1
|
Dai Y, Ying Y, Zhu G, Xu Y, Ji K. STAT3 drives the expression of HIF1alpha in cancer cells through a novel super-enhancer. Biochem Biophys Res Commun 2024; 735:150483. [PMID: 39098275 DOI: 10.1016/j.bbrc.2024.150483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Aerobic glycolysis is one of the major hallmarks of malignant tumors. This metabolic reprogramming benefits the rapid proliferation of cancer cells, facilitates the formation of tumor microenvironment to support their growth and survival, and impairs the efficacy of various tumor therapies. Therefore, the elucidation of the mechanisms driving aerobic glycolysis in tumors represents a pivotal breakthrough in developing therapeutic strategies for solid tumors. HIF1α serves as a central regulator of aerobic glycolysis with elevated mRNA and protein expression across multiple tumor types. However, the mechanisms contributing to this upregulation remain elusive. This study reports the identification of a novel HIF1α super enhancer (HSE) in multiple cancer cells using bioinformatics analysis, chromosome conformation capture (3C), chromatin immunoprecipitation (ChIP), and CRISPR/Cas9 genome editing techniques. Deletion of HSE in cancer cells significantly reduces the expression of HIF1α, glycolysis, cell proliferation, colony and tumor formation ability, confirming the role of HSE as the enhancer of HIF1α in cancer cells. Particularly, we demonstrated that STAT3 promotes the expression of HIF1α by binding to HSE. The discovery of HSE will help elucidate the pathways driving tumor aerobic glycolysis, offering new therapeutic targets and potentially resolving the bottleneck in solid tumor treatment.
Collapse
Affiliation(s)
- Yonghui Dai
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yue Ying
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Gaoyang Zhu
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yang Xu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0322, USA.
| | - Kaiyuan Ji
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China.
| |
Collapse
|
2
|
Rathee M, Umar SM, Dev AJR, Kashyap A, Mathur SR, Gogia A, Mohapatra P, Prasad CP. Canonical WNT/β-catenin signaling upregulates aerobic glycolysis in diverse cancer types. Mol Biol Rep 2024; 51:788. [PMID: 38970704 DOI: 10.1007/s11033-024-09694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/31/2024] [Indexed: 07/08/2024]
Abstract
Despite many efforts, a comprehensive understanding and clarification of the intricate connections within cancer cell metabolism remain elusive. This might pertain to intracellular dynamics and the complex interplay between cancer cells, and cells with the tumor stroma. Almost a century ago, Otto Warburg found that cancer cells exhibit a glycolytic phenotype, which continues to be a subject of thorough investigation. Past and ongoing investigations have demonstrated intricate mechanisms by which tumors modulate their functionality by utilizing extracellular glucose as a substrate, thereby sustaining the essential proliferation of cancer cells. This concept of "aerobic glycolysis," where cancer cells (even in the presence of enough oxygen) metabolize glucose to produce lactate plays a critical role in cancer progression and is regulated by various signaling pathways. Recent research has revealed that the canonical wingless-related integrated site (WNT) pathway promotes aerobic glycolysis, directly and indirectly, thereby influencing cancer development and progression. The present review seeks to gather knowledge about how the WNT/β-catenin pathway influences aerobic glycolysis, referring to relevant studies in different types of cancer. Furthermore, we propose the concept of impeding the glycolytic phenotype of tumors by employing specific inhibitors that target WNT/β-catenin signaling.
Collapse
Affiliation(s)
- Meetu Rathee
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Sheikh Mohammad Umar
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Arundhathi J R Dev
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Akanksha Kashyap
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Sandeep R Mathur
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Ajay Gogia
- Department of Medical Oncology, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | | | - Chandra Prakash Prasad
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
3
|
Gao W, Wang J, Xu Y, Yu H, Yi S, Bai C, Cong Q, Zhu Y. Research progress in the metabolic reprogramming of hepatocellular carcinoma (Review). Mol Med Rep 2024; 30:131. [PMID: 38818815 PMCID: PMC11148525 DOI: 10.3892/mmr.2024.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and its morbidity is increasing worldwide due to increasing prevalence. Metabolic reprogramming has been recognized as a hallmark of cancer and serves a role in cancer progression. Glucose, lipids and amino acids are three major components whose altered metabolism can directly affect the energy production of cells, including liver cancer cells. Nutrients and energy are indispensable for the growth and proliferation of cancer cells, thus altering the metabolism of hepatoma cells can inhibit the progression of HCC. The present review summarizes recent studies on tumour regulatory molecules, including numerous noncoding RNAs, oncogenes and tumour suppressors, which regulate the metabolic activities of glucose, lipids and amino acids by targeting key enzymes, signalling pathways or interactions between the two. These regulatory molecules can regulate the rapid proliferation of cancer cells, tumour progression and treatment resistance. It is thought that these tumour regulatory factors may serve as therapeutic targets or valuable biomarkers for HCC, with the potential to mitigate HCC drug resistance. Furthermore, the advantages and disadvantages of metabolic inhibitors as a treatment approach for HCC, as well as possible solutions are discussed, providing insights for developing more effective treatment strategies for HCC.
Collapse
Affiliation(s)
- Wenyue Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| | - Jing Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| | - Yuting Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| | - Hongbo Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| | - Sitong Yi
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| | - Changchuan Bai
- Internal Department of Chinese Medicine, Dalian Hospital of Traditional Chinese Medicine, Dalian, Liaoning 116000, P.R China
| | - Qingwei Cong
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| | - Ying Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| |
Collapse
|
4
|
Affinito A, Quintavalle C, Chianese RV, Roscigno G, Fiore D, D'Argenio V, Thomas G, Savarese A, Ingenito F, Cocca L, Nuzzo S, Berezovski MV, Stoppelli MP, Condorelli G. MCT4-driven CAF-mediated metabolic reprogramming in breast cancer microenvironment is a vulnerability targetable by miR-425-5p. Cell Death Discov 2024; 10:140. [PMID: 38485929 PMCID: PMC10940713 DOI: 10.1038/s41420-024-01910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Multiple oncogenic alterations contribute to breast cancer development. Metabolic reprogramming, deeply contributing to tumor microenvironment (TME) education, is now widely recognized as a hallmark of cancer. The reverse Warburg effect induces cancer-associated fibroblasts (CAFs) to produce and secrete L-lactate, enhancing malignant characteristics such as neoangiogenesis, metastatic dissemination, and treatment resistance. Monocarboxylate transporter (MCT) 4 is involved in lactate efflux from CAFs into stromal and epithelial cells. Here, we first assess the expression of miR-425-5p and its target MCT4 in breast cancer CAFs and normal fibroblasts. We analyzed the metabolic changes induced by miR-425-5p in CAFs and its role in the education of breast cancer epithelial cells. We show that miR-425-5p-induced MCT4 knockdown decreased lactate extrusion from CAFs and its availability in the TME. miR-425-5p overexpression induced profound metabolic transformation in CAFs, ultimately influencing breast cancer metabolism. Furthermore, miR-425-5p impaired the capacity of CAFs to sustain vessel formation and breast cancer cell migration, viability, and proliferation. These findings emphasize the key role of miR-425-5p in breast cancer metabolism and aggressiveness, and its possible importance for breast cancer therapy and monitoring.
Collapse
Affiliation(s)
- Alessandra Affinito
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
- AKA Biotech, Naples, Italy
| | - Cristina Quintavalle
- Institute Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), CNR, Naples, Italy
| | - Rosario Vincenzo Chianese
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Giuseppina Roscigno
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Danilo Fiore
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
- Institute Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), CNR, Naples, Italy
| | - Valeria D'Argenio
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Roma, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Napoli, Italy
| | | | - Alessia Savarese
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Francesco Ingenito
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Lorenza Cocca
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | | | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences and John L. Holmes Mass Spectrometry Facility, University of Ottawa, Ottawa, ON, Canada
| | | | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy.
- Institute Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), CNR, Naples, Italy.
| |
Collapse
|
5
|
Uddin MH, Zhang D, Muqbil I, El-Rayes BF, Chen H, Philip PA, Azmi AS. Deciphering cellular plasticity in pancreatic cancer for effective treatments. Cancer Metastasis Rev 2024; 43:393-408. [PMID: 38194153 DOI: 10.1007/s10555-023-10164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Cellular plasticity and therapy resistance are critical features of pancreatic cancer, a highly aggressive and fatal disease. The pancreas, a vital organ that produces digestive enzymes and hormones, is often affected by two main types of cancer: the pre-dominant ductal adenocarcinoma and the less common neuroendocrine tumors. These cancers are difficult to treat due to their complex biology characterized by cellular plasticity leading to therapy resistance. Cellular plasticity refers to the capability of cancer cells to change and adapt to different microenvironments within the body which includes acinar-ductal metaplasia, epithelial to mesenchymal/epigenetic/metabolic plasticity, as well as stemness. This plasticity allows heterogeneity of cancer cells, metastasis, and evasion of host's immune system and develops resistance to radiation, chemotherapy, and targeted therapy. To overcome this resistance, extensive research is ongoing exploring the intrinsic and extrinsic factors through cellular reprogramming, chemosensitization, targeting metabolic, key survival pathways, etc. In this review, we discussed the mechanisms of cellular plasticity involving cellular adaptation and tumor microenvironment and provided a comprehensive understanding of its role in therapy resistance and ways to overcome it.
Collapse
Affiliation(s)
- Md Hafiz Uddin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 740, Detroit, MI, 48201, USA.
| | - Dingqiang Zhang
- Department of Natural Sciences, Lawrence Technological University, 21000 W 10 Mile Rd, Southfield, MI, 48075, USA
| | - Irfana Muqbil
- Department of Natural Sciences, Lawrence Technological University, 21000 W 10 Mile Rd, Southfield, MI, 48075, USA
| | - Bassel F El-Rayes
- Division of Hematology and Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, 35233, USA
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 740, Detroit, MI, 48201, USA
- Henry Ford Health Systems, Detroit, MI, 48202, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 740, Detroit, MI, 48201, USA.
| |
Collapse
|
6
|
Yang F, Hilakivi-Clarke L, Shaha A, Wang Y, Wang X, Deng Y, Lai J, Kang N. Metabolic reprogramming and its clinical implication for liver cancer. Hepatology 2023; 78:1602-1624. [PMID: 36626639 PMCID: PMC10315435 DOI: 10.1097/hep.0000000000000005] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Cancer cells often encounter hypoxic and hypo-nutrient conditions, which force them to make adaptive changes to meet their high demands for energy and various biomaterials for biomass synthesis. As a result, enhanced catabolism (breakdown of macromolecules for energy production) and anabolism (macromolecule synthesis from bio-precursors) are induced in cancer. This phenomenon is called "metabolic reprogramming," a cancer hallmark contributing to cancer development, metastasis, and drug resistance. HCC and cholangiocarcinoma (CCA) are 2 different liver cancers with high intertumoral heterogeneity in terms of etiologies, mutational landscapes, transcriptomes, and histological representations. In agreement, metabolism in HCC or CCA is remarkably heterogeneous, although changes in the glycolytic pathways and an increase in the generation of lactate (the Warburg effect) have been frequently detected in those tumors. For example, HCC tumors with activated β-catenin are addicted to fatty acid catabolism, whereas HCC tumors derived from fatty liver avoid using fatty acids. In this review, we describe common metabolic alterations in HCC and CCA as well as metabolic features unique for their subsets. We discuss metabolism of NAFLD as well, because NAFLD will likely become a leading etiology of liver cancer in the coming years due to the obesity epidemic in the Western world. Furthermore, we outline the clinical implication of liver cancer metabolism and highlight the computation and systems biology approaches, such as genome-wide metabolic models, as a valuable tool allowing us to identify therapeutic targets and develop personalized treatments for liver cancer patients.
