1
|
Finan JM, Di Niro R, Park SY, Jeong KJ, Hedberg MD, Smith A, McCarthy GA, Haber AO, Muschler J, Sears RC, Mills GB, Gmeiner WH, Brody JR. The polymeric fluoropyrimidine CF10 overcomes limitations of 5-FU in pancreatic ductal adenocarcinoma cells through increased replication stress. Cancer Biol Ther 2024; 25:2421584. [PMID: 39513592 PMCID: PMC11552260 DOI: 10.1080/15384047.2024.2421584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease soon to become the second leading cause of cancer deaths in the US. Beside surgery, current therapies have narrow clinical benefits with systemic toxicities. FOLFIRINOX is the current standard of care, one component of which is 5- Fluorouracil (5-FU), which causes serious gastrointestinal and hematopoietic toxicities and is vulnerable to resistance mechanisms. Recently, we have developed polymeric fluoropyrimidines (F10, CF10) which unlike 5-FU, are, in principle, completely converted to the thymidylate synthase inhibitory metabolite FdUMP, without generating appreciable levels of ribonucleotides that cause systemic toxicities while displaying much stronger anti-cancer activity. Here, we confirm the potency of CF10 and investigate enhancement of its efficacy through combination with inhibitors in vitro targeting replication stress, a hallmark of PDAC cells. CF10 is 308-times more potent as a single agent than 5-FU and was effective in the nM range in primary patient derived models. Further, we find that activity of CF10, but not 5-FU, is enhanced through combination with inhibitors of ATR and Wee1 that regulate the S and G2 DNA damage checkpoints and can be reversed by addition of dNTPs indicative of CF10 acting, at least in part, through inducing replication stress. Our results indicate CF10 has the potential to supersede the established benefit of 5-FU in PDAC treatment and indicate novel combination approaches that should be validated in vivo and may be beneficial in established regimens that include 5-FU.
Collapse
Affiliation(s)
- Jennifer M. Finan
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Development and Cancer Biology, Oregon Health and Sciences University, Portland, OR, USA
| | - Roberto Di Niro
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Soon Young Park
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Development and Cancer Biology, Oregon Health and Sciences University, Portland, OR, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Kang Jin Jeong
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Development and Cancer Biology, Oregon Health and Sciences University, Portland, OR, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Madeline D. Hedberg
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Alexander Smith
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Grace A. McCarthy
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Development and Cancer Biology, Oregon Health and Sciences University, Portland, OR, USA
| | - Alex O. Haber
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - John Muschler
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Rosalie C. Sears
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Gordon B. Mills
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Development and Cancer Biology, Oregon Health and Sciences University, Portland, OR, USA
| | - William H. Gmeiner
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jonathan R. Brody
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
2
|
Chen X, Chen C, Luo C, Liu J, Lin Z. Discovery of UMI-77 as a novel Ku70/80 inhibitor sensitizing cancer cells to DNA damaging agents in vitro and in vivo. Eur J Pharmacol 2024; 975:176647. [PMID: 38754534 DOI: 10.1016/j.ejphar.2024.176647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
The emergence of chemoresistance poses a significant challenge to the efficacy of DNA-damaging agents in cancer treatment, in part due to the inherent DNA repair capabilities of cancer cells. The Ku70/80 protein complex (Ku) plays a central role in double-strand breaks (DSBs) repair through the classical non-homologous end joining (c-NHEJ) pathway, and has proven to be one of the most promising drug target for cancer treatment when combined with radiotherapy or chemotherapy. In this study, we conducted a high-throughput screening of small-molecule inhibitors targeting the Ku complex by using a fluorescence polarization-based DNA binding assay. From a library of 11,745 small molecules, UMI-77 was identified as a potent Ku inhibitor, with an IC50 value of 2.3 μM. Surface plasmon resonance and molecular docking analyses revealed that UMI-77 directly bound the inner side of Ku ring, thereby disrupting Ku binding with DNA. In addition, UMI-77 also displayed potent inhibition against MUS81-EME1, a key player in homologous recombination (HR), demonstrating its potential for blocking both NHEJ- and HR-mediated DSB repair pathways. Further cell-based studies showed that UMI-77 could impair bleomycin-induced DNA damage repair, and significantly sensitized multiple cancer cell lines to the DNA-damaging agents. Finally, in a mouse xenograft tumor model, UMI-77 significantly enhanced the chemotherapeutic efficacy of etoposide with little adverse physiological effects. Our work offers a new avenue to combat chemoresistance in cancer treatment, and suggests that UMI-77 could be further developed as a promising candidate in cancer treatment.
Collapse
Affiliation(s)
- Xuening Chen
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Changkun Chen
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Chengmiao Luo
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jianyong Liu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zhonghui Lin
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
3
|
Acharya G, Mani C, Sah N, Saamarthy K, Young R, Reedy MB, Sobol RW, Palle K. CHK1 inhibitor induced PARylation by targeting PARG causes excessive replication and metabolic stress and overcomes chemoresistance in ovarian cancer. Cell Death Discov 2024; 10:278. [PMID: 38862485 PMCID: PMC11166985 DOI: 10.1038/s41420-024-02040-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Chemoresistance contributes to the majority of deaths in women with ovarian cancer (OC). Altered DNA repair and metabolic signaling is implicated in mediating therapeutic resistance. DNA damage checkpoint kinase 1 (CHK1) integrates cell cycle and DNA repair in replicating cells, and its inhibition causes replication stress, repair deficiency and cell cycle dysregulation. We observed elevated Poly-ADP-ribosylation (PAR) of proteins (PARylation) and subsequent decrease in cellular NAD+ levels in OC cells treated with the CHK1 inhibitor prexasertib, indicating activation of NAD+ dependent DNA repair enzymes poly-ADP-ribose polymerases (PARP1/2). While multiple PARP inhibitors are in clinical use in treating OC, tumor resistance to these drugs is highly imminent. We reasoned that inhibition of dePARylation by targeting Poly (ADP-ribose) glycohydrolase (PARG) would disrupt metabolic and DNA repair crosstalk to overcome chemoresistance. Although PARG inhibition (PARGi) trapped PARylation of the proteins and activated CHK1, it did not cause any significant OC cell death. However, OC cells deficient in CHK1 were hypersensitive to PARGi, suggesting a role for metabolic and DNA repair crosstalk in protection of OC cells. Correspondingly, OC cells treated with a combination of CHK1 and PARG inhibitors exhibited excessive replication stress-mediated DNA lesions, cell cycle dysregulation, and mitotic catastrophe compared to individual drugs. Interestingly, increased PARylation observed in combination treatment resulted in depletion of NAD+ levels. These decreased NAD+ levels were also paralleled with reduced aldehyde dehydrogenase (ALDH) activity, which requires NAD+ to maintain cancer stem cells. Furthermore, prexasertib and PARGi combinations exhibited synergistic cell death in OC cells, including an isogenic chemoresistant cell line and 3D organoid models of primary patient-derived OC cell lines. Collectively, our data highlight a novel crosstalk between metabolism and DNA repair involving replication stress and NAD+-dependent PARylation, and suggest a novel combination therapy of CHK1 and PARG inhibitors to overcome chemoresistance in OC.
Collapse
Affiliation(s)
- Ganesh Acharya
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Chinnadurai Mani
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Naresh Sah
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Karunakar Saamarthy
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert Young
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mark B Reedy
- Department of Obstetrics & Gynecology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert W Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, & Legorreta Cancer Center, Brown University, Providence, RI, USA
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Obstetrics & Gynecology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
4
|
Søgaard CK, Otterlei M. Targeting proliferating cell nuclear antigen (PCNA) for cancer therapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:209-246. [PMID: 39034053 DOI: 10.1016/bs.apha.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Proliferating cell nuclear antigen (PCNA) is an essential scaffold protein in many cellular processes. It is best known for its role as a DNA sliding clamp and processivity factor during DNA replication, which has been extensively reviewed by others. However, the importance of PCNA extends beyond its DNA-associated functions in DNA replication, chromatin remodelling, DNA repair and DNA damage tolerance (DDT), as new non-canonical roles of PCNA in the cytosol have recently been identified. These include roles in the regulation of immune evasion, apoptosis, metabolism, and cellular signalling. The diverse roles of PCNA are largely mediated by its myriad protein interactions, and its centrality to cellular processes makes PCNA a valid therapeutic anticancer target. PCNA is expressed in all cells and plays an essential role in normal cellular homeostasis; therefore, the main challenge in targeting PCNA is to selectively kill cancer cells while avoiding unacceptable toxicity to healthy cells. This chapter focuses on the stress-related roles of PCNA, and how targeting these PCNA roles can be exploited in cancer therapy.
Collapse
Affiliation(s)
- Caroline K Søgaard
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway; APIM Therapeutics A/S, Trondheim, Norway.
| |
Collapse
|
5
|
Riegel G, Orvain C, Recberlik S, Spaety ME, Poschet G, Venkatasamy A, Yamamoto M, Nomura S, Tsukamoto T, Masson M, Gross I, Le Lagadec R, Mellitzer G, Gaiddon C. The unfolded protein response-glutathione metabolism axis: A novel target of a cycloruthenated complexes bypassing tumor resistance mechanisms. Cancer Lett 2024; 585:216671. [PMID: 38290658 DOI: 10.1016/j.canlet.2024.216671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/22/2023] [Accepted: 01/20/2024] [Indexed: 02/01/2024]
Abstract
Platinum-based drugs remain the reference treatment for gastric cancer (GC). However, the frequency of resistance, due to mutations in TP53 or alterations in the energy and redox metabolisms, impairs the efficacy of current treatments, highlighting the need for alternative therapeutic options. Here, we show that a cycloruthenated compound targeting the redox metabolism, RDC11, induces higher cytotoxicity than oxaliplatin in GC cells and is more potent in reducing tumor growth in vivo. Detailed investigations into the mode of action of RDC11 indicated that it targets the glutathione (GSH) metabolism, which is an important drug resistance mechanism. We demonstrate that cycloruthenated complexes regulate the expression of enzymes of the transsulfuration pathway via the Unfolded Protein Response (UPR) and its effector ATF4. Furthermore, RDC11 induces the expression of SLC7A11 encoding for the cystine/glutamate antiporter xCT. These effects lead to a lower cellular GSH content and elevated oxygen reactive species production, causing the activation of a caspase-independent apoptosis. Altogether, this study provides the first evidence that cycloruthenated complexes target the GSH metabolism, neutralizing thereby a major resistance mechanism towards platinum-based chemotherapies and anticancer immune response.
Collapse
Affiliation(s)
- Gilles Riegel
- University of Strasbourg, INSERM UMR_S 1113, "Streinth" Laboratory, Strasbourg, France
| | - Christophe Orvain
- University of Strasbourg, INSERM UMR_S 1113, "Streinth" Laboratory, Strasbourg, France; INSERM, UMR 1260, CRBS, Regenerative Nanomedicine, "HERIIT" Laboratory, University of Strasbourg, Strasbourg, France
| | - Sevda Recberlik
- University of Strasbourg, INSERM UMR_S 1113, "Streinth" Laboratory, Strasbourg, France; INSERM, UMR 1260, CRBS, Regenerative Nanomedicine, "HERIIT" Laboratory, University of Strasbourg, Strasbourg, France
| | - Marie-Elodie Spaety
- University of Strasbourg, INSERM UMR_S 1113, "Streinth" Laboratory, Strasbourg, France
| | - Gernot Poschet
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Aina Venkatasamy
- University of Strasbourg, INSERM UMR_S 1113, "Streinth" Laboratory, Strasbourg, France; IHU-Strasbourg, Institute of Image-Guided Surgery, Strasbourg, France
| | - Masami Yamamoto
- Department of Laboratory of Physiological Pathology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsyua Tsukamoto
- Department of Diagnostic Pathology, Graduate School of Medicine, Fujita Health University, Toyoake, Japan
| | - Murielle Masson
- University of Strasbourg, INSERM UMR_S 1113, "Streinth" Laboratory, Strasbourg, France; University of Strasbourg, CNRS BSC-UMR 7242, Ecole Supérieure de Biotechnologie, Illkirch, France
| | - Isabelle Gross
- University of Strasbourg, INSERM UMR_S 1113, "SMART" Laboratory, Strasbourg, France; INSERM, UMR 1260, CRBS, Regenerative Nanomedicine, "HERIIT" Laboratory, University of Strasbourg, Strasbourg, France
| | - Ronan Le Lagadec
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Georg Mellitzer
- University of Strasbourg, INSERM UMR_S 1113, "Streinth" Laboratory, Strasbourg, France; INSERM, UMR 1260, CRBS, Regenerative Nanomedicine, "HERIIT" Laboratory, University of Strasbourg, Strasbourg, France.
| | - Christian Gaiddon
- University of Strasbourg, INSERM UMR_S 1113, "Streinth" Laboratory, Strasbourg, France.
| |
Collapse
|
6
|
Cao Y, Chen J, Bian Q, Ning J, Yong L, Ou T, Song Y, Wei S. Genotoxicity Evaluation of Titanium Dioxide Nanoparticles In Vivo and In Vitro: A Meta-Analysis. TOXICS 2023; 11:882. [PMID: 37999534 PMCID: PMC10675837 DOI: 10.3390/toxics11110882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Recent studies have raised concerns about genotoxic effects associated with titanium dioxide nanoparticles (TiO2 NPs), which are commonly used. This meta-analysis aims to investigate the potential genotoxicity of TiO2 NPs and explore influencing factors. METHODS This study systematically searched Chinese and English literature. The literature underwent quality evaluation, including reliability evaluation using the toxicological data reliability assessment method and relevance evaluation using routine evaluation forms. Meta-analysis and subgroup analyses were performed using R software, with the standardized mean difference (SMD) as the combined effect value. RESULTS A total of 26 studies met the inclusion criteria and passed the quality assessment. Meta-analysis results indicated that the SMD for each genotoxic endpoint was greater than 0. This finding implies a significant association between TiO2 NP treatment and DNA damage and chromosome damage both in vivo and in vitro and gene mutation in vitro. Subgroup analysis revealed that short-term exposure to TiO2 NPs increased DNA damage. Rats and cancer cells exhibited heightened susceptibility to DNA damage triggered by TiO2 NPs (p < 0.05). CONCLUSIONS TiO2 NPs could induce genotoxicity, including DNA damage, chromosomal damage, and in vitro gene mutations. The mechanism of DNA damage response plays a key role in the genotoxicity induced by TiO2 NPs.
