describes how routine molecular genetics and advanced protein engineering/structural biotechnology could accelerate the implementation of genomic medicine. By using data-mining and analysis approaches, we analyzed relevant information obtained from public genomic databases on pharmacogenomics biomarkers and reviewed published studies to discuss the ideas. The results showed that only 68 very important pharmacogenes currently exist, while 867 drug label annotations, 201 curated functional pathways, and 746 annotated drugs have been catalogued on the largest pharmacogenomics database (PharmGKB). Only about 5009 variants of the reported ∼25,000 have been clinically annotated. Predominantly, the genetic variants were derived from 43 genes that contribute to 2318 clinically relevant variations in 57 diseases. Majority (∼60%) of the clinically relevant genetic variations in the pharmacogenes are missense variants (1390). The enrichment analysis showed that 15 pharmacogenes are connected biologically and are involved in the metabolism of cardiovascular and cancer drugs. The review of studies showed that cardiovascular diseases are the most frequent non-communicable diseases responsible for approximately 13% of all deaths in Africa. Also, warfarin pharmacogenomics is the most studied drug on the continent, while CYP2D6, CYP2C9, DPD, and TPMT are the most investigated pharmacogenes with allele activities indicated in African and considered to be intermediate metaboliser for DPD and TPMT (8.4% and 11%). In summary, we highlighted a framework for implementing genomic medicine starting from the available resources on ground.
Collapse
Affiliation(s)
- Oluwafemi G Oluwole
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Marc Henry
- Medical Biotechnology and Immunotherapy Unit, Department of Integrative Biomedical Sciences Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
38
|
Misra S, Singh P, Singh AK, Roy L, Kuila S, Dey S, Mahapatra AK, Nanda J. Tuning of the Supramolecular Helicity of Peptide-Based Gel Nanofibers. J Phys Chem B 2022; 126:10882-10892. [PMID: 36516185 DOI: 10.1021/acs.jpcb.2c06897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helical supramolecular architectures play important structural and functional roles in biological systems. The helicity of synthetic molecules can be tuned mainly by the chiral manipulation of the system. However, tuning of helicity by the achiral unit of the molecules is less studied. In this work, the helicity of naphthalimide-capped peptide-based gel nanofibers is tuned by the alteration of methylene units present in the achiral amino acid. The inversion of supramolecular helicity has been extensively studied by CD spectroscopy and morphological analysis. The density functional theory (DFT) study indicates that methylene spacers influence the orientation of π-π stacking interactions of naphthalimide units in the self-assembled structure that regulates the helicity. This work illustrates a new approach to tuning the supramolecular chirality of self-assembled biomaterials.
Collapse
Affiliation(s)
- Souvik Misra
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India.,Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Pijush Singh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Ajeet Kumar Singh
- Institute of Chemical Technology Mumbai - IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai - IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Soumen Kuila
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Sukantha Dey
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Ajit K Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Jayanta Nanda
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| |
Collapse
|
39
|
Satange R, Rode AB, Hou MH. Revisiting recent unusual drug-DNA complex structures: Implications for cancer and neurological disease diagnostics and therapeutics. Bioorg Med Chem 2022; 76:117094. [PMID: 36410206 DOI: 10.1016/j.bmc.2022.117094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
DNA plays a crucial role in various biological processes such as protein production, replication, recombination etc. by adopting different conformations. Targeting these conformations by small molecules is not only important for disease therapy, but also improves our understanding of the mechanisms of disease development. In this review, we provide an overview of some of the most recent ligand-DNA complexes that have diagnostic and therapeutic applications in neurological diseases caused by abnormal repeat expansions and in cancer associated with mismatches. In addition, we have discussed important implications of ligands targeting higher-order structures, such as four-way junctions, G-quadruplexes and triplexes for drug discovery and DNA nanotechnology. We provide an overview of the results and perspectives of such structural studies on ligand-DNA interactions.
