1
|
Dou Y, Mishra A, Fletcher HM. Involvement of PG1037 in the repair of 8-oxo-7,8-dihydroguanine caused by oxidative stress in Porphyromonas gingivalis. Mol Oral Microbiol 2024; 39:507-520. [PMID: 39206509 DOI: 10.1111/omi.12482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The PG1037 gene is part of the uvrA-PG1037-pcrA operon in Porphyromonas gingivalis. It encodes for a protein of unknown function upregulated under hydrogen peroxide (H2O2)-induced oxidative stress. Bioinformatic analysis shows that PG1037 has a zinc-finger motif, two peroxidase motifs, and one cytidylate kinase domain. The aim of this study is to characterize further the role of the PG1037 recombinant protein in the unique 8-oxoG repair system in P. gingivalis. MATERIALS AND METHODS PG1037 recombinant proteins with deletions in the zinc-finger or peroxidase motifs were created. Electrophoretic mobility shift assays were used to evaluate the ability of the recombinant proteins to bind 8-oxoG-containing oligonucleotides. Zinc binding, peroxidase, and Fenton reaction assays were used to assess the functional roles of the rPG1037 protein. A bacterial adenylate cyclase two-bride assay was used to identify the partner protein of PG1037 in the repair of 8-oxoG. RESULTS The recombinant PG1037 (rPG1037) protein carrying an N-terminal His-tag demonstrated an ability to recognize and bind 8-oxoG-containing oligonucleotide. In contrast to the wild-type rPG1037 protein, the zinc-finger motif deletion resulted in the loss of zinc and 8-oxoG binding activities. A deletion of the peroxidase motif-1 showed a decrease in peroxidase activity. Using a bacterial adenylate cyclase two-hybrid system, there was no observed protein-protein interaction of PG1037 with UvrA (PG1036), PcrA (PG1038), or mismatch repair system proteins. CONCLUSIONS Taken together, the results show that PG1037 is an important member of a novel mechanism that recognizes and repairs oxidative stress-induced DNA damage in P. gingivalis.
Collapse
Affiliation(s)
- Yuetan Dou
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Arunima Mishra
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Hansel M Fletcher
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
2
|
Shang N, Li X, Zhang L, Wang S, He C, Zhang L, Niu Q, Zheng X. Zinc as a Mediator Through the ROCK1 Pathway of Cognitive Impairment in Aluminum-Exposed Workers: A Clinical and Animal Study. Biol Trace Elem Res 2024; 202:5413-5428. [PMID: 38407795 DOI: 10.1007/s12011-024-04119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Aluminum (Al) exposure was implicated in neurodegenerative diseases and cognitive impairment, yet the involvement of zinc (Zn) and its mechanism in Al-induced mild cognitive impairment (MCI) remains poorly understood. The objective is to explore the role of Zn in Al-induced cognitive impairment and its potential mechanisms. Montreal cognitive assessment (MoCA) test scores and serum Al, Zn from Al industry workers were collected. A mediation analysis was performed to evaluate the role of serum Zn among serum Al and MoCA test scores. Subsequently, an Al-exposure study was conducted on a rat model categorized into control, low-, medium-, and high-dose groups. After a Morris Water Maze test and detection of Al, Zn content in the hippocampus, integrated transcriptomic and proteomic analyses between the control group and the high-dose group were performed to identify the differentially expressed genes (DEPs), proteins (DEPs), and pathways. To corroborate these findings, quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting (WB) were selected to identify the gene and protein results. Zn overall mediates the relationship between serum Al and cognitive function (mediation effect 17.82%, effect value = - 0.0351). In the Al-exposed rat model, 734 DEGs, 18 miRNAs, 35 lncRNAs, 64 circRNAs, and 113 DEPs were identified between the high-dose group and the control group. Among them, ROCK1, DMD, and other four DEPs were identified as related to zinc finger proteins (ZNF). Co-enrichment analyses of the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) linked these changes to the RHOA/ROCK1 signaling axis. ZNF-related proteins Rock1, DMD, and DHX57 in the high-dose group were downregulated (p = 0.006, 0.003, 0.04), and the expression of Myl9, Rhoa, miR431, and miR182 was also downregulated (p = 0.003, 0.032, 0.032, and 0.046). These findings also show correlations between Al, Zn levels in the hippocampus, water maze performance, and expressions of Myl9, Rhoa, miR431, miR182, DMD, ROCK1, and DHX57, with both negative and positive associations. Based on the results, we determined that Zn was involved in Al-induced MCI in Al workers and Al-exposed rat models. Al exposure and interaction with Zn could trigger the downregulation of ZNF of ROCK1, DMD, and DHX57. miR431, miR182 regulate RHOA/ROCK1 was one of the Zn-involved pathways in Al-induced cognitive impairment.
Collapse
Affiliation(s)
- Nan Shang
- Department of Pharmacy, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xianlin Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lan Zhang
- School of Public Health, Capital Medical University, Beijing, 100069, China
| | - ShanShan Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Section of Occupational Medicine, Department of Special Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chanting He
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ling Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaojun Zheng
- Department of Pharmacy, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
3
|
Chen X, Wang Y, Hou Q, Liao X, Zheng X, Dong W, Wang J, Zhang X. Significant correlations between heavy metals and prokaryotes in the Okinawa Trough hydrothermal sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135657. [PMID: 39213773 DOI: 10.1016/j.jhazmat.2024.135657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/11/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Prokaryotes play crucial roles in hydrothermal vent ecosystems, yet their interactions with heavy metals are not well understood. This study explored the diversity of prokaryotic communities and their correlations with heavy metals and nutrient elements in hydrothermal sediments from Okinawa Trough. A total of 117 bacterial genera in 26 bacterial phyla and 10 archaeal classes in 3 archaeal phyla were identified, including dominant prokaryotic phyla Planctomycetes, Acidobacteria, Verrucomicrobia, and Euryarchaeota. Furthermore, Fe (39.61 mg/g), Mn (2.84 mg/g) and Ba (0.36 mg/g) were found to be the most abundant heavy metals in the Okinawa hydrothermal sediments. Notably, the concentrations of Zn, Ba, Mn, total organic carbon, and total nitrogen significantly increased, whereas the total sulfur concentration distinctively decreased at sampling sites farther from hydrothermal vents. These changes corresponded with reductions in prokaryotic abundance and diversity. Most heavy metals, including Mn, Fe, Co, Cu and As, presented significant positive correlations with a number of prokaryotic genera in the nearby sediment samples. In contrast, both positive and negative correlations with prokaryotes were observed in remote sediment. The keystone taxa include Magnetospirillum, GOUTA19, Lysobacter, Kaistobacter, Treponema, and Clostridium were detected through prokaryote interspecies interactions. The functional predictions revealed significant genes involved in carbon fixation, nitrogen/sulfur cycling, heat shock protein, and metal resistance pathways. Structural equation modeling confirmed that metal and nutrient elements directly influence the composition of prokaryotic communities, which in turn affects the relative abundance of functional genes.
Collapse
Affiliation(s)
- Xinye Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yizhuo Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qili Hou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xinyu Liao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoning Zheng
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wenyu Dong
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Li H, Stoltzfus AT, Michel SLJ. Mining proteomes for zinc finger persulfidation. RSC Chem Biol 2024; 5:572-585. [PMID: 38846077 PMCID: PMC11151867 DOI: 10.1039/d3cb00106g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/03/2023] [Indexed: 06/09/2024] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous gasotransmitter that signals via persulfidation. There is evidence that the cysteine residues of certain zinc finger (ZF) proteins, a common type of cysteine rich protein, are modified to persulfides by H2S. To determine how frequently ZF persulfidation occurs in cells and identify the types of ZFs that are persulfidated, persulfide specific proteomics data were evaluated. 22 datasets from 16 studies were analyzed via a meta-analysis approach. Persulfidated ZFs were identified in a range of eukaryotic species, including Homo sapiens, Mus musculus, Rattus norvegicus, Arabidopsis thaliana, and Emiliania huxley (single-celled phytoplankton). The types of ZFs identified for each species encompassed all three common ZF ligand sets (4-cysteine, 3-cysteine-1-histidine, and 2-cysteine-2-hisitidine), indicating that persulfidation of ZFs is broad. Overlap analysis between different species identified several common ZFs. GO and KEGG analysis identified pathway enrichment for ubiquitin-dependent protein catabolic process and viral carcinogenesis. These collective findings support ZF persulfidation as a wide-ranging PTM that impacts all classes of ZFs.
Collapse
Affiliation(s)
- Haoju Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy Baltimore MD 21201 USA
| | - Andrew T Stoltzfus
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy Baltimore MD 21201 USA
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy Baltimore MD 21201 USA
| |
Collapse
|
5
|
Kim E, Ham SA, Hwang JS, Won JP, Lee HG, Hur J, Seo HG. Zinc finger protein 251 deficiency impairs glucose metabolism by inducing adipocyte hypertrophy. Mol Cell Endocrinol 2023; 562:111838. [PMID: 36565788 DOI: 10.1016/j.mce.2022.111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Zinc finger protein (ZFP) 251 is a member of the C2H2 ZFP family containing a Krüppel-associated box domain that might mainly act as a transcriptional repressor. However, its cellular function remains largely unknown. Here, we discovered that ZFP251 deficiency caused glucose intolerance in mice. This phenotype was associated with impaired insulin signaling due to hypertrophic changes in white adipose tissue (WAT). Gene ontology analysis revealed that ZFP251 deficiency affected the expression of genes associated with adipocyte differentiation and lipid and fatty acid metabolism. Consistent with in vivo results, hypertrophic changes were observed in Zfp251 knockdown (KD) 3T3-L1 adipocytes. In addition, Zfp251 KD 3T3-L1 preadipocytes exhibited cell cycle arrest in G0/G1 phase, leading to impaired differentiation into mature adipocytes, upon which abnormal mitotic clonal expansion and reduced expression of adipogenic markers were exhibited. These results suggest that ZFP251 deficiency causes impaired adipogenesis and adipocyte hypertrophy, leading to dysfunction of WAT.