Collapse
Affiliation(s)
- Yue Cao
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People’s Republic of China (China National Center for Food Safety Risk Assessment), Guangqu Road, Beijing 100022, China; (Y.C.); (L.Y.); (T.O.)
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road, Wuhan 430030, China
| | - Jinyao Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Yihuan Road, Chengdu 610041, China;
| | - Qian Bian
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Road, Nanjing 210009, China;
| | - Junyu Ning
- Institute of Toxicology, Beijing Center for Disease Prevention and Control, Hepingli Middle Street, Beijing 100013, China;
| | - Ling Yong
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People’s Republic of China (China National Center for Food Safety Risk Assessment), Guangqu Road, Beijing 100022, China; (Y.C.); (L.Y.); (T.O.)
| | - Tong Ou
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People’s Republic of China (China National Center for Food Safety Risk Assessment), Guangqu Road, Beijing 100022, China; (Y.C.); (L.Y.); (T.O.)
| | - Yan Song
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People’s Republic of China (China National Center for Food Safety Risk Assessment), Guangqu Road, Beijing 100022, China; (Y.C.); (L.Y.); (T.O.)
| | - Sheng Wei
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road, Wuhan 430030, China
| |
Collapse
|
7
|
Zhang X, Chen X, Lu L, Fang Q, Liu C, Lin Z. Identification of small-molecule inhibitors of human MUS81-EME1/2 by FRET-based high-throughput screening. Bioorg Med Chem 2023; 90:117383. [PMID: 37352577 DOI: 10.1016/j.bmc.2023.117383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
The MUS81-EME1/2 structure-specific endonucleases play a crucial role in the processing of stalled replication forks and recombination intermediates, and have been recognized as an attractive drug target to potentiate the anti-cancer efficacy of DNA-damaging agents. Currently, no bioactive small-molecule inhibitors of MUS81 are available. Here, we performed a high-throughput small-molecule inhibitors screening, using the FRET-based DNA cleavage assay. From 7920 compounds, we identified dyngo-4a as a potent inhibitor of MUS81 complexes. Dyngo-4a effectively inhibits the endonuclease activities of both MUS81-EME1 and MUS81-EME2 complexes, with IC50 values of 0.57 μM and 2.90 μM, respectively. Surface plasmon resonance (SPR) and electrophoretic mobility shift assay (EMSA) assays reveal that dyngo-4a directly binds to MUS81 complexes (KD ∼ 0.61 μM) and prevents them from binding to DNA substrates. In HeLa cells, dyngo-4a significantly suppresses bleomycin-triggered H2AX serine 139 phosphorylation (γH2AX). Together, our results demonstrate that dyngo-4a is a potent MUS81 inhibitor, which could be further developed as a potentially valuable chemical tool to explore more physiological roles of MUS81 in the cells.
Collapse
Affiliation(s)
- Xu Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xuening Chen
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lian Lu
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Qianqian Fang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chun Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zhonghui Lin
- College of Chemistry, Fuzhou University, Fuzhou 350108, China; Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, China.
| |
Collapse
|
8
|
Wang MY, Wang XW, Zhao WX, Li Y, Cai ML, Wang KX, Xi XM, Zhao C, Zhou HM, Shao RG, Xia GM, Zhang YF, Zhao WL. Enhanced binding of β-catenin and β-TrCP mediates LMPt's anti-CSCs activity in colorectal cancer. Biochem Pharmacol 2023; 212:115577. [PMID: 37137416 DOI: 10.1016/j.bcp.2023.115577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
Cancer stem cells (CSCs), a subpopulation of tumor cells with the features of self-renewal, tumor initiation, and insensitivity to common physical and chemical agents, are the key to cancer relapses, metastasis, and resistance. Accessible CSCs inhibitory strategies are primarily based on small molecule drugs, yet toxicity limits their application. Here, we report a liposome loaded with low toxicity and high effectiveness of miriplatin, lipo-miriplatin (LMPt) with high miriplatin loading, and robust stability, exhibiting a superior inhibitory effect on CSCs and non-CSCs. LMPt predominantly inhibits the survival of oxaliplatin-resistant (OXA-resistant) cells composed of CSCs. Furthermore, LMPt directly blocks stemness features of self-renewal, tumor initiation, unlimited proliferation, metastasis, and insensitivity. In mechanistic exploration, RNA sequencing (RNA-seq) revealed that LMPt downregulates the levels of pro-stemness proteins and that the β-catenin-mediated stemness pathway is enriched. Further research shows that either in adherent cells or 3D-spheres, the β-catenin-OCT4/NANOG axis, the vital pathway to maintain stemness, is depressed by LMPt. The consecutive activation of the β-catenin pathway induced by mutant β-catenin (S33Y) and OCT4/NANOG overexpression restores LMPt's anti-CSCs effect, elucidating the key role of the β-catenin-OCT4/NANOG axis. Further studies revealed that the strengthened binding of β-catenin and β-TrCP initiates ubiquitination and degradation of β-catenin induced by LMPt. In addition,the ApcMin/+transgenicmouse model, in which colon tumors are spontaneously formed, demonstrates LMPt's potent anti-non-CSCs activity in vivo.
Collapse
Affiliation(s)
- Meng-Yan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, Tiantanxili #1, Beijing 100050, P.R. China
| | - Xiao-Wei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, Tiantanxili #1, Beijing 100050, P.R. China
| | - Wen-Xia Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, Tiantanxili #1, Beijing 100050, P.R. China
| | - Yang Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, Tiantanxili #1, Beijing 100050, P.R. China
| | - Mei-Lian Cai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, Tiantanxili #1, Beijing 100050, P.R. China
| | - Ke-Xin Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, Tiantanxili #1, Beijing 100050, P.R. China
| | - Xiao-Ming Xi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, Tiantanxili #1, Beijing 100050, P.R. China
| | - Cong Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, Tiantanxili #1, Beijing 100050, P.R. China
| | - Hui-Min Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, Tiantanxili #1, Beijing 100050, P.R. China
| | - Rong-Guang Shao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, Tiantanxili #1, Beijing 100050, P.R. China.
| | - Gui-Min Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, Tiantanxili #1, Beijing 100050, P.R. China.
| | - Ye-Fan Zhang
- Department of Hepatobiliary Surgery/National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Wu-Li Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, Tiantanxili #1, Beijing 100050, P.R. China.
| |
Collapse
|
9
|
Anand J, Chiou L, Sciandra C, Zhang X, Hong J, Wu D, Zhou P, Vaziri C. Roles of trans-lesion synthesis (TLS) DNA polymerases in tumorigenesis and cancer therapy. NAR Cancer 2023; 5:zcad005. [PMID: 36755961 PMCID: PMC9900426 DOI: 10.1093/narcan/zcad005] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
DNA damage tolerance and mutagenesis are hallmarks and enabling characteristics of neoplastic cells that drive tumorigenesis and allow cancer cells to resist therapy. The 'Y-family' trans-lesion synthesis (TLS) DNA polymerases enable cells to replicate damaged genomes, thereby conferring DNA damage tolerance. Moreover, Y-family DNA polymerases are inherently error-prone and cause mutations. Therefore, TLS DNA polymerases are potential mediators of important tumorigenic phenotypes. The skin cancer-propensity syndrome xeroderma pigmentosum-variant (XPV) results from defects in the Y-family DNA Polymerase Pol eta (Polη) and compensatory deployment of alternative inappropriate DNA polymerases. However, the extent to which dysregulated TLS contributes to the underlying etiology of other human cancers is unclear. Here we consider the broad impact of TLS polymerases on tumorigenesis and cancer therapy. We survey the ways in which TLS DNA polymerases are pathologically altered in cancer. We summarize evidence that TLS polymerases shape cancer genomes, and review studies implicating dysregulated TLS as a driver of carcinogenesis. Because many cancer treatment regimens comprise DNA-damaging agents, pharmacological inhibition of TLS is an attractive strategy for sensitizing tumors to genotoxic therapies. Therefore, we discuss the pharmacological tractability of the TLS pathway and summarize recent progress on development of TLS inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- Jay Anand
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
| | - Lilly Chiou
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Carly Sciandra
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xingyuan Zhang
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA
| | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Novel Curcumin Monocarbonyl Analogue-Dithiocarbamate hybrid molecules target human DNA ligase I and show improved activity against colon cancer. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Coskun E, Singh N, Scanlan LD, Jaruga P, Doak SH, Dizdaroglu M, Nelson BC. Inhibition of human APE1 and MTH1 DNA repair proteins by dextran-coated γ-Fe 2O 3 ultrasmall superparamagnetic iron oxide nanoparticles. Nanomedicine (Lond) 2022; 17:2011-2021. [PMID: 36853189 PMCID: PMC10031551 DOI: 10.2217/nnm-2022-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Aim: To quantitatively evaluate the inhibition of human DNA repair proteins APE1 and MTH1 by dextran-coated γ-Fe2O3 ultrasmall superparamagnetic iron oxide nanoparticles (dUSPIONs). Materials & methods: Liquid chromatography-tandem mass spectrometry with isotope-dilution was used to measure the expression levels of APE1 and MTH1 in MCL-5 cells exposed to increasing doses of dUSPIONs. The expression levels of APE1 and MTH1 were measured in cytoplasmic and nuclear fractions of cell extracts. Results: APE1 and MTH1 expression was significantly inhibited in both cell fractions at the highest dUSPION dose. The expression of MTH1 was linearly inhibited across the full dUSPION dose range in both fractions. Conclusion: These findings warrant further studies to characterize the capacity of dUSPIONs to inhibit other DNA repair proteins in vitro and in vivo.
Collapse
Affiliation(s)
- Erdem Coskun
- Institute for Bioscience & Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Neenu Singh
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Leona D Scanlan
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1001 I Street, Sacramento, CA 95814, USA
| | - Pawel Jaruga
- Biomolecular Measurement Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
| | - Shareen H Doak
- Institute of Life Science, Center for NanoHealth, Swansea University Medical School, Wales, SA2 8PP, UK
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
| | - Bryant C Nelson
- Biosystems & Biomaterials Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
12
|
Ivens E, Cominetti MM, Searcey M. Junctions in DNA: underexplored targets for therapeutic intervention. Bioorg Med Chem 2022; 69:116897. [DOI: 10.1016/j.bmc.2022.116897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/02/2022]
|
13
|
Goetting I, Larafa S, Eul K, Kunin M, Jakob B, Matschke J, Jendrossek V. Targeting AKT-Dependent Regulation of Antioxidant Defense Sensitizes AKT-E17K Expressing Cancer Cells to Ionizing Radiation. Front Oncol 2022; 12:920017. [PMID: 35875130 PMCID: PMC9304891 DOI: 10.3389/fonc.2022.920017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Aberrant activation of the phosphatidyl-inositol-3-kinase/protein kinase B (AKT) pathway has clinical relevance to radiation resistance, but the underlying mechanisms are incompletely understood. Protection against reactive oxygen species (ROS) plays an emerging role in the regulation of cell survival upon irradiation. AKT-dependent signaling participates in the regulation of cellular antioxidant defense. Here, we were interested to explore a yet unknown role of aberrant activation of AKT in regulating antioxidant defense in response to IR and associated radiation resistance.We combined genetic and pharmacologic approaches to study how aberrant activation of AKT impacts cell metabolism, antioxidant defense, and radiosensitivity. Therefore, we used TRAMPC1 (TrC1) prostate cancer cells overexpressing the clinically relevant AKT-variant AKT-E17K with increased AKT activity or wildtype AKT (AKT-WT) and analyzed the consequences of direct AKT inhibition (MK2206) and inhibition of AKT-dependent metabolic enzymes on the levels of cellular ROS, antioxidant capacity, metabolic state, short-term and long-term survival without and with irradiation.TrC1 cells expressing the clinically relevant AKT1-E17K variant were characterized by improved antioxidant defense compared to TrC1 AKT-WT cells and this was associated with increased radiation resistance. The underlying mechanisms involved AKT-dependent direct and indirect regulation of cellular levels of reduced glutathione (GSH). Pharmacologic inhibition of specific AKT-dependent metabolic enzymes supporting defense against oxidative stress, e.g., inhibition of glutathione synthase and glutathione reductase, improved eradication of clonogenic tumor cells, particularly of TrC1 cells overexpressing AKT-E17K.We conclude that improved capacity of TrC1 AKT-E17K cells to balance antioxidant defense with provision of energy and other metabolites upon irradiation compared to TrC1 AKT-WT cells contributes to their increased radiation resistance. Our findings on the importance of glutathione de novo synthesis and glutathione regeneration for radiation resistance of TrC1 AKT-E17K cells offer novel perspectives for improving radiosensitivity in cancer cells with aberrant AKT activity by combining IR with inhibitors targeting AKT-dependent regulation of GSH provision.