Collapse
Affiliation(s)
- Flora Yang
- BA/MD Joint Admission Scholars Program, University of Minnesota, Minneapolis, Minnesota
| | - Leena Hilakivi-Clarke
- Food Science and Nutrition Section, The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Aurpita Shaha
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Yuanguo Wang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Xianghu Wang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Yibin Deng
- Department of Urology, Masonic Cancer Center, The University of Minnesota Medical School, Minneapolis, Minnesota
| | - Jinping Lai
- Department of Pathology and Laboratory Medicine, Kaiser Permanente Sacramento Medical Center, Sacramento, California
| | - Ningling Kang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| |
Collapse
|
7
|
Zhao Y, Shen M, Wu L, Yang H, Yao Y, Yang Q, Du J, Liu L, Li Y, Bai Y. Stromal cells in the tumor microenvironment: accomplices of tumor progression? Cell Death Dis 2023; 14:587. [PMID: 37666813 PMCID: PMC10477351 DOI: 10.1038/s41419-023-06110-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
The tumor microenvironment (TME) is made up of cells and extracellular matrix (non-cellular component), and cellular components include cancer cells and non-malignant cells such as immune cells and stromal cells. These three types of cells establish complex signals in the body and further influence tumor genesis, development, metastasis and participate in resistance to anti-tumor therapy. It has attracted scholars to study immune cells in TME due to the significant efficacy of immune checkpoint inhibitors (ICI) and chimeric antigen receptor T (CAR-T) in solid tumors and hematologic tumors. After more than 10 years of efforts, the role of immune cells in TME and the strategy of treating tumors based on immune cells have developed rapidly. Moreover, ICI have been recommended by guidelines as first- or second-line treatment strategies in a variety of tumors. At the same time, stromal cells is another major class of cellular components in TME, which also play a very important role in tumor metabolism, growth, metastasis, immune evasion and treatment resistance. Stromal cells can be recruited from neighboring non-cancerous host stromal cells and can also be formed by transdifferentiation from stromal cells to stromal cells or from tumor cells to stromal cells. Moreover, they participate in tumor genesis, development and drug resistance by secreting various factors and exosomes, participating in tumor angiogenesis and tumor metabolism, regulating the immune response in TME and extracellular matrix. However, with the deepening understanding of stromal cells, people found that stromal cells not only have the effect of promoting tumor but also can inhibit tumor in some cases. In this review, we will introduce the origin of stromal cells in TME as well as the role and specific mechanism of stromal cells in tumorigenesis and tumor development and strategies for treatment of tumors based on stromal cells. We will focus on tumor-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), tumor-associated adipocytes (CAAs), tumor endothelial cells (TECs) and pericytes (PCs) in stromal cells.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Meili Shen
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Liangqiang Wu
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Haiqin Yang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Yixuan Yao
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Qingbiao Yang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Jianshi Du
- Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Linlin Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Yapeng Li
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China.
| | - Yuansong Bai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China.
| |
Collapse
|
8
|
Nihashi Y, Song X, Yamamoto M, Setoyama D, Kida YS. Decoding Metabolic Symbiosis between Pancreatic Cancer Cells and Cancer-Associated Fibroblasts Using Cultured Tumor Microenvironment. Int J Mol Sci 2023; 24:11015. [PMID: 37446193 DOI: 10.3390/ijms241311015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with a poor prognosis, largely due to its unique tumor microenvironment (TME) and dense fibrotic stroma. Cancer-associated fibroblasts (CAFs) play a crucial role in promoting tumor growth and metastasis, contributing to the metabolic adaptation of PDAC cells. However, the metabolic interactions between PDAC cells and CAFs are not well-understood. In this study, an in vitro co-culture model was used to investigate these metabolic interactions. Metabolomic analysis was performed under monoculture conditions of Capan-1 PDAC cells and CAF precursor cells, as well as co-culture conditions of PDAC cells and differentiated inflammatory CAF (iCAF). Co-cultured Capan-1 cells displayed significant metabolic changes, such as increased 2-oxoglutaric acid and lauric acid and decreased amino acids. The metabolic profiles of co-cultured Capan-1 and CAFs revealed differences in intracellular metabolites. Analysis of extracellular metabolites in the culture supernatant showed distinct differences between Capan-1 and CAF precursors, with the co-culture supernatant exhibiting the most significant changes. A comparison of the culture supernatants of Capan-1 and CAF precursors revealed different metabolic processes while co-culturing the two cell types demonstrated potential metabolic interactions. In conclusion, this study emphasizes the importance of metabolic interactions between cancer cells and CAFs in tumor progression and highlights the role of TME in metabolic reprogramming.
Collapse
Affiliation(s)
- Yuma Nihashi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Xiaoyu Song
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
- Tsukuba Life Science Innovation Program (T-LSI), School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Kishibe-Shimmachi, Suita 564-8565, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Yasuyuki S Kida
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
- School of Integrative & Global Majors, University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|
9
|
Hyytiäinen A, Mroueh R, Peltonen J, Wennerstrand P, Mäkitie A, Al-Samadi A, Ventelä S, Salo T. Prognostic histological markers in oral tongue squamous cell carcinoma patients treated with (chemo)radiotherapy. APMIS 2023; 131:142-151. [PMID: 36695633 DOI: 10.1111/apm.13298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Treatment of oral tongue squamous cell carcinoma (OTSCC) frequently includes surgery with postoperative radiotherapy (RT) or chemoradiotherapy (CRT). Resistance to RT or CRT remains a major clinical challenge and highlights the need to identify predictive markers for it. We included 71 OTSCC patients treated with surgery combined with RT or CRT. We evaluated the association between tumor budding, tumor-stroma ratio (TSR), depth of invasion (DOI), tumor-infiltrating lymphocytes (TILs), hypoxia-inducible factor-1alpha (HIF-1alpha) expression, octamer-binding transcription factor 4 (OCT4) expression, high-endothelial venules (HEVs), and disease-free survival (DFS) using uni- and multivariate analyses. No significant association was observed between the different histological and molecular markers (TSR, DOI, TILs, HEV, HIF-1alph, OCT4) and DFS. However, an associative trend between DOI, budding, and DFS was noted. Further studies with larger cohorts are needed to explore the prognostic value of DOI and budding for OTSCC patients treated with postoperative RT or CRT.
Collapse
Affiliation(s)
- Aini Hyytiäinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rayan Mroueh
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland.,Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer and Research, Helsinki, Finland
| | - Johanna Peltonen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pia Wennerstrand
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska Hospital, Stockholm, Sweden
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sami Ventelä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Department for Otorhinolaryngology, Head and Neck Surgery, University of Turku and Turku University Hospital, Turku, Finland.,FICAN West Cancer Centre, Turku, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland.,Department of Pathology, Helsinki University Hospital (HUS), Helsinki, Finland
| |
Collapse
|
10
|
The Roles of Exosomes in Metastasis of Sarcoma: From Biomarkers to Therapeutic Targets. Biomolecules 2023; 13:biom13030456. [PMID: 36979391 PMCID: PMC10046038 DOI: 10.3390/biom13030456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Sarcoma is a heterogeneous group of mesenchymal neoplasms with a high rate of lung metastasis. The cellular mechanisms responsible for sarcoma metastasis remain poorly understood. Furthermore, there are limited efficacious therapeutic strategies for treating metastatic sarcoma. Improved diagnostic and therapeutic modalities are of increasing importance for the treatment of sarcoma due to their high mortality in the advanced stages of the disease. Recent evidence demonstrates that the exosome, a type of extracellular vesicle released by virtually all cells in the body, is an important facilitator of intercellular communication between the cells and the surrounding environment. The exosome is gaining significant attention among the medical research community, but there is little knowledge about how the exosome affects sarcoma metastasis. In this review, we summarize the multifaceted roles of sarcoma-derived exosomes in promoting the process of metastasis via the formation of pre-metastatic niche (PMN), the regulation of immunity, angiogenesis, vascular permeability, and the migration of sarcoma cells. We also highlight the potential of exosomes as innovative diagnostic and prognostic biomarkers as well as therapeutic targets in sarcoma metastasis.
Collapse
|
11
|
Zhang M, Du M, Qi X, Wang Y, Li G, Xu C, Zhang X. Retro-inversion follicle-stimulating hormone peptide-modified nanoparticles for delivery of PDK2 shRNA against chemoresistant ovarian cancer by switching glycolysis to oxidative phosphorylation. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Most ovarian cancers are diagnosed at advanced stages characterized by abdominal dissemination and frequently exhibit chemoresistance. Pyruvate dehydrogenase kinase 2 (PDK2) regulates the switch between glycolysis and oxidative phosphorylation and contributes to tumor progression and chemoresistance. Here, we investigated the effects of PDK2 blockade on metabolic reprogramming and cisplatin sensitivity and evaluated the in vivo antitumor effects of PDK2 shRNA in chemoresistant ovarian cancer using retro-inverso follicle-stimulating hormone peptide-modified nanoparticle as carriers.
Methods
The expression of PDK2 was detected by immunohistochemistry, Western blot and real-time PCR. Cell proliferation and apoptosis were detected using CCK-8 and flow cytometry. Cell migration was detected by Transwell assay. Seahorse Analyzer was used to evaluate metabolic changes. The cisplatin-resistant ovarian cancer cells A2780cp were used to establish the mouse model of peritoneal metastatic ovarian cancer.
Results
A higher expression level of PDK2 was observed in chemoresistant ovarian cancer tissues and cell lines and was associated with shorter progression-free survival. PDK2 knockdown inhibited proliferation and migration and promoted apoptosis of both cisplatin-sensitive and cisplatin-resistant ovarian cancer cells. Cisplatin sensitivity was increased even in cisplatin-resistant ovarian cancer cells. Mechanistically, PDK2 knockdown resulted in an increased oxygen consumption rate and decreased extracellular acidification rate, along with reduced lactate production, increased PDHC activity and increased levels of electron transport chain complexes III and V. The metabolism switched from glycolysis to oxidative phosphorylation. Finally, to specifically and effectively deliver PDK2 shRNA in vivo, we formulated a targeted delivery system containing retro-inverso follicle-stimulating hormone peptide as a targeting moiety and polyethylene glycol–polyethylenimine copolymers as carriers. The nanoparticle complex significantly suppressed tumor growth and peritoneal metastasis of cisplatin-resistant ovarian cancer without obvious toxicities.
Conclusions
Our findings showed the link between metabolic reprogramming and chemoresistance in ovarian cancer and provided an effective targeting strategy for switching metabolic pathways in cancer therapy.