Collapse
Affiliation(s)
- Eunsu Kim
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sun Ah Ham
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jung Seok Hwang
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jun Pil Won
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hyuk Gyoon Lee
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jinwoo Hur
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Han Geuk Seo
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
6
|
Duan Y, Tan Y, Wei X, Pei X, Li M. Versatile Strategy for the Construction of a Transcription Factor-Based Orthogonal Gene Expression Toolbox in Monascus spp. ACS Synth Biol 2023; 12:213-223. [PMID: 36625512 DOI: 10.1021/acssynbio.2c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Gene expression is needed to be conducted in an orthogonal manner and controllable independently from the host's native regulatory system. However, there is a shortage of gene expression regulatory toolboxes that function orthogonally from each other and toward the host. Herein, we developed a strategy based on the mutant library to generate orthogonal gene expression toolboxes. A transcription factor, MaR, located in the Monascus azaphilone biosynthetic gene cluster, was taken as a typical example. Nine DNA-binding residues of MaR were identified by molecular simulation and site-directed mutagenesis. We created five MaR multi-site saturation mutagenesis libraries consisting of 10743 MaR variants on the basis of five cognate promoters. A functional analysis revealed that all five tested promoters were orthogonally regulated by five different MaR variants, respectively. Furthermore, fine gene expression tunability and high signal sensitivity of this toolbox are demonstrated by introducing chemically inducible expression modules, designing synthetic promoter elements, and creating protein-protein interaction between MaRs. This study paves the way for a bottom-up approach to build orthogonal gene expression toolboxes.
Collapse
Affiliation(s)
- Yali Duan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province430070, China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province430070, China
| | - Yingao Tan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province430070, China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province430070, China
| | - Xuetuan Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province430070, China
| | - Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou310012, China
| | - Mu Li
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province430070, China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province430070, China
| |
Collapse
|
7
|
Rasmussen RA, Wang S, Camarillo JM, Sosnowski V, Cho BK, Goo Y, Lucks J, O’Halloran T. Zur and zinc increase expression of E. coli ribosomal protein L31 through RNA-mediated repression of the repressor L31p. Nucleic Acids Res 2022; 50:12739-12753. [PMID: 36533433 PMCID: PMC9825181 DOI: 10.1093/nar/gkac1086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Bacteria can adapt in response to numerous stress conditions. One such stress condition is zinc depletion. The zinc-sensing transcription factor Zur regulates the way numerous bacterial species respond to severe changes in zinc availability. Under zinc sufficient conditions, Zn-loaded Zur (Zn2-Zur) is well-known to repress transcription of genes encoding zinc uptake transporters and paralogues of a few ribosomal proteins. Here, we report the discovery and mechanistic basis for the ability of Zur to up-regulate expression of the ribosomal protein L31 in response to zinc in E. coli. Through genetic mutations and reporter gene assays, we find that Zur achieves the up-regulation of L31 through a double repression cascade by which Zur first represses the transcription of L31p, a zinc-lacking paralogue of L31, which in turn represses the translation of L31. Mutational analyses show that translational repression by L31p requires an RNA hairpin structure within the l31 mRNA and involves the N-terminus of the L31p protein. This work uncovers a new genetic network that allows bacteria to respond to host-induced nutrient limiting conditions through a sophisticated ribosomal protein switching mechanism.
Collapse
Affiliation(s)
- Rebecca A Rasmussen
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Process Institute, Northwestern University, Evanston, IL 60208, USA
| | - Suning Wang
- Chemistry of Life Process Institute, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Jeannie M Camarillo
- Northwestern Proteomics Core, Northwestern University, Evanston, IL 60208, USA
| | - Victoria Sosnowski
- Northwestern Proteomics Core, Northwestern University, Evanston, IL 60208, USA
| | - Byoung-Kyu Cho
- Northwestern Proteomics Core, Northwestern University, Evanston, IL 60208, USA
- Mass Spectrometry Technology Access Center, Washington University in St Louis, School of Medicine, USA
| | - Young Ah Goo
- Northwestern Proteomics Core, Northwestern University, Evanston, IL 60208, USA
- Mass Spectrometry Technology Access Center, Washington University in St Louis, School of Medicine, USA
| | - Julius B Lucks
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Process Institute, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Thomas V O’Halloran
- Chemistry of Life Process Institute, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Dragone M, Grazioso R, D’Abrosca G, Baglivo I, Iacovino R, Esposito S, Paladino A, Pedone PV, Russo L, Fattorusso R, Malgieri G, Isernia C. Copper (I) or (II) Replacement of the Structural Zinc Ion in the Prokaryotic Zinc Finger Ros Does Not Result in a Functional Domain. Int J Mol Sci 2022; 23:ijms231911010. [PMID: 36232306 PMCID: PMC9569694 DOI: 10.3390/ijms231911010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
A strict interplay is known to involve copper and zinc in many cellular processes. For this reason, the results of copper’s interaction with zinc binding proteins are of great interest. For instance, copper interferences with the DNA-binding activity of zinc finger proteins are associated with the development of a variety of diseases. The biological impact of copper depends on the chemical properties of its two common oxidation states (Cu(I) and Cu(II)). In this framework, following the attention addressed to unveil the effect of metal ion replacement in zinc fingers and in zinc-containing proteins, we explore the effects of the Zn(II) to Cu(I) or Cu(II) replacement in the prokaryotic zinc finger domain. The prokaryotic zinc finger protein Ros, involved in the horizontal transfer of genes from A. tumefaciens to a host plant infected by it, belongs to a family of proteins, namely Ros/MucR, whose members have been recognized in different bacteria symbionts and pathogens of mammals and plants. Interestingly, the amino acids of the coordination sphere are poorly conserved in most of these proteins, although their sequence identity can be very high. In fact, some members of this family of proteins do not bind zinc or any other metal, but assume a 3D structure similar to that of Ros with the residues replacing the zinc ligands, forming a network of hydrogen bonds and hydrophobic interactions that surrogates the Zn-coordinating role. These peculiar features of the Ros ZF domain prompted us to study the metal ion replacement with ions that have different electronic configuration and ionic radius. The protein was intensely studied as a perfectly suited model of a metal-binding protein to study the effects of the metal ion replacement; it appeared to tolerate the Zn to Cd substitution, but not the replacement of the wildtype metal by Ni(II), Pb(II) and Hg(II). The structural characterization reported here gives a high-resolution description of the interaction of copper with Ros, demonstrating that copper, in both oxidation states, binds the protein, but the replacement does not give rise to a functional domain.
Collapse
Affiliation(s)
- Martina Dragone
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Rinaldo Grazioso
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Gianluca D’Abrosca
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Rosa Iacovino
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Sabrina Esposito
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Antonella Paladino
- Institute of Biostructures and Bioimaging, National Research Council (IBB-CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Paolo V. Pedone
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
- Correspondence:
| |
Collapse
|
9
|
Shi WT, Zhang B, Li ML, Liu KH, Jiao J, Tian CF. The convergent xenogeneic silencer MucR predisposes α-proteobacteria to integrate AT-rich symbiosis genes. Nucleic Acids Res 2022; 50:8580-8598. [PMID: 36007892 PMCID: PMC9410896 DOI: 10.1093/nar/gkac664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial adaptation is largely shaped by horizontal gene transfer, xenogeneic silencing mediated by lineage-specific DNA bridgers (H-NS, Lsr2, MvaT and Rok), and various anti-silencing mechanisms. No xenogeneic silencing DNA bridger is known for α-proteobacteria, from which mitochondria evolved. By investigating α-proteobacterium Sinorhizobium fredii, a facultative legume microsymbiont, here we report the conserved zinc-finger bearing MucR as a novel xenogeneic silencing DNA bridger. Self-association mediated by its N-terminal domain (NTD) is required for DNA–MucR–DNA bridging complex formation, maximizing MucR stability, transcriptional silencing, and efficient symbiosis in legume nodules. Essential roles of NTD, CTD (C-terminal DNA-binding domain), or full-length MucR in symbiosis can be replaced by non-homologous NTD, CTD, or full-length protein of H-NS from γ-proteobacterium Escherichia coli, while NTD rather than CTD of Lsr2 from Gram-positive Mycobacterium tuberculosis can replace the corresponding domain of MucR in symbiosis. Chromatin immunoprecipitation sequencing reveals similar recruitment profiles of H-NS, MucR and various functional chimeric xenogeneic silencers across the multipartite genome of S. fredii, i.e. preferring AT-rich genomic islands and symbiosis plasmid with key symbiosis genes as shared targets. Collectively, the convergently evolved DNA bridger MucR predisposed α-proteobacteria to integrate AT-rich foreign DNA including symbiosis genes, horizontal transfer of which is strongly selected in nature.
Collapse
Affiliation(s)
- Wen-Tao Shi
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University , Beijing , China
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University , Beijing , China
| | - Biliang Zhang
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University , Beijing , China
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University , Beijing , China
| | - Meng-Lin Li
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University , Beijing , China
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University , Beijing , China
| | - Ke-Han Liu
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University , Beijing , China
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University , Beijing , China
| | - Jian Jiao
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University , Beijing , China
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University , Beijing , China
| | - Chang-Fu Tian
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University , Beijing , China
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University , Beijing , China
| |
Collapse
|
10
|
Neuhaus D. Zinc finger structure determination by NMR: Why zinc fingers can be a handful. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 130-131:62-105. [PMID: 36113918 PMCID: PMC7614390 DOI: 10.1016/j.pnmrs.2022.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 06/07/2023]
Abstract
Zinc fingers can be loosely defined as protein domains containing one or more tetrahedrally-co-ordinated zinc ions whose role is to stabilise the structure rather than to be involved in enzymatic chemistry; such zinc ions are often referred to as "structural zincs". Although structural zincs can occur in proteins of any size, they assume particular significance for very small protein domains, where they are often essential for maintaining a folded state. Such small structures, that sometimes have only marginal stability, can present particular difficulties in terms of sample preparation, handling and structure determination, and early on they gained a reputation for being resistant to crystallisation. As a result, NMR has played a more prominent role in structural studies of zinc finger proteins than it has for many other types of proteins. This review will present an overview of the particular issues that arise for structure determination of zinc fingers by NMR, and ways in which these may be addressed.