Collapse
Affiliation(s)
- Isabell Goetting
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Safa Larafa
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Katharina Eul
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Mikhail Kunin
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Burkhard Jakob
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
- *Correspondence: Verena Jendrossek, ; Johann Matschke,
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
- *Correspondence: Verena Jendrossek, ; Johann Matschke,
| |
Collapse
|
14
|
Nickoloff JA, Sharma N, Taylor L, Allen SJ, Hromas R. Nucleases and Co-Factors in DNA Replication Stress Responses. DNA 2022; 2:68-85. [PMID: 36203968 PMCID: PMC9534323 DOI: 10.3390/dna2010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA replication stress is a constant threat that cells must manage to proliferate and maintain genome integrity. DNA replication stress responses, a subset of the broader DNA damage response (DDR), operate when the DNA replication machinery (replisome) is blocked or replication forks collapse during S phase. There are many sources of replication stress, such as DNA lesions caused by endogenous and exogenous agents including commonly used cancer therapeutics, and difficult-to-replicate DNA sequences comprising fragile sites, G-quadraplex DNA, hairpins at trinucleotide repeats, and telomeres. Replication stress is also a consequence of conflicts between opposing transcription and replication, and oncogenic stress which dysregulates replication origin firing and fork progression. Cells initially respond to replication stress by protecting blocked replisomes, but if the offending problem (e.g., DNA damage) is not bypassed or resolved in a timely manner, forks may be cleaved by nucleases, inducing a DNA double-strand break (DSB) and providing a means to accurately restart stalled forks via homologous recombination. However, DSBs pose their own risks to genome stability if left unrepaired or misrepaired. Here we focus on replication stress response systems, comprising DDR signaling, fork protection, and fork processing by nucleases that promote fork repair and restart. Replication stress nucleases include MUS81, EEPD1, Metnase, CtIP, MRE11, EXO1, DNA2-BLM, SLX1-SLX4, XPF-ERCC1-SLX4, Artemis, XPG, and FEN1. Replication stress factors are important in cancer etiology as suppressors of genome instability associated with oncogenic mutations, and as potential cancer therapy targets to enhance the efficacy of chemo- and radiotherapeutics.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Sage J. Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
15
|
Nickoloff JA, Sharma N, Taylor L, Allen SJ, Lee SH, Hromas R. Metnase and EEPD1: DNA Repair Functions and Potential Targets in Cancer Therapy. Front Oncol 2022; 12:808757. [PMID: 35155245 PMCID: PMC8831698 DOI: 10.3389/fonc.2022.808757] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/12/2022] [Indexed: 12/30/2022] Open
Abstract
Cells respond to DNA damage by activating signaling and DNA repair systems, described as the DNA damage response (DDR). Clarifying DDR pathways and their dysregulation in cancer are important for understanding cancer etiology, how cancer cells exploit the DDR to survive endogenous and treatment-related stress, and to identify DDR targets as therapeutic targets. Cancer is often treated with genotoxic chemicals and/or ionizing radiation. These agents are cytotoxic because they induce DNA double-strand breaks (DSBs) directly, or indirectly by inducing replication stress which causes replication fork collapse to DSBs. EEPD1 and Metnase are structure-specific nucleases, and Metnase is also a protein methyl transferase that methylates histone H3 and itself. EEPD1 and Metnase promote repair of frank, two-ended DSBs, and both promote the timely and accurate restart of replication forks that have collapsed to single-ended DSBs. In addition to its roles in HR, Metnase also promotes DSB repair by classical non-homologous recombination, and chromosome decatenation mediated by TopoIIα. Although mutations in Metnase and EEPD1 are not common in cancer, both proteins are frequently overexpressed, which may help tumor cells manage oncogenic stress or confer resistance to therapeutics. Here we focus on Metnase and EEPD1 DNA repair pathways, and discuss opportunities for targeting these pathways to enhance cancer therapy.
Collapse
Affiliation(s)
- Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Sage J Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Suk-Hee Lee
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, United States
| |
Collapse
|
16
|
Bonagas N, Gustafsson NMS, Henriksson M, Marttila P, Gustafsson R, Wiita E, Borhade S, Green AC, Vallin KSA, Sarno A, Svensson R, Göktürk C, Pham T, Jemth AS, Loseva O, Cookson V, Kiweler N, Sandberg L, Rasti A, Unterlass JE, Haraldsson M, Andersson Y, Scaletti ER, Bengtsson C, Paulin CBJ, Sanjiv K, Abdurakhmanov E, Pudelko L, Kunz B, Desroses M, Iliev P, Färnegårdh K, Krämer A, Garg N, Michel M, Häggblad S, Jarvius M, Kalderén C, Jensen AB, Almlöf I, Karsten S, Zhang SM, Häggblad M, Eriksson A, Liu J, Glinghammar B, Nekhotiaeva N, Klingegård F, Koolmeister T, Martens U, Llona-Minguez S, Moulson R, Nordström H, Parrow V, Dahllund L, Sjöberg B, Vargas IL, Vo DD, Wannberg J, Knapp S, Krokan HE, Arvidsson PI, Scobie M, Meiser J, Stenmark P, Berglund UW, Homan EJ, Helleday T. Pharmacological targeting of MTHFD2 suppresses acute myeloid leukemia by inducing thymidine depletion and replication stress. NATURE CANCER 2022; 3:156-172. [PMID: 35228749 PMCID: PMC8885417 DOI: 10.1038/s43018-022-00331-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/10/2022] [Indexed: 11/09/2022]
Abstract
The folate metabolism enzyme MTHFD2 (methylenetetrahydrofolate dehydrogenase/cyclohydrolase) is consistently overexpressed in cancer but its roles are not fully characterized, and current candidate inhibitors have limited potency for clinical development. In the present study, we demonstrate a role for MTHFD2 in DNA replication and genomic stability in cancer cells, and perform a drug screen to identify potent and selective nanomolar MTHFD2 inhibitors; protein cocrystal structures demonstrated binding to the active site of MTHFD2 and target engagement. MTHFD2 inhibitors reduced replication fork speed and induced replication stress followed by S-phase arrest and apoptosis of acute myeloid leukemia cells in vitro and in vivo, with a therapeutic window spanning four orders of magnitude compared with nontumorigenic cells. Mechanistically, MTHFD2 inhibitors prevented thymidine production leading to misincorporation of uracil into DNA and replication stress. Overall, these results demonstrate a functional link between MTHFD2-dependent cancer metabolism and replication stress that can be exploited therapeutically with this new class of inhibitors.
Collapse
Affiliation(s)
- Nadilly Bonagas
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Nina M S Gustafsson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Martin Henriksson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Petra Marttila
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Robert Gustafsson
- Department of Biochemistry & Biophysics, Stockholm University, Stockholm, Sweden
| | - Elisée Wiita
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Sanjay Borhade
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Alanna C Green
- Weston Park Cancer Centre, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | - Karl S A Vallin
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Antonio Sarno
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Richard Svensson
- Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Camilla Göktürk
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Therese Pham
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Ann-Sofie Jemth
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Olga Loseva
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Victoria Cookson
- Weston Park Cancer Centre, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | - Nicole Kiweler
- Cancer Metabolism Group, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Lars Sandberg
- Drug Discovery and Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Solna, Sweden
| | - Azita Rasti
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Judith E Unterlass
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Martin Haraldsson
- Drug Discovery and Development Platform, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Yasmin Andersson
- Drug Discovery and Development Platform, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Solna, Sweden
| | - Emma R Scaletti
- Department of Biochemistry & Biophysics, Stockholm University, Stockholm, Sweden
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Christoffer Bengtsson
- Drug Discovery and Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Solna, Sweden
| | - Cynthia B J Paulin
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Kumar Sanjiv
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Eldar Abdurakhmanov
- Drug Discovery and Development Platform, Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Linda Pudelko
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Ben Kunz
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Matthieu Desroses
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Petar Iliev
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Katarina Färnegårdh
- Drug Discovery and Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Solna, Sweden
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Neeraj Garg
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maurice Michel
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Sara Häggblad
- Biochemical and Cellular Screening Facility, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Malin Jarvius
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Christina Kalderén
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Amanda Bögedahl Jensen
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Ingrid Almlöf
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Stella Karsten
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Si Min Zhang
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Maria Häggblad
- Biochemical and Cellular Screening Facility, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Anders Eriksson
- Karolinska High Throughput Centre, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Jianping Liu
- Karolinska High Throughput Centre, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Björn Glinghammar
- Drug Discovery and Development Platform, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Natalia Nekhotiaeva
- Karolinska High Throughput Centre, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Fredrik Klingegård
- Drug Discovery and Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Solna, Sweden
| | - Tobias Koolmeister
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Ulf Martens
- Biochemical and Cellular Screening Facility, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Sabin Llona-Minguez
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Ruth Moulson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Helena Nordström
- Drug Discovery and Development Platform, Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Vendela Parrow
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Leif Dahllund
- Drug Discovery and Development Platform, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Solna, Sweden
| | - Birger Sjöberg
- Drug Discovery and Development Platform, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Irene L Vargas
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Duy Duc Vo
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan Wannberg
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Hans E Krokan
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Per I Arvidsson
- Drug Discovery and Development Platform, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Martin Scobie
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Pål Stenmark
- Department of Biochemistry & Biophysics, Stockholm University, Stockholm, Sweden
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Evert J Homan
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
- Weston Park Cancer Centre, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK.
| |
Collapse
|
17
|
Li J, Zhang Y, Sun J, Chen L, Gou W, Chen C, Zhou Y, Li Z, Chan DW, Huang R, Pei H, Zheng W, Li Y, Xia M, Zhu W. Discovery and characterization of potent And-1 inhibitors for cancer treatment. Clin Transl Med 2021; 11:e627. [PMID: 34923765 PMCID: PMC8684776 DOI: 10.1002/ctm2.627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022] Open
Abstract
Acidic nucleoplasmic DNA-binding protein 1 (And-1), an important factor for deoxyribonucleic acid (DNA) replication and repair, is overexpressed in many types of cancer but not in normal tissues. Although multiple independent studies have elucidated And-1 as a promising target gene for cancer therapy, an And-1 inhibitor has yet to be identified. Using an And-1 luciferase reporter assay to screen the Library of Pharmacologically Active Compounds (LOPAC) in a high throughput screening (HTS) platform, and then further screen the compound analog collection, we identified two potent And-1 inhibitors, bazedoxifene acetate (BZA) and an uncharacterized compound [(E)-5-(3,4-dichlorostyryl)benzo[c][1,2]oxaborol-1(3H)-ol] (CH3), which specifically inhibit And-1 by promoting its degradation. Specifically, through direct interaction with And-1 WD40 domain, CH3 interrupts the polymerization of And-1. Depolymerization of And-1 promotes its interaction with E3 ligase Cullin 4B (CUL4B), resulting in its ubiquitination and subsequent degradation. Furthermore, CH3 suppresses the growth of a broad range of cancers. Moreover, And-1 inhibitors re-sensitize platinum-resistant ovarian cancer cells to platinum drugs in vitro and in vivo. Since BZA is an FDA approved drug, we expect a clinical trial of BZA-mediated cancer therapy in the near future. Taken together, our findings suggest that targeting And-1 by its inhibitors is a potential broad-spectrum anti-cancer chemotherapy regimen.