Collapse
|
12
|
The role of metabolic reprogramming in cancer metastasis and potential mechanism of traditional Chinese medicine intervention. Biomed Pharmacother 2022; 153:113376. [DOI: 10.1016/j.biopha.2022.113376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022] Open
|
13
|
Raeisi M, Zehtabi M, Velaei K, Fayyazpour P, Aghaei N, Mehdizadeh A. Anoikis in cancer: The role of lipid signaling. Cell Biol Int 2022; 46:1717-1728. [DOI: 10.1002/cbin.11896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Mortaza Raeisi
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Kobra Velaei
- Department of Anatomical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Parisa Fayyazpour
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Negar Aghaei
- Department of Psycology, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
- Imam Sajjad Hospital Tabriz Azad University Tabriz Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
14
|
Zhu Y, Li X, Wang L, Hong X, Yang J. Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells in the tumor microenvironment. Front Endocrinol (Lausanne) 2022; 13:988295. [PMID: 36046791 PMCID: PMC9421293 DOI: 10.3389/fendo.2022.988295] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 12/13/2022] Open
Abstract
It is notorious that cancer cells alter their metabolism to adjust to harsh environments of hypoxia and nutritional starvation. Metabolic reprogramming most often occurs in the tumor microenvironment (TME). TME is defined as the cellular environment in which the tumor resides. This includes surrounding blood vessels, fibroblasts, immune cells, signaling molecules and the extracellular matrix (ECM). It is increasingly recognized that cancer cells, fibroblasts and immune cells within TME can regulate tumor progression through metabolic reprogramming. As the most significant proportion of cells among all the stromal cells that constitute TME, cancer-associated fibroblasts (CAFs) are closely associated with tumorigenesis and progression. Multitudinous studies have shown that CAFs participate in and promote tumor metabolic reprogramming and exert regulatory effects via the dysregulation of metabolic pathways. Previous studies have demonstrated that curbing the substance exchange between CAFs and tumor cells can dramatically restrain tumor growth. Emerging studies suggest that CAFs within the TME have emerged as important determinants of metabolic reprogramming. Metabolic reprogramming also occurs in the metabolic pattern of immune cells. In the meanwhile, immune cell phenotype and functions are metabolically regulated. Notably, immune cell functions influenced by metabolic programs may ultimately lead to alterations in tumor immunity. Despite the fact that multiple previous researches have been devoted to studying the interplays between different cells in the tumor microenvironment, the complicated relationship between CAFs and immune cells and implications of metabolic reprogramming remains unknown and requires further investigation. In this review, we discuss our current comprehension of metabolic reprogramming of CAFs and immune cells (mainly glucose, amino acid, and lipid metabolism) and crosstalk between them that induces immune responses, and we also highlight their contributions to tumorigenesis and progression. Furthermore, we underscore potential therapeutic opportunities arising from metabolism dysregulation and metabolic crosstalk, focusing on strategies targeting CAFs and immune cell metabolic crosstalk in cancer immunotherapy.
Collapse
Affiliation(s)
- Yifei Zhu
- School of Medicine, Southeast University, Nanjing, China
| | - Xinyan Li
- School of Medicine, Southeast University, Nanjing, China
| | - Lei Wang
- School of Medicine, Southeast University, Nanjing, China
| | - Xiwei Hong
- School of Medicine, Southeast University, Nanjing, China
| | - Jie Yang
- Department of General surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| |
Collapse
|
15
|
Huo J, Guan J, Li Y. Metabolism reprogramming signature associated with stromal cells abundance in tumor microenvironment improve prognostic risk classification for gastric cancer. BMC Gastroenterol 2022; 22:364. [PMID: 35907819 PMCID: PMC9338655 DOI: 10.1186/s12876-022-02451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Background Stromal cells play an important role in the process of tumor progression, but the relationship between stromal cells and metabolic reprogramming is not very clear in gastric cancer (GC). Methods Metabolism-related genes associated with stromal cells were identified in The Cancer Genome Atlas (TCGA) and GSE84437 datasets, and the two datasets with 804 GC patients were integrated into a training cohort to establish the prognostic signature. Univariate Cox regression analysis was used to screen for prognosis-related genes. A risk score was constructed by LASSO regression analysis combined with multivariate Cox regression analysis. The patients were classified into groups with high and low risk according to the median value. Two independent cohorts, GSE62254 (n = 300) and GSE15459 (n = 191), were used to externally verify the risk score performance. The CIBERSORT method was applied to quantify the immune cell infiltration of all included samples. Results A risk score consisting of 24 metabolic genes showed good performance in predicting the overall survival (OS) of GC patients in both the training (TCGA and GSE84437) and testing cohorts (GSE62254 and GSE15459). As the risk score increased, the patients’ risk of death increased. The risk score was an independent prognostic indicator in both the training and testing cohorts suggested by the univariate and multivariate Cox regression analyses. The patients were clustered into four subtypes according to the quantification of 22 kinds of immune cell infiltration (ICI). The proportion of ICI Cluster C with the best prognosis in the low-risk group was approximately twice as high as that in the high-risk group, and the risk score of ICI Cluster C was significantly lower than that of the other three subtypes. Conclusion Our study proposed the first scheme for prognostic risk classification of GC from the perspective of tumor stromal cells and metabolic reprogramming, which may contribute to the development of therapeutic strategies for GC. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02451-2.
Collapse
Affiliation(s)
- Junyu Huo
- The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266003, China
| | - Jing Guan
- Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, 266035, Shandong, China
| | - Yankun Li
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, 266035, Shandong, China.
| |
Collapse
|
16
|
Domingo-Vidal M, Whitaker-Menezes D, Mollaee M, Lin Z, Tuluc M, Philp N, Johnson JM, Zhan T, Curry J, Martinez-Outschoorn U. Monocarboxylate Transporter 4 in Cancer-Associated Fibroblasts Is a Driver of Aggressiveness in Aerodigestive Tract Cancers. Front Oncol 2022; 12:906494. [PMID: 35814364 PMCID: PMC9259095 DOI: 10.3389/fonc.2022.906494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The most common cancers of the aerodigestive tract (ADT) are non-small cell lung cancer (NSCLC) and head and neck squamous cell carcinoma (HNSCC). The tumor stroma plays an important role in ADT cancer development and progression, and contributes to the metabolic heterogeneity of tumors. Cancer-associated fibroblasts (CAFs) are the most abundant cell type in the tumor stroma of ADT cancers and exert pro-tumorigenic functions. Metabolically, glycolytic CAFs support the energy needs of oxidative (OXPHOS) carcinoma cells. Upregulation of the monocarboxylate transporter 4 (MCT4) and downregulation of isocitrate dehydrogenase 3α (IDH3α) are markers of glycolysis in CAFs, and upregulation of the monocarboxylate transporter 1 (MCT1) and the translocase of the outer mitochondrial membrane 20 (TOMM20) are markers of OXPHOS in carcinoma cells. It is unknown if glycolytic metabolism in CAFs is a driver of ADT cancer aggressiveness. In this study, co-cultures in vitro and co-injections in mice of ADT carcinoma cells with fibroblasts were used as experimental models to study the effects of fibroblasts on metabolic compartmentalization, oxidative stress, carcinoma cell proliferation and apoptosis, and overall tumor growth. Glycolytic metabolism in fibroblasts was modulated using the HIF-1α inhibitor BAY 87-2243, the antioxidant N-acetyl cysteine, and genetic depletion of MCT4. We found that ADT human tumors express markers of metabolic compartmentalization and that co-culture models of ADT cancers recapitulate human metabolic compartmentalization, have high levels of oxidative stress, and promote carcinoma cell proliferation and survival. In these models, BAY 87-2243 rescues IDH3α expression and NAC reduces MCT4 expression in fibroblasts, and these treatments decrease ADT carcinoma cell proliferation and increase cell death. Genetic depletion of fibroblast MCT4 decreases proliferation and survival of ADT carcinoma cells in co-culture. Moreover, co-injection of ADT carcinoma cells with fibroblasts lacking MCT4 reduces tumor growth and decreases the expression of markers of metabolic compartmentalization in tumors. In conclusion, metabolic compartmentalization with high expression of MCT4 in CAFs drives aggressiveness in ADT cancers.
Collapse
Affiliation(s)
- Marina Domingo-Vidal
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Diana Whitaker-Menezes
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mehri Mollaee
- Lewis Katz School of Medicine, Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Zhao Lin
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Madalina Tuluc
- Sidney Kimmel Cancer Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nancy Philp
- Sidney Kimmel Cancer Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jennifer M. Johnson
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tingting Zhan
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, United States
| | - Joseph Curry
- Sidney Kimmel Cancer Center, Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ubaldo Martinez-Outschoorn
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Ubaldo Martinez-Outschoorn,
| |
Collapse
|
17
|
Huo J, Cai J, Wu L. Comprehensive analysis of metabolic pathway activity subtypes derived prognostic signature in hepatocellular carcinoma. Cancer Med 2022; 12:898-912. [PMID: 35651292 PMCID: PMC9844627 DOI: 10.1002/cam4.4858] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/20/2022] [Accepted: 05/15/2022] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Metabolic reprogramming is one of the hallmarks of cancer, but metabolic pathway activity-related subtypes of hepatocellular carcinoma (HCC) have not been identified. METHODS Based on the quantification results of 41 metabolic pathway activities by gene set variation analysis, the training cohort (n = 609, merged by TCGA and GSE14520) was clustered into three subtypes (C1, C2, and C3) with the nonnegative matrix factorization method. Totally 1371 differentially expressed genes among C1, C2, and C3 were identified, and an 8-gene risk score was established by univariable Cox regression analysis, least absolute shrinkage and selection operator method, and multivariable Cox regression analysis. RESULTS C1 had the strongest metabolic activity, good prognosis, the highest CTNNB1 mutation rate, with massive infiltration of eosinophils and natural killer cells. C2 had the weakest metabolic activity, poor prognosis, was younger, was inclined to vascular invasion and advanced stage, had the highest TP53 mutation rate, exhibited a higher expression level of immune checkpoints, accompanied by massive infiltration of regulatory T cells. C3 had moderate metabolic activity and prognosis, the highest LRP1B mutation rate, and a higher infiltration level of neutrophils and macrophages. Internal cohorts (TCGA, n = 370; GSE14520, n = 239), external cohorts (ICGC, n = 231; GSE116174, n = 64), and clinical subgroup validation showed that the risk score was applicable for patients with diverse clinical features and was effective in predicting the prognosis and malignant progression of patients with HCC. Compared with the low-risk group, the high-risk group had a poor prognosis, enhanced cancer stem cell characteristics, activated DNA damage repair, weakened metabolic activity, cytolytic activity, and interferon response. CONCLUSION We identified HCC subtypes from the perspective of metabolism-related pathway activity and proposed a robust prognostic signature for HCC.
