1
|
Chang HH, Liou YS, Sun DS. Unraveling the interplay between inflammation and stem cell mobilization or homing: Implications for tissue repair and therapeutics. Tzu Chi Med J 2024; 36:349-359. [PMID: 39421490 PMCID: PMC11483098 DOI: 10.4103/tcmj.tcmj_100_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 04/29/2024] [Accepted: 06/14/2024] [Indexed: 10/19/2024] Open
Abstract
Inflammation and stem cell mobilization or homing play pivotal roles in tissue repair and regeneration. This review explores their intricate interplay, elucidating their collaborative role in maintaining tissue homeostasis and responding to injury or disease. While examining the fundamentals of stem cells, we detail the mechanisms underlying inflammation, including immune cell recruitment and inflammatory mediator release, highlighting their self-renewal and differentiation capabilities. Central to our exploration is the modulation of hematopoietic stem cell behavior by inflammatory cues, driving their mobilization from the bone marrow niche into circulation. Key cytokines, chemokines, growth factors, and autophagy, an intracellular catabolic mechanism involved in this process, are discussed alongside their clinical relevance. Furthermore, mesenchymal stem cell homing in response to inflammation contributes to tissue repair processes. In addition, we discuss stem cell resilience in the face of inflammatory challenges. Moreover, we examine the reciprocal influence of stem cells on the inflammatory milieu, shaping immune responses and tissue repair. We underscore the potential of targeting inflammation-induced stem cell mobilization for regenerative therapies through extensive literature analysis and clinical insights. By unraveling the complex interplay between inflammation and stem cells, this review advances our understanding of tissue repair mechanisms and offers promising avenues for clinical translation in regenerative medicine.
Collapse
Affiliation(s)
- Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Yu-Shan Liou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
2
|
Wu J, Li L, Liu Z, Wang H, Chen Y, Zeng L, Wang G, Liu H, Fu R. Abnormal expression of CUX1 influences autophagy activation in paroxysmal nocturnal hemoglobinuria. J Leukoc Biol 2024; 115:926-934. [PMID: 38315716 DOI: 10.1093/jleuko/qiae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 02/07/2024] Open
Abstract
The mechanism underlying autophagy in paroxysmal nocturnal hemoglobinuria (PNH) remains largely unknown. We previously sequenced the entire genome exon of the CD59- cells from 13 patients with PNH and found genes such as CUX1 encoding Cut-like homeobox 1. Peripheral blood samples from 9 patients with PNH and 7 healthy control subjects were obtained to measure CUX1 expression. The correlation between CUX1 messenger RNA expression and PNH clinical indicators was analyzed. To simulate CUX1 expression in patients with PNH, we generated a panel of PNH cell lines by knocking out PIGA in K562 cell lines and transfected lentivirus with CUX1. CCK-8 and EDU assay assessed cell proliferation. Western blotting was used to detect Beclin-1, LC3A, LC3B, ULK1, PI3K, AKT, p-AKT, mTOR, and p-mTOR protein levels. Autophagosomes were observed with transmission electron microscopy. Chloroquine was used to observe CUX1 expression in PNH after autophagy inhibition. Leukocytes from patients with PNH had lower levels of CUX1 messenger RNA expression and protein content than healthy control subjects. The lactose dehydrogenase level and the percentage of PNH clones were negatively correlated with CUX1 relative expression. We reduced CUX1 expression in a PIGA knockout K562 cell line, leading to increased cell proliferation. Levels of autophagy markers Beclin-1, LC3B, LC3A, and ULK1 increased, and autophagosomes increased. Furthermore, PI3K/AKT/mTOR protein phosphorylation levels were lower. CUX1 expression did not change and cell proliferation decreased in CUX1 knocked down PNH cells after inhibition of autophagy by chloroquine. In brief, CUX1 loss-of-function mutation resulted in stronger autophagy in PNH.