Collapse
Affiliation(s)
- Jing Li
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Yi Zhang
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Jing Sun
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Leyuan Chen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicinePeking Union Medical College & Chinese Academy of Medical SciencesTianjinChina
| | - Wenfeng Gou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicinePeking Union Medical College & Chinese Academy of Medical SciencesTianjinChina
| | - Chi‐Wei Chen
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Yuan Zhou
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Zhuqing Li
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - David W. Chan
- Department of Obstetrics and Gynecology, LKS Faculty of MedicineThe University of Hong KongHong, China
| | - Ruili Huang
- Division of Preclinical Innovation, National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| | - Huadong Pei
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Wei Zheng
- Division of Preclinical Innovation, National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicinePeking Union Medical College & Chinese Academy of Medical SciencesTianjinChina
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| | - Wenge Zhu
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
- GW Cancer CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
18
|
Zehra S, Cirilli I, Silvestri S, Gómez-Ruiz S, Tabassum S, Arjmand F. Structure elucidation, in vitro binding studies and ROS-dependent anti-cancer activity of Cu(II) and Zn(II) phthaloylglycinate(phen) complexes against MDA-MB-231 cells. Metallomics 2021; 13:6415206. [PMID: 34724067 DOI: 10.1093/mtomcs/mfab064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022]
Abstract
New mononuclear Cu(II) and Zn(II)-based complexes 1 [Cu(L)2(diimine)HOCH3] and 2 [Zn(L)2(diimine)] have been synthesized as anti-cancer chemotherapeutics targeted to tRNA. The structure elucidation of complexes 1 and 2 was carried out by spectroscopic and single X-ray diffraction studies. In vitro interaction studies of complexes 1 and 2 with ct-DNA/tRNA were performed by employing various biophysical techniques to evaluate and predict their interaction behavior and preferential selectivity at biomolecular therapeutic targets. The corroborative results of the interaction studies demonstrated that complexes 1 and 2 exhibited avid binding propensity via intercalative mode of binding toward ct-DNA/tRNA. Electrophoretic assay revealed that the complexes 1 and 2 were able to promote single- and double-strand cleavage of the plasmid DNA at low micromolar concentrations under physiological conditions in the absence of an additional oxidizing or reducing agent. RNA hydrolysis studies revealed that the complexes 1 and 2 could promote tRNA cleavage in a concentration and time-dependent manner. The cytotoxic potential of complexes 1 and 2 was evaluated against the MDA-MB-231 cell line, which showed that the complexes were able to inhibit the cell growth in a dose-dependent manner. The intracellular ROS production and mitochondrial superoxide anion assay revealed that the complexes 1 and 2 induce a dose-dependent activity, suggesting the involvement of ROS-mediated mitochondrial apoptotic pathway leading to cell death.
Collapse
Affiliation(s)
- Siffeen Zehra
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy.,School of Pharmacy, University of Camerino, Camerino (MC) 62032, Italy
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica,, E.S.C.E.T., Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002, India
| |
Collapse
|
19
|
Li J, M. Saville K, Ibrahim M, Zeng X, McClellan S, Angajala A, Beiser A, Andrews JF, Sun M, Koczor CA, Clark J, Hayat F, Makarov MV, Wilk A, Yates NA, Migaud ME, Sobol RW. NAD + bioavailability mediates PARG inhibition-induced replication arrest, intra S-phase checkpoint and apoptosis in glioma stem cells. NAR Cancer 2021; 3:zcab044. [PMID: 34806016 PMCID: PMC8600031 DOI: 10.1093/narcan/zcab044] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/20/2021] [Accepted: 11/10/2021] [Indexed: 01/31/2023] Open
Abstract
Elevated expression of the DNA damage response proteins PARP1 and poly(ADP-ribose) glycohydrolase (PARG) in glioma stem cells (GSCs) suggests that glioma may be a unique target for PARG inhibitors (PARGi). While PARGi-induced cell death is achieved when combined with ionizing radiation, as a single agent PARG inhibitors appear to be mostly cytostatic. Supplementation with the NAD+ precursor dihydronicotinamide riboside (NRH) rapidly increased NAD+ levels in GSCs and glioma cells, inducing PARP1 activation and mild suppression of replication fork progression. Administration of NRH+PARGi triggers hyperaccumulation of poly(ADP-ribose) (PAR), intra S-phase arrest and apoptosis in GSCs but minimal PAR induction or cytotoxicity in normal astrocytes. PAR accumulation is regulated by select PARP1- and PAR-interacting proteins. The involvement of XRCC1 highlights the base excision repair pathway in responding to replication stress while enhanced interaction of PARP1 with PCNA, RPA and ORC2 upon PAR accumulation implicates replication associated PARP1 activation and assembly with pre-replication complex proteins upon initiation of replication arrest, the intra S-phase checkpoint and the onset of apoptosis.
Collapse
Affiliation(s)
- Jianfeng Li
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Kate M. Saville
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Md Ibrahim
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Xuemei Zeng
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15213, USA
| | - Steve McClellan
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Anusha Angajala
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Alison Beiser
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Joel F Andrews
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Mai Sun
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15213, USA
| | - Christopher A Koczor
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Jennifer Clark
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Faisal Hayat
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Mikhail V Makarov
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Anna Wilk
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Nathan A Yates
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15213, USA,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Marie E Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Robert W Sobol
- To whom correspondence should be addressed. Tel: +1 251 445 9846;
| |
Collapse
|
20
|
Nickoloff JA, Sharma N, Allen CP, Taylor L, Allen SJ, Jaiswal AS, Hromas R. Roles of homologous recombination in response to ionizing radiation-induced DNA damage. Int J Radiat Biol 2021; 99:903-914. [PMID: 34283012 PMCID: PMC9629169 DOI: 10.1080/09553002.2021.1956001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Ionizing radiation induces a vast array of DNA lesions including base damage, and single- and double-strand breaks (SSB, DSB). DSBs are among the most cytotoxic lesions, and mis-repair causes small- and large-scale genome alterations that can contribute to carcinogenesis. Indeed, ionizing radiation is a 'complete' carcinogen. DSBs arise immediately after irradiation, termed 'frank DSBs,' as well as several hours later in a replication-dependent manner, termed 'secondary' or 'replication-dependent DSBs. DSBs resulting from replication fork collapse are single-ended and thus pose a distinct problem from two-ended, frank DSBs. DSBs are repaired by error-prone nonhomologous end-joining (NHEJ), or generally error-free homologous recombination (HR), each with sub-pathways. Clarifying how these pathways operate in normal and tumor cells is critical to increasing tumor control and minimizing side effects during radiotherapy. CONCLUSIONS The choice between NHEJ and HR is regulated during the cell cycle and by other factors. DSB repair pathways are major contributors to cell survival after ionizing radiation, including tumor-resistance to radiotherapy. Several nucleases are important for HR-mediated repair of replication-dependent DSBs and thus replication fork restart. These include three structure-specific nucleases, the 3' MUS81 nuclease, and two 5' nucleases, EEPD1 and Metnase, as well as three end-resection nucleases, MRE11, EXO1, and DNA2. The three structure-specific nucleases evolved at very different times, suggesting incremental acceleration of replication fork restart to limit toxic HR intermediates and genome instability as genomes increased in size during evolution, including the gain of large numbers of HR-prone repetitive elements. Ionizing radiation also induces delayed effects, observed days to weeks after exposure, including delayed cell death and delayed HR. In this review we highlight the roles of HR in cellular responses to ionizing radiation, and discuss the importance of HR as an exploitable target for cancer radiotherapy.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Christopher P. Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Microbiology, Immunology and Pathology, Flow Cytometry and Cell Sorting Facility, Colorado State University, Fort Collins, CO, USA
| | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sage J. Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Aruna S. Jaiswal
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
21
|
The Role of DNA Damage Response in Dysbiosis-Induced Colorectal Cancer. Cells 2021; 10:cells10081934. [PMID: 34440703 PMCID: PMC8391204 DOI: 10.3390/cells10081934] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
The high incidence of colorectal cancer (CRC) in developed countries indicates a predominant role of the environment as a causative factor. Natural gut microbiota provides multiple benefits to humans. Dysbiosis is characterized by an unbalanced microbiota and causes intestinal damage and inflammation. The latter is a common denominator in many cancers including CRC. Indeed, in an inflammation scenario, cellular growth is promoted and immune cells release Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS), which cause DNA damage. Apart from that, many metabolites from the diet are converted into DNA damaging agents by microbiota and some bacteria deliver DNA damaging toxins in dysbiosis conditions as well. The interactions between diet, microbiota, inflammation, and CRC are not the result of a straightforward relationship, but rather a network of multifactorial interactions that deserve deep consideration, as their consequences are not yet fully elucidated. In this paper, we will review the influence of dysbiosis in the induction of DNA damage and CRC.
Collapse
|
22
|
Wettasinghe AP, Singh N, Starcher CL, DiTusa CC, Ishak-Boushaki Z, Kahanda D, McMullen R, Motea EA, Slinker JD. Detecting Attomolar DNA-Damaging Anticancer Drug Activity in Cell Lysates with Electrochemical DNA Devices. ACS Sens 2021; 6:2622-2629. [PMID: 34156840 DOI: 10.1021/acssensors.1c00365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Here, we utilize electrochemical DNA devices to quantify and understand the cancer-specific DNA-damaging activity of an emerging drug in cellular lysates at femtomolar and attomolar concentrations. Isobutyl-deoxynyboquinone (IB-DNQ), a potent and tumor-selective NAD(P)H quinone oxidoreductase 1 (NQO1) bioactivatable drug, was prepared and biochemically verified in cancer cells highly expressing NQO1 (NQO1+) and knockdowns with low NQO1 expression (NQO1-) by Western blot, NQO1 activity analysis, survival assays, oxygen consumption rate, extracellular acidification rate, and peroxide production. Lysates from these cells and the IB-DNQ drug were then introduced to a chip system bearing an array of DNA-modified electrodes, and their DNA-damaging activity was quantified by changes in DNA-mediated electrochemistry arising from base-excision repair. Device-level controls of NQO1 activity and kinetic analysis were used to verify and further understand the IB-DNQ activity. A 380 aM IB-DNQ limit of detection and a 1.3 fM midpoint of damage were observed in NQO1+ lysates, both metrics 2 orders of magnitude lower than NQO1- lysates, indicating the high IB-DNQ potency and selectivity for NQO1+ cancers. The device-level damage midpoint concentration in NQO1+ lysates was over 8 orders of magnitude lower than cell survival benchmarks, likely due to poor IB-DNQ cellular uptake, demonstrating that these devices can identify promising drugs requiring improved cell permeability. Ultimately, these results indicate the noteworthy potency and selectivity of IB-DNQ and the high sensitivity and precision of electrochemical DNA devices to analyze agents/drugs involved in DNA-damaging chemotherapies.
Collapse
Affiliation(s)
- Ashan P. Wettasinghe
- Department of Physics, The University of Texas at Dallas, 800 W. Campbell Road, SCI 10, Richardson, Texas 75080, United States
| | - Naveen Singh
- Department of Biochemistry and Molecular Biology, Simon Comprehensive Cancer Center, Indiana University School of Medicine, 980 W. Walnut Street, Walther Hall R3 C551, Indianapolis, Indiana 46202, United States
| | - Colton L. Starcher
- Department of Biochemistry and Molecular Biology, Simon Comprehensive Cancer Center, Indiana University School of Medicine, 980 W. Walnut Street, Walther Hall R3 C551, Indianapolis, Indiana 46202, United States
| | - Chloe C. DiTusa
- Department of Physics, The University of Texas at Dallas, 800 W. Campbell Road, SCI 10, Richardson, Texas 75080, United States
| | - Zakari Ishak-Boushaki
- Department of Physics, The University of Texas at Dallas, 800 W. Campbell Road, SCI 10, Richardson, Texas 75080, United States
| | - Dimithree Kahanda
- Department of Physics, The University of Texas at Dallas, 800 W. Campbell Road, SCI 10, Richardson, Texas 75080, United States
- Department of Physics, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Reema McMullen
- Department of Physics, The University of Texas at Dallas, 800 W. Campbell Road, SCI 10, Richardson, Texas 75080, United States
| | - Edward A. Motea
- Department of Biochemistry and Molecular Biology, Simon Comprehensive Cancer Center, Indiana University School of Medicine, 980 W. Walnut Street, Walther Hall R3 C551, Indianapolis, Indiana 46202, United States
| | - Jason D. Slinker
- Department of Physics, The University of Texas at Dallas, 800 W. Campbell Road, SCI 10, Richardson, Texas 75080, United States
- Department of Materials Science and Engineering, The University of Texas at Dallas, 800 W. Campbell Road, SCI 10, Richardson, Texas 75080, United States
| |
Collapse
|
23
|
Sensitivity of cells to ATR and CHK1 inhibitors requires hyperactivation of CDK2 rather than endogenous replication stress or ATM dysfunction. Sci Rep 2021; 11:7077. [PMID: 33782497 PMCID: PMC8007816 DOI: 10.1038/s41598-021-86490-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
DNA damage activates cell cycle checkpoint proteins ATR and CHK1 to arrest cell cycle progression, providing time for repair and recovery. Consequently, inhibitors of ATR (ATRi) and CHK1 (CHK1i) enhance damage-induced cell death. Intriguingly, both CHK1i and ATRi alone elicit cytotoxicity in some cell lines. Sensitivity has been attributed to endogenous replications stress, but many more cell lines are sensitive to ATRi than CHK1i. Endogenous activation of the DNA damage response also did not correlate with drug sensitivity. Sensitivity correlated with the appearance of γH2AX, a marker of DNA damage, but without phosphorylation of mitotic markers, contradicting suggestions that the damage is due to premature mitosis. Sensitivity to ATRi has been associated with ATM mutations, but dysfunction in ATM signaling did not correlate with sensitivity. CHK1i and ATRi circumvent replication stress by reactivating stalled replicons, a process requiring a low threshold activity of CDK2. In contrast, γH2AX induced by single agent ATRi and CHK1i requires a high threshold activity CDK2. Hence, phosphorylation of different CDK2 substrates is required for cytotoxicity induced by replication stress plus ATRi/CHK1i as compared to their single agent activity. In summary, sensitivity to ATRi and CHK1i as single agents is elicited by premature hyper-activation of CDK2.