Collapse
Affiliation(s)
- Junyu Huo
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Jinzhen Cai
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Liqun Wu
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
18
|
Xu B, Peng Z, An Y, Yan G, Yao X, Guan L, Sun M. Identification of Energy Metabolism-Related Gene Signatures From scRNA-Seq Data to Predict the Prognosis of Liver Cancer Patients. Front Cell Dev Biol 2022; 10:858336. [PMID: 35602603 PMCID: PMC9114438 DOI: 10.3389/fcell.2022.858336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
The increasingly common usage of single-cell sequencing in cancer research enables analysis of tumor development mechanisms from a wider range of perspectives. Metabolic disorders are closely associated with liver cancer development. In recent years, liver cancer has been evaluated from different perspectives and classified into different subtypes to improve targeted treatment strategies. Here, we performed an analysis of liver cancer from the perspective of energy metabolism based on single-cell sequencing data. Single-cell and bulk sequencing data of liver cancer patients were obtained from GEO and TCGA/ICGC databases, respectively. Using the Seurat R package and protocols such as consensus clustering analysis, genes associated with energy metabolism in liver cancer were identified and validated. An energy metabolism-related score (EM score) was established based on five identified genes. Finally, the sensitivity of patients in different scoring groups to different chemotherapeutic agents and immune checkpoint inhibitors was analyzed. Tumor cells from liver cancer patients were found to divide into nine clusters, with cluster 4 having the highest energy metabolism score. Based on the marker genes of this cluster and TCGA database data, the five most stable key genes (ADH4, AKR1B10, CEBPZOS, ENO1, and FOXN2) were identified as energy metabolism-related genes in liver cancer. In addition, drug sensitivity analysis showed that patients in the low EM score group were more sensitive to immune checkpoint inhibitors and chemotherapeutic agents AICAR, metformin, and methotrexate.
Collapse
Affiliation(s)
- Boyang Xu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ziqi Peng
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yue An
- Department of Endoscopy, The First Hospital of China Medical University, Shenyang, China
| | - Guanyu Yan
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xue Yao
- Department of Surgical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Lin Guan
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Lin Guan, ; Mingjun Sun,
| | - Mingjun Sun
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Lin Guan, ; Mingjun Sun,
| |
Collapse
|
19
|
Riedel A, Helal M, Pedro L, Swietlik JJ, Shorthouse D, Schmitz W, Haas L, Young T, da Costa ASH, Davidson S, Bhandare P, Wolf E, Hall BA, Frezza C, Oskarsson T, Shields JD. Tumor-Derived Lactic Acid Modulates Activation and Metabolic Status of Draining Lymph Node Stroma. Cancer Immunol Res 2022; 10:482-497. [PMID: 35362044 DOI: 10.1158/2326-6066.cir-21-0778] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/13/2021] [Accepted: 02/16/2022] [Indexed: 01/21/2023]
Abstract
Communication between tumors and the stroma of tumor-draining lymph nodes (TDLN) exists before metastasis arises, altering the structure and function of the TDLN niche. Transcriptional profiling of fibroblastic reticular cells (FRC), the dominant stromal population of lymph nodes, has revealed that FRCs in TDLNs are reprogrammed. However, the tumor-derived factors driving the changes in FRCs remain to be identified. Taking an unbiased approach, we have shown herein that lactic acid (LA), a metabolite released by cancer cells, was not only secreted by B16.F10 and 4T1 tumors in high amounts, but also that it was enriched in TDLNs. LA supported an upregulation of Podoplanin (Pdpn) and Thy1 and downregulation of IL7 in FRCs of TDLNs, making them akin to activated fibroblasts found at the primary tumor site. Furthermore, we found that tumor-derived LA altered mitochondrial function of FRCs in TDLNs. Thus, our results demonstrate a mechanism by which a tumor-derived metabolite connected with a low pH environment modulates the function of fibroblasts in TDLNs. How lymph node function is perturbed to support cancer metastases remains unclear. The authors show that tumor-derived LA drains to lymph nodes where it modulates the function of lymph node stromal cells, prior to metastatic colonization.
Collapse
Affiliation(s)
- Angela Riedel
- Mildred Scheel Early Career Centre, University Hospital of Würzburg, Würzburg, Germany.,MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom.,The Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Moutaz Helal
- Mildred Scheel Early Career Centre, University Hospital of Würzburg, Würzburg, Germany
| | - Luisa Pedro
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan J Swietlik
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - David Shorthouse
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Werner Schmitz
- Institute for Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Lisa Haas
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Timothy Young
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ana S H da Costa
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Davidson
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Pranjali Bhandare
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Elmar Wolf
- Mildred Scheel Early Career Centre, University Hospital of Würzburg, Würzburg, Germany.,Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Benjamin A Hall
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Christian Frezza
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Thordur Oskarsson
- The Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jacqueline D Shields
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Fu Y, Zou T, Shen X, Nelson PJ, Li J, Wu C, Yang J, Zheng Y, Bruns C, Zhao Y, Qin L, Dong Q. Lipid metabolism in cancer progression and therapeutic strategies. MedComm (Beijing) 2021; 2:27-59. [PMID: 34766135 PMCID: PMC8491217 DOI: 10.1002/mco2.27] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
Dysregulated lipid metabolism represents an important metabolic alteration in cancer. Fatty acids, cholesterol, and phospholipid are the three most prevalent lipids that act as energy producers, signaling molecules, and source material for the biogenesis of cell membranes. The enhanced synthesis, storage, and uptake of lipids contribute to cancer progression. The rewiring of lipid metabolism in cancer has been linked to the activation of oncogenic signaling pathways and cross talk with the tumor microenvironment. The resulting activity favors the survival and proliferation of tumor cells in the harsh conditions within the tumor. Lipid metabolism also plays a vital role in tumor immunogenicity via effects on the function of the noncancer cells within the tumor microenvironment, especially immune‐associated cells. Targeting altered lipid metabolism pathways has shown potential as a promising anticancer therapy. Here, we review recent evidence implicating the contribution of lipid metabolic reprogramming in cancer to cancer progression, and discuss the molecular mechanisms underlying lipid metabolism rewiring in cancer, and potential therapeutic strategies directed toward lipid metabolism in cancer. This review sheds new light to fully understanding of the role of lipid metabolic reprogramming in the context of cancer and provides valuable clues on therapeutic strategies targeting lipid metabolism in cancer.
Collapse
Affiliation(s)
- Yan Fu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Tiantian Zou
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Xiaotian Shen
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Peter J Nelson
- Medical Clinic and Policlinic IV Ludwig-Maximilian-University (LMU) Munich Germany
| | - Jiahui Li
- General, Visceral and Cancer Surgery University Hospital of Cologne Cologne Germany
| | - Chao Wu
- Department of General Surgery, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jimeng Yang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Christiane Bruns
- General, Visceral and Cancer Surgery University Hospital of Cologne Cologne Germany
| | - Yue Zhao
- General, Visceral and Cancer Surgery University Hospital of Cologne Cologne Germany
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| |
Collapse
|
21
|
Si X, Ji G, Ma S, Xu Y, Zhao J, Zhang Y, Huang Z, Tang Z, Song W, Chen X. In-Situ-Sprayed Dual-Functional Immunotherapeutic Gel for Colorectal Cancer Postsurgical Treatment. Adv Healthc Mater 2021; 10:e2100862. [PMID: 34347370 DOI: 10.1002/adhm.202100862] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/14/2021] [Indexed: 12/13/2022]
Abstract
Surgery remains the most preferred treatment options for colorectal cancer (CRC). Paradoxically, local recurrence and distant metastasis are usually accelerated postsurgery as a consequence of local and systemic immunosuppression caused by surgery. Therefore, modulating tumor postoperative immune microenvironment and activating systemic antitumor immunity are necessary supplementaries for CRC therapy. Here, an in-situ-sprayed immunotherapeutic gel loaded with anti-OX40 antibody (iSGels@aOX40) is reported for CRC postsurgical treatment. The iSGel is formed instantly after spraying with strong adhesion ability via crosslinking between tannic acid (TA) and poly(l-glutamic acid)-g-methoxy poly(ethylene glycol)/phenyl boronic acid (PLG-g-mPEG/PBA). TA not only serves as one component of the iSGel but also relieves the postsurgical immunosuppressive microenvironment by inhibiting the activity of cyclo-oxygenase-2 (COX-2). The aOX40 serves as an immune agonistic antibody and is released from the iSGel in a constant manner lasting for over 20 days. In a subcutaneous murine CRC model, the iSGels@aOX40 results in complete inhibition on tumor recurrence. In addition, the cured mice show resistance to tumor re-challenge, suggesting that immune memory effects are established after the iSGels@aOX40 treatment. In an orthotopic CRC peritoneal metastatic model, the iSGels@aOX40 also remarkably inhibits the growth of the abdominal metastatic tumors, suggesting great potential for clinical CRC therapy.
Collapse
Affiliation(s)
- Xinghui Si
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- Jilin Biomedical Polymers Engineering Laboratory Changchun 130022 China
| | - Guofeng Ji
- Department Gastrointestinal Surgery China–Japan Union Hospital of Jilin University Changchun 130021 China
| | - Sheng Ma
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- Jilin Biomedical Polymers Engineering Laboratory Changchun 130022 China
| | - Yudi Xu
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Jiayu Zhao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Yu Zhang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- Jilin Biomedical Polymers Engineering Laboratory Changchun 130022 China
| | - Zichao Huang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- Jilin Biomedical Polymers Engineering Laboratory Changchun 130022 China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- Jilin Biomedical Polymers Engineering Laboratory Changchun 130022 China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- Jilin Biomedical Polymers Engineering Laboratory Changchun 130022 China
| |
Collapse
|
22
|
The Metabolic Features of Tumor-Associated Macrophages: Opportunities for Immunotherapy? ACTA ACUST UNITED AC 2021; 2021:5523055. [PMID: 34476174 PMCID: PMC8407977 DOI: 10.1155/2021/5523055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 01/01/2023]
Abstract
Besides transformed cells, the tumors are composed of various cell types that contribute to undesirable tumor progression. Tumor-associated macrophages (TAMs) are the most abundant innate immune cells in the tumor microenvironment (TME). Within the TME, TAMs exhibit high plasticity and undergo specific functional metabolic alterations according to the availability of tumor tissue oxygen and nutrients, thus further contributing to tumorigenesis and cancer progression. Here, we review the main functional TAM metabolic patterns influenced by TME, including glycolysis, amino acid, and fatty acid metabolism. Moreover, this review discusses antitumor immunotherapies that affect TAM functionality by inducing cell repolarizing and metabolic profiles towards an antitumoral phenotype. Also, new macrophage-based cell therapeutic technologies recently developed using chimeric antigen receptor bioengineering are exposed, which may overcome all solid tumor physical barriers impeding the current adoptive cell therapies and contribute to developing novel cancer immunotherapies.
Collapse
|
23
|
Dias AS, Helguero L, Almeida CR, Duarte IF. Natural Compounds as Metabolic Modulators of the Tumor Microenvironment. Molecules 2021; 26:molecules26123494. [PMID: 34201298 PMCID: PMC8228554 DOI: 10.3390/molecules26123494] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) is a heterogenous assemblage of malignant and non-malignant cells, including infiltrating immune cells and other stromal cells, together with extracellular matrix and a variety of soluble factors. This complex and dynamic milieu strongly affects tumor differentiation, progression, immune evasion, and response to therapy, thus being an important therapeutic target. The phenotypic and functional features of the various cell types present in the TME are largely dependent on their ability to adopt different metabolic programs. Hence, modulating the metabolism of the cells in the TME, and their metabolic crosstalk, has emerged as a promising strategy in the context of anticancer therapies. Natural compounds offer an attractive tool in this respect as their multiple biological activities can potentially be harnessed to ‘(re)-educate’ TME cells towards antitumoral roles. The present review discusses how natural compounds shape the metabolism of stromal cells in the TME and how this may impact tumor development and progression.