Collapse
Affiliation(s)
- Roshan Satange
- Institute of Genomics and Bioinformatics National Chung Hsing University, Taichung 402, Taiwan; Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Ambadas B Rode
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics National Chung Hsing University, Taichung 402, Taiwan; Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
40
|
Tozzo P, Mazzobel E, Marcante B, Delicati A, Caenazzo L. Touch DNA Sampling Methods: Efficacy Evaluation and Systematic Review. Int J Mol Sci 2022; 23:15541. [PMID: 36555182 PMCID: PMC9779423 DOI: 10.3390/ijms232415541] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Collection and interpretation of "touch DNA" from crime scenes represent crucial steps during criminal investigations, with clear consequences in courtrooms. Although the main aspects of this type of evidence have been extensively studied, some controversial issues remain. For instance, there is no conclusive evidence indicating which sampling method results in the highest rate of biological material recovery. Thus, this study aimed to describe the actual considerations on touch DNA and to compare three different sampling procedures, which were "single-swab", "double-swab", and "other methods" (i.e., cutting out, adhesive tape, FTA® paper scraping), based on the experimental results published in the recent literature. The data analysis performed shows the higher efficiency of the single-swab method in DNA recovery in a wide variety of experimental settings. On the contrary, the double-swab technique and other methods do not seem to improve recovery rates. Despite the apparent discrepancy with previous research, these results underline certain limitations inherent to the sampling procedures investigated. The application of this information to forensic investigations and laboratories could improve operative standard procedures and enhance this almost fundamental investigative tool's probative value.
Collapse
Affiliation(s)
- Pamela Tozzo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Legal Medicine Section, University of Padova, 35121 Padova, Italy
| | | | | | | | | |
Collapse
|
41
|
Cohen D. General Designs Reveal Distinct Codes in Protein-Coding and Non-Coding Human DNA. Genes (Basel) 2022; 13:1970. [PMID: 36360206 PMCID: PMC9690640 DOI: 10.3390/genes13111970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 08/27/2023] Open
Abstract
This study seeks to investigate distinct signatures and codes within different genomic sequence locations of the human genome. The promoter and other non-coding regions contain sites for the binding of biological particles, for processes such as transcription regulation. The specific rules and sequence codes that govern this remain poorly understood. To derive these (codes), the general designs of sequence are investigated. Genomic signatures are a powerful tool for assessing the general designs of sequence, and cross-comparing different genomic regions for their distinct sequence properties. Through these genomic signatures, the relative non-random properties of sequences are also assessed. Furthermore, a binary components analysis is carried out making use of information theory ideas, to study the RY (purine/pyrimidine), WS (weak/strong) and KM (keto/amino) signatures in the sequences. From this comparison, it is possible to identify the relative importance of these properties within the various protein-coding and non-coding genomic locations. The results show that coding DNA has a strongly non-random WS signature, which reflects the genetic code, and the hydrogen-bond base pairing of codon-anti-codon interactions. In contrast, non-coding locations, such as the promoter, contain a distinct genomic signature. A prominent feature throughout non-coding DNA is a highly non-random RY signature, which is very different in nature to coding DNA, and suggests a structural-based RY code. This marks progress towards deciphering the unknown code(s) in non-protein-coding DNA, and a further understanding of the coding DNA. Additionally, it unravels how DNA carries information. These findings have implications for the most fundamental principles of biology, including knowledge of gene regulation, development and disease.
Collapse
Affiliation(s)
- Dana Cohen
- Ronin Institute, 127 Haddon Pl, Montclair, NJ 07043-2314, USA
| |
Collapse
|
42
|
Abstract
DNA damage by chemicals, radiation, or oxidative stress leads to a mutational spectrum, which is complex because it is determined in part by lesion structure, the DNA sequence context of the lesion, lesion repair kinetics, and the type of cells in which the lesion is replicated. Accumulation of mutations may give rise to genetic diseases such as cancer and therefore understanding the process underlying mutagenesis is of immense importance to preserve human health. Chemical or physical agents that cause cancer often leave their mutational fingerprints, which can be used to back-calculate the molecular events that led to disease. To make a clear link between DNA lesion structure and the mutations a given lesion induces, the field of single-lesion mutagenesis was developed. In the last three decades this area of research has seen much growth in several directions, which we attempt to describe in this Perspective.