Collapse
Affiliation(s)
- David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
11
|
Esposito S, D’Abrosca G, Antolak A, Pedone PV, Isernia C, Malgieri G. Host and Viral Zinc-Finger Proteins in COVID-19. Int J Mol Sci 2022; 23:ijms23073711. [PMID: 35409070 PMCID: PMC8998646 DOI: 10.3390/ijms23073711] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/08/2023] Open
Abstract
An unprecedented effort to tackle the ongoing COVID-19 pandemic has characterized the activity of the global scientific community over the last two years. Hundreds of published studies have focused on the comprehension of the immune response to the virus and on the definition of the functional role of SARS-CoV-2 proteins. Proteins containing zinc fingers, both belonging to SARS-CoV-2 or to the host, play critical roles in COVID-19 participating in antiviral defenses and regulation of viral life cycle. Differentially expressed zinc finger proteins and their distinct activities could thus be important in determining the severity of the disease and represent important targets for drug development. Therefore, we here review the mechanisms of action of host and viral zinc finger proteins in COVID-19 as a contribution to the comprehension of the disease and also highlight strategies for therapeutic developments.
Collapse
|
12
|
Zhao Z, Li X, Cui Z, Tong T, Zhang Y, Zhang Y, Yang X, Keerthiga R, Fu C, Fu A. Synthesis of Hemiprotonic Phenanthroline-Phenanthroline + Compounds with both Antitumor and Antimicrobial Activity. J Med Chem 2022; 65:2532-2547. [PMID: 35073076 DOI: 10.1021/acs.jmedchem.1c01982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Currently, cancer patients with microbial infection are a severe challenge in clinical treatment. To address the problem, we synthesized hemiprotonic compounds based on the unique structure of hemiprotonic nucleotide base pairs in a DNA i-motif. These compounds were produced from phenanthroline (ph) dimerization with phenanthroline as a proton receptor and ammonium as a donor. The biological activity shows that the compounds have a selective antitumor effect through inducing cell apoptosis. The molecular mechanism could be related to specific inhibition of transcription factor PLAGL2 of tumor cells, assessed by transcriptomic analysis. Moreover, results show that the hemiprotonic ph-ph+ has broad-spectrum antibacterial and antifungal activities, and drug-resistant bacteria, including methicillin-resistant Staphylococcus aureus, are sensitive to the compound. In animal models of liver cancer with fungal infection, the ph-ph+ retards proliferation of hepatoma cells in tumor-bearing mice and remedies pneumonia and encephalitis caused by Cryptococcus neoformans. The study provides a novel therapeutic candidate for cancer patients accompanied by infection.
Collapse
Affiliation(s)
- Zizhen Zhao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Xiaorong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Zhihong Cui
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Tingting Tong
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Yingying Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Yuping Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Xiaoxi Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Rajendiran Keerthiga
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Chen Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
13
|
Zhang N, Lu C, Zhang Z, Zhang H, Liu L, Jiang D, Wang K, Guo S, Wang J, Zhang Q. Enhancing photo-fermentative biohydrogen production using different zinc salt additives. BIORESOURCE TECHNOLOGY 2022; 345:126561. [PMID: 34902490 DOI: 10.1016/j.biortech.2021.126561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The kinetic properties of the hydrogen yield of photosynthetic bacteria were investigated using Han-Levenspiel and modified Gompertz models to determine the effects of different zinc salts on the growth and hydrogen production of the photosynthetic bacterium HAU-M1. Inorganic zinc salts (zinc standard solution and zinc sulfate) inhibited bacterial growth by 1-4-fold higher than organic zinc salts (zinc lactate and zinc gluconate). Among these four zinc salts, 5 mg/L zinc lactate displayed the weakest inhibition performance. This compound increased cumulative hydrogen production by approximately 57.81% (80.44 mL/g) and maximum hydrogen production rate by 58.27% (3.43 mL/[g·h]). The Han-Levenspiel model with parameters m > n > 0 indicated that the addition of zinc salts influenced the hydrogen production process of the bacterium in a noncompetitive manner. Compared with the inorganic zinc, the organic zinc salts were more suitable as exogenous zinc supplements to promote bacterial growth and its hydrogen production.
Collapse
Affiliation(s)
- Ningyuan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Chaoyang Lu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Huan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Linghui Liu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Danping Jiang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Kaixin Wang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Siyi Guo
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Jian Wang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
14
|
Li ML, Jiao J, Zhang B, Shi WT, Yu WH, Tian CF. Global Transcriptional Repression of Diguanylate Cyclases by MucR1 Is Essential for Sinorhizobium-Soybean Symbiosis. mBio 2021; 12:e0119221. [PMID: 34700374 PMCID: PMC8546604 DOI: 10.1128/mbio.01192-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/22/2021] [Indexed: 11/20/2022] Open
Abstract
The ubiquitous bacterial second messenger c-di-GMP is intensively studied in pathogens but less so in mutualistic bacteria. Here, we report a genome-wide investigation of functional diguanylate cyclases (DGCs) synthesizing c-di-GMP from two molecules of GTP in Sinorhizobium fredii CCBAU45436, a facultative microsymbiont fixing nitrogen in nodules of diverse legumes, including soybean. Among 25 proteins harboring a putative GGDEF domain catalyzing the biosynthesis of c-di-GMP, eight functional DGCs were identified by heterogenous expression in Escherichia coli in a Congo red binding assay. This screening result was further verified by in vitro enzymatic assay with purified full proteins or the GGDEF domains from representative functional and nonfunctional DGCs. In the same in vitro assay, a functional EAL domain catalyzing the degradation of c-di-GMP into pGpG was identified in a protein that has an inactive GGDEF domain but with an active phosphodiesterase (PDE) function. The identified functional DGCs generally exhibited low transcription levels in soybean nodules compared to free-living cultures, as revealed in transcriptomes. An engineered upregulation of a functional DGC in nodules led to a significant increase of c-di-GMP level and symbiotic defects, which were not observed when a functional EAL domain was upregulated at the same level. Further transcriptional analysis and gel shift assay demonstrated that these functional DGCs were all transcriptionally repressed in nodules by a global pleiotropic regulator, MucR1, that is essential in Sinorhizobium-soybean symbiosis. These findings shed novel insights onto the systematic regulation of c-di-GMP biosynthesis in mutualistic symbiosis. IMPORTANCE The ubiquitous second messenger c-di-GMP is well-known for its role in biofilm formation and host adaptation of pathogens, whereas it is less investigated in mutualistic symbioses. Here, we reveal a cocktail of eight functional diguanylate cyclases (DGCs) catalyzing the biosynthesis of c-di-GMP in a broad-host-range Sinorhizobium that can establish nitrogen-fixing nodules on soybean and many other legumes. These functional DGCs are generally transcribed at low levels in soybean nodules compared to free-living conditions. The engineered nodule-specific upregulation of DGC can elevate the c-di-GMP level and cause symbiotic defects, while the upregulation of a phosphodiesterase that quenches c-di-GMP has no detectable symbiotic defects. Moreover, eight functional DGCs located on two different replicons are all directly repressed in nodules by a global silencer, MucR1, that is essential for Sinorhizobium-soybean symbiosis. These findings represent a novel mechanism of a strategic regulation of the c-di-GMP biosynthesis arsenal in prokaryote-eukaryote interactions.
Collapse
Affiliation(s)
- Meng-Lin Li
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jian Jiao
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Biliang Zhang
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen-Tao Shi
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen-Hao Yu
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chang-Fu Tian
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Unveiling the N-Terminal Homodimerization of BCL11B by Hybrid Solvent Replica-Exchange Simulations. Int J Mol Sci 2021; 22:ijms22073650. [PMID: 33807484 PMCID: PMC8036541 DOI: 10.3390/ijms22073650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 01/28/2023] Open
Abstract
Transcription factors play a crucial role in regulating biological processes such as cell growth, differentiation, organ development and cellular signaling. Within this group, proteins equipped with zinc finger motifs (ZFs) represent the largest family of sequence-specific DNA-binding transcription regulators. Numerous studies have proven the fundamental role of BCL11B for a variety of tissues and organs such as central nervous system, T cells, skin, teeth, and mammary glands. In a previous work we identified a novel atypical zinc finger domain (CCHC-ZF) which serves as a dimerization interface of BCL11B. This domain and formation of the dimer were shown to be critically important for efficient regulation of the BCL11B target genes and could therefore represent a promising target for novel drug therapies. Here, we report the structural basis for BCL11B-BCL11B interaction mediated by the N-terminal ZF domain. By combining structure prediction algorithms, enhanced sampling molecular dynamics and fluorescence resonance energy transfer (FRET) approaches, we identified amino acid residues indispensable for the formation of the single ZF domain and directly involved in forming the dimer interface. These findings not only provide deep insight into how BCL11B acquires its active structure but also represent an important step towards rational design or selection of potential inhibitors.