Collapse
Affiliation(s)
- Ana S. Dias
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Medical Sciences, iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (L.H.); (C.R.A.)
| | - Luisa Helguero
- Department of Medical Sciences, iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (L.H.); (C.R.A.)
| | - Catarina R. Almeida
- Department of Medical Sciences, iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (L.H.); (C.R.A.)
| | - Iola F. Duarte
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Correspondence: ; Tel.: +351-234-401-418
| |
Collapse
|
24
|
Lone SN, Bhat AA, Wani NA, Karedath T, Hashem S, Nisar S, Singh M, Bagga P, Das BC, Bedognetti D, Reddy R, Frenneaux MP, El-Rifai W, Siddiqi MA, Haris M, Macha MA. miRNAs as novel immunoregulators in cancer. Semin Cell Dev Biol 2021; 124:3-14. [PMID: 33926791 DOI: 10.1016/j.semcdb.2021.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
The immune system is a well-known vital regulator of tumor growth, and one of the main hallmarks of cancer is evading the immune system. Immune system deregulation can lead to immune surveillance evasion, sustained cancer growth, proliferation, and metastasis. Tumor-mediated disruption of the immune system is accomplished by different mechanisms that involve extensive crosstalk with the immediate microenvironment, which includes endothelial cells, immune cells, and stromal cells, to create a favorable tumor niche that facilitates the development of cancer. The essential role of non-coding RNAs such as microRNAs (miRNAs) in the mechanism of cancer cell immune evasion has been highlighted in recent studies. miRNAs are small non-coding RNAs that regulate a wide range of post-transcriptional gene expression in a cell. Recent studies have focused on the function that miRNAs play in controlling the expression of target proteins linked to immune modulation. Studies show that miRNAs modulate the immune response in cancers by regulating the expression of different immune-modulatory molecules associated with immune effector cells, such as macrophages, dendritic cells, B-cells, and natural killer cells, as well as those present in tumor cells and the tumor microenvironment. This review explores the relationship between miRNAs, their altered patterns of expression in tumors, immune modulation, and the functional control of a wide range of immune cells, thereby offering detailed insights on the crosstalk of tumor-immune cells and their use as prognostic markers or therapeutic agents.
Collapse
Affiliation(s)
- Saife N Lone
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu & Kashmir, India
| | - Ajaz A Bhat
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Nissar A Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu & Kashmir, India
| | | | - Sheema Hashem
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Mayank Singh
- Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (BRAIRCH), AIIMS, New Delhi, India
| | - Puneet Bagga
- Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bhudev Chandra Das
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Uttar Pradesh, India
| | - Davide Bedognetti
- Laboratory of Cancer Immunogenomics, Cancer Research Department, Sidra Medicine, Doha, Qatar; Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Ravinder Reddy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | | | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mushtaq A Siddiqi
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, India
| | - Mohammad Haris
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, India.
| |
Collapse
|
25
|
Yang C, He B, Dai W, Zhang H, Zheng Y, Wang X, Zhang Q. The role of caveolin-1 in the biofate and efficacy of anti-tumor drugs and their nano-drug delivery systems. Acta Pharm Sin B 2021; 11:961-977. [PMID: 33996409 PMCID: PMC8105775 DOI: 10.1016/j.apsb.2020.11.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
As one of the most important components of caveolae, caveolin-1 is involved in caveolae-mediated endocytosis and transcytosis pathways, and also plays a role in regulating the cell membrane cholesterol homeostasis and mediating signal transduction. In recent years, the relationship between the expression level of caveolin-1 in the tumor microenvironment and the prognostic effect of tumor treatment and drug treatment resistance has also been widely explored. In addition, the interplay between caveolin-1 and nano-drugs is bidirectional. Caveolin-1 could determine the intracellular biofate of specific nano-drugs, preventing from lysosomal degradation, and facilitate them penetrate into deeper site of tumors by transcytosis; while some nanocarriers could also affect caveolin-1 levels in tumor cells, thereby changing certain biophysical function of cells. This article reviews the role of caveolin-1 in tumor prognosis, chemotherapeutic drug resistance, antibody drug sensitivity, and nano-drug delivery, providing a reference for the further application of caveolin-1 in nano-drug delivery systems.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- ADC, antibody drug conjugates
- BBB, blood–brain barrier
- Biofate
- CAFs, cancer-associated fibroblasts
- CPT, camptothecin
- CSD, caveolin scaffolding domain
- CTB, cholera toxins B
- Cancer
- Caveolin-1
- Drug resistance
- ECM, extracellular matrix
- EGF, epidermal growth factor
- EGFR, epidermal growth factor receptor
- ER, endoplasmic reticulum
- ERK, extracellular regulated protein kinases
- FGF2, fibroblast growth factor 2
- GGT, γ-glutamyl transpeptidase
- GPI, glycosylphosphatidylinositol
- HER2, human epidermal growth factor receptor 2
- HMG-CoA, 3-hydroxy-3-methylglutaryl-coenzyme A
- HSA, human serum albumin
- IBC, infiltrating breast cancer
- IR, insulin receptor
- MAPK, mitogen-activated protein kinase
- MDR, multidrug resistance
- MSV, multistage nanovectors
- NPs, nanoparticles
- Nano-drug delivery systems
- PC, prostate cancer
- PDGF, platelet-derived growth factor
- PFS, progression free survival
- ROS, reactive oxygen species
- SCLC, small cell lung cancer
- SV40, simian virus 40
- Transcytosis
- cell SMA, styrene maleic acid
Collapse
|
26
|
Suares A, Medina MV, Coso O. Autophagy in Viral Development and Progression of Cancer. Front Oncol 2021; 11:603224. [PMID: 33763351 PMCID: PMC7982729 DOI: 10.3389/fonc.2021.603224] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a complex degradative process by which eukaryotic cells capture cytoplasmic components for subsequent degradation through lysosomal hydrolases. Although this catabolic process can be triggered by a great variety of stimuli, action in cells varies according to cellular context. Autophagy has been previously linked to disease development modulation, including cancer. Autophagy helps suppress cancer cell advancement in tumor transformation early stages, while promoting proliferation and metastasis in advanced settings. Oncoviruses are a particular type of virus that directly contribute to cell transformation and tumor development. Extensive molecular studies have revealed complex ways in which autophagy can suppress or improve oncovirus fitness while still regulating viral replication and determining host cell fate. This review includes recent advances in autophagic cellular function and emphasizes its antagonistic role in cancer cells.
Collapse
Affiliation(s)
- Alejandra Suares
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Victoria Medina
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Omar Coso
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
27
|
Suares A, Medina MV, Coso O. Autophagy in Viral Development and Progression of Cancer. Front Oncol 2021. [DOI: 10.3389/fonc.2021.603224
expr 816899697 + 824303767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Autophagy is a complex degradative process by which eukaryotic cells capture cytoplasmic components for subsequent degradation through lysosomal hydrolases. Although this catabolic process can be triggered by a great variety of stimuli, action in cells varies according to cellular context. Autophagy has been previously linked to disease development modulation, including cancer. Autophagy helps suppress cancer cell advancement in tumor transformation early stages, while promoting proliferation and metastasis in advanced settings. Oncoviruses are a particular type of virus that directly contribute to cell transformation and tumor development. Extensive molecular studies have revealed complex ways in which autophagy can suppress or improve oncovirus fitness while still regulating viral replication and determining host cell fate. This review includes recent advances in autophagic cellular function and emphasizes its antagonistic role in cancer cells.
Collapse
|
28
|
The Secreted Protein C10orf118 Is a New Regulator of Hyaluronan Synthesis Involved in Tumour-Stroma Cross-Talk. Cancers (Basel) 2021; 13:cancers13051105. [PMID: 33807583 PMCID: PMC7961460 DOI: 10.3390/cancers13051105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Hyaluronan is a main glycosaminoglycan in extracellular matrix with an important role in breast cancer progression. Alterations in its synthesis and size may affect tu-mour growth and metastasis. Communication between stromal and breast cancer cells consists of the secretion of factors that provoke a series of cell signalling that influence cell fate and tis-sue microenvironment, by favouring tumour cell survival and motility. Here, we present the c10orf118 protein expressed in high amounts by breast tumour cells as a new regulator in hya-luronan synthesis. This protein is found both in Golgi and secreted in the extracellular matrix, whereas its role is still unknown. The secreted c10orf118 is found to induce hyaluronan synthase 2 in normal fibroblasts. Importantly, high expression of c10orf118 is positively correlated to pa-tient’s survival and to a low metastasis. Abstract Interaction between cancer cells and their microenvironment is central in defining the fate of cancer development. Tumour cells secrete signals (cytokines, chemokines, growth factors) that modify the surrounding area, while the niche supplies structures and activities necessary for tumour maintenance and growth. Hyaluronan (HA) is a glycosaminoglycan that constitute cancer cell niche and is known to influence tumour functions such as proliferation, migration and neoangiogenesis. The knowledge of the factors regulating HA synthesis and size is crucial in understanding the mechanisms sustaining tumour development. Here we show that a yet uncharacterized protein secreted by breast tumour cell lines, named c10orf118 (accession number NM_018017 in NCBI/BLAST, and Q7z3E2 according to the Uniprot identifier), with a predicted length of 898 amino acids, can induce the secretion of HA by stromal fibroblasts through the up-regulation of the hyaluronan synthase 2 gene (HAS2). Intracellularly, this protein is localized in the Golgi apparatus with a possible role in vesicle maturation and transport. The expression of c10orf118 was verified in breast cancer patient specimens and was found to be associated with the presence of estrogen receptor that characterizes a good patient survival. We suggest c10orf118 as a new player that influences the HA amount in breast cancer microenvironment and is associated with low aggressiveness of cancer.
Collapse
|
29
|
Rodrigues J, Heinrich MA, Teixeira LM, Prakash J. 3D In Vitro Model (R)evolution: Unveiling Tumor–Stroma Interactions. Trends Cancer 2021; 7:249-264. [DOI: 10.1016/j.trecan.2020.10.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/22/2022]
|
30
|
Liu SH, Chen PS, Huang CC, Hung YT, Lee MY, Lin WH, Lin YC, Lee AYL. Unlocking the Mystery of the Therapeutic Effects of Chinese Medicine on Cancer. Front Pharmacol 2021; 11:601785. [PMID: 33519464 PMCID: PMC7843369 DOI: 10.3389/fphar.2020.601785] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022] Open
Abstract
Over the past decade, the rise of cancer immunotherapy has coincided with a remarkable breakthrough in cancer therapy, which attracted increased interests in public. The scientific community clearly showed that the emergence of immunotherapy is an inevitable outcome of a holistic approach for cancer treatment. It is well established that traditional Chinese medicine (TCM) utilizes the principle of homeostasis and balance to adjust the healthy status of body. TCM treatment toward cancer has a long history, and the diagnosis and treatment of tumors were discussed in the ancient and classical literatures of Chinese medicine, such as the Yellow Emperor’s Inner Canon. Precious heritage has laid the foundation for the innovation and development of cancer treatment with TCM. The modern study indicated that TCM facilitates the treatment of cancer and enhances the survival rate and life expectancy of patients. However, the pharmacological mechanisms underlying these effects are not yet completely understood. In addition, physicians cannot always explain why the TCM treatment is effective and the mechanism of action cannot be explained in scientific terms. Here, we attempted to provide insights into the development of TCM in the treatment and interpret how TCM practitioners treat cancer through six general principles of TCM by using modern scientific language and terms based on newly discovered evidence.