Collapse
Affiliation(s)
- Ashis K Basu
- Department of Chemistry, The University of Connecticut Storrs, Storrs, Connecticut 06269, United States
| | - John M Essigmann
- Departments of Chemistry, Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
43
|
Functional Downregulation of PD-L1 and PD-L2 by CpG and non-CpG Oligonucleotides in Melanoma Cells. Cancers (Basel) 2022; 14:cancers14194698. [PMID: 36230620 PMCID: PMC9562717 DOI: 10.3390/cancers14194698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Although metastatic melanoma is still not a curable disease, targeting of immunologically relevant checkpoints represents a turning point in the treatment. Particularly, targeting the interaction between PD-L1 and its referring receptor PD-1 with antibodies has been shown to activate T-cell function abrogating the evasion of tumor cells from immune recognition. Here, we present another approach that interferes with this system by showing that treatment of melanoma cells with oligonucleotides reduces the expression of PD-L1 (and PD-L2) on tumor cells. Specifically, non-CpG-6-PTO, an ODN that forms superstructures known as G-quartets, has been found to inhibit the interferon-γ-induced signaling cascade which fosters PD-L1 expression. These findings suggest a new therapeutic strategy to interfere with one of the most important immune checkpoints. Abstract The clinical application of immune checkpoint inhibitors represents a breakthrough progress in the treatment of metastasized melanoma and other tumor entities. In the present study, it was hypothesized that oligonucleotides (ODNs), known as modulators of the immune response, have an impact on the endogenous expression of checkpoint molecules, namely PD-L1 and PD-L2 (PD-L1/2). IFNγ-stimulated melanoma cells (A375, SK-Mel-28) were treated with different synthetically manufactured oligonucleotides which differed in sequence, length and backbone composition. It was found that a variety of different ODN sequences significantly suppressed PD-L1/2 expression. This effect was dependent on length and phosphorothioate (PTO) backbone. In particular, a sequence containing solely guanines (nCpG-6-PTO) was highly effective in downregulating PD-L1/2 at the protein, mRNA and promoter levels. Mechanistically, we gave evidence that ODNs with G-quartet-forming motifs suppress the interferon signaling axis (JAK/STAT/IRF1). Our findings identify a subset of ODNs as interesting pharmacological compounds that could expand the arsenal of targeted therapies to combat the immunological escape of tumor cells.
Collapse
|
44
|
Krul SE, Costa GJ, Hoehn SJ, Valverde D, Oliveira LMF, Borin AC, Crespo-Hernández CE. Resolving Ultrafast Photoinitiated Dynamics of the Hachimoji 5-Aza-7-Deazaguanine Nucleobase: Impact of Synthetically Expanding the Genetic Alphabet. Photochem Photobiol 2022; 99:693-705. [PMID: 35938218 DOI: 10.1111/php.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
The guanine derivative, 5-aza-7-deazaguanine (5N7C G) has recently been proposed as one of four unnatural bases, termed Hachimoji (8-letter) to expand the genetic code. We apply steady-state and time-resolved spectroscopy to investigate its electronic relaxation mechanism and probe the effect of atom substitution on the relaxation mechanism in polar protic and polar aprotic solvents. Mapping of the excited state potential energy surfaces is performed, from which the critical points are optimized by using the state-of-art Extended Multi-State Complete Active Space Second-Order Perturbation Theory. It is demonstrated that excitation to the lowest energy 1 ππ* state of 5N7C G results in complex dynamics leading to ca. 10 to 30-fold slower relaxation (depending on solvent) compared to guanine. A significant conformational change occurs at the S1 minimum, resulting in a 10-fold greater fluorescence quantum yield compared to guanine. The fluorescence quantum yield and S1 decay lifetime increase going from water to acetonitrile to propanol. The solvent-dependent results are supported by the quantum chemical calculations showing an increase in the energy barrier between the S1 minimum and the S1 /S0 conical intersection going from water to propanol. The longer lifetimes might make 5N7C G more photochemical active to adjacent nucleobases than guanine or other nucleobases within DNA.