Collapse
|
16
|
Cruz-González A, Muñoz-Velasco I, Cottom-Salas W, Becerra A, Campillo-Balderas JA, Hernández-Morales R, Vázquez-Salazar A, Jácome R, Lazcano A. Structural analysis of viral ExoN domains reveals polyphyletic hijacking events. PLoS One 2021; 16:e0246981. [PMID: 33730017 PMCID: PMC7968707 DOI: 10.1371/journal.pone.0246981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Nidoviruses and arenaviruses are the only known RNA viruses encoding a 3’-5’ exonuclease domain (ExoN). The proofreading activity of the ExoN domain has played a key role in the growth of nidoviral genomes, while in arenaviruses this domain partakes in the suppression of the host innate immune signaling. Sequence and structural homology analyses suggest that these proteins have been hijacked from cellular hosts many times. Analysis of the available nidoviral ExoN sequences reveals a high conservation level comparable to that of the viral RNA-dependent RNA polymerases (RdRp), which are the most conserved viral proteins. Two highly preserved zinc fingers are present in all nidoviral exonucleases, while in the arenaviral protein only one zinc finger can be identified. This is in sharp contrast with the reported lack of zinc fingers in cellular ExoNs, and opens the possibility of therapeutic strategies in the struggle against COVID-19.
Collapse
Affiliation(s)
- Adrián Cruz-González
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
| | - Israel Muñoz-Velasco
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
| | - Wolfgang Cottom-Salas
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
- Escuela Nacional Preparatoria, Plantel 8 Miguel E. Schulz, Universidad Nacional Autónoma de México, México City, México
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
| | | | | | - Alberto Vázquez-Salazar
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, United States of America
| | - Rodrigo Jácome
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
- * E-mail: (AL); (RJ)
| | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
- El Colegio Nacional, México City, México
- * E-mail: (AL); (RJ)
| |
Collapse
|
17
|
Kundra P, Rachmühl C, Lacroix C, Geirnaert A. Role of Dietary Micronutrients on Gut Microbial Dysbiosis and Modulation in Inflammatory Bowel Disease. Mol Nutr Food Res 2021. [DOI: 10.1002/mnfr.201901271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Palni Kundra
- Laboratory of Food Biotechnology Institute of Food Nutrition and Health Schmelzbergstrasse 7 Zürich 8092 Switzerland
| | - Carole Rachmühl
- Laboratory of Food Biotechnology Institute of Food Nutrition and Health Schmelzbergstrasse 7 Zürich 8092 Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology Institute of Food Nutrition and Health Schmelzbergstrasse 7 Zürich 8092 Switzerland
| | - Annelies Geirnaert
- Laboratory of Food Biotechnology Institute of Food Nutrition and Health Schmelzbergstrasse 7 Zürich 8092 Switzerland
| |
Collapse
|
18
|
Gangi Setty T, Sarkar A, Coombes D, Dobson RCJ, Subramanian R. Structure and Function of N-Acetylmannosamine Kinases from Pathogenic Bacteria. ACS OMEGA 2020; 5:30923-30936. [PMID: 33324800 PMCID: PMC7726757 DOI: 10.1021/acsomega.0c03699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
Several pathogenic bacteria import and catabolize sialic acids as a source of carbon and nitrogen. Within the sialic acid catabolic pathway, the enzyme N-acetylmannosamine kinase (NanK) catalyzes the phosphorylation of N-acetylmannosamine to N-acetylmannosamine-6-phosphate. This kinase belongs to the ROK superfamily of enzymes, which generally contain a conserved zinc-finger (ZnF) motif that is important for their structure and function. Previous structural studies have shown that the ZnF motif is absent in NanK of Fusobacterium nucleatum (Fn-NanK), a Gram-negative bacterium that causes the gum disease gingivitis. However, the effect in loss of the ZnF motif on the kinase activity is unknown. Using kinetic and thermodynamic studies, we have studied the functional properties of Fn-NanK to its substrates ManNAc and ATP, compared its activity with other ZnF motif-containing NanK enzymes from closely related Gram-negative pathogenic bacteria Haemophilus influenzae (Hi-NanK), Pasteurella multocida (Pm-NanK), and Vibrio cholerae (Vc-NanK). Our studies show a 10-fold decrease in substrate binding affinity between Fn-NanK (apparent KM ≈ 700 μM) and ZnF motif-containing NanKs (apparent KM ≈ 60 μM). To understand the structural features that combat the loss of the ZnF motif in Fn-NanK, we solved the crystal structures of functionally homologous ZnF motif-containing NanKs from P. multocida and H. influenzae. Here, we report Pm-NanK:unliganded, Pm-NanK:AMPPNP, Pm-NanK:ManNAc, Hi-NanK:ManNAc, and Hi-NanK:ManNAc-6P:ADP crystal structures. Structural comparisons of Fn-NanK with Hi-NanK, Pm-NanK, and hMNK (human N-acetylmannosamine kinase domain of UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase, GNE) show that even though there is less sequence identity, they have high degree of structural similarity. Furthermore, our structural analyses highlight that the ZnF motif of Fn-NanK is substituted by a set of hydrophobic residues, which forms a hydrophobic cluster that helps the proper orientation of ManNac in the active site. In summary, ZnF-containing and ZnF-lacking NanK enzymes from different Gram-negative pathogenic bacteria are functionally very similar but differ in their metal requirement. Our structural studies unveil the structural modifications in Fn-NanK that compensate the loss of the ZnF motif in comparison to other NanK enzymes.
Collapse
Affiliation(s)
- Thanuja Gangi Setty
- Institute for Stem
Cell Science and Regenerative Medicine, GKVK Post, Bangalore, KA 560065, India
- The University of Trans-Disciplinary Health Sciences
& Technology (TDU), Bangalore, KA 560064, India
| | - Arunabha Sarkar
- National Centre for Biological Sciences − TIFR, Bangalore 560065, India
| | - David Coombes
- Biomolecular Interaction Centre and School
of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School
of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
- Bio21 Molecular Science and Biotechnology
Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ramaswamy Subramanian
- Institute for Stem
Cell Science and Regenerative Medicine, GKVK Post, Bangalore, KA 560065, India
- Department of Biological
Sciences and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
19
|
Grazioso R, García-Viñuales S, D'Abrosca G, Baglivo I, Pedone PV, Milardi D, Fattorusso R, Isernia C, Russo L, Malgieri G. The change of conditions does not affect Ros87 downhill folding mechanism. Sci Rep 2020; 10:21067. [PMID: 33273582 PMCID: PMC7713307 DOI: 10.1038/s41598-020-78008-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/19/2020] [Indexed: 11/20/2022] Open
Abstract
Downhill folding has been defined as a unique thermodynamic process involving a conformations ensemble that progressively loses structure with the decrease of protein stability. Downhill folders are estimated to be rather rare in nature as they miss an energetically substantial folding barrier that can protect against aggregation and proteolysis. We have previously demonstrated that the prokaryotic zinc finger protein Ros87 shows a bipartite folding/unfolding process in which a metal binding intermediate converts to the native structure through a delicate barrier-less downhill transition. Significant variation in folding scenarios can be detected within protein families with high sequence identity and very similar folds and for the same sequence by varying conditions. For this reason, we here show, by means of DSC, CD and NMR, that also in different pH and ionic strength conditions Ros87 retains its partly downhill folding scenario demonstrating that, at least in metallo-proteins, the downhill mechanism can be found under a much wider range of conditions and coupled to other different transitions. We also show that mutations of Ros87 zinc coordination sphere produces a different folding scenario demonstrating that the organization of the metal ion core is determinant in the folding process of this family of proteins.
Collapse
Affiliation(s)
- Rinaldo Grazioso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy
| | | | - Gianluca D'Abrosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy
| | - Danilo Milardi
- Institute of Crystallography-CNR, Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy.
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy.
| |
Collapse
|
20
|
Jiao J, Tian CF. Ancestral zinc-finger bearing protein MucR in alpha-proteobacteria: A novel xenogeneic silencer? Comput Struct Biotechnol J 2020; 18:3623-3631. [PMID: 33304460 PMCID: PMC7710501 DOI: 10.1016/j.csbj.2020.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022] Open
Abstract
The MucR/Ros family protein is conserved in alpha-proteobacteria and characterized by its zinc-finger motif that has been proposed as the ancestral domain from which the eukaryotic C2H2 zinc-finger structure evolved. In the past decades, accumulated evidences have revealed MucR as a pleiotropic transcriptional regulator that integrating multiple functions such as virulence, symbiosis, cell cycle and various physiological processes. Scattered reports indicate that MucR mainly acts as a repressor, through oligomerization and binding to multiple sites of AT-rich target promoters. The N-terminal region and zinc-finger bearing C-terminal region of MucR mediate oligomerization and DNA-binding, respectively. These features are convergent to those of xenogeneic silencers such as H-NS, MvaT, Lsr2 and Rok, which are mainly found in other lineages. Phylogenetic analysis of MucR homologs suggests an ancestral origin of MucR in alpha- and delta-proteobacteria. Multiple independent duplication and lateral gene transfer events contribute to the diversity and phyletic distribution of MucR. Finally, we posed questions which remain unexplored regarding the putative roles of MucR as a xenogeneic silencer and a general manager in balancing adaptation and regulatory integration in the pangenome context.
Collapse
Affiliation(s)
- Jian Jiao
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China.,MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Chang-Fu Tian
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China.,MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Substitution of the Native Zn(II) with Cd(II), Co(II) and Ni(II) Changes the Downhill Unfolding Mechanism of Ros87 to a Completely Different Scenario. Int J Mol Sci 2020; 21:ijms21218285. [PMID: 33167398 PMCID: PMC7663847 DOI: 10.3390/ijms21218285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
The structural effects of zinc replacement by xenobiotic metal ions have been widely studied in several eukaryotic and prokaryotic zinc-finger-containing proteins. The prokaryotic zinc finger, that presents a bigger βββαα domain with a larger hydrophobic core with respect to its eukaryotic counterpart, represents a valuable model protein to study metal ion interaction with metallo-proteins. Several studies have been conducted on Ros87, the DNA binding domain of the prokaryotic zinc finger Ros, and have demonstrated that the domain appears to structurally tolerate Ni(II), albeit with important structural perturbations, but not Pb(II) and Hg(II), and it is in vitro functional when the zinc ion is replaced by Cd(II). We have previously shown that Ros87 unfolding is a two-step process in which a zinc binding intermediate converts to the native structure thorough a delicate downhill folding transition. Here, we explore the folding/unfolding behaviour of Ros87 coordinated to Co(II), Ni(II) or Cd(II), by UV-Vis, CD, DSC and NMR techniques. Interestingly, we show how the substitution of the native metal ion results in complete different folding scenarios. We found a two-state unfolding mechanism for Cd-Ros87 whose metal affinity Kd is comparable to the one obtained for the native Zn-Ros87, and a more complex mechanism for Co-Ros87 and Ni-Ros87, that show higher Kd values. Our data outline the complex cross-correlation between the protein-metal ion equilibrium and the folding mechanism proposing such an interplay as a key factor in the proper metal ion selection by a specific metallo-protein.