Collapse
Affiliation(s)
- Junshu Wu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Tianjin 300052, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Tianjin 300052, China
| | - Liyan Li
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Tianjin 300052, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Tianjin 300052, China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Tianjin 300052, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Tianjin 300052, China
| | - Honglei Wang
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Tianjin 300052, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Tianjin 300052, China
| | - Yingying Chen
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Tianjin 300052, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Tianjin 300052, China
| | - Lijie Zeng
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Tianjin 300052, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Tianjin 300052, China
| | - Guanrou Wang
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Tianjin 300052, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Tianjin 300052, China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Tianjin 300052, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Tianjin 300052, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Tianjin 300052, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Tianjin 300052, China
| |
Collapse
|
3
|
Wang L, Tian S, Ruan S, Wei J, Wei S, Chen W, Hu H, Qin W, Li Y, Yuan H, Mao J, Xu Y, Xie J. Neuroprotective effects of cordycepin on MPTP-induced Parkinson's disease mice via suppressing PI3K/AKT/mTOR and MAPK-mediated neuroinflammation. Free Radic Biol Med 2024; 216:60-77. [PMID: 38479634 DOI: 10.1016/j.freeradbiomed.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024]
Abstract
Parkinson's disease (PD) is a prevalent progressive and multifactorial neurodegenerative disorder. Cordycepin is known to exhibit antitumor, anti-inflammatory, antioxidative stress, and neuroprotective effects; however, few studies have explored the neuroprotective mechanism of cordycepin in PD. Using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model, we investigated the impact of cordycepin on PD and its underlying molecular mechanisms. The findings indicated that cordycepin significantly mitigated MPTP-induced behavior disorder and neuroapoptosis, diminished the loss of dopaminergic neurons in the striatum-substantia nigra pathway, elevated striatal monoamine levels and its metabolites, and inhibited the polarization of microglia and the expression of pro-inflammatory factors. Subsequent proteomic and phosphoproteomic analyses revealed the involvement of the MAPK, mTOR, and PI3K/AKT signaling pathways in the protective mechanism of cordycepin. Cordycepin treatment inhibited the activation of the PI3K/AKT/mTOR signaling pathway and enhanced the expression of autophagy proteins in the striatum and substantia nigra. We also demonstrated the in vivo inhibition of the ERK/JNK signaling pathway by cordycepin treatment. In summary, our investigation reveals that cordycepin exerts neuroprotective effects against PD by promoting autophagy and suppressing neuroinflammation and neuronal apoptosis by inhibiting the PI3K/AKT/mTOR and ERK/JNK signaling pathways. This finding highlights the favorable characteristics of cordycepin in neuroprotection and provides novel molecular insights into the neuroprotective role of natural products in PD.
Collapse
Affiliation(s)
- Linhai Wang
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China; Beijing Life Science Academy (BLSA), Beijing, China.
| | - Shu Tian
- Inner Mongolia Kunming Cigarette Limited Liability Company, Huhhot, Inner Mongolia Autonomous Region, China.
| | - Sisi Ruan
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China; Beijing Life Science Academy (BLSA), Beijing, China.
| | - Jingjing Wei
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China; Beijing Life Science Academy (BLSA), Beijing, China.
| | - Sijia Wei
- Xinxiang Central Hospital, Xinxiang, Hennan, China.
| | - Weiwei Chen
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Hangcui Hu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Weiwei Qin
- Department of Neurology, State Key Clinical Specialty of the Ministry of Health for Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| | - Yan Li
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China.
| | - Hang Yuan
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China.
| | - Jian Mao
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China; Beijing Life Science Academy (BLSA), Beijing, China.
| | - Yan Xu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Jianping Xie
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China; Beijing Life Science Academy (BLSA), Beijing, China.