Collapse
Affiliation(s)
- Sarah E Krul
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio, 44106, United States
| | - Gustavo J Costa
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000. São Paulo, SP, Brazil
| | - Sean J Hoehn
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio, 44106, United States
| | - Danillo Valverde
- Unité de Chimie Physique Theorique et Structurale, Namur Institute of Structured Matter, Université de Namur, B-5000, Namur, Belgium
| | - Leonardo M F Oliveira
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000. São Paulo, SP, Brazil
| | - Antonio Carlos Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000. São Paulo, SP, Brazil
| | - Carlos E Crespo-Hernández
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio, 44106, United States
| |
Collapse
|
45
|
Alhilal S, Alhilal M, Gomha SM, Ouf SA. Synthesis and biological evaluation of new aza-acyclic nucleosides and their hydrogen complexes from indole. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04760-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
46
|
fingeRNAt—A novel tool for high-throughput analysis of nucleic acid-ligand interactions. PLoS Comput Biol 2022; 18:e1009783. [PMID: 35653385 PMCID: PMC9197077 DOI: 10.1371/journal.pcbi.1009783] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/14/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
Computational methods play a pivotal role in drug discovery and are widely applied in virtual screening, structure optimization, and compound activity profiling. Over the last decades, almost all the attention in medicinal chemistry has been directed to protein-ligand binding, and computational tools have been created with this target in mind. With novel discoveries of functional RNAs and their possible applications, RNAs have gained considerable attention as potential drug targets. However, the availability of bioinformatics tools for nucleic acids is limited. Here, we introduce fingeRNAt—a software tool for detecting non-covalent interactions formed in complexes of nucleic acids with ligands. The program detects nine types of interactions: (i) hydrogen and (ii) halogen bonds, (iii) cation-anion, (iv) pi-cation, (v) pi-anion, (vi) pi-stacking, (vii) inorganic ion-mediated, (viii) water-mediated, and (ix) lipophilic interactions. However, the scope of detected interactions can be easily expanded using a simple plugin system. In addition, detected interactions can be visualized using the associated PyMOL plugin, which facilitates the analysis of medium-throughput molecular complexes. Interactions are also encoded and stored as a bioinformatics-friendly Structural Interaction Fingerprint (SIFt)—a binary string where the respective bit in the fingerprint is set to 1 if a particular interaction is present and to 0 otherwise. This output format, in turn, enables high-throughput analysis of interaction data using data analysis techniques. We present applications of fingeRNAt-generated interaction fingerprints for visual and computational analysis of RNA-ligand complexes, including analysis of interactions formed in experimentally determined RNA-small molecule ligand complexes deposited in the Protein Data Bank. We propose interaction fingerprint-based similarity as an alternative measure to RMSD to recapitulate complexes with similar interactions but different folding. We present an application of interaction fingerprints for the clustering of molecular complexes. This approach can be used to group ligands that form similar binding networks and thus have similar biological properties. The fingeRNAt software is freely available at https://github.com/n-szulc/fingeRNAt.
Collapse
|
47
|
Saon MS, Znosko BM. Thermodynamic characterization of naturally occurring RNA pentaloops. RNA (NEW YORK, N.Y.) 2022; 28:832-841. [PMID: 35318243 PMCID: PMC9074901 DOI: 10.1261/rna.078915.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/02/2022] [Indexed: 06/03/2023]
Abstract
RNA folding is hierarchical; therefore, predicting RNA secondary structure from sequence is an intermediate step in predicting tertiary structure. Secondary structure prediction is based on a nearest neighbor model using free energy minimization. To improve secondary structure prediction, all types of naturally occurring secondary structure motifs need to be thermodynamically characterized. However, not all secondary structure motifs are well characterized. Pentaloops, the second most abundant hairpin size, is one such uncharacterized motif. In fact, the current thermodynamic model used to predict the stability of pentaloops was derived from a small data set of pentaloops and from data for other hairpins of different sizes. Here, the most commonly occurring pentaloops were identified and optically melted. New experimental data for 22 pentaloop sequences were combined with previously published data for nine pentaloop sequences. Using linear regression, a pentaloop-specific model was derived. This new model is simpler and more accurate than the current model. The new experimental data and improved model can be incorporated into software that is used to predict RNA secondary structure from sequence.