Collapse
|
24
|
The replicative CMG helicase: the ideal target for cancer therapy. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.06.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
25
|
Gmeiner WH, Dominijanni A, Haber AO, Ghiraldeli LP, Caudell DL, D'Agostino R, Pasche BC, Smith TL, Deng Z, Kiren S, Mani C, Palle K, Brody JR. Improved Antitumor Activity of the Fluoropyrimidine Polymer CF10 in Preclinical Colorectal Cancer Models through Distinct Mechanistic and Pharmacologic Properties. Mol Cancer Ther 2020; 20:553-563. [PMID: 33361273 DOI: 10.1158/1535-7163.mct-20-0516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/26/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Chemotherapy regimens that include 5-fluorouracil (5-FU) are central to colorectal cancer treatment; however, risk/benefit concerns limit 5-FU's use, necessitating development of improved fluoropyrimidine (FP) drugs. In our study, we evaluated a second-generation nanoscale FP polymer, CF10, for improved antitumor activity. CF10 was more potent than the prototype FP polymer F10 and much more potent than 5-FU in multiple colorectal cancer cell lines including HCT-116, LS174T, SW480, and T84D. CF10 displayed improved stability to exonuclease degradation relative to F10 and reduced susceptibility to thymidine antagonism due to extension of the polymer with arabinosyl cytidine. In colorectal cancer cells, CF10 strongly inhibited thymidylate synthase (TS), induced Top1 cleavage complex formation and caused replication stress, while similar concentrations of 5-FU were ineffective. CF10 was well tolerated in vivo and invoked a reduced inflammatory response relative to 5-FU. Blood chemistry parameters in CF10-treated mice were within normal limits. In vivo, CF10 displayed antitumor activity in several colorectal cancer flank tumor models including HCT-116, HT-29, and CT-26. CF10's antitumor activity was associated with increased plasma levels of FP deoxynucleotide metabolites relative to 5-FU. CF10 significantly reduced tumor growth and improved survival (84.5 days vs. 32 days; P < 0.0001) relative to 5-FU in an orthotopic HCT-116-luc colorectal cancer model that spontaneously metastasized to liver. Improved survival in the orthotopic model correlated with localization of a fluorescent CF10 conjugate to tumor. Together, our preclinical data support an early-phase clinical trial of CF10 for treatment of colorectal cancer.
Collapse
Affiliation(s)
- William H Gmeiner
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina.
- Comprehensive Cancer Center Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Anthony Dominijanni
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Alex O Haber
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lais P Ghiraldeli
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - David L Caudell
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ralph D'Agostino
- Department of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Boris C Pasche
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Comprehensive Cancer Center Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Thomas L Smith
- Department of Orthopedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Zhiyong Deng
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Sezgin Kiren
- Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina
| | - Chinnadurai Mani
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, Texas
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, Texas
| | - Jonathan R Brody
- Brenden Colson Center for Pancreatic Care, Departments of Surgery and Cell, Developmental & Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
26
|
Götting I, Jendrossek V, Matschke J. A New Twist in Protein Kinase B/Akt Signaling: Role of Altered Cancer Cell Metabolism in Akt-Mediated Therapy Resistance. Int J Mol Sci 2020; 21:ijms21228563. [PMID: 33202866 PMCID: PMC7697684 DOI: 10.3390/ijms21228563] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer resistance to chemotherapy, radiotherapy and molecular-targeted agents is a major obstacle to successful cancer therapy. Herein, aberrant activation of the phosphatidyl-inositol-3-kinase (PI3K)/protein kinase B (Akt) pathway is one of the most frequently deregulated pathways in cancer cells and has been associated with multiple aspects of therapy resistance. These include, for example, survival under stress conditions, apoptosis resistance, activation of the cellular response to DNA damage and repair of radiation-induced or chemotherapy-induced DNA damage, particularly DNA double strand breaks (DSB). One further important, yet not much investigated aspect of Akt-dependent signaling is the regulation of cell metabolism. In fact, many Akt target proteins are part of or involved in the regulation of metabolic pathways. Furthermore, recent studies revealed the importance of certain metabolites for protection against therapy-induced cell stress and the repair of therapy-induced DNA damage. Thus far, the likely interaction between deregulated activation of Akt, altered cancer metabolism and therapy resistance is not yet well understood. The present review describes the documented interactions between Akt, its target proteins and cancer cell metabolism, focusing on antioxidant defense and DSB repair. Furthermore, the review highlights potential connections between deregulated Akt, cancer cell metabolism and therapy resistance of cancer cells through altered DSB repair and discusses potential resulting therapeutic implications.
Collapse
|
27
|
Terranova N, Jansen M, Falk M, Hendriks BS. Population pharmacokinetics of ATR inhibitor berzosertib in phase I studies for different cancer types. Cancer Chemother Pharmacol 2020; 87:185-196. [PMID: 33145616 PMCID: PMC7870753 DOI: 10.1007/s00280-020-04184-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/14/2020] [Indexed: 12/21/2022]
Abstract
Purpose Berzosertib (formerly M6620) is the first-in-class inhibitor of ataxia–telangiectasia and Rad3-related protein, a key component of the DNA damage response, and being developed in combination with chemotherapy for the treatment of patients with advanced cancers. The objectives of this analysis were to characterize the pharmacokinetics (PK) of berzosertib across multiple studies and parts, estimate inter-individual variability, and identify covariates that could explain such variability. Methods A population PK analysis was performed using the combined dataset from two phase I clinical studies (NCT02157792, EudraCT 2013-005100-34) in patients with advanced cancers receiving an intravenous infusion of berzosertib alone or in combination with chemotherapy. The analysis included data from 240 patients across 11 dose levels (18–480 mg/m2). Plasma concentration data were modeled with a non-linear mixed-effect approach and clinical covariates were evaluated. Results PK data were best described by a two-compartment linear model. For a typical patient, the estimated clearance (CL) and intercompartmental CL were 65 L/h and 295 L/h, respectively, with central and peripheral volumes estimated to be 118 L and 1030 L, respectively. Several intrinsic factors were found to influence berzosertib PK, but none were considered clinically meaningful due to a very limited effect. Model simulations indicated that concentrations of berzosertib exceeded p-Chk1 (proximal pharmacodynamic biomarker) IC50 at recommended phase II doses in combination with carboplatin, cisplatin, and gemcitabine. Conclusions There was no evidence of a clinically significant PK interaction between berzosertib and evaluated chemo-combinations. The covariate analysis did not highlight any need for dosing adjustments in the population studied to date. Clinical Trial information NCT02157792, EudraCT 2013-005100-34 Electronic supplementary material The online version of this article (10.1007/s00280-020-04184-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadia Terranova
- Translational Medicine, Merck Institute of Pharmacometrics, Lausanne, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany.
| | | | - Martin Falk
- Global Clinical Development, Merck KGaA, Darmstadt, Germany
| | - Bart S Hendriks
- Translational Medicine, EMD Serono Research & Development Institute, Inc. (an affiliate of Merck KGaA, Darmstadt, Germany), Billerica, MA, USA
| |
Collapse
|
28
|
Withdrawn: In vitro single-strand DNA damage and cancer cell cytotoxicity of temozolomide. Cancer Med 2020; 9:7793. [PMID: 31568693 PMCID: PMC7571816 DOI: 10.1002/cam4.786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
29
|
Botrugno OA, Bianchessi S, Zambroni D, Frenquelli M, Belloni D, Bongiovanni L, Girlanda S, Di Terlizzi S, Ferrarini M, Ferrero E, Ponzoni M, Marcatti M, Tonon G. ATR addiction in multiple myeloma: synthetic lethal approaches exploiting established therapies. Haematologica 2020; 105:2440-2447. [PMID: 33054085 PMCID: PMC7556682 DOI: 10.3324/haematol.2018.215210] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 11/13/2019] [Indexed: 11/09/2022] Open
Abstract
Therapeutic strategies designed to tinker with cancer cell DNA damage response have led to the widespread use of PARP inhibitors for BRCA1/2-mutated cancers. In the haematological cancer multiple myeloma, we sought to identify analogous synthetic lethality mechanisms that could be leveraged upon established cancer treatments. The combination of ATR inhibition using the compound VX-970 with a drug eliciting interstrand cross-links, melphalan, was tested in in vitro, ex vivo, and most notably in vivo models. Cell proliferation, induction of apoptosis, tumor growth and animal survival were assessed. The combination of ATM inhibition with a drug triggering double strand breaks, doxorucibin, was also probed. We found that ATR inhibition is strongly synergistic with melphalan, even in resistant cells. The combination was dramatically effective in targeting myeloma primary patient cells and cell lines reducing cell proliferation and inducing apoptosis. The combination therapy significantly reduced tumor burden and prolonged survival in animal models. Conversely, ATM inhibition only marginally impacted on myeloma cell survival, even in combination with doxorucibin at high doses. These results indicate that myeloma cells extensively rely on ATR, but not on ATM, for DNA repair. Our findings posit that adding an ATR inhibitor such as VX-970 to established therapeutic regimens may provide a remarkably broad benefit to myeloma patients.
Collapse
Affiliation(s)
- Oronza A. Botrugno
- Functional Genomics of Cancer Unit, Experimental Oncology Division, IRCCS San Raffaele Scientific Institute
| | - Silvia Bianchessi
- Laboratory of Lymphoid Organ Development, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute
| | - Desirée Zambroni
- ALEMBIC, Advanced Light and Electron Microscopy Bio-Imaging Center, IRCCS San Raffaele Scientific Institute
| | - Michela Frenquelli
- Functional Genomics of Cancer Unit, Experimental Oncology Division, IRCCS San Raffaele Scientific Institute
| | - Daniela Belloni
- B-Cell Neoplasia Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute
| | | | - Stefania Girlanda
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Hospital
| | - Simona Di Terlizzi
- FRACTAL, Flow Cytometry Resource Advanced Cytometry Technical Applications Laboratory, IRCCS San Raffaele Scientific Institute
| | - Marina Ferrarini
- B-Cell Neoplasia Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute
| | - Elisabetta Ferrero
- B-Cell Neoplasia Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute
| | | | - Magda Marcatti
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Hospital
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Experimental Oncology Division, IRCCS San Raffaele Scientific Institute
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
30
|
Cell-cycle-dependent phosphorylation of RRM1 ensures efficient DNA replication and regulates cancer vulnerability to ATR inhibition. Oncogene 2020; 39:5721-5733. [PMID: 32712628 DOI: 10.1038/s41388-020-01403-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 11/08/2022]
Abstract
Ribonucleotide reductase (RNR) catalyzes the rate-limiting step of de novo synthesis of deoxyribonucleotide triphosphates (dNTPs) building blocks for DNA synthesis, and is a well-recognized target for cancer therapy. RNR is a heterotetramer consisting of two large RRM1 subunits and two small RRM2 subunits. RNR activity is greatly stimulated by transcriptional activation of RRM2 during S/G2 phase to ensure adequate dNTP supply for DNA replication. However, little is known about the cell-cycle-dependent regulation of RNR activity through RRM1. Here, we report that RRM1 is phosphorylated at Ser 559 by CDK2/cyclin A during S/G2 phase. And this S559 phosphorylation of RRM1enhances RNR enzymatic activity and is required for maintaining sufficient dNTPs during normal DNA replication. Defective RRM1 S559 phosphorylation causes DNA replication stress, double-strand break, and genomic instability. Moreover, combined targeting of RRM1 S559 phosphorylation and ATR triggers lethal replication stress and profound antitumor effects. Thus, this posttranslational phosphorylation of RRM1 provides an alternative mechanism to finely regulating RNR and therapeutic opportunities for cancer treatment.