| |
Collapse
|
4
|
Caparrós E, García-Martinez I, Pedro Zapater, Lucía Madero, Valverde ÁM, Ana Gutiérrez, Francés R. An altered expression of miR-376a-3p and miR-20a-5p in peripheral blood exosomes regulates the autophagy and inflammatory systemic substrates, and relates to the smoking habit and age in Crohn's disease. FASEB J 2024; 38:e23418. [PMID: 38226870 DOI: 10.1096/fj.202301761r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
miRNAs are short single-stranded noncoding RNAs that participate as epigenetic regulators in inflammatory bowel disease. Most miRNAs detectable in serum are concentrated in exosomes, with relevant cargo for immunobiological processes. We set to evaluate the exosomes miRNAs content in the serum of patients with Crohn's disease (CD) and run a prospective observational study on CD patients on biological monotherapy and healthy controls. miRNA cargo was evaluated in peripheral blood-derived exosomes. Serum autophagy and inflammatory substrates were measured. Patients were followed for 6 months. Patients (n = 28) showed an overexpression of miR-376a-3p and a downregulation of miR-20a-5p compared to controls (n = 10), without significant differences between patients according to biologics. Serum autophagy substrates ATG4C (r = .57; p = .001) and ACRV1C (r = .66; p = .001) inversely correlated with miR-376a-3p expression, whereas IGF1R correlated with miR-20a-5p expression (r = .42; p = .02). Th1-related cytokines correlated with miR-376a-3p expression, whereas the Th17-associated cytokines inversely correlated with miR-20a-5p expression. Smoking (β = -2.301 CI 95% -3.790/-0.811, p = .004) remained as independent factor related to the overexpression of miR-376a-3p, whereas diagnosis before 16 years of age (β = 2.044 CI 95% 0.934/3.154, p = .001) and a younger age of patients (β = -.720 CI 95% -0.108/-0.035, p = .001) were related to decreased miR-20a-5p expression. Seven patients (25%) had a flare in the 6-month follow-up. Patients with overexpression of miR-376a-3p at the baseline showed an increased risk of flare during this period (OR 0.475 [0.237-0.950], p = .035). Finally, a comparative miRNA signature between biologic monotherapies was also explored. Targeting miR-376a-3p and miR-20a-5p epigenetic regulators may yield homeostatic effects on relevant biological processes related to disease progression in CD patients.
Collapse
Affiliation(s)
- Esther Caparrós
- Hepatic and Intestinal Immunobiology Group, Dpto. Medicina Clínica, Universidad Miguel Hernández, Alicante, Spain
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
| | - Irma García-Martinez
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC/UAM, Madrid, Spain
- CIBERdem, Instituto Salud Carlos III, Madrid, Spain
| | - Pedro Zapater
- Hepatic and Intestinal Immunobiology Group, Dpto. Medicina Clínica, Universidad Miguel Hernández, Alicante, Spain
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
- CIBERehd, Instituto Salud Carlos III, Madrid, Spain
- Instituto IDIBE, Universidad Miguel Hernández, Elche, Spain
| | - Lucía Madero
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
- Servicio Medicina Digestiva, Hospital General Universitario Dr. Balmis, Alicante, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC/UAM, Madrid, Spain
- CIBERdem, Instituto Salud Carlos III, Madrid, Spain
| | - Ana Gutiérrez
- Hepatic and Intestinal Immunobiology Group, Dpto. Medicina Clínica, Universidad Miguel Hernández, Alicante, Spain
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
- CIBERehd, Instituto Salud Carlos III, Madrid, Spain
- Servicio Medicina Digestiva, Hospital General Universitario Dr. Balmis, Alicante, Spain
| | - Rubén Francés
- Hepatic and Intestinal Immunobiology Group, Dpto. Medicina Clínica, Universidad Miguel Hernández, Alicante, Spain
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
- CIBERehd, Instituto Salud Carlos III, Madrid, Spain
- Instituto IDIBE, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
5
|