Collapse
|
22
|
Prochetto S, Reinheimer R. Step by step evolution of Indeterminate Domain (IDD) transcriptional regulators: from algae to angiosperms. ANNALS OF BOTANY 2020; 126:85-101. [PMID: 32206771 PMCID: PMC7304464 DOI: 10.1093/aob/mcaa052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
INTRODUCTION The Indeterminate Domain (IDD) proteins are a plant-specific subclass of C2H2 Zinc Finger transcription factors. Some of these transcription factors play roles in diverse aspects of plant metabolism and development, but the function of most of IDD genes is unknown and the molecular evolution of the subfamily has not been explored in detail. METHODS In this study, we mined available genome sequences of green plants (Viridiplantae) to reconstruct the phylogeny and then described the motifs/expression patterns of IDD genes. KEY RESULTS We identified the complete set of IDD genes of 16 Streptophyta genomes. We found that IDD and its sister clade STOP arose by a duplication at the base of Streptophyta. Once on land, the IDD genes duplicated extensively, giving rise to at least ten lineages. Some of these lineages were lost in extant non-vascular plants and gymnosperms, but all of them were retained in angiosperms, duplicating profoundly in dicots and monocots and acquiring, at the same time, surprising heterogeneity in their C-terminal regions and expression patterns. CONCLUSIONS IDDs were present in the last common ancestor of Streptophyta. On land, IDDs duplicated extensively, leading to ten lineages. Later, IDDs were recruited by angiosperms where they diversified greatly in number, C-terminal and expression patterns. Interestingly, such diversification occurred during the evolution of novel traits of the plant body. This study provides a solid framework of the orthology relationships of green land plant IDD transcription factors, thus increasing the accuracy of orthologue identification in model and non-model species and facilitating the identification of agronomically important genes related to plant metabolism and development.
Collapse
Affiliation(s)
- Santiago Prochetto
- Fellow of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), FBCB, Santa Fe, Argentina
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB, Santa Fe, Argentina
| | - Renata Reinheimer
- Member of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), FBCB, Santa Fe, Argentinaand
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB, Santa Fe, Argentina
| |
Collapse
|
23
|
Structural Insight of the Full-Length Ros Protein: A Prototype of the Prokaryotic Zinc-Finger Family. Sci Rep 2020; 10:9283. [PMID: 32518326 PMCID: PMC7283297 DOI: 10.1038/s41598-020-66204-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/15/2020] [Indexed: 11/30/2022] Open
Abstract
Ros/MucR is a widespread family of bacterial zinc-finger (ZF) containing proteins that integrate multiple functions such as virulence, symbiosis and/or cell cycle transcription. NMR solution structure of Ros DNA-binding domain (region 56–142, i.e. Ros87) has been solved by our group and shows that the prokaryotic ZF domain shows interesting structural and functional features that differentiate it from its eukaryotic counterpart as it folds in a significantly larger zinc-binding globular domain. We have recently proposed a novel functional model for this family of proteins suggesting that they may act as H-NS-‘like’ gene silencers. Indeed, the N-terminal region of this family of proteins appears to be responsible for the formation of functional oligomers. No structural characterization of the Ros N-terminal domain (region 1–55) is available to date, mainly because of serious solubility problems of the full-length protein. Here we report the first structural characterization of the N-terminal domain of the prokaryotic ZF family examining by means of MD and NMR the structural preferences of the full-length Ros protein from Agrobacterium tumefaciens.
Collapse
|
24
|
Conformational Dynamics from Ambiguous Zinc Coordination in the RanBP2-Type Zinc Finger of RBM5. J Mol Biol 2020; 432:4127-4138. [PMID: 32450081 DOI: 10.1016/j.jmb.2020.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
The multi-domain RNA binding protein RBM5 is a molecular signature of metastasis. RBM5 regulates alternative splicing of apoptotic genes including the cell death receptor Fas and the initiator Caspase-2. The RBM5 RanBP2-type zinc finger (Zf1) is known to specifically recognize single-stranded RNAs with high affinity. Here, we study the structure and conformational dynamics of the Zf1 zinc finger of human RBM5 using NMR. We show that the presence of a non-canonical cysteine in Zf1 kinetically destabilizes the protein. Metal-exchange kinetics show that mutation of the cysteine establishes high-affinity coordination of the zinc. Our data indicate that selection of such a structurally destabilizing mutation during the course of evolution could present an opportunity for functional adaptation of the protein.
Collapse
|
25
|
Banerjee M, Ferragut Cardoso AP, Lykoudi A, Wilkey DW, Pan J, Watson WH, Garbett NC, Rai SN, Merchant ML, States JC. Arsenite Exposure Displaces Zinc from ZRANB2 Leading to Altered Splicing. Chem Res Toxicol 2020; 33:1403-1417. [PMID: 32274925 DOI: 10.1021/acs.chemrestox.9b00515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exposure to arsenic, a class I carcinogen, affects 200 million people globally. Skin is the major target organ, but the molecular etiology of arsenic-induced skin carcinogenesis remains unclear. Arsenite (As3+)-induced disruption of alternative splicing could be involved, but the mechanism is unknown. Zinc finger proteins play key roles in alternative splicing. As3+ can displace zinc (Zn2+) from C3H1 and C4 zinc finger motifs (zfm's), affecting protein function. ZRANB2, an alternative splicing regulator with two C4 zfm's integral to its structure and splicing function, was chosen as a candidate for this study. We hypothesized that As3+ could displace Zn2+ from ZRANB2, altering its structure, expression, and splicing function. As3+/Zn2+ binding and mutual displacement experiments were performed with synthetic apo-peptides corresponding to each ZRANB2 zfm, employing a combination of intrinsic fluorescence, ultraviolet spectrophotometry, zinc colorimetric assay, and liquid chromatography-tandem mass spectrometry. ZRANB2 expression in HaCaT cells acutely exposed to As3+ (0 or 5 μM, 0-72 h; or 0-5 μM, 6 h) was examined by RT-qPCR and immunoblotting. ZRANB2-dependent splicing of TRA2B mRNA, a known ZRANB2 target, was monitored by reverse transcription-polymerase chain reaction. As3+ bound to, as well as displaced Zn2+ from, each zfm. Also, Zn2+ displaced As3+ from As3+-bound zfm's acutely, albeit transiently. As3+ exposure induced ZRANB2 protein expression between 3 and 24 h and at all exposures tested but not ZRANB2 mRNA expression. ZRANB2-directed TRA2B splicing was impaired between 3 and 24 h post-exposure. Furthermore, ZRANB2 splicing function was also compromised at all As3+ exposures, starting at 100 nm. We conclude that As3+ exposure displaces Zn2+ from ZRANB2 zfm's, changing its structure and compromising splicing of its targets, and increases ZRANB2 protein expression as a homeostatic response both at environmental/toxicological exposures and therapeutically relevant doses.
Collapse
Affiliation(s)
- Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, United States
| | - Ana P Ferragut Cardoso
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, United States
| | - Angeliki Lykoudi
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, United States
| | - Daniel W Wilkey
- Division of Nephrology & Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - Jianmin Pan
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States
| | - Walter H Watson
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, United States.,Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - Nichola C Garbett
- Division of Medical Oncology and Hematology, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States.,James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States
| | - Shesh N Rai
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States.,Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, Kentucky 40202, United States
| | - Michael L Merchant
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, United States.,Division of Nephrology & Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, United States
| |
Collapse
|
26
|
Becskei A. Tuning up Transcription Factors for Therapy. Molecules 2020; 25:E1902. [PMID: 32326099 PMCID: PMC7221782 DOI: 10.3390/molecules25081902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022] Open
Abstract
The recent developments in the delivery and design of transcription factors put their therapeutic applications within reach, exemplified by cell replacement, cancer differentiation and T-cell based cancer therapies. The success of such applications depends on the efficacy and precision in the action of transcription factors. The biophysical and genetic characterization of the paradigmatic prokaryotic repressors, LacI and TetR and the designer transcription factors, transcription activator-like effector (TALE) and CRISPR-dCas9 revealed common principles behind their efficacy, which can aid the optimization of transcriptional activators and repressors. Further studies will be required to analyze the linkage between dissociation constants and enzymatic activity, the role of phase separation and squelching in activation and repression and the long-range interaction of transcription factors with epigenetic regulators in the context of the chromosomes. Understanding these mechanisms will help to tailor natural and synthetic transcription factors to the needs of specific applications.