Collapse
|
31
|
Lu H, Zhu Q. Identification of Key Biological Processes, Pathways, Networks, and Genes with Potential Prognostic Values in Hepatocellular Carcinoma Using a Bioinformatics Approach. Cancer Biother Radiopharm 2020; 36:837-849. [PMID: 32598174 DOI: 10.1089/cbr.2019.3327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Hepatocellular carcinoma (HCC), as one primary liver cancer type, accounts for 75%-85% of liver cancer cases. HCC is the second leading cause of cancer death in East Asia and sub-Saharan Africa and the sixth most common in western countries. Identification of key genes would facilitate the development of therapies and improve the prognosis outcomes of HCC patients. This study was to identify the key biological processes, pathways, and key genes in HCC. Methods: Data were downloaded from Broad GDAC. Differentially expressed genes (DEGs) and weighted gene coexpression network (WGCNA) were analyzed by DESeq2 and WGCNA, respectively. Gene ontology (GO) and KEGG enrichment analyses were performed on all DEGs and the coexpressed genes in two significant modules. Kaplan-Meier plotter online database was used to identify the potential prognostic genes in HCC. Finally, GEO database was used to validate the analysis of gene expression of Broad GDAC data. Results: The authors identified the dark gray and red modules as the significant modules in HCC based on WGCNA. GO and KEGG enrichment of the two significant modules identified the mitochondrion-mediated metabolic processes and pathways, and the cell cycle as the key biological processes and pathways in HCC. Subsequently, 28 hub genes were screened out by constructing protein-protein interaction network using Metascape. Finally, three genes (NDUFAF6, CKAP5, and DSN1 genes) were identified to be potential prognostic and key genes in HCC based on Kaplan-Meier survival analysis, GEO dataset validation, and literature review. Conclusions: The authors found that mitochondrion-mediated metabolic processes and the cell cycle were the key biological processes and pathways in HCC. NDUFAF6, CKAP5, and DSN1 genes were valuable genes with the potential to be prognosis biomarkers and targeted therapies in HCC.
Collapse
Affiliation(s)
- Huijie Lu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qianlin Zhu
- Department of Anesthesiology, Ruijin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Huan S, Gui T, Xu Q, Zhuang S, Li Z, Shi Y, Lin J, Gong B, Miao G, Tam M, Zhang HT, Zha Z, Wu C. Combination BET Family Protein and HDAC Inhibition Synergistically Elicits Chondrosarcoma Cell Apoptosis Through RAD51-Related DNA Damage Repair. Cancer Manag Res 2020; 12:4429-4439. [PMID: 32606937 PMCID: PMC7294047 DOI: 10.2147/cmar.s254412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
Background Chondrosarcoma is the second-most common type of bone tumor and has inherent resistance to conventional chemotherapy. Present study aimed to explore the therapeutic effect and specific mechanism(s) of combination BET family protein and HDAC inhibition in chondrosarcoma. Methods Two chondrosarcoma cells were treated with BET family protein inhibitor (JQ1) and histone deacetylase inhibitors (HDACIs) (vorinostat/SAHA or panobinostat/PANO) separately or in combination; then, the cell viability was determined by Cell Counting Kit-8 (CCK-8) assay, and the combination index (CI) was calculated by the Chou method; cell proliferation was evaluated by 5-ethynyl-2'-deoxyuridine (EdU) incorporation and colony formation assay; cell apoptosis and reactive oxygen species (ROS) level were determined by flow cytometry; protein expressions of caspase-3, Bcl-XL, Bcl-2, γ-H2AX, and RAD51 were examined by Immunoblotting; DNA damage was determined by comet assay; RAD51 and γ-H2AX foci were observed by immunofluorescence. Results Combined treatment with JQ1 and SAHA or PANO synergistically suppressed the growth and colony formation ability of the chondrosarcoma cells. Combined BET and HDAC inhibition also significantly elevated the ROS level, followed by the activation of cleaved-caspase-3, and the downregulation of Bcl-2 and Bcl-XL. Mechanistically, combination treatment with JQ1 and SAHA caused numerous DNA double-strand breaks (DSBs), as evidenced by the comet assay. The increase in γ-H2AX expression and foci formation also consistently indicated the accumulation of DNA damage upon cotreatment with JQ1 and SAHA. Furthermore, RAD51, a key protein of homologous recombination (HR) DNA repair, was found to be profoundly suppressed. In contrast, ectopic expression of RAD51 partially rescued SW 1353 cell apoptosis by inhibiting the expression of cleaved-caspase-3. Conclusion Taken together, our results disclose that BET and HDAC inhibition synergistically inhibit cell growth and induce cell apoptosis through a mechanism that involves the suppression of RAD51-related HR DNA repair in chondrosarcoma cells.
Collapse
Affiliation(s)
- Songwei Huan
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, People's Republic of China
| | - Tao Gui
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, People's Republic of China
| | - Qiutong Xu
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, People's Republic of China
| | - Songkuan Zhuang
- School of Life Science, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Zhenyan Li
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, People's Republic of China
| | - Yuling Shi
- Department of Orthopedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, People's Republic of China
| | - Jiebin Lin
- Department of Orthopedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, People's Republic of China
| | - Bin Gong
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, People's Republic of China
| | - Guiqiang Miao
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, People's Republic of China
| | - Manseng Tam
- IAN WO Medical Center, Macao Special Administrative Region, People's Republic of China
| | - Huan-Tian Zhang
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, People's Republic of China
| | - Zhengang Zha
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, People's Republic of China
| | - Chunfei Wu
- Department of Orthopedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, People's Republic of China
| |
Collapse
|
33
|
Kolb EA, Houghton PJ, Kurmasheva RT, Mosse YP, Maris JM, Erickson SW, Guo Y, Teicher BA, Smith MA, Gorlick R. Preclinical evaluation of the combination of AZD1775 and irinotecan against selected pediatric solid tumors: A Pediatric Preclinical Testing Consortium report. Pediatr Blood Cancer 2020; 67:e28098. [PMID: 31975571 PMCID: PMC8752046 DOI: 10.1002/pbc.28098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 01/13/2023]
Abstract
INTRODUCTION WEE1 is a serine kinase central to the G2 checkpoint. Inhibition of WEE1 can lead to cell death by permitting cell-cycle progression despite unrepaired DNA damage. AZD1775 is a WEE1 inhibitor that is in clinical development for children and adults with cancer. METHODS AZD1775 was tested using a dose of 120 mg/kg administered orally for days 1 to 5. Irinotecan was administered intraperitoneally at a dose of 2.5 mg/kg for days 1 to 5 (one hour after AZD1775 when used in combination). AZD1775 and irinotecan were studied alone and in combination in neuroblastoma (n = 3), osteosarcoma (n = 4), and Wilms tumor (n = 3) xenografts. RESULTS AZD1775 as a single agent showed little activity. Irinotecan induced objective responses in two neuroblastoma lines (PRs), and two Wilms tumor models (CR and PR). The combination of AZD1775 + irinotecan-induced objective responses in two neuroblastoma lines (PR and CR) and all three Wilms tumor lines (CR and 2 PRs). The objective response measure improved compared with single-agent treatment for one neuroblastoma (PR to CR), two osteosarcoma (PD1 to PD2), and one Wilms tumor (PD2 to PR) xenograft lines. Of note, the combination yielded CR (n = 1) and PR (n = 2) in all the Wilms tumor lines. The event-free survival was significantly longer for the combination compared with single-agent irinotecan in all models tested. The magnitude of the increase was greatest in osteosarcoma and Wilms tumor xenografts. CONCLUSIONS AZD1775 potentiates the effects of irinotecan across most of the xenograft lines tested, with effect size appearing to vary across tumor panels.
Collapse
Affiliation(s)
- E. Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Wilmington, Delaware
| | | | | | - Yael P. Mosse
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - John M. Maris
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Yuelong Guo
- RTI International, Research Triangle Park, North Carolina
| | | | | | - Richard Gorlick
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
34
|
Sahakyan AB, Mahtey A, Kawasaki F, Balasubramanian S. A Spontaneous Ring-Opening Reaction Leads to a Repair-Resistant Thymine Oxidation Product in Genomic DNA. Chembiochem 2020; 21:320-323. [PMID: 31386787 DOI: 10.1002/cbic.201900484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 11/09/2022]
Abstract
The alphabet of modified DNA bases goes beyond the conventional four letters, with biological roles being found for many such modifications. Herein, we describe the observation of a modified thymine base that arises from spontaneous N1 -C2 ring opening of the oxidation product 5-formyl uracil, after N3 deprotonation. We first observed this phenomenon in silico through ab initio calculations, followed by in vitro experiments to verify its formation at a mononucleoside level and in a synthetic DNA oligonucleotide context. We show that the new base modification (Trex , thymine ring expunged) can form under physiological conditions, and is resistant to the action of common repair machineries. Furthermore, we found cases of the natural existence of Trex while screening a number of human cell types and mESC (E14), thus suggesting potential biological relevance of this modification.
Collapse
Affiliation(s)
- Aleksandr B Sahakyan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Present address: MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK
| | - Areeb Mahtey
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Fumiko Kawasaki
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Present address: RIKEN, Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Cancer Research (UK), Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
- School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK
| |
Collapse
|
35
|
Warren NJH, Eastman A. Comparison of the different mechanisms of cytotoxicity induced by checkpoint kinase I inhibitors when used as single agents or in combination with DNA damage. Oncogene 2020; 39:1389-1401. [PMID: 31659257 PMCID: PMC7023985 DOI: 10.1038/s41388-019-1079-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022]
Abstract
Inhibition of the DNA damage response is an emerging strategy to treat cancer. Understanding how DNA damage response inhibitors cause cytotoxicity in cancer cells is crucial to their further clinical development. This review focuses on three different mechanisms of cell killing by checkpoint kinase I inhibitors (CHK1i). DNA damage induced by chemotherapy drugs, such as topoisomerase I inhibitors, results in S and G2 phase arrest. Addition of CHK1i promotes cell cycle progression before repair is completed resulting in mitotic catastrophe. Ribonucleotide reductase inhibitors such as gemcitabine also arrest cells in S phase by preventing dNTP synthesis. Addition of CHK1i re-activates the DNA helicase to unwind DNA, but in the absence of dNTPs, this leads to excessive single-strand DNA that exceeds the protective capacity of the single-strand-binding protein RPA. Unprotected DNA is subjected to nuclease cleavage, resulting in replication catastrophe. CHK1i alone also kills a subset of cell lines through MRE11 and MUS81-mediated DNA cleavage in S phase cells. The choice of mechanism depends on the activation state of CDK2. Low level activation of CDK2 mediates helicase activation, cell cycle progression, and both replication and mitotic catastrophe. In contrast, high CDK2 activity is required for sensitivity to CHK1i as monotherapy. This high CDK2 activity threshold usually occurs late in the cell cycle to prepare for mitosis, but in CHK1i-sensitive cells, high activity can be attained in early S phase, resulting in DNA cleavage and cell death. This sensitivity to CHK1i has previously been associated with endogenous replication stress, but the dependence on high CDK2 activity, as well as MRE11, contradicts this hypothesis. The major unresolved question is why some cell lines fail to restrain their high CDK2 activity and hence succumb to CHK1i in S phase. Resolving this question will facilitate stratification of patients for treatment with CHK1i as monotherapy.
Collapse
Affiliation(s)
- Nicholas J H Warren
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Alan Eastman
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.
| |
Collapse
|
36
|
Breiner B, Johnson K, Stolarek M, Silva AL, Negrea A, Bell NM, Isaac TH, Dethlefsen M, Chana J, Ibbotson LA, Palmer RN, Bush J, Dunning AJ, Love DM, Pachoumi O, Kelly DJ, Shibahara A, Wu M, Sosna M, Dear PH, Tolle F, Petrini E, Amasio M, Shelford LR, Saavedra MS, Sheridan E, Kuleshova J, Podd GJ, Balmforth BW, Frayling CA. Single-molecule detection of deoxyribonucleoside triphosphates in microdroplets. Nucleic Acids Res 2019; 47:e101. [PMID: 31318971 PMCID: PMC6753480 DOI: 10.1093/nar/gkz611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/10/2019] [Accepted: 07/03/2019] [Indexed: 11/12/2022] Open
Abstract
A new approach to single-molecule DNA sequencing in which dNTPs, released by pyrophosphorolysis from the strand to be sequenced, are captured in microdroplets and read directly could have substantial advantages over current sequence-by-synthesis methods; however, there is no existing method sensitive enough to detect a single nucleotide in a microdroplet. We have developed a method for dNTP detection based on an enzymatic two-stage reaction which produces a robust fluorescent signal that is easy to detect and process. By taking advantage of the inherent specificity of DNA polymerases and ligases, coupled with volume restriction in microdroplets, this method allows us to simultaneously detect the presence of and distinguish between, the four natural dNTPs at the single-molecule level, with negligible cross-talk.