Li Y, Zhang Y, Deng Q, Mao J, Jia Z, Tang M, Zhang Y, Zhao J, Chen J, Wang Y, Feng Z, Wang X, Du L. Resveratrol reverses Palmitic Acid-induced cow neutrophils apoptosis through shifting glucose metabolism into lipid metabolism via Cav-1/ CPT 1-mediated FAO enhancement. J Steroid Biochem Mol Biol 2023; 233:106363. [PMID: 37454955 DOI: 10.1016/j.jsbmb.2023.106363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/16/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Elevated plasma nonesterified fatty acids (NEFAs) affect neutrophils function and longevity during the periparturient period in dairy cows. Previous research has shown that resveratrol (RSV) may protect cell viability from NEFA-induced damage by regulating energy metabolism. However, it is unclear whether RSV has a protective effect on palmitic acid (PA)-treated neutrophils. The aim of this study was to investigate the molecular regulatory mechanism of the protective effect of RSV on neutrophils. The results showed that treatment with high concentrations of RSV (50 μM, 100 μM) maintained neutrophils activity by inhibiting neutrophils apoptosis (P < 0.05). Further analysis showed that high concentrations of RSV enhanced fatty acid oxidation (FAO) to produce ATP by promoting the expression of CAV1, ACSL-1 and CPT1 (P < 0. 05) while inhibiting glycolysis by suppressing PFK1 activity (P < 0. 05) and reducing glucose transport-related protein (GLUT1/GLUT4) expression by inhibiting glucose uptake (P < 0.05). These results suggest that RSV protects neutrophils from PA-induced apoptosis by regulating energy metabolism. Our results revealed that RSV protects neutrophils from PA-induced apoptosis by shifting glucose metabolism to lipid metabolism. This study tenders to a meaningful understanding of the effects of RSV on neutrophils function in periparturient cows suffering from negative energy balance (NEB).
Collapse
Affiliation(s)
- Yansong Li
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Yuming Zhang
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China; Inner Mongolia MINZU University Key Laboratory for Prevention and Control of Herbivorous Livestock Perinatal Diseases, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Qinghua Deng
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China; Inner Mongolia MINZU University Key Laboratory for Prevention and Control of Herbivorous Livestock Perinatal Diseases, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Jingdong Mao
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Zhenwei Jia
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Mingyu Tang
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Yue Zhang
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Junkang Zhao
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Jiaojiao Chen
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Yiru Wang
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Ziying Feng
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Xinbo Wang
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Liyin Du
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China; Inner Mongolia MINZU University Key Laboratory for Prevention and Control of Herbivorous Livestock Perinatal Diseases, Tongliao 028000, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
6
|
Riffelmacher T, Paynich Murray M, Wientjens C, Chandra S, Cedillo-Castelán V, Chou TF, McArdle S, Dillingham C, Devereaux J, Nilsen A, Brunel S, Lewinsohn DM, Hasty J, Seumois G, Benedict CA, Vijayanand P, Kronenberg M. Divergent metabolic programmes control two populations of MAIT cells that protect the lung. Nat Cell Biol 2023; 25:877-891. [PMID: 37231163 PMCID: PMC10264248 DOI: 10.1038/s41556-023-01152-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 04/18/2023] [Indexed: 05/27/2023]
Abstract
Although mucosal-associated invariant T (MAIT) cells provide rapid, innate-like responses, they are not pre-set, and memory-like responses have been described for MAIT cells following infections. The importance of metabolism for controlling these responses, however, is unknown. Here, following pulmonary immunization with a Salmonella vaccine strain, mouse MAIT cells expanded as separate CD127-Klrg1+ and CD127+Klrg1- antigen-adapted populations that differed in terms of their transcriptome, function and localization in lung tissue. These populations remained altered from steady state for months as stable, separate MAIT cell lineages with enhanced effector programmes and divergent metabolism. CD127+ MAIT cells engaged in an energetic, mitochondrial metabolic programme, which was critical for their maintenance and IL-17A synthesis. This programme was supported by high fatty acid uptake and mitochondrial oxidation and relied on highly polarized mitochondria and autophagy. After vaccination, CD127+ MAIT cells protected mice against Streptococcus pneumoniae infection. In contrast, Klrg1+ MAIT cells had dormant but ready-to-respond mitochondria and depended instead on Hif1a-driven glycolysis to survive and produce IFN-γ. They responded antigen independently and participated in protection from influenza virus. These metabolic dependencies may enable tuning of memory-like MAIT cell responses for vaccination and immunotherapies.