Collapse
Affiliation(s)
- Shao-Hsiang Liu
- Celgen Biotech, Taipei, Taiwan.,Taiwan Instrument Research Institute, National Applied Research Laboratories, Zhubei, Taiwan
| | | | - Chun-Chieh Huang
- Department of Chinese Medicine, Taitung Christian Hospital, Taitung, Taiwan
| | - Yi-Tu Hung
- HanPoo Chinese Medical Clinic, Taipei, Taiwan
| | - Mei-Ying Lee
- Chinese Medicine Women Doctors Association, Taipei, Taiwan
| | | | | | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
31
|
Mehraj U, Dar AH, Wani NA, Mir MA. Tumor microenvironment promotes breast cancer chemoresistance. Cancer Chemother Pharmacol 2021; 87:147-158. [PMID: 33420940 DOI: 10.1007/s00280-020-04222-w] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/25/2020] [Indexed: 12/13/2022]
Abstract
Breast cancer is presently the most predominant tumor type and the second leading cause of tumor-related deaths among women. Although advancements in diagnosis and therapeutics have momentously improved, chemoresistance remains an important challenge. Tumors oppose chemotherapeutic agents through a variety of mechanisms, with studies revealing that the tumor microenvironment (TME) is central to this process. The components of TME including stromal cells, immune cells, and non-stromal factors on exposure to chemotherapy promote the acquisition of resistant phenotype. Consequently, limited targeting of tumor cells leads to tumor recurrence after chemotherapy. Here, in this article, we summarize how TME alters chemotherapy responses in breast cancer. Furthermore, the role of different stromal cells viz., CAFs, TAMs, MSCs, endothelial cells, and cancer stem cells (CSC) in breast cancer chemoresistance is discussed in greater detail.
Collapse
Affiliation(s)
- Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, J&K, India
| | - Abid Hamid Dar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, 191201, India
| | - Nissar A Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, 191201, India
| | - Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, J&K, India.
| |
Collapse
|
32
|
Lipid Metabolism in Tumor-Associated Fibroblasts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:117-131. [PMID: 33740247 DOI: 10.1007/978-981-33-6785-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumor- or cancer-associated fibroblasts (TAFs), one of the most abundant stromal cell types in various carcinomas, consist of a heterogeneous cell population. Typically, TAFs are assigned with pro-tumor activities to promote tumor growth and progression. One of the key features of solid tumors is the metabolic reprogramming that induces alterations of bioenergetics and biosynthesis in both tumor cells and TAFs. Therefore, this review emphasizes TAFs lipid metabolism related to both TAFs differentiation process and TAFs crosstalk with cancer cells. We hope that this review will help understand lipid metabolism in tumor microenvironment, and support the rational design of metabolism-based approaches to improve the efficacy of cancer therapy.
Collapse
|
33
|
Characteristics of the Tumor Microenvironment That Influence Immune Cell Functions: Hypoxia, Oxidative Stress, Metabolic Alterations. Cancers (Basel) 2020; 12:cancers12123802. [PMID: 33348579 PMCID: PMC7765870 DOI: 10.3390/cancers12123802] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Immunotherapy (IMT) is now a core component of cancer treatment, however, many patients do not respond to these novel therapies. Investigating the resistance mechanisms behind this differential response is now a critical area of research. Immune-based therapies, particularly immune checkpoint inhibitors (ICI), rely on a robust infiltration of T-cells into the tumor microenvironment (TME) for an effective response. While early efforts relied on quantifying tumor infiltrating lymphocytes (TIL) in the TME, characterizing the functional quality and degree of TIL exhaustion correlates more strongly with ICI response. Even with sufficient TME infiltration, immune cells face a harsh metabolic environment that can significantly impair effector function. These tumor-mediated metabolic perturbations include hypoxia, oxidative stress, and metabolites of cellular energetics. Primarily through HIF-1-dependent processes, hypoxia invokes an immunosuppressive phenotype via altered molecular markers, immune cell trafficking, and angiogenesis. Additionally, oxidative stress can promote lipid peroxidation, ER stress, and Treg dysfunction, all associated with immune dysregulation. Finally, the metabolic byproducts of lipids, amino acids, glucose, and cellular energetics are associated with immunosuppression and ICI resistance. This review will explore these biochemical pathways linked to immune cell dysfunction in the TME and highlight potential adjunctive therapies to be used alongside current IMT.
Collapse
|
34
|
Samec M, Liskova A, Koklesova L, Samuel SM, Zhai K, Buhrmann C, Varghese E, Abotaleb M, Qaradakhi T, Zulli A, Kello M, Mojzis J, Zubor P, Kwon TK, Shakibaei M, Büsselberg D, Sarria GR, Golubnitschaja O, Kubatka P. Flavonoids against the Warburg phenotype-concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism. EPMA J 2020; 11:377-398. [PMID: 32843908 PMCID: PMC7429635 DOI: 10.1007/s13167-020-00217-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/30/2020] [Indexed: 01/10/2023]
Abstract
The Warburg effect is characterised by increased glucose uptake and lactate secretion in cancer cells resulting from metabolic transformation in tumour tissue. The corresponding molecular pathways switch from oxidative phosphorylation to aerobic glycolysis, due to changes in glucose degradation mechanisms known as the 'Warburg reprogramming' of cancer cells. Key glycolytic enzymes, glucose transporters and transcription factors involved in the Warburg transformation are frequently dysregulated during carcinogenesis considered as promising diagnostic and prognostic markers as well as treatment targets. Flavonoids are molecules with pleiotropic activities. The metabolism-regulating anticancer effects of flavonoids are broadly demonstrated in preclinical studies. Flavonoids modulate key pathways involved in the Warburg phenotype including but not limited to PKM2, HK2, GLUT1 and HIF-1. The corresponding molecular mechanisms and clinical relevance of 'anti-Warburg' effects of flavonoids are discussed in this review article. The most prominent examples are provided for the potential application of targeted 'anti-Warburg' measures in cancer management. Individualised profiling and patient stratification are presented as powerful tools for implementing targeted 'anti-Warburg' measures in the context of predictive, preventive and personalised medicine.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Constanze Buhrmann
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Tawar Qaradakhi
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011 Australia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011 Australia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P. J. Šafarik University, 040 11 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, P. J. Šafarik University, 040 11 Košice, Slovakia
| | - Pavol Zubor
- Department of Gynecologic Oncology, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- OBGY Health & Care, Ltd., 01001 Zilina, Slovak Republic
| | - Taeg Kyu Kwon
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, 426 01 South Korea
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Gustavo R. Sarria
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|
35
|
Liu J, Yang Q, Sun H, Wang X, Saiyin H, Zhang H. The circ-AMOTL1/ENO1 Axis Implicated in the Tumorigenesis of OLP-Associated Oral Squamous Cell Carcinoma. Cancer Manag Res 2020; 12:7219-7230. [PMID: 32884340 PMCID: PMC7440838 DOI: 10.2147/cmar.s251348] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) may develop from a variety of oral potentially malignant disorders, but the mechanism of malignant transformation is still unknown. Among them, oral lichen planus (OLP) has a high prevalence. Previous studies have shown that α-enolase (ENO1) can promote cell proliferation and play an important role in tumorigenesis. In this study, we aim to explore the mechanism of ENO1 regulation in the process of OSCC tumorigenesis from OLP. METHODS ENO1 expression in tissues was determined by real-time quantitative PCR and immunohistochemistry. ENO1 was knocked down in cal-27 to observe the change in cell proliferation. Then, RNA-seq and bioinformatics analyses were conducted between OLP and OSCC samples. The expression of circ-AMOTL1, miRNA-22-3p, and miRNA-1294 was assessed using the real-time quantitative PCR. With knockdown and overexpression of circ-AMOTL1 in vitro, the change of ENO1 in the mRNA level was also assessed. RESULTS ENO1 was enhanced in the OSCC samples in comparison with OLP. Immunohistochemistry and real-time quantitative PCR results showed that ENO1 was significantly higher in OSCC tissue than in the OLP group, with a statistically significant difference (p<0.05). When ENO1 was knocked down in cal-27, cell proliferation was inhibited (p<0.05). The expression of miR-22-3p and miR-1294 was decreased in OSCC tissues, whereas ENO1 and circ-AMOTL1 increased. In an in vitro study, knockdown of circ-AMOTL1 resulted in a decrease of ENO1, while overexpression of circ-AMOTL1 led to an increase of ENO1 in the mRNA level. CONCLUSION We confirmed that ENO1 expression was elevated in OSCC and increased cell proliferation. In an in vitro study, ENO1 expression was promoted by circ-AMOTL1. ENO1 may play a role as a tumor-promoting gene in OSCC through the circ-AMOTL1/miR-22-3p/miR-1294 network. These novel findings may shed further light on the pathogenesis from OLP to OSCC and the potential precursor markers.
Collapse
Affiliation(s)
- Jin Liu
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Qiaozhen Yang
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Hongying Sun
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xiaxia Wang
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Hui Zhang
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
36
|
Wong PP, Muñoz-Félix JM, Hijazi M, Kim H, Robinson SD, De Luxán-Delgado B, Rodríguez-Hernández I, Maiques O, Meng YM, Meng Q, Bodrug N, Dukinfield MS, Reynolds LE, Elia G, Clear A, Harwood C, Wang Y, Campbell JJ, Singh R, Zhang P, Schall TJ, Matchett KP, Henderson NC, Szlosarek PW, Dreger SA, Smith S, Jones JL, Gribben JG, Cutillas PR, Meier P, Sanz-Moreno V, Hodivala-Dilke KM. Cancer Burden Is Controlled by Mural Cell-β3-Integrin Regulated Crosstalk with Tumor Cells. Cell 2020; 181:1346-1363.e21. [PMID: 32473126 DOI: 10.1016/j.cell.2020.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/21/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023]
Abstract
Enhanced blood vessel (BV) formation is thought to drive tumor growth through elevated nutrient delivery. However, this observation has overlooked potential roles for mural cells in directly affecting tumor growth independent of BV function. Here we provide clinical data correlating high percentages of mural-β3-integrin-negative tumor BVs with increased tumor sizes but no effect on BV numbers. Mural-β3-integrin loss also enhances tumor growth in implanted and autochthonous mouse tumor models with no detectable effects on BV numbers or function. At a molecular level, mural-cell β3-integrin loss enhances signaling via FAK-p-HGFR-p-Akt-p-p65, driving CXCL1, CCL2, and TIMP-1 production. In particular, mural-cell-derived CCL2 stimulates tumor cell MEK1-ERK1/2-ROCK2-dependent signaling and enhances tumor cell survival and tumor growth. Overall, our data indicate that mural cells can control tumor growth via paracrine signals regulated by β3-integrin, providing a previously unrecognized mechanism of cancer growth control.
Collapse
Affiliation(s)
- Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| | - José M Muñoz-Félix
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| | - Maruan Hijazi
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Hyojin Kim
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Stephen D Robinson
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Beatriz De Luxán-Delgado
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Irene Rodríguez-Hernández
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Oscar Maiques
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Ya-Ming Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qiong Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Natalia Bodrug
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Matthew Scott Dukinfield
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Louise E Reynolds
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - George Elia
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Andrew Clear
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Catherine Harwood
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Yu Wang
- ChemoCentryx Inc., 850 Maude Ave., Mountain View, CA 94043, USA
| | | | - Rajinder Singh
- ChemoCentryx Inc., 850 Maude Ave., Mountain View, CA 94043, USA
| | - Penglie Zhang
- ChemoCentryx Inc., 850 Maude Ave., Mountain View, CA 94043, USA
| | - Thomas J Schall
- ChemoCentryx Inc., 850 Maude Ave., Mountain View, CA 94043, USA
| | - Kylie P Matchett
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Peter W Szlosarek
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Sally A Dreger
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Sally Smith
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - J Louise Jones
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Pedro R Cutillas
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Victoria Sanz-Moreno
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kairbaan M Hodivala-Dilke
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
37
|
Ball MS, Bhandari R, Torres GM, Martyanov V, ElTanbouly MA, Archambault K, Whitfield ML, Liby KT, Pioli PA. CDDO-Me Alters the Tumor Microenvironment in Estrogen Receptor Negative Breast Cancer. Sci Rep 2020; 10:6560. [PMID: 32300202 PMCID: PMC7162855 DOI: 10.1038/s41598-020-63482-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/20/2020] [Indexed: 01/27/2023] Open
Abstract
The tumor microenvironment (TME) is an essential contributor to the development and progression of malignancy. Within the TME, tumor associated macrophages (TAMs) mediate angiogenesis, metastasis, and immunosuppression, which inhibits infiltration of tumor-specific cytotoxic CD8+ T cells. In previous work, we demonstrated that the synthetic triterpenoid CDDO-methyl ester (CDDO-Me) converts breast TAMs from a tumor-promoting to a tumor-inhibiting activation state in vitro. We show now that CDDO-Me remodels the breast TME, redirecting TAM activation and T cell tumor infiltration in vivo. We demonstrate that CDDO-Me significantly attenuates IL-10 and VEGF expression but stimulates TNF production, and reduces surface expression of CD206 and CD115, markers of immunosuppressive TAMs. CDDO-Me treatment redirects the TAM transcriptional profile, inducing signaling pathways associated with immune stimulation, and inhibits TAM tumor infiltration, consistent with decreased expression of CCL2. In CDDO-Me-treated mice, both the absolute number and proportion of splenic CD4+ T cells were reduced, while the proportion of CD8+ T cells was significantly increased in both tumors and spleen. Moreover, mice fed CDDO-Me demonstrated significant reductions in numbers of CD4+ Foxp3+ regulatory T cells within tumors. These results demonstrate for the first time that CDDO-Me relieves immunosuppression in the breast TME and unleashes host adaptive anti-tumor immunity.
Collapse
Affiliation(s)
- Michael S Ball
- Department of Microbiology and Immunology, Geisel School of Medicine, Lebanon, New Hampshire, United States of America
| | - Rajan Bhandari
- Department of Microbiology and Immunology, Geisel School of Medicine, Lebanon, New Hampshire, United States of America
| | - Gretel M Torres
- Department of Microbiology and Immunology, Geisel School of Medicine, Lebanon, New Hampshire, United States of America
| | - Viktor Martyanov
- Department of Biomedical Data Science, Geisel School of Medicine, Lebanon, New Hampshire, United States of America
| | - Mohamed A ElTanbouly
- Department of Microbiology and Immunology, Geisel School of Medicine, Lebanon, New Hampshire, United States of America
| | - Kim Archambault
- Department of Biomedical Data Science, Geisel School of Medicine, Lebanon, New Hampshire, United States of America
| | - Michael L Whitfield
- Department of Biomedical Data Science, Geisel School of Medicine, Lebanon, New Hampshire, United States of America
| | - Karen T Liby
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States of America
| | - Patricia A Pioli
- Department of Microbiology and Immunology, Geisel School of Medicine, Lebanon, New Hampshire, United States of America.
| |
Collapse
|
38
|
Khan MA, Zubair H, Anand S, Srivastava SK, Singh S, Singh AP. Dysregulation of metabolic enzymes in tumor and stromal cells: Role in oncogenesis and therapeutic opportunities. Cancer Lett 2020; 473:176-185. [PMID: 31923436 PMCID: PMC7067140 DOI: 10.1016/j.canlet.2020.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/12/2019] [Accepted: 01/03/2020] [Indexed: 01/15/2023]
Abstract
Altered cellular metabolism is a hallmark of cancer. Metabolic rewiring in cancer cells occurs due to the activation of oncogenes, inactivation of tumor suppressor genes, and/or other adaptive changes in cell signaling pathways. Furthermore, altered metabolism is also reported in tumor-corrupted stromal cells as a result of their interaction with cancer cells or due to their adaptation in the dynamic tumor microenvironment. Metabolic alterations are associated with dysregulation of metabolic enzymes and tumor-stromal metabolic crosstalk is vital for the progressive malignant journey of the tumor cells. Therefore, several therapies targeting metabolic enzymes have been evaluated and/or are being investigated in preclinical and clinical studies. In this review, we discuss some important metabolic enzymes that are altered in tumor and/or stromal cells, and focus on their role in supporting tumor growth. Moreover, we also discuss studies carried out in various cancers to target these metabolic abnormalities for therapeutic exploitation.
Collapse
Affiliation(s)
- Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Haseeb Zubair
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Shashi Anand
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
39
|
Neuropilin: Handyman and Power Broker in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:31-67. [PMID: 32030684 DOI: 10.1007/978-3-030-35582-1_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neuropilin-1 and neuropilin-2 form a small family of transmembrane receptors, which, due to the lack of a cytosolic protein kinase domain, act primarily as co-receptors for various ligands. Performing at the molecular level both the executive and organizing functions of a handyman as well as of a power broker, they are instrumental in controlling the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. In this setting, the various neuropilin ligands and interaction partners on various cells of the tumor microenvironment, such as cancer cells, endothelial cells, cancer-associated fibroblasts, and immune cells, are surveyed. The suitability of various neuropilin-targeting substances and the intervention in neuropilin-mediated interactions is considered as a possible building block of tumor therapy.
Collapse
|
40
|
Pan T, Liu J, Xu S, Yu Q, Wang H, Sun H, Wu J, Zhu Y, Zhou J, Zhu Y. ANKRD22, a novel tumor microenvironment-induced mitochondrial protein promotes metabolic reprogramming of colorectal cancer cells. Theranostics 2020; 10:516-536. [PMID: 31903135 PMCID: PMC6929986 DOI: 10.7150/thno.37472] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022] Open
Abstract
Background: The leading cause of poor prognosis in colorectal cancer (CRC) is the presence of colorectal cancer-initiating cells (CCICs). The interplay between the tumor microenvironment (TME) and CRC cells induces reacquisition of initiating cell characteristics, but the underlying mechanisms remain elusive. Methods: Candidate molecules were screened by global differential cDNA expression profiles of CCICs, which were enriched from patient-derived tumor xenograft models. Luciferase reporters and chromatin immunoprecipitation assays were used to explore the mechanism of TME factors regulating the transcription of ANKRD22. The effects of Ankyrin repeat domain-containing protein 22 (ANKRD22) on energy metabolism were monitored by extracellular flux and 13C-based metabolic flux analysis. Mass spectrometry was used to identify the interacting partners of ANKRD22. Morphological changes of CCICs overexpressing ANKRD22 were observed by electron microscopy. The effects of ANKRD22 on mitochondrial lipid metabolism were analyzed by lipidomics. Results: We identified a novel nucleus-encoded mitochondrial membrane protein, ANKRD22, which was upregulated in CCICs. We found that ANKRD22 was induced by the p38/MAX pathway activated by different TME stimuli. As a key transcription factor, MAX promoted the transcription of ANKRD22. Expression of ANKRD22 promoted glycolysis associated with a decrease in ATP/ADP and an increase in AMP/ATP levels, which were related to its interaction with pyruvate dehydrogenase kinase isoform 1 (PDK1) and multiple subunits of ATP synthase. Further, in CCICs, ANKRD22 cooperated with the lipid transport protein, Extended Synaptotagmin-1 (E-Syt1), to transport excess lipids into mitochondria and reduced the number of mitochondria in an autophagy-independent manner, thus meeting the metabolic requirements of CCICs. Conclusion: ANKRD22 induced by TME promotes the metabolic reprogramming of CRC cells. Our study has identified ANKRD22/E-Syt1 as a potential target for eradicating CCICs.
Collapse
|
41
|
Yoshida GJ, Azuma A, Miura Y, Orimo A. Activated Fibroblast Program Orchestrates Tumor Initiation and Progression; Molecular Mechanisms and the Associated Therapeutic Strategies. Int J Mol Sci 2019; 20:ijms20092256. [PMID: 31067787 PMCID: PMC6539414 DOI: 10.3390/ijms20092256] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 02/07/2023] Open
Abstract
: Neoplastic epithelial cells coexist in carcinomas with various non-neoplastic stromal cells, together creating the tumor microenvironment. There is a growing interest in the cross-talk between tumor cells and stromal fibroblasts referred to as carcinoma-associated fibroblasts (CAFs), which are frequently present in human carcinomas. CAF populations extracted from different human carcinomas have been shown to possess the ability to influence the hallmarks of cancer. Indeed, several mechanisms underlying CAF-promoted tumorigenesis are elucidated. Activated fibroblasts in CAFs are characterized as alpha-smooth muscle actin-positive myofibroblasts and actin-negative fibroblasts, both of which are competent to support tumor growth and progression. There are, however, heterogeneous CAF populations presumably due to the diverse sources of their progenitors in the tumor-associated stroma. Thus, molecular markers allowing identification of bona fide CAF populations with tumor-promoting traits remain under investigation. CAFs and myofibroblasts in wound healing and fibrosis share biological properties and support epithelial cell growth, not only by remodeling the extracellular matrix, but also by producing numerous growth factors and inflammatory cytokines. Notably, accumulating evidence strongly suggests that anti-fibrosis agents suppress tumor development and progression. In this review, we highlight important tumor-promoting roles of CAFs based on their analogies with wound-derived myofibroblasts and discuss the potential therapeutic strategy targeting CAFs.
Collapse
Affiliation(s)
- Go J Yoshida
- Department of Molecular Pathogenesis, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Arata Azuma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 1138603, Japan.
| | - Yukiko Miura
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 1138603, Japan.
| | - Akira Orimo
- Department of Molecular Pathogenesis, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
42
|
Zhang S, Cao L, Li Z, Qu D. Metabolic reprogramming links chronic intestinal inflammation and the oncogenic transformation in colorectal tumorigenesis. Cancer Lett 2019; 450:123-131. [DOI: 10.1016/j.canlet.2019.02.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
|
43
|
Li Y, Wan YY, Zhu B. Immune Cell Metabolism in Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1011:163-196. [PMID: 28875490 DOI: 10.1007/978-94-024-1170-6_5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tumor microenvironment (TME) is composed of tumor cells, immune cells, cytokines, extracellular matrix, etc. The immune system and the metabolisms of glucose, lipids, amino acids, and nucleotides are integrated in the tumorigenesis and development. Cancer cells and immune cells show metabolic reprogramming in the TME, which intimately links immune cell functions and edits tumor immunology. Recent findings in immune cell metabolism hold the promising possibilities toward clinical therapeutics for treating cancer. This chapter introduces the updated understandings of metabolic reprogramming of immune cells in the TME and suggests new directions in manipulation of immune responses for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yongsheng Li
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yisong Y Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
44
|
Eble JA, Niland S. The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis 2019; 36:171-198. [PMID: 30972526 DOI: 10.1007/s10585-019-09966-1] [Citation(s) in RCA: 331] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) constitutes the scaffold of tissues and organs. It is a complex network of extracellular proteins, proteoglycans and glycoproteins, which form supramolecular aggregates, such as fibrils and sheet-like networks. In addition to its biochemical composition, including the covalent intermolecular cross-linkages, the ECM is also characterized by its biophysical parameters, such as topography, molecular density, stiffness/rigidity and tension. Taking these biochemical and biophysical parameters into consideration, the ECM is very versatile and undergoes constant remodeling. This review focusses on this remodeling of the ECM under the influence of a primary solid tumor mass. Within this tumor stroma, not only the cancer cells but also the resident fibroblasts, which differentiate into cancer-associated fibroblasts (CAFs), modify the ECM. Growth factors and chemokines, which are tethered to and released from the ECM, as well as metabolic changes of the cells within the tumor bulk, add to the tumor-supporting tumor microenvironment. Metastasizing cancer cells from a primary tumor mass infiltrate into the ECM, which variably may facilitate cancer cell migration or act as barrier, which has to be proteolytically breached by the infiltrating tumor cell. The biochemical and biophysical properties therefore determine the rates and routes of metastatic dissemination. Moreover, primed by soluble factors of the primary tumor, the ECM of distant organs may be remodeled in a way to facilitate the engraftment of metastasizing cancer cells. Such premetastatic niches are responsible for the organotropic preference of certain cancer entities to colonize at certain sites in distant organs and to establish a metastasis. Translational application of our knowledge about the cancer-primed ECM is sparse with respect to therapeutic approaches, whereas tumor-induced ECM alterations such as increased tissue stiffness and desmoplasia, as well as breaching the basement membrane are hallmark of malignancy and diagnostically and histologically harnessed.
Collapse
Affiliation(s)
- Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany.
| | - Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| |
Collapse
|
45
|
Petanidis S, Kioseoglou E, Salifoglou A. Metallodrugs in Targeted Cancer Therapeutics: Aiming at Chemoresistance- related Patterns and Immunosuppressive Tumor Networks. Curr Med Chem 2019; 26:607-623. [DOI: 10.2174/0929867324666171116125908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/29/2022]
Abstract
Tumor cell chemoresistance is a major challenge in cancer therapeutics. Major
select metal-based drugs are potent anticancer mediators yet they exhibit adverse sideeffects
and are efficient against limited types of malignancies. A need, therefore, arises
for novel metallodrugs with improved efficacy and decreased toxicity. Enhancement of
antitumor drugs based on anticancer metals is currently a very active research field, with
considerable efforts having been made toward elucidating the mechanisms of immune action
of complex metalloforms and optimizing their immunoregulatory bioactivity through
appropriate synthetic structural modification(s) and encapsulation in suitable nanocarriers,
thereby enhancing their selectivity, specificity, stability, and bioactivity. In that respect,
comprehending the molecular factors involved in drug resistance and immune response
may help us develop new approaches toward more promising chemotherapies, reducing
the rate of relapse and overcoming chemoresistance. In this review, a) molecular immunerelated
mechanisms in the tumor microenvironment, responsible for lower drug sensitivity
and tumor relapse, along with b) strategies for reversing drug resistance and targeting
immunosuppressive tumor networks, while concurrently optimizing the design of complex
metalloforms bearing anti-tumor activity, are discussed in an effort to identify and
overcome chemoresistance mechanisms for effective tumor immunotherapeutic approaches.
Collapse
Affiliation(s)
- Savvas Petanidis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Efrosini Kioseoglou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Athanasios Salifoglou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
46
|
Frisch J, Angenendt A, Hoth M, Prates Roma L, Lis A. STIM-Orai Channels and Reactive Oxygen Species in the Tumor Microenvironment. Cancers (Basel) 2019; 11:E457. [PMID: 30935064 PMCID: PMC6520831 DOI: 10.3390/cancers11040457] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is shaped by cancer and noncancerous cells, the extracellular matrix, soluble factors, and blood vessels. Interactions between the cells, matrix, soluble factors, and blood vessels generate this complex heterogeneous microenvironment. The TME may be metabolically beneficial or unbeneficial for tumor growth, it may favor or not favor a productive immune response against tumor cells, or it may even favor conditions suited to hijacking the immune system for benefitting tumor growth. Soluble factors relevant for TME include oxygen, reactive oxygen species (ROS), ATP, Ca2+, H⁺, growth factors, or cytokines. Ca2+ plays a prominent role in the TME because its concentration is directly linked to cancer cell proliferation, apoptosis, or migration but also to immune cell function. Stromal-interaction molecules (STIM)-activated Orai channels are major Ca2+ entry channels in cancer cells and immune cells, they are upregulated in many tumors, and they are strongly regulated by ROS. Thus, STIM and Orai are interesting candidates to regulate cancer cell fate in the TME. In this review, we summarize the current knowledge about the function of ROS and STIM/Orai in cancer cells; discuss their interdependencies; and propose new hypotheses how TME, ROS, and Orai channels influence each other.
Collapse
Affiliation(s)
- Janina Frisch
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
- Center for Human and Molecular Biology, Saarland University, 66421 Homburg, Germany.
| | - Adrian Angenendt
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
| | - Markus Hoth
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
| | - Leticia Prates Roma
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
- Center for Human and Molecular Biology, Saarland University, 66421 Homburg, Germany.
| | - Annette Lis
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
| |
Collapse
|
47
|
Najjar YG, Menk AV, Sander C, Rao U, Karunamurthy A, Bhatia R, Zhai S, Kirkwood JM, Delgoffe GM. Tumor cell oxidative metabolism as a barrier to PD-1 blockade immunotherapy in melanoma. JCI Insight 2019; 4:124989. [PMID: 30721155 PMCID: PMC6483505 DOI: 10.1172/jci.insight.124989] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/29/2019] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment presents physical, immunologic, and metabolic barriers to durable immunotherapy responses. We have recently described roles for both T cell metabolic insufficiency as well as tumor hypoxia as inhibitory mechanisms that prevent T cell activity in murine tumors, but whether intratumoral T cell activity or response to immunotherapy varies between patients as a function of distinct metabolic profiles in tumor cells remains unclear. Here, we show that metabolic derangement can vary widely in both degree and type in patient-derived cell lines and in ex vivo analysis of patient samples, such that some cells demonstrate solely deregulated oxidative or glycolytic metabolism. Further, deregulated oxidative, but not glycolytic, metabolism was associated with increased generation of hypoxia upon implantation into immunodeficient animals. Generation of murine single-cell melanoma cell lines that lacked either oxidative or glycolytic metabolism showed that elevated tumor oxygen consumption was associated with increased T cell exhaustion and decreased immune activity. Moreover, melanoma lines lacking oxidative metabolism were solely responsive to anti-PD-1 therapy among those tested. Prospective analysis of patient sample immunotherapy revealed that oxidative, but not glycolytic, metabolism was associated with progression on PD-1 blockade. Our data highlight a role for oxygen as a crucial metabolite required for the tumor-infiltrating T cells to differentiate appropriately upon PD-1 blockade, and suggest that tumor oxidative metabolism may be a target to improve immunotherapeutic response.
Collapse
Affiliation(s)
| | - Ashley V. Menk
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | - Greg M. Delgoffe
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
48
|
Tavianatou AG, Caon I, Franchi M, Piperigkou Z, Galesso D, Karamanos NK. Hyaluronan: molecular size-dependent signaling and biological functions in inflammation and cancer. FEBS J 2019; 286:2883-2908. [PMID: 30724463 DOI: 10.1111/febs.14777] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/14/2019] [Accepted: 02/04/2019] [Indexed: 12/15/2022]
Abstract
Hyaluronan (HA) is a linear nonsulfated glycosaminoglycan of the extracellular matrix that plays a pivotal role in a variety of biological processes. High-molecular weight HA exhibits different biological properties than oligomers and low-molecular weight HA. Depending on their molecular size, HA fragments can influence cellular behavior in a different mode of action. This phenomenon is attributed to the different manner of interaction with the HA receptors, especially CD44 and RHAMM. Both receptors can trigger signaling cascades that regulate cell functional properties, such as proliferation migration, angiogenesis, and wound healing. HA fragments are able to enhance or attenuate the HA receptor-mediated signaling pathways, as they compete with the endogenous HA for binding to the receptors. The modulation of these pathways could be crucial for the development of pathological conditions, such as inflammation and cancer. The primary goal of this review is to critically present the importance of HA molecular size on cellular signaling, functional cell properties, and morphology in normal and pathological conditions, including inflammation and cancer. A deeper understanding of these mechanisms could contribute to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Anastasia G Tavianatou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Italy
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH) /Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | | | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH) /Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
49
|
Abstract
Cell cooperation promotes many of the hallmarks of cancer via the secretion of diffusible factors that can affect cancer cells or stromal cells in the tumour microenvironment. This cooperation cannot be explained simply as the collective action of cells for the benefit of the tumour because non-cooperative subclones can constantly invade and free-ride on the diffusible factors produced by the cooperative cells. A full understanding of cooperation among the cells of a tumour requires methods and concepts from evolutionary game theory, which has been used successfully in other areas of biology to understand similar problems but has been underutilized in cancer research. Game theory can provide insights into the stability of cooperation among cells in a tumour and into the design of potentially evolution-proof therapies that disrupt this cooperation.
Collapse
Affiliation(s)
- Marco Archetti
- Department of Biology, Pennsylvania State University, State College, PA, USA.
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| | - Kenneth J Pienta
- Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
50
|
Niland S, Eble JA. Neuropilins in the Context of Tumor Vasculature. Int J Mol Sci 2019; 20:ijms20030639. [PMID: 30717262 PMCID: PMC6387129 DOI: 10.3390/ijms20030639] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 01/09/2023] Open
Abstract
Neuropilin-1 and Neuropilin-2 form a small family of plasma membrane spanning receptors originally identified by the binding of semaphorin and vascular endothelial growth factor. Having no cytosolic protein kinase domain, they function predominantly as co-receptors of other receptors for various ligands. As such, they critically modulate the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. This review highlights the diverse neuropilin ligands and interacting partners on endothelial cells, which are relevant in the context of the tumor vasculature and the tumor microenvironment. In addition to tumor cells, the latter contains cancer-associated fibroblasts, immune cells, and endothelial cells. Based on the prevalent neuropilin-mediated interactions, the suitability of various neuropilin-targeted substances for influencing tumor angiogenesis as a possible building block of a tumor therapy is discussed.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| |
Collapse
|