Collapse
Affiliation(s)
- Attila Becskei
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
27
|
Ok K, Li W, Neu HM, Batelu S, Stemmler TL, Kane MA, Michel SLJ. Role of Gold in Inflammation and Tristetraprolin Activity. Chemistry 2020; 26:1535-1547. [DOI: 10.1002/chem.201904837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Kiwon Ok
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| | - Wenjing Li
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| | - Heather M. Neu
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| | - Sharon Batelu
- Department of Pharmaceutical Sciences Wayne State University 259 Mack Avenue Detroit MI 48201 USA
| | - Timothy L. Stemmler
- Department of Pharmaceutical Sciences Wayne State University 259 Mack Avenue Detroit MI 48201 USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| | - Sarah L. J. Michel
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| |
Collapse
|
28
|
Sagar A, Xue B. Recent Advances in Machine Learning Based Prediction of RNA-protein Interactions. Protein Pept Lett 2019; 26:601-619. [PMID: 31215361 DOI: 10.2174/0929866526666190619103853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/04/2019] [Accepted: 06/01/2019] [Indexed: 12/18/2022]
Abstract
The interactions between RNAs and proteins play critical roles in many biological processes. Therefore, characterizing these interactions becomes critical for mechanistic, biomedical, and clinical studies. Many experimental methods can be used to determine RNA-protein interactions in multiple aspects. However, due to the facts that RNA-protein interactions are tissuespecific and condition-specific, as well as these interactions are weak and frequently compete with each other, those experimental techniques can not be made full use of to discover the complete spectrum of RNA-protein interactions. To moderate these issues, continuous efforts have been devoted to developing high quality computational techniques to study the interactions between RNAs and proteins. Many important progresses have been achieved with the application of novel techniques and strategies, such as machine learning techniques. Especially, with the development and application of CLIP techniques, more and more experimental data on RNA-protein interaction under specific biological conditions are available. These CLIP data altogether provide a rich source for developing advanced machine learning predictors. In this review, recent progresses on computational predictors for RNA-protein interaction were summarized in the following aspects: dataset, prediction strategies, and input features. Possible future developments were also discussed at the end of the review.
Collapse
Affiliation(s)
- Amit Sagar
- Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, Tampa, Florida 33620, United States
| | - Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
29
|
Alam I, Liu CC, Ge HL, Batool K, Yang YQ, Lu YH. Genome wide survey, evolution and expression analysis of PHD finger genes reveal their diverse roles during the development and abiotic stress responses in Brassica rapa L. BMC Genomics 2019; 20:773. [PMID: 31651238 PMCID: PMC6814106 DOI: 10.1186/s12864-019-6080-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 09/04/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Plant homeodomain (PHD) finger proteins are widely present in all eukaryotes and play important roles in chromatin remodeling and transcriptional regulation. The PHD finger can specifically bind a number of histone modifications as an "epigenome reader", and mediate the activation or repression of underlying genes. Many PHD finger genes have been characterized in animals, but only few studies were conducted on plant PHD finger genes to this day. Brassica rapa (AA, 2n = 20) is an economically important vegetal, oilseed and fodder crop, and also a good model crop for functional and evolutionary studies of important gene families among Brassica species due to its close relationship to Arabidopsis thaliana. RESULTS We identified a total of 145 putative PHD finger proteins containing 233 PHD domains from the current version of B. rapa genome database. Gene ontology analysis showed that 67.7% of them were predicted to be located in nucleus, and 91.3% were predicted to be involved in protein binding activity. Phylogenetic, gene structure, and additional domain analyses clustered them into different groups and subgroups, reflecting their diverse functional roles during plant growth and development. Chromosomal location analysis showed that they were unevenly distributed on the 10 B. rapa chromosomes. Expression analysis from RNA-Seq data showed that 55.7% of them were constitutively expressed in all the tested tissues or organs with relatively higher expression levels reflecting their important housekeeping roles in plant growth and development, while several other members were identified as preferentially expressed in specific tissues or organs. Expression analysis of a subset of 18 B. rapa PHD finger genes under drought and salt stresses showed that all these tested members were responsive to the two abiotic stress treatments. CONCLUSIONS Our results reveal that the PHD finger genes play diverse roles in plant growth and development, and can serve as a source of candidate genes for genetic engineering and improvement of Brassica crops against abiotic stresses. This study provides valuable information and lays the foundation for further functional determination of PHD finger genes across the Brassica species.
Collapse
Affiliation(s)
- Intikhab Alam
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cui-Cui Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong-Liu Ge
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Khadija Batool
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yan-Qing Yang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yun-Hai Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
30
|
Nöldeke ER, Stehle T. Unraveling the mechanism of peptidoglycan amidation by the bifunctional enzyme complex GatD/MurT: A comparative structural approach. Int J Med Microbiol 2019; 309:151334. [PMID: 31383542 DOI: 10.1016/j.ijmm.2019.151334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022] Open
Abstract
The bacterial cell wall provides structural integrity to the cell and protects the cell from internal pressure and the external environment. During the course of the twelve-year funding period of the Collaborative Research Center 766, our work has focused on conducting structure-function studies of enzymes that modify (synthesize or cleave) cell wall components of a range of bacteria including Staphylococcus aureus, Staphylococcus epidermidis, and Nostoc punctiforme. Several of our structures represent promising targets for interference. In this review, we highlight a recent structure-function analysis of an enzyme complex that is responsible for the amidation of Lipid II, a peptidoglycan precursor, in S. aureus.
Collapse
Affiliation(s)
- Erik R Nöldeke
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076 Tübingen, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076 Tübingen, Germany; Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| |
Collapse
|
31
|
Nagel C, Machulla A, Zahn S, Soppa J. Several One-Domain Zinc Finger µ-Proteins of Haloferax Volcanii Are Important for Stress Adaptation, Biofilm Formation, and Swarming. Genes (Basel) 2019; 10:genes10050361. [PMID: 31083437 PMCID: PMC6562870 DOI: 10.3390/genes10050361] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 11/16/2022] Open
Abstract
Zinc finger domains are highly structured and can mediate interactions to DNA, RNA, proteins, lipids, and small molecules. Accordingly, zinc finger proteins are very versatile and involved in many biological functions. Eukaryotes contain a wealth of zinc finger proteins, but zinc finger proteins have also been found in archaea and bacteria. Large zinc finger proteins have been well studied, however, in stark contrast, single domain zinc finger µ-proteins of less than 70 amino acids have not been studied at all, with one single exception. Therefore, 16 zinc finger µ-proteins of the haloarchaeon Haloferax volcanii were chosen and in frame deletion mutants of the cognate genes were generated. The phenotypes of mutants and wild-type were compared under eight different conditions, which were chosen to represent various pathways and involve many genes. None of the mutants differed from the wild-type under optimal or near-optimal conditions. However, 12 of the 16 mutants exhibited a phenotypic difference under at least one of the four following conditions: Growth in synthetic medium with glycerol, growth in the presence of bile acids, biofilm formation, and swarming. In total, 16 loss of function and 11 gain of function phenotypes were observed. Five mutants indicated counter-regulation of a sessile versus a motile life style in H. volcanii. In conclusion, the generation and analysis of a set of deletion mutants demonstrated the high importance of zinc finger µ-proteins for various biological functions, and it will be the basis for future mechanistic insight.
Collapse
Affiliation(s)
- Chantal Nagel
- Department of Biosciences, Institute for Molecular Biosciences, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.
| | - Anja Machulla
- Department of Biosciences, Institute for Molecular Biosciences, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.
| | - Sebastian Zahn
- Department of Biosciences, Institute for Molecular Biosciences, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.
| | - Jörg Soppa
- Department of Biosciences, Institute for Molecular Biosciences, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.
| |
Collapse
|
32
|
Identification and characterization of novel double zinc fingers encoded by putative proteins in genome of white spot syndrome virus. Arch Virol 2019; 164:961-969. [PMID: 30690656 DOI: 10.1007/s00705-019-04150-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/24/2018] [Indexed: 12/27/2022]
Abstract
White spot syndrome virus (WSSV), is a major viral pathogen affecting the shrimp culture industry worldwide. Studies in understanding the mechanisms of WSSV pathogenicity has led to the identification of The Really Interesting New Gene (RING) finger domains in WSSV encoded proteins that have been shown to function as E3 ligase modulating the host-ubiquitin pathway. In this study, we report two proteins encoded by the WSSV genome to harbor a double zinc finger domain, one each in its N- and C-terminal region. Sequence and structural analysis of the two domains showed the N- and C-terminal domains to be similar to known RING1 and RING2 domains of eukaryotic RBR (RING-between-RING) ligases respectively. This is the first report wherein genes within WSSV are shown to encode for double RING domains, which could pave way in understanding further, the function of these proteins and their role in the pathogenic mechanisms of the virus.
Collapse
|
33
|
De Tommaso G, Malgieri G, De Rosa L, Fattorusso R, D'Abrosca G, Romanelli A, Iuliano M, D'Andrea LD, Isernia C. Coordination of a bis-histidine-oligopeptide to Re(i) and Ga(iii) in aqueous solution. Dalton Trans 2019; 48:15184-15191. [DOI: 10.1039/c9dt02406a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have spectroscopically analyzed the chemistry in aqueous solution and the properties of the histidine-based chelator pHis2 complexed to the fac-[Re(H2O)3(CO)3]+ and Ga(iii) to unveil the molecular determinants of their coordination.
Collapse
Affiliation(s)
- Gaetano De Tommaso
- Department of Chemical Sciences
- University of Naples “Federico II” Cupa Nuova Cintia
- 21-80126 Naples
- Italy
| | - Gaetano Malgieri
- Department of Environmental
- Biological and Pharmaceutical
- Sciences and Technologies
- University of Campania “L. Vanvitelli”
- 43-81100 Caserta
| | - Lucia De Rosa
- Institute of Biostructure and Bioimaging
- CNR
- 16-80134 Naples
- Italy
| | - Roberto Fattorusso
- Department of Environmental
- Biological and Pharmaceutical
- Sciences and Technologies
- University of Campania “L. Vanvitelli”
- 43-81100 Caserta
| | - Gianluca D'Abrosca
- Department of Environmental
- Biological and Pharmaceutical
- Sciences and Technologies
- University of Campania “L. Vanvitelli”
- 43-81100 Caserta
| | | | - Mauro Iuliano
- Department of Chemical Sciences
- University of Naples “Federico II” Cupa Nuova Cintia
- 21-80126 Naples
- Italy
| | | | - Carla Isernia
- Department of Environmental
- Biological and Pharmaceutical
- Sciences and Technologies
- University of Campania “L. Vanvitelli”
- 43-81100 Caserta
| |
Collapse
|
34
|
Abstract
Zinc ion binding is a principal event in the achievement of the correct fold in classical zinc finger domains since the motif is largely unfolded in the absence of metal. In the case of a prokaryotic zinc finger, the larger βββαα domain contributes to the folding mechanism with a larger hydrophobic core. For these reasons, following the great amount of attention devoted to unveiling the effect of xenobiotic metal ion replacement in zinc fingers and in zinc-containing proteins in general, the prokaryotic zinc finger domain appears to be an interesting model for studying metal ion interaction with metalloproteins. Here, we explore the binding of Ni(II), Hg(II), and Pb(II) to Ros87, the DNA binding domain of the prokaryotic zinc finger protein Ros. We measured Ros87-metal ion dissociation constants and monitored the effects on the structure and function of the domain. Interestingly, we found that the protein folds in the presence of Ni(II) with important structural perturbations, while in the presence of Pb(II) and Hg(II) it does not appear to be significantly folded. Accordingly, an overall strong reduction in the DNA binding capability is observed for all of the examined proteins. Our data integrate and complement the information collected in the past few years concerning the functional and structural effects of metal ion substitution in classical zinc fingers in order to contribute to a better comprehension of the toxicity of these metals in biological systems.
Collapse
|
35
|
Identifying the region responsible for Brucella abortus MucR higher-order oligomer formation and examining its role in gene regulation. Sci Rep 2018; 8:17238. [PMID: 30467359 PMCID: PMC6250670 DOI: 10.1038/s41598-018-35432-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/05/2018] [Indexed: 11/09/2022] Open
Abstract
MucR is a member of the Ros/MucR family of prokaryotic zinc-finger proteins found in the α-proteobacteria which regulate the expression of genes required for the successful pathogenic and symbiotic interactions of these bacteria with the eukaryotic hosts. The structure and function of their distinctive zinc-finger domain has been well-studied, but only recently the quaternary structure of the full length proteins was investigated demonstrating their ability to form higher-order oligomers. The aim of this study was to identify the region of MucR involved in higher-order oligomer formation by analysing deletion and point mutants of this protein by Light Scattering, and to determine the role that MucR oligomerization plays in the regulatory function of this protein. Here we demonstrate that a conserved hydrophobic region at the N-terminus of MucR is responsible for higher-order oligomer formation and that MucR oligomerization is essential for its regulatory function in Brucella. All these features of MucR are shared by the histone-like nucleoid structuring protein, (H-NS), leading us to propose that the prokaryotic zinc-finger proteins in the MucR/Ros family control gene expression employing a mechanism similar to that used by the H-NS proteins, rather than working as classical transcriptional regulators.
Collapse
|
36
|
Nöldeke ER, Muckenfuss LM, Niemann V, Müller A, Störk E, Zocher G, Schneider T, Stehle T. Structural basis of cell wall peptidoglycan amidation by the GatD/MurT complex of Staphylococcus aureus. Sci Rep 2018; 8:12953. [PMID: 30154570 PMCID: PMC6113224 DOI: 10.1038/s41598-018-31098-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/06/2018] [Indexed: 01/09/2023] Open
Abstract
The peptidoglycan of Staphylococcus aureus is highly amidated. Amidation of α-D-isoglutamic acid in position 2 of the stem peptide plays a decisive role in the polymerization of cell wall building blocks. S. aureus mutants with a reduced degree of amidation are less viable and show increased susceptibility to methicillin, indicating that targeting the amidation reaction could be a useful strategy to combat this pathogen. The enzyme complex that catalyzes the formation of α-D-isoglutamine in the Lipid II stem peptide was identified recently and shown to consist of two subunits, the glutamine amidotransferase-like protein GatD and the Mur ligase homolog MurT. We have solved the crystal structure of the GatD/MurT complex at high resolution, revealing an open, boomerang-shaped conformation in which GatD is docked onto one end of MurT. Putative active site residues cluster at the interface between GatD and MurT and are contributed by both proteins, thus explaining the requirement for the assembled complex to carry out the reaction. Site-directed mutagenesis experiments confirm the validity of the observed interactions. Small-angle X-ray scattering data show that the complex has a similar conformation in solution, although some movement at domain interfaces can occur, allowing the two proteins to approach each other during catalysis. Several other Gram-positive pathogens, including Streptococcus pneumoniae, Clostridium perfringens and Mycobacterium tuberculosis have homologous enzyme complexes. Combined with established biochemical assays, the structure of the GatD/MurT complex provides a solid basis for inhibitor screening in S. aureus and other pathogens.
Collapse
Affiliation(s)
- Erik R Nöldeke
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076, Tübingen, Germany
| | - Lena M Muckenfuss
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076, Tübingen, Germany.,Department of Biochemistry, University of Zurich, CH-8057, Zurich, Switzerland
| | - Volker Niemann
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076, Tübingen, Germany.,Hain Lifescience GmbH, D-72147, Nehren, Germany
| | - Anna Müller
- Institute for Pharmaceutical Microbiology, University of Bonn, D-53115, Bonn, Germany
| | - Elena Störk
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076, Tübingen, Germany
| | - Georg Zocher
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076, Tübingen, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University of Bonn, D-53115, Bonn, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076, Tübingen, Germany. .,Vanderbilt University School of Medicine, Nashville, Tennessee, 37232, USA.
| |
Collapse
|
37
|
Kluska K, Adamczyk J, Krężel A. Metal binding properties, stability and reactivity of zinc fingers. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Transcription Factors Controlling Primary and Secondary Metabolism in Filamentous Fungi: The β-Lactam Paradigm. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4020047] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Malgieri G, D'Abrosca G, Pirone L, Toto A, Palmieri M, Russo L, Sciacca MFM, Tatè R, Sivo V, Baglivo I, Majewska R, Coletta M, Pedone PV, Isernia C, De Stefano M, Gianni S, Pedone EM, Milardi D, Fattorusso R. Folding mechanisms steer the amyloid fibril formation propensity of highly homologous proteins. Chem Sci 2018; 9:3290-3298. [PMID: 29780459 PMCID: PMC5933289 DOI: 10.1039/c8sc00166a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/28/2018] [Indexed: 12/16/2022] Open
Abstract
Understanding the molecular determinants of fibrillogenesis by studying the aggregation propensities of high homologous proteins with different folding pathways.
Significant advances in the understanding of the molecular determinants of fibrillogenesis can be expected from comparative studies of the aggregation propensities of proteins with highly homologous structures but different folding pathways. Here, we fully characterize, by means of stopped-flow, T-jump, CD and DSC experiments, the unfolding mechanisms of three highly homologous proteins, zinc binding Ros87 and Ml153–149 and zinc-lacking Ml452–151. The results indicate that the three proteins significantly differ in terms of stability and (un)folding mechanisms. Particularly, Ros87 and Ml153–149 appear to be much more stable to guanidine denaturation and are characterized by folding mechanisms including the presence of an intermediate. On the other hand, metal lacking Ml452–151 folds according to a classic two-state model. Successively, we have monitored the capabilities of Ros87, Ml452–151 and Ml153–149 to form amyloid fibrils under native conditions. Particularly, we show, by CD, fluorescence, DLS, TEM and SEM experiments, that after 168 hours, amyloid formation of Ros87 has started, while Ml153–149 has formed only amorphous aggregates and Ml452–151 is still monomeric in solution. This study shows how metal binding can influence protein folding pathways and thereby control conformational accessibility to aggregation-prone states, which in turn changes aggregation kinetics, shedding light on the role of metal ions in the development of protein deposition diseases.
Collapse
Affiliation(s)
- Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Gianluca D'Abrosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging , CNR , Via Mezzocannone 16 , 80134 Naples , Italy
| | - Angelo Toto
- Department of Biochemical Sciences "Alessandro Rossi Fanelli" , University of Rome "La Sapienza" , Piazzale Aldo Moro 5 , 00185 , Roma , Italy
| | - Maddalena Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | | | - Rosarita Tatè
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso" , CNR , Via P. Castellino 111 , 80131 Napoli , Italy
| | - Valeria Sivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Roksana Majewska
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine , University of Rome "Tor Vergata" , Via Montpellier 1 , 00133 , Roma , Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Mario De Stefano
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Stefano Gianni
- Department of Biochemical Sciences "Alessandro Rossi Fanelli" , University of Rome "La Sapienza" , Piazzale Aldo Moro 5 , 00185 , Roma , Italy
| | - Emilia Maria Pedone
- Institute of Biostructures and Bioimaging , CNR , Via Mezzocannone 16 , 80134 Naples , Italy
| | - Danilo Milardi
- Institute of Biostructures and Bioimaging , CNR , Viale A. Doria 6 , 95125 Catania , Italy .
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| |
Collapse
|
40
|
de Souza ID, de Andrade AS, Dalmolin RJS. Lead-interacting proteins and their implication in lead poisoning. Crit Rev Toxicol 2018; 48:375-386. [DOI: 10.1080/10408444.2018.1429387] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Iara Dantas de Souza
- Bioinformatics Multidisciplinary Environment – IMD, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Abraão Silveira de Andrade
- Bioinformatics Multidisciplinary Environment – IMD, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rodrigo Juliani Siqueira Dalmolin
- Bioinformatics Multidisciplinary Environment – IMD, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Biochemistry – CB, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
41
|
Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy. Bioinorg Chem Appl 2017; 2017:1527247. [PMID: 29386985 PMCID: PMC5745721 DOI: 10.1155/2017/1527247] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/03/2017] [Accepted: 10/16/2017] [Indexed: 11/23/2022] Open
Abstract
Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis2 coordination an intense d-d transition band, blue-shifted with respect to the Cys2His2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere.
Collapse
|
42
|
Cassandri M, Smirnov A, Novelli F, Pitolli C, Agostini M, Malewicz M, Melino G, Raschellà G. Zinc-finger proteins in health and disease. Cell Death Discov 2017; 3:17071. [PMID: 29152378 PMCID: PMC5683310 DOI: 10.1038/cddiscovery.2017.71] [Citation(s) in RCA: 438] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 02/07/2023] Open
Abstract
Zinc-finger proteins (ZNFs) are one of the most abundant groups of proteins and have a wide range of molecular functions. Given the wide variety of zinc-finger domains, ZNFs are able to interact with DNA, RNA, PAR (poly-ADP-ribose) and other proteins. Thus, ZNFs are involved in the regulation of several cellular processes. In fact, ZNFs are implicated in transcriptional regulation, ubiquitin-mediated protein degradation, signal transduction, actin targeting, DNA repair, cell migration, and numerous other processes. The aim of this review is to provide a comprehensive summary of the current state of knowledge of this class of proteins. Firstly, we describe the actual classification of ZNFs, their structure and functions. Secondly, we focus on the biological role of ZNFs in the development of organisms under normal physiological and pathological conditions.
Collapse
Affiliation(s)
- Matteo Cassandri
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Artem Smirnov
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Flavia Novelli
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Consuelo Pitolli
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Michal Malewicz
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy.,Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - Giuseppe Raschellà
- ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, Via Anguillarese, Rome, Italy
| |
Collapse
|
43
|
Slaby BM, Hackl T, Horn H, Bayer K, Hentschel U. Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. ISME JOURNAL 2017; 11:2465-2478. [PMID: 28696422 PMCID: PMC5649159 DOI: 10.1038/ismej.2017.101] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 05/07/2017] [Accepted: 05/21/2017] [Indexed: 01/29/2023]
Abstract
Marine sponges are ancient metazoans that are populated by distinct and highly diverse microbial communities. In order to obtain deeper insights into the functional gene repertoire of the Mediterranean sponge Aplysina aerophoba, we combined Illumina short-read and PacBio long-read sequencing followed by un-targeted metagenomic binning. We identified a total of 37 high-quality bins representing 11 bacterial phyla and two candidate phyla. Statistical comparison of symbiont genomes with selected reference genomes revealed a significant enrichment of genes related to bacterial defense (restriction-modification systems, toxin-antitoxin systems) as well as genes involved in host colonization and extracellular matrix utilization in sponge symbionts. A within-symbionts genome comparison revealed a nutritional specialization of at least two symbiont guilds, where one appears to metabolize carnitine and the other sulfated polysaccharides, both of which are abundant molecules in the sponge extracellular matrix. A third guild of symbionts may be viewed as nutritional generalists that perform largely the same metabolic pathways but lack such extraordinary numbers of the relevant genes. This study characterizes the genomic repertoire of sponge symbionts at an unprecedented resolution and it provides greater insights into the molecular mechanisms underlying microbial-sponge symbiosis.
Collapse
Affiliation(s)
- Beate M Slaby
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Department of Botany II, Julius-von-Sachs Institute for Biological Science, University of Würzburg, Würzburg, Germany
| | - Thomas Hackl
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hannes Horn
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Department of Botany II, Julius-von-Sachs Institute for Biological Science, University of Würzburg, Würzburg, Germany
| | - Kristina Bayer
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Ute Hentschel
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
44
|
Ferranco A, Basak S, Lough A, Kraatz HB. Metal coordination of ferrocene–histidine conjugates. Dalton Trans 2017; 46:4844-4859. [PMID: 28349138 DOI: 10.1039/c7dt00456g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Synthesis and complete structural characterization of ferrocene–histidine dipeptides including detailed analysis of the ligand–metal complexation.
Collapse
Affiliation(s)
- Annaleizle Ferranco
- Department of Physical and Environmental Sciences
- University of Toronto
- Toronto
- M1C 1A4 Canada
- Department of Chemistry
| | - Shibaji Basak
- Department of Physical and Environmental Sciences
- University of Toronto
- Toronto
- M1C 1A4 Canada
- Department of Chemistry
| | - Alan Lough
- Department of Chemistry
- University of Toronto
- Toronto
- M5S 3H6 Canada
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences
- University of Toronto
- Toronto
- M1C 1A4 Canada
- Department of Chemistry
| |
Collapse
|
45
|
De Tommaso G, Celentano V, Malgieri G, Fattorusso R, Romanelli A, D'Andrea LD, Iuliano M, Isernia C. fac-[Re(H2O)3(CO)3]+Complexed with Histidine and Imidazole in Aqueous Solution: Speciation, Affinity and Binding Features. ChemistrySelect 2016. [DOI: 10.1002/slct.201600817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gaetano De Tommaso
- Department of Chemical Sciences; University of Naples “Federico II”; Cupa Nuova Cintia 21- 80126 Naples ITALY
| | - Veronica Celentano
- Institute of Biostructure and Bioimaging CNR; Via Mezzocannone 16-80134 Naples ITALY
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences; Technologies, Second University of Naples; Via Vivaldi 43-81100 Caserta Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences; Technologies, Second University of Naples; Via Vivaldi 43-81100 Caserta Italy
- Interuniversity Research Centre on Bioactive Peptides; Via Mezzocannone 16-80134 Naples Italy
| | - Alessandra Romanelli
- Department of Pharmacy; University of Naples “Federico II”; Via Mezzocannone 16-80134 Naples Italy
- Interuniversity Research Centre on Bioactive Peptides; Via Mezzocannone 16-80134 Naples Italy
| | - Luca Domenico D'Andrea
- Institute of Biostructure and Bioimaging CNR; Via Mezzocannone 16-80134 Naples ITALY
- Interuniversity Research Centre on Bioactive Peptides; Via Mezzocannone 16-80134 Naples Italy
| | - Mauro Iuliano
- Department of Chemical Sciences; University of Naples “Federico II”; Cupa Nuova Cintia 21- 80126 Naples ITALY
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences; Technologies, Second University of Naples; Via Vivaldi 43-81100 Caserta Italy
- Interuniversity Research Centre on Bioactive Peptides; Via Mezzocannone 16-80134 Naples Italy
| |
Collapse
|
46
|
D'Abrosca G, Russo L, Palmieri M, Baglivo I, Netti F, de Paola I, Zaccaro L, Farina B, Iacovino R, Pedone PV, Isernia C, Fattorusso R, Malgieri G. The (unusual) aspartic acid in the metal coordination sphere of the prokaryotic zinc finger domain. J Inorg Biochem 2016; 161:91-8. [PMID: 27238756 DOI: 10.1016/j.jinorgbio.2016.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/30/2016] [Accepted: 05/10/2016] [Indexed: 11/29/2022]
Abstract
The possibility of choices of protein ligands and coordination geometries leads to diverse Zn(II) binding sites in zinc-proteins, allowing a range of important biological roles. The prokaryotic Cys2His2 zinc finger domain (originally found in the Ros protein from Agrobacterium tumefaciens) tetrahedrally coordinates zinc through two cysteine and two histidine residues and it does not adopt a correct fold in the absence of the metal ion. Ros is the first structurally characterized member of a family of bacterial proteins that presents several amino acid changes in the positions occupied in Ros by the zinc coordinating residues. In particular, the second position is very often occupied by an aspartic acid although the coordination of structural zinc by an aspartate in eukaryotic zinc fingers is very unusual. Here, by appropriately mutating the protein Ros, we characterize the aspartate role within the coordination sphere of this family of proteins demonstrating how the presence of this residue only slightly perturbs the functional structure of the prokaryotic zinc finger domain while it greatly influences its thermodynamic properties.
Collapse
Affiliation(s)
- Gianluca D'Abrosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Maddalena Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Fortuna Netti
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ivan de Paola
- Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy; Institute of Biostructures and Bioimaging - CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Laura Zaccaro
- Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy; Institute of Biostructures and Bioimaging - CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Biancamaria Farina
- Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy; Institute of Biostructures and Bioimaging - CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Rosa Iacovino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy; Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy; Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy; Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy.
| |
Collapse
|
47
|
Jiao J, Wu LJ, Zhang B, Hu Y, Li Y, Zhang XX, Guo HJ, Liu LX, Chen WX, Zhang Z, Tian CF. MucR Is Required for Transcriptional Activation of Conserved Ion Transporters to Support Nitrogen Fixation of Sinorhizobium fredii in Soybean Nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:352-61. [PMID: 26883490 DOI: 10.1094/mpmi-01-16-0019-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To achieve effective symbiosis with legume, rhizobia should fine-tune their background regulation network in addition to activating key genes involved in nodulation (nod) and nitrogen fixation (nif). Here, we report that an ancestral zinc finger regulator, MucR1, other than its paralog, MucR2, carrying a frameshift mutation, is essential for supporting nitrogen fixation of Sinorhizobium fredii CCBAU45436 within soybean nodules. In contrast to the chromosomal mucR1, mucR2 is located on symbiosis plasmid, indicating its horizontal transfer potential. A MucR2 homolog lacking the frameshift mutation, such as the one from S. fredii NGR234, can complement phenotypic defects of the mucR1 mutant of CCBAU45436. RNA-seq analysis revealed that the MucR1 regulon of CCBAU45436 within nodules exhibits significant difference compared with that of free-living cells. MucR1 is required for active expression of transporters for phosphate, zinc, and elements essential for nitrogenase activity (iron, molybdenum, and sulfur) in nodules but is dispensable for transcription of key genes (nif/fix) involved in nitrogen fixation. Further reverse genetics suggests that S. fredii uses high-affinity transporters to meet the demand for zinc and phosphate within nodules. These findings, together with the horizontal transfer potential of the mucR homolog, imply an intriguing evolutionary role of this ancestral regulator in supporting nitrogen fixation.
Collapse
Affiliation(s)
- Jian Jiao
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Li Juan Wu
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Biliang Zhang
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yue Hu
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Yan Li
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Xing Xing Zhang
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Hui Juan Guo
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Li Xue Liu
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Wen Xin Chen
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Ziding Zhang
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chang Fu Tian
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| |
Collapse
|