Collapse
Affiliation(s)
- Thomas Riffelmacher
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| | | | | | | | | | | | - Sara McArdle
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | | | - Aaron Nilsen
- Oregon Health and Science University, Portland, OR, USA
| | - Simon Brunel
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Jeff Hasty
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | | | | | | | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Hasan KMM, Haque MA. Autophagy and Its Lineage-Specific Roles in the Hematopoietic System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8257217. [PMID: 37180758 PMCID: PMC10171987 DOI: 10.1155/2023/8257217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 02/26/2023] [Accepted: 03/17/2023] [Indexed: 05/16/2023]
Abstract
Autophagy is a dynamic process that regulates the selective and nonselective degradation of cytoplasmic components, such as damaged organelles and protein aggregates inside lysosomes to maintain tissue homeostasis. Different types of autophagy including macroautophagy, microautophagy, and chaperon-mediated autophagy (CMA) have been implicated in a variety of pathological conditions, such as cancer, aging, neurodegeneration, and developmental disorders. Furthermore, the molecular mechanism and biological functions of autophagy have been extensively studied in vertebrate hematopoiesis and human blood malignancies. In recent years, the hematopoietic lineage-specific roles of different autophagy-related (ATG) genes have gained more attention. The evolution of gene-editing technology and the easy access nature of hematopoietic stem cells (HSCs), hematopoietic progenitors, and precursor cells have facilitated the autophagy research to better understand how ATG genes function in the hematopoietic system. Taking advantage of the gene-editing platform, this review has summarized the roles of different ATGs at the hematopoietic cell level, their dysregulation, and pathological consequences throughout hematopoiesis.
Collapse
Affiliation(s)
- Kazi Md Mahmudul Hasan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
- Department of Neurology, David Geffen School of Medicine, The University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Md Anwarul Haque
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
| |
Collapse
|
8
|
Xiong Y, Chen T, Chen L, Cai R. Gold Nanoparticles Coated with SH-PEG-NH 2 and Loaded with Ziyuglycoside I for Promoting Autophagy in Hematopoietic Stem Cells. Int J Nanomedicine 2023; 18:1347-1362. [PMID: 36974074 PMCID: PMC10039662 DOI: 10.2147/ijn.s399568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction Radiotherapy and chemotherapy are the fundamental causes of myelosuppression in cancer patients, which usually induce a serious hematopoietic system toxicity, causing the hemocytes and immunity decline of patients. Ziyuglycoside I (ZgI), an active ingredient isolated from traditional Chinese medicine Sanguisorba officinalis L, has been demonstrated to increase the leucocytes and protect hematopoietic stem cells, which is related to its promotion of autophagy in hematopoietic stem cells. Methods In the present study, we formulated the SH-PEG-NH2-coated gold nanoparticles loading ZgI (ZgI-AuNPs) with a enhanced autophagy promotion in hematopoietic stem cells. ZgI-AuNPs were prepared by HAuCl4-sodium citrate reduction method, and the synthesis of ZgI-AuNPs was validated by XRD, FT-IR, DSC, and TEM findings. Furthermore, the drug loading rate and the release of ZgI were evaluated, and the ZgI-AuNPs' effects on autophagy and immunofluorescence staining for LC3B were tested. Finally, the effect of ZgI-AuNPs on the autophagy and hematopoietic ability of HSCs in vivo was also carried out. Results The prepared ZgI-AuNPs have an irregular cubic crystal structure by TEM observation, and the average particle size was 340 ± 16.5 nm determined by DLS. The XRD, FT-IR and DSC detection showed that the ZgI had been well loaded in AuNPs, and the AuNPs can load the ZgI at a content of 160.63 ± 1.35 μg·mg-1. Meanwhile, the AuNPs can reduce the drug release rate of ZgI. Importantly, the ZgI-AuNPs enhanced autophagy of HSCs both in vitro and in vivo. At the same time, the gold nanoparticles enhance the hematopoietic effect of ZgI on mice HSCs. Conclusion Our research suggests that SH-PEG-NH2-coated gold nanoparticles loading ZgI has potential application in myelosuppression therapy.
Collapse
Affiliation(s)
- Yongai Xiong
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563000, People’s Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, People’s Republic of China
- Correspondence: Yongai Xiong, Email
| | - Tingting Chen
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563000, People’s Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, People’s Republic of China
| | - Lei Chen
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563000, People’s Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, People’s Republic of China
| | - Rongshan Cai
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563000, People’s Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, People’s Republic of China
| |
Collapse
|
9
|
Autophagy in Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14205072. [PMID: 36291856 PMCID: PMC9600546 DOI: 10.3390/cancers14205072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Autophagy is a dynamic and tightly regulated process that seems to have dual effects in cancer. In some contexts, it can induce carcinogenesis and promote cancer cell survival, whereas in others, it acts preventing tumor cell growth and tumor progression. Thus, autophagy functions seem to strictly depend on cancer ontogenesis, progression, and type. Here, we will dive into the current knowledge of autophagy in hematological malignancies and will highlight the main genetic components involved in each cancer type. Abstract Autophagy is a highly conserved metabolic pathway via which unwanted intracellular materials, such as unfolded proteins or damaged organelles, are digested. It is activated in response to conditions of oxidative stress or starvation, and is essential for the maintenance of cellular homeostasis and other vital functions, such as differentiation, cell death, and the cell cycle. Therefore, autophagy plays an important role in the initiation and progression of tumors, including hematological malignancies, where damaged autophagy during hematopoiesis can cause malignant transformation and increase cell proliferation. Over the last decade, the importance of autophagy in response to standard pharmacological treatment of hematological tumors has been observed, revealing completely opposite roles depending on the tumor type and stage. Thus, autophagy can promote tumor survival by attenuating the cellular damage caused by drugs and/or stabilizing oncogenic proteins, but can also have an antitumoral effect due to autophagic cell death. Therefore, autophagy-based strategies must depend on the context to create specific and safe combination therapies that could contribute to improved clinical outcomes. In this review, we describe the process of autophagy and its role on hematopoiesis, and we highlight recent research investigating its role as a potential therapeutic target in hematological malignancies. The findings suggest that genetic variants within autophagy-related genes modulate the risk of developing hemopathies, as well as patient survival.
Collapse
|
10
|
Wolska-Washer A, Smolewski P. Targeting Protein Degradation Pathways in Tumors: Focusing on their Role in Hematological Malignancies. Cancers (Basel) 2022; 14:3778. [PMID: 35954440 PMCID: PMC9367439 DOI: 10.3390/cancers14153778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Cells must maintain their proteome homeostasis by balancing protein synthesis and degradation. This is facilitated by evolutionarily-conserved processes, including the unfolded protein response and the proteasome-based system of protein clearance, autophagy, and chaperone-mediated autophagy. In some hematological malignancies, including acute myeloid leukemia, misfolding or aggregation of the wild-type p53 tumor-suppressor renders cells unable to undergo apoptosis, even with an intact p53 DNA sequence. Moreover, blocking the proteasome pathway triggers lymphoma cell apoptosis. Extensive studies have led to the development of proteasome inhibitors, which have advanced into drugs (such as bortezomib) used in the treatment of certain hematological tumors, including multiple myeloma. New therapeutic options have been studied making use of the so-called proteolysis-targeting chimeras (PROTACs), that bind desired proteins with a linker that connects them to an E3 ubiquitin ligase, resulting in proteasomal-targeted degradation. This review examines the mechanisms of protein degradation in the cells of the hematopoietic system, explains the role of dysfunctional protein degradation in the pathogenesis of hematological malignancies, and discusses the current and future advances of therapies targeting these pathways, based on an extensive search of the articles and conference proceedings from 2005 to April 2022.
Collapse
Affiliation(s)
| | - Piotr Smolewski
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland;
| |
Collapse
|
11
|
Tomaz V, Griesi-Oliveira K, Puga RD, Conti BJ, Santos FPS, Hamerschlak N, Campregher PV. Molecular Characterization of a First-in-Human Clinical Response to Nimesulide in Acute Myeloid Leukemia. Front Oncol 2022; 12:874168. [PMID: 35756679 PMCID: PMC9215211 DOI: 10.3389/fonc.2022.874168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy associated with high morbidity and mortality. Here we describe a case of a patient with AML who presented a partial response after utilization of the non-steroidal anti-inflammatory drug nimesulide. The response was characterized by complete clearance of peripheral blood blasts and an 82% decrease of bone marrow blasts associated with myeloblast differentiation. We have then shown that nimesulide induces in vitro cell death and cell cycle arrest in all AML cell lines (HL-60, THP-1, OCI-AML2, and OCI-AML3). Weighted Correlation Network Analysis (WGCNA) of serial whole-transcriptome data of cell lines treated with nimesulide revealed that the sets of genes upregulated after treatment with nimesulide were enriched for genes associated with autophagy and apoptosis, and on the other hand, the sets of downregulated genes were associated with cell cycle and RNA splicing. Serial transcriptome of bone marrow patient sample confirmed the upregulation of genes associated with autophagy after the response to nimesulide. Lastly, we demonstrated that nimesulide potentiates the cytotoxic in vitro effect of several Food and Drug Administration (FDA)-approved chemotherapy drugs used in AML, including cytarabine.
Collapse
Affiliation(s)
- Victória Tomaz
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Renato D Puga
- Medicina Personalizada, Grupo Pardini, São Paulo, Brazil
| | - Bruno J Conti
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Fabio P S Santos
- Centro de Hematologia e Oncologia Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Nelson Hamerschlak
- Centro de Hematologia e Oncologia Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Paulo V Campregher
- Centro de Hematologia e Oncologia Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
12
|
Montazersaheb S, Ehsani A, Fathi E, Farahzadi R, Vietor I. An Overview of Autophagy in Hematopoietic Stem Cell Transplantation. Front Bioeng Biotechnol 2022; 10:849768. [PMID: 35677295 PMCID: PMC9168265 DOI: 10.3389/fbioe.2022.849768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is a fundamental homeostatic process crucial for cellular adaptation in response to metabolic stress. Autophagy exerts its effect through degrading intracellular components and recycling them to produce macromolecular precursors and energy. This physiological process contributes to cellular development, maintenance of cellular/tissue homeostasis, immune system regulation, and human disease. Allogeneic hematopoietic stem cell transplantation (HSCT) is the only preferred therapy for most bone marrow-derived cancers. Unfortunately, HSCT can result in several serious and sometimes untreatable conditions due to graft-versus-host disease (GVHD), graft failure, and infection. These are the major cause of morbidity and mortality in patients receiving the transplant. During the last decade, autophagy has gained a considerable understanding of its role in various diseases and cellular processes. In light of recent research, it has been confirmed that autophagy plays a crucial role in the survival and function of hematopoietic stem cells (HSCs), T-cell differentiation, antigen presentation, and responsiveness to cytokine stimulation. Despite the importance of these events to HSCT, the role of autophagy in HSCT as a whole remains relatively ambiguous. As a result of the growing use of autophagy-modulating agents in the clinic, it is imperative to understand how autophagy functions in allogeneic HSCT. The purpose of this literature review is to elucidate the established and implicated roles of autophagy in HSCT, identifying this pathway as a potential therapeutic target for improving transplant outcomes.
Collapse
Affiliation(s)
- Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ehsani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Raheleh Farahzadi, ; Ilja Vietor,
| | - Ilja Vietor
- Institute of Cell Biology, Medical University of Innsbruck, Biocenter, Innsbruck, Austria
- *Correspondence: Raheleh Farahzadi, ; Ilja Vietor,
| |
Collapse
|
13
|
Choi M, Byun N, Hwang JR, Choi YS, Sung JH, Choi SJ, Kim JS, Oh SY, Roh CR. Effect of hydroxychloroquine and chloroquine on syncytial differentiation and autophagy in primary human trophoblasts. Biomed Pharmacother 2022; 149:112916. [DOI: 10.1016/j.biopha.2022.112916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 11/02/2022] Open
|
14
|
Mann Z, Sengar M, Verma YK, Rajalingam R, Raghav PK. Hematopoietic Stem Cell Factors: Their Functional Role in Self-Renewal and Clinical Aspects. Front Cell Dev Biol 2022; 10:664261. [PMID: 35399522 PMCID: PMC8987924 DOI: 10.3389/fcell.2022.664261] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/14/2022] [Indexed: 01/29/2023] Open
Abstract
Hematopoietic stem cells (HSCs) possess two important properties such as self-renewal and differentiation. These properties of HSCs are maintained through hematopoiesis. This process gives rise to two subpopulations, long-term and short-term HSCs, which have become a popular convention for treating various hematological disorders. The clinical application of HSCs is bone marrow transplant in patients with aplastic anemia, congenital neutropenia, sickle cell anemia, thalassemia, or replacement of damaged bone marrow in case of chemotherapy. The self-renewal attribute of HSCs ensures long-term hematopoiesis post-transplantation. However, HSCs need to be infused in large numbers to reach their target site and meet the demands since they lose their self-renewal capacity after a few passages. Therefore, a more in-depth understanding of ex vivo HSCs expansion needs to be developed to delineate ways to enhance the self-renewability of isolated HSCs. The multifaceted self-renewal process is regulated by factors, including transcription factors, miRNAs, and the bone marrow niche. A developed classical hierarchical model that outlines the hematopoiesis in a lineage-specific manner through in vivo fate mapping, barcoding, and determination of self-renewal regulatory factors are still to be explored in more detail. Thus, an in-depth study of the self-renewal property of HSCs is essentially required to be utilized for ex vivo expansion. This review primarily focuses on the Hematopoietic stem cell self-renewal pathway and evaluates the regulatory molecular factors involved in considering a targeted clinical approach in numerous malignancies and outlining gaps in the current knowledge.
Collapse
Affiliation(s)
- Zoya Mann
- Independent Researcher, New Delhi, India
| | - Manisha Sengar
- Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Yogesh Kumar Verma
- Stem Cell and Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Pawan Kumar Raghav
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
15
|
Benjamin DN, O'Donovan TR, Laursen KB, Orfali N, Cahill MR, Mongan NP, Gudas LJ, McKenna SL. All- Trans-Retinoic Acid Combined With Valproic Acid Can Promote Differentiation in Myeloid Leukemia Cells by an Autophagy Dependent Mechanism. Front Oncol 2022; 12:848517. [PMID: 35280824 PMCID: PMC8907478 DOI: 10.3389/fonc.2022.848517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive blood cancer with an overall survival of 30%. One form of AML, acute promyelocytic leukemia (APL) has become more than 90% curable with differentiation therapy, consisting of all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO). Application of differentiation therapy to other AML subtypes would be a major treatment advance. Recent studies have indicated that autophagy plays a key role in the differentiation of ATRA-responsive APL cells. In this study, we have investigated whether differentiation could be enhanced in ATRA resistant cells by promoting autophagy induction with valproic acid (VPA). ATRA sensitive (NB4) and resistant leukemia cells (NB4R and THP-1) were co-treated with ATRA and valproic acid, followed by assessment of autophagy and differentiation. The combination of VPA and ATRA induced autophagic flux and promoted differentiation in ATRA-sensitive and -resistant cell lines. shRNA knockdown of ATG7 and TFEB autophagy regulators impaired both autophagy and differentiation, demonstrating the importance of autophagy in the combination treatment. These data suggest that ATRA combined with valproic acid can promote differentiation in myeloid leukemia cells by mechanism involving autophagy.
Collapse
Affiliation(s)
- Dalyia N Benjamin
- Cancer Research, University College Cork, Cork, Ireland.,Department of Haematology, Tallaght University Hospital, Dublin, Ireland.,Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, United States
| | | | - Kristian B Laursen
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, United States
| | - Nina Orfali
- Department of Haematology, St James's Hospital, Dublin, Ireland
| | - Mary R Cahill
- Department of Haematology, Cork University Hospital, Cork, Ireland