Collapse
Affiliation(s)
- Boris Breiner
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Kerr Johnson
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Magdalena Stolarek
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Ana-Luisa Silva
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Aurel Negrea
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Neil M Bell
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Tom H Isaac
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Mark Dethlefsen
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Jasmin Chana
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Lindsey A Ibbotson
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Rebecca N Palmer
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - James Bush
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Alexander J Dunning
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - David M Love
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Olympia Pachoumi
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Douglas J Kelly
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Aya Shibahara
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Mei Wu
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Maciej Sosna
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Paul H Dear
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Fabian Tolle
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Edoardo Petrini
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Michele Amasio
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Leigh R Shelford
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Monica S Saavedra
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Eoin Sheridan
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Jekaterina Kuleshova
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Gareth J Podd
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Barnaby W Balmforth
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Cameron A Frayling
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| |
Collapse
|
37
|
Sá MC, Conceição TS, de Moura Santos E, de Morais EF, Galvão HC, de Almeida Freitas R. Immunohistochemical expression of TFIIH and XPF in oral tongue squamous cell carcinoma. Eur Arch Otorhinolaryngol 2019; 277:893-902. [PMID: 31828418 DOI: 10.1007/s00405-019-05757-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE The query for biomarkers that indicate tumor aggressiveness and the host's response to treatment is still one of the leading aims of cancer research. To investigate a possible role for DNA nucleotide repair proteins in oral cancer behavior, this study evaluated the immunoexpression of the proteins TFIIH and XPF and its association with clinical, histological, and survival parameters in oral tongue squamous-cell carcinoma (OTSCC). METHODS TFIIH and XPF immunoexpressions were evaluated in 82 cases of oral tongue squamous-cell carcinoma. Tumor budding and depth of invasion were assessed for histopathological grading (BD model). RESULTS Tumor cells exhibited high expression of TFIIH and XPF, which was associated to nodal status; both proteins were not associated with other clinical parameters, histopathological grading or survival. Tumor size, nodal status, tumor staging, and depth of invasion > 4 mm were significantly associated to disease-specific survival. CONCLUSIONS We have demonstrated that the overexpression of TFIIH correlates positively with node metastasis, while XPF correlates negatively with node metastasis; therefore, the expression of XPF and TFIIH had a potential value for predicting the progression of OTSCC patients.
Collapse
Affiliation(s)
- Melka Coêlho Sá
- Oral Pathology Postgraduate Program, Department of Dentistry, Federal University of Rio Grande Do Norte, Av. Salgado Filho, 1787, Natal, RN, Brazil
| | - Thalita Santana Conceição
- Oral Pathology Postgraduate Program, Department of Dentistry, Federal University of Rio Grande Do Norte, Av. Salgado Filho, 1787, Natal, RN, Brazil
| | - Edilmar de Moura Santos
- Oral Pathology Postgraduate Program, Department of Dentistry, Federal University of Rio Grande Do Norte, Av. Salgado Filho, 1787, Natal, RN, Brazil
| | - Everton Freitas de Morais
- Oral Pathology Postgraduate Program, Department of Dentistry, Federal University of Rio Grande Do Norte, Av. Salgado Filho, 1787, Natal, RN, Brazil
| | - Hébel Cavalcanti Galvão
- Oral Pathology Postgraduate Program, Department of Dentistry, Federal University of Rio Grande Do Norte, Av. Salgado Filho, 1787, Natal, RN, Brazil
| | - Roseana de Almeida Freitas
- Oral Pathology Postgraduate Program, Department of Dentistry, Federal University of Rio Grande Do Norte, Av. Salgado Filho, 1787, Natal, RN, Brazil. .,Department of Oral Pathology, Federal University of Rio Grande of Norte, Av. Salgado Filho, 1787, Lagoa Nova, Natal, RN, 59056-000, Brazil.
| |
Collapse
|
38
|
Wallace NA. Catching HPV in the Homologous Recombination Cookie Jar. Trends Microbiol 2019; 28:191-201. [PMID: 31744663 DOI: 10.1016/j.tim.2019.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/27/2022]
Abstract
To replicate, the human papillomaviruses (HPVs) that cause anogenital and oropharyngeal malignancies must simultaneously activate DNA repair pathways and avoid the cell cycle arrest that normally accompanies DNA repair. For years it seemed that HPV oncogenes activated the homologous recombination pathway to facilitate the HPV lifecycle. However, recent developments show that, although homologous recombination gene expression and markers of pathway activation are increased, homologous recombination itself is attenuated. This review provides an overview of the diverse ways that HPV oncogenes manipulate homologous recombination and ideas on how the resulting dysregulation and inhibition offer opportunities for improved therapies and biomarkers.
Collapse
|
39
|
Estep KN, Butler TJ, Ding J, Brosh RM. G4-Interacting DNA Helicases and Polymerases: Potential Therapeutic Targets. Curr Med Chem 2019; 26:2881-2897. [PMID: 29149833 DOI: 10.2174/0929867324666171116123345] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Guanine-rich DNA can fold into highly stable four-stranded DNA structures called G-quadruplexes (G4). In recent years, the G-quadruplex field has blossomed as new evidence strongly suggests that such alternately folded DNA structures are likely to exist in vivo. G4 DNA presents obstacles for the replication machinery, and both eukaryotic DNA helicases and polymerases have evolved to resolve and copy G4 DNA in vivo. In addition, G4-forming sequences are prevalent in gene promoters, suggesting that G4-resolving helicases act to modulate transcription. METHODS We have searched the PubMed database to compile an up-to-date and comprehensive assessment of the field's current knowledge to provide an overview of the molecular interactions of Gquadruplexes with DNA helicases and polymerases implicated in their resolution. RESULTS Novel computational tools and alternative strategies have emerged to detect G4-forming sequences and assess their biological consequences. Specialized DNA helicases and polymerases catalytically act upon G4-forming sequences to maintain normal replication and genomic stability as well as appropriate gene regulation and cellular homeostasis. G4 helicases also resolve telomeric repeats to maintain chromosomal DNA ends. Bypass of many G4-forming sequences is achieved by the action of translesion DNS polymerases or the PrimPol DNA polymerase. While the collective work has supported a role of G4 in nuclear DNA metabolism, an emerging field centers on G4 abundance in the mitochondrial genome. CONCLUSION Discovery of small molecules that specifically bind and modulate DNA helicases and polymerases or interact with the G4 DNA structure itself may be useful for the development of anticancer regimes.
Collapse
Affiliation(s)
- Katrina N Estep
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd Baltimore, MD 21224, United States
| | - Thomas J Butler
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd Baltimore, MD 21224, United States
| | - Jun Ding
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd Baltimore, MD 21224, United States
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd Baltimore, MD 21224, United States
| |
Collapse
|
40
|
Houghton PJ, Kurmasheva RT. Challenges and Opportunities for Childhood Cancer Drug Development. Pharmacol Rev 2019; 71:671-697. [PMID: 31558580 PMCID: PMC6768308 DOI: 10.1124/pr.118.016972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer in children is rare with approximately 15,700 new cases diagnosed in the United States annually. Through use of multimodality therapy (surgery, radiation therapy, and aggressive chemotherapy), 70% of patients will be "cured" of their disease, and 5-year event-free survival exceeds 80%. However, for patients surviving their malignancy, therapy-related long-term adverse effects are severe, with an estimated 50% having chronic life-threatening toxicities related to therapy in their fourth or fifth decade of life. While overall intensive therapy with cytotoxic agents continues to reduce cancer-related mortality, new understanding of the molecular etiology of many childhood cancers offers an opportunity to redirect efforts to develop effective, less genotoxic therapeutic options, including agents that target oncogenic drivers directly, and the potential for use of agents that target the tumor microenvironment and immune-directed therapies. However, for many high-risk cancers, significant challenges remain.
Collapse
Affiliation(s)
- Peter J Houghton
- Greehey Children's Cancer Research Institute, University of Texas Health, San Antonio, Texas
| | - Raushan T Kurmasheva
- Greehey Children's Cancer Research Institute, University of Texas Health, San Antonio, Texas
| |
Collapse
|
41
|
Choi EH, Kim KP. E2F1 facilitates DNA break repair by localizing to break sites and enhancing the expression of homologous recombination factors. Exp Mol Med 2019; 51:1-12. [PMID: 31534120 PMCID: PMC6802646 DOI: 10.1038/s12276-019-0307-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/16/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
The human genome is constantly exposed to both endogenous and exogenous stresses, which can lead to errors in DNA replication and the accumulation of DNA mutations, thereby increasing the risk of cancer development. The transcription factor E2F1 is a key regulator of DNA repair. E2F1 also has defined roles in the replication of many cell cycle-related genes and is highly expressed in cancer cells, and its abundance is strongly associated with poor prognosis in cancers. Studies on colon cancer have demonstrated that the depletion of E2F1 leads to reduced levels of homologous recombination (HR), resulting in interrupted DNA replication and the subsequent accumulation of DNA lesions. Our results demonstrate that the depletion of E2F1 also causes reduced RAD51-mediated DNA repair and diminished cell viability resulting from DNA damage. Furthermore, the extent of RAD51 and RPA colocalization is reduced in response to DNA damage; however, RPA single-stranded DNA (ssDNA) nucleofilament formation is not affected following the depletion of E2F1, implying that ssDNA gaps accumulate when RAD51-mediated DNA gap filling or repair is diminished. Surprisingly, we also demonstrate that E2F1 forms foci with RAD51 or RPA at DNA break sites on damaged DNA. These findings provide evidence of a molecular mechanism underlying the E2F1-mediated regulation of HR activity and predict a fundamental shift in the function of E2F1 from regulating cell division to accelerating tumor development.
Collapse
Affiliation(s)
- Eui-Hwan Choi
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea
| | - Keun Pil Kim
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
42
|
Zhang Y, Yang WK, Wen GM, Tang H, Wu CA, Wu YX, Jing ZL, Tang MS, Liu GL, Li DZ, Li YH, Deng YJ. High expression of PRKDC promotes breast cancer cell growth via p38 MAPK signaling and is associated with poor survival. Mol Genet Genomic Med 2019; 7:e908. [PMID: 31513357 PMCID: PMC6825841 DOI: 10.1002/mgg3.908] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/14/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND DNA-Dependent Protein Kinase Catalytic Subunit (PRKDC), a key component of the DNA damage repair pathway, is associated with chemotherapy resistance and tumor progression. METHODS Here we analyzed transcriptome data of ~2,000 breast cancer patients and performed functional studies in vitro to investigate the function of PRKDC in breast cancer. RESULTS Our results revealed overexpression of PRKDC in multiple breast cancer subtypes. Consistent with patients' data, overexpression of PRKDC was also observed in breast cancer cell lines compared to normal breast epithelial cells. Knockdown of PRKDC in MCF-7 and T47D breast cancer cell lines resulted in proliferation inhibition, reduced colony formation and G2/M cell cycle arrest. Furthermore, we showed that PRKDC knockdown induced proliferation inhibition through activation of p38 MAPK, but not ERK MAPK, signaling pathway in breast cancer cells. Blockage of p38 MAPK signaling could largely rescue proliferation inhibition and cell cycle arrest induced by PRKDC knockdown. Moreover, we analyzed gene expression and clinical data from six independent breast cancer cohorts containing ~1,000 patients. In all cohorts, our results consistently showed that high expression of PRKDC was significantly associated with poor survival in both treated and untreated breast cancer patients. CONCLUSION Together, our results suggest that high expression of PRKDC facilitates breast cancer cell growth via regulation of p38 MAPK signaling, and is a prognostic marker for poor survival in breast cancer patients.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathology, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, P.R. China.,Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Wei-Kang Yang
- Department of Prevention and Health Care, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, P.R. China
| | - Guo-Ming Wen
- Department of Outpatient, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, P.R. China
| | - Hongping Tang
- Department of Pathology, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, P.R. China
| | - Chuan-An Wu
- Department of Prevention and Health Care, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, P.R. China
| | - Yan-Xia Wu
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Zhi-Liang Jing
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Min-Shan Tang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Guang-Long Liu
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Da-Zhou Li
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Yan-Hua Li
- Department of Pathology, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, P.R. China
| | - Yong-Jian Deng
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
43
|
Kelso AA, Lopezcolorado FW, Bhargava R, Stark JM. Distinct roles of RAD52 and POLQ in chromosomal break repair and replication stress response. PLoS Genet 2019; 15:e1008319. [PMID: 31381562 PMCID: PMC6695211 DOI: 10.1371/journal.pgen.1008319] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/15/2019] [Accepted: 07/18/2019] [Indexed: 12/18/2022] Open
Abstract
Disrupting either the DNA annealing factor RAD52 or the A-family DNA polymerase POLQ can cause synthetic lethality with defects in BRCA1 and BRCA2, which are tumor suppressors important for homology-directed repair of DNA double-strand breaks (DSBs), and protection of stalled replication forks. A likely mechanism of this synthetic lethality is that RAD52 and/or POLQ are important for backup pathways for DSB repair and/or replication stress responses. The features of DSB repair events that require RAD52 vs. POLQ, and whether combined disruption of these factors causes distinct effects on genome maintenance, have been unclear. Using human U2OS cells, we generated a cell line with POLQ mutations upstream of the polymerase domain, a RAD52 knockout cell line, and a line with combined disruption of both genes. We also examined RAD52 and POLQ using RNA-interference. We find that combined disruption of RAD52 and POLQ causes at least additive hypersensitivity to cisplatin, and a synthetic reduction in replication fork restart velocity. We also examined the influence of RAD52 and POLQ on several DSB repair events. We find that RAD52 is particularly important for repair using ≥ 50 nt repeat sequences that flank the DSB, and that also involve removal of non-homologous sequences flanking the repeats. In contrast, POLQ is important for repair events using 6 nt (but not ≥ 18 nt) of flanking repeats that are at the edge of the break, as well as oligonucleotide microhomology-templated (i.e., 12-20 nt) repair events requiring nascent DNA synthesis. Finally, these factors show key distinctions with BRCA2, regarding effects on DSB repair events and response to stalled replication forks. These findings indicate that RAD52 and POLQ have distinct roles in genome maintenance, including for specific features of DSB repair events, such that combined disruption of these factors may be effective for genotoxin sensitization and/or synthetic lethal strategies.
Collapse
Affiliation(s)
- Andrew A. Kelso
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Felicia Wednesday Lopezcolorado
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Ragini Bhargava
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Jeremy M. Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| |
Collapse
|
44
|
Tong Q, You H, Chen X, Wang K, Sun W, Pei Y, Zhao X, Yuan M, Zhu H, Luo Z, Zhang Y. ZYH005, a novel DNA intercalator, overcomes all-trans retinoic acid resistance in acute promyelocytic leukemia. Nucleic Acids Res 2019; 46:3284-3297. [PMID: 29554366 PMCID: PMC6283422 DOI: 10.1093/nar/gky202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/09/2018] [Indexed: 12/18/2022] Open
Abstract
Despite All-trans retinoic acid (ATRA) has transformed acute promyelocytic leukemia (APL) from the most fatal to the most curable hematological cancer, there remains a clinical challenge that many high-risk APL patients who fail to achieve a complete molecular remission or relapse and become resistant to ATRA. Herein, we report that 5-(4-methoxyphenethyl)-[1, 3] dioxolo [4, 5-j] phenanthridin-6(5H)-one (ZYH005) exhibits specific anticancer effects on APL and ATRA-resistant APL in vitro and vivo, while shows negligible cytotoxic effect on non-cancerous cell lines and peripheral blood mononuclear cells from healthy donors. Using single-molecule magnetic tweezers and molecule docking, we demonstrate that ZYH005 is a DNA intercalator. Further mechanistic studies show that ZYH005 triggers DNA damage, and caspase-dependent degradation of the PML-RARa fusion protein. As a result, APL and ATRA-resistant APL cells underwent apoptosis upon ZYH005 treatment and this apoptosis-inducing effect is even stronger than that of arsenic trioxide and anticancer agents including 5-fluorouracil, cisplatin and doxorubicin. Moreover, ZYH005 represses leukemia development in vivo and prolongs the survival of both APL and ATRA-resistant APL mice. To our knowledge, ZYH005 is the first synthetic phenanthridinone derivative, which functions as a DNA intercalator and can serve as a potential candidate drug for APL, particularly for ATRA-resistant APL.
Collapse
Affiliation(s)
- Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huijuan You
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xintao Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kongchao Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yufeng Pei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaodan Zhao
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Ming Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zengwei Luo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
45
|
Wang S, Wang H, Sun B, Li D, Wu J, Li J, Tian X, Qin C, Chang H, Liu Y. Acetyl-11-keto-β-boswellic acid triggers premature senescence via induction of DNA damage accompanied by impairment of DNA repair genes in hepatocellular carcinoma cells in vitro and in vivo. Fundam Clin Pharmacol 2019; 34:65-76. [PMID: 31141202 DOI: 10.1111/fcp.12488] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/28/2019] [Accepted: 05/24/2019] [Indexed: 01/25/2023]
Abstract
Cellular senescence, a state of irreversible growth arrest, occurs in all somatic cells and causes the cells to exhaust replicative capacity. Recently, cellular senescence has been emerging as one of the principal mechanisms of tumor suppression, which can be induced by low doses of therapeutic drugs in cancer cells. Acetyl-11-keto-β-boswellic acid (AKBA), an active ingredient isolated from the plant Boswellia serrata, has been identified to induce apoptosis in hepatocellular carcinoma (HCC) cells. In this study, we found that low concentrations of AKBA treatment triggered cell growth arrest at G0/G1 phase with features of premature cellular senescence phenotype in both HCC cell lines HepG2 and SMMC7721, as observed by enlarged and flattened morphology, significant increase in cells with senescence-associated β-galactosidase staining, and decrease in cell proliferation and DNA synthesis. Furthermore, cellular senescence induced by AKBA occurred via activation of DNA damage response and impairment of DNA repair, as evidenced by strong induction of γH2AX and p53, and downregulated expressions of multiple DNA repair associated genes. Induction of p53 by AKBA caused a significant increase in p21CIP1 , which had a critical involvement in the induction of cellular senescence. Additionally, in vivo study demonstrated that induction of senescence contributed to the anticancer efficacy of AKBA. Therefore, our findings suggested that induction of premature senescence by AKBA through DNA damage response accompanied by impairment of DNA repair genes defines a novel mechanism contributing to its growth suppression in HCC cells.
Collapse
Affiliation(s)
- Shikang Wang
- Emergency Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Huijun Wang
- Department of Internal Medicine, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Baoyou Sun
- Emergency Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Duanfeng Li
- Emergency Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Jing Wu
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Juan Li
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Xiaona Tian
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Chengkun Qin
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Hong Chang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Yongqing Liu
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| |
Collapse
|
46
|
Zhang Y, Wen GM, Wu CA, Jing ZL, Li DZ, Liu GL, Wei XX, Tang MS, Li YH, Zhong Y, Deng YJ, Yang WK. PRKDC is a prognostic marker for poor survival in gastric cancer patients and regulates DNA damage response. Pathol Res Pract 2019; 215:152509. [PMID: 31255330 DOI: 10.1016/j.prp.2019.152509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/27/2019] [Accepted: 06/20/2019] [Indexed: 01/01/2023]
Abstract
A hallmark of gastric cancer is the high rate of genomic instability associated with deregulation of DNA damage repair pathways. DNA-Dependent Protein Kinase Catalytic Subunit (PRKDC) is a key component of the non-homologous end-joining (NHEJ) pathway. By reanalyzing transcriptome data of 80 pairs of gastric cancer tumors and the adjacent normal tissues from non-treated patients, we identified PRKDC as the top upregulated DNA damage repair genes in gastric cancer. High expression of PRKDC is associated with poor survival of gastric cancer patients, and genomic amplification of the gene is frequently observed across most gastric cancer subtypes. Knockdown of PRKDC in gastric cell lines resulted in reduced proliferation and cell cycle arrest. Furthermore, we showed that loss of PRKDC induced DNA damage and enhanced gastric cancer cell chemosensitivity to DNA-damaging reagents. Together, our results suggest that PRKDC is a prognostic marker of poor survival and is a putative target to overcome chemoresistance in gastric cancer.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathology, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, PR China.
| | - Guo-Ming Wen
- Department of Outpatient, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, PR China
| | - Chuan-An Wu
- Department of Prevention and health care, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, PR China
| | - Zhi-Liang Jing
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Da-Zhou Li
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Guang-Long Liu
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Xu-Xuan Wei
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Min-Shan Tang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Yan-Hua Li
- Department of Pathology, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, PR China
| | - Yan Zhong
- Department of Pathology, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, PR China
| | - Yong-Jian Deng
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China.
| | - Wei-Kang Yang
- Department of Prevention and health care, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, PR China.
| |
Collapse
|
47
|
Zeniou M, Nguekeu-Zebaze L, Dantzer F. Therapeutic considerations of PARP in stem cell biology: Relevance in cancer and beyond. Biochem Pharmacol 2019; 167:107-115. [PMID: 31202733 DOI: 10.1016/j.bcp.2019.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022]
Abstract
Cancer stem cells (CSCs) are of fundamental importance in tumor progression because of their tumor-initiating properties, their resistance to radio- and chemotherapy, their invasive properties and their propensity to escape immune responses that together contribute to tumor relapse. These highly aggressive features underscore the importance of constantly identifying new and innovative therapeutic solutions to eradicate these cells. In this narrative review we discuss recent findings on the involvement of PARP family members in cancer stem cell biology and the benefit of their inhibition. Nonetheless, an important limitation in the use of PARP inhibitors is the emergence of a prominent function of PARP1 in non-cancer stem cell biology including stem cell maintenance and differentiation during development, neurogenesis or adipogenesis. Thus, we also summarize the dominant discoveries revealing the importance of PARP1 in normal stem cell biology.
Collapse
Affiliation(s)
- M Zeniou
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France
| | - L Nguekeu-Zebaze
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France
| | - F Dantzer
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France.
| |
Collapse
|
48
|
Suppression of colorectal cancer cell growth by combined treatment of 6-gingerol and γ-tocotrienol via alteration of multiple signalling pathways. J Nat Med 2019; 73:745-760. [DOI: 10.1007/s11418-019-01323-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/20/2019] [Indexed: 12/26/2022]
|
49
|
Hać A, Brokowska J, Rintz E, Bartkowski M, Węgrzyn G, Herman-Antosiewicz A. Mechanism of selective anticancer activity of isothiocyanates relies on differences in DNA damage repair between cancer and healthy cells. Eur J Nutr 2019; 59:1421-1432. [PMID: 31123866 PMCID: PMC7230056 DOI: 10.1007/s00394-019-01995-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/11/2019] [Indexed: 12/14/2022]
Abstract
Purpose Isothiocyanates (ITCs) are compounds derived from Brassica plants with documented anticancer activity. Molecular mechanisms of their selective activity against cancer cells are still underexplored. In this work, the impact of ITC on DNA replication and damage was compared between PC-3 prostate cancer cells and HDFa normal fibroblasts as well as PNT2 prostate epithelial cells. Methods Cells were treated with sulforaphane or phenethyl isothiocyanate. [3H]thymidine incorporation and the level of histone γH2A.X were estimated as indicators of DNA replication and double-strand breaks (DSB), respectively. Levels of HDAC3, CtIP, and p-RPA were investigated by immunoblotting. Comet assay was performed to visualize DNA damage. Results ITCs inhibited DNA replication in all tested cell lines, and this activity was independent of reactive oxygen species of mitochondrial origin. It was followed by DSB which were more pronounced in cancer than noncancerous cells. This difference was independent of HDAC activity which was decreased in both cell lines when treated with ITCs. On the other hand, it correlated with faster removal of DSB, and thus, transient activation of repair proteins in normal cells, while in PC-3 prostate cancer, cell DNA repair was significantly less effective. Conclusion DNA damage induced by ITCs is a consequence of the block in DNA replication which is observed in both, cancer and normal cells. Selective antiproliferative activity of ITCs towards cancer cells results from less efficient DNA repair in cancer cells relative to normal cells.
Collapse
Affiliation(s)
- Aleksandra Hać
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Joanna Brokowska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Estera Rintz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Michał Bartkowski
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Anna Herman-Antosiewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
50
|
Aberrations in DNA repair pathways in cancer and therapeutic significances. Semin Cancer Biol 2019; 58:29-46. [PMID: 30922960 DOI: 10.1016/j.semcancer.2019.02.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/31/2019] [Accepted: 02/19/2019] [Indexed: 01/16/2023]
Abstract
Cancer cells show various types of mutations and aberrant expression in genes involved in DNA repair responses. These alterations induce genome instability and promote carcinogenesis steps and cancer progression processes. These defects in DNA repair have also been considered as suitable targets for cancer therapies. A most effective target so far clinically demonstrated is "homologous recombination repair defect", such as BRCA1/2 mutations, shown to cause synthetic lethality with inhibitors of poly(ADP-ribose) polymerase (PARP), which in turn is involved in DNA repair as well as multiple physiological processes. Different approaches targeting genomic instability, including immune therapy targeting mismatch-repair deficiency, have also recently been demonstrated to be promising strategies. In these DNA repair targeting-strategies, common issues could be how to optimize treatment and suppress/conquer the development of drug resistance. In this article, we review the extending framework of DNA repair response pathways and the potential impact of exploiting those defects on cancer treatments, including chemotherapy, radiation therapy and immune therapy.
Collapse
|