Collapse
Affiliation(s)
- Md Sharear Saon
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri 63103, USA
| | - Brent M Znosko
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri 63103, USA
| |
Collapse
|
48
|
Mao D, Li Q, Li Q, Wang P, Mao C. A conformational study of the 10-23 DNAzyme via programmed DNA self-assembly. Chem Commun (Camb) 2022; 58:6188-6191. [PMID: 35521655 DOI: 10.1039/d2cc01144a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This communication measures the inter-helical angle of the 10-23 DNAzyme-substrate complex by atomic force microscopy (AFM). Herein, we have devised a strategy to assemble the DNAzyme-substrate complex into a periodic DNA 2D array, which allows reliable study of the conformation of the 10-23 DNAzyme by AFM imaging and fast Fourier transform (FFT). Specifically, the angle between the two flanking helical domains of the catalytic core has been determined via the repeating distance of the 2D array. We expect that the same strategy can generally be applicable for studying other nucleic acid structures.
Collapse
Affiliation(s)
- Dake Mao
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Qian Li
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA. .,College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Qian Li
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Pengfei Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
49
|
DNA Repair and Replication-Related Gene Signature Based on Tumor Mutation Burden Reveals Prognostic and Immunotherapy Response in Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:6469523. [PMID: 35058980 PMCID: PMC8766186 DOI: 10.1155/2022/6469523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022]
Abstract
The genomic variant features (mutations, deletions, structural variants, etc.) within gastric cancer impact its evolution and immunogenicity. The tumor has developed several coping strategies to respond to these changes by DNA repair and replication (DRR). However, the intrinsic relationship between the associated DRR-related genes and gastric cancer progression remained unknown. This study selected DRR-related genes with tumor mutation burden based on the TCGA (The Cancer Genome Atlas) database of gastric cancer transcriptome and mutation data. The prognosis model of seven genes (LAMA2, CREB3L3, SELP, ABCC9, CYP1B1, CDH2, and GAMT) was constructed by a univariate and LASSO regression analysis and divided into high-risk and low-risk groups with the median risk score. Survival analysis showed that overall survival (OS) was lower in the high-risk group than that in the low-risk group. Moreover, patients with gastric cancer in the high-risk group have worse survival in different subgroups, including age, gender, histological grade, and TNM stage. The nomogram that included risk scores for DRR-related genes could accurately foresee OS of patients with gastric cancer. Interestingly, the tumor mutation burden score was higher in the low-risk group than that in the high-risk group, and the risk score for DRR-related genes was negatively correlated with tumor mutation burden in gastric cancer. Next, we further combined the risk score and tumor mutation burden to evaluate the prognosis of gastric cancer patients. The low-risk cohort had a better prognosis than the high-risk cohort in the high tumor mutation burden subgroup. The number of mutation types in the high-risk group was lower than that in the low-risk group. In the immune microenvironment of gastric cancer, more naïve B cells, memory resting CD4+ T cells, Treg cells, monocytes cells, and resting mast cells were infiltrated in the high-risk group. At last, PD-L1 and IAP expressions were negatively correlated with the risk scores; patients with gastric cancer in the low-risk group showed better immunotherapy outcomes than those in the high-risk group. Overall, the DRR-related gene signature based on tumor mutation burden is a novel biomarker for prognostic and immunotherapy response in patients with gastric cancer.
Collapse
|
50
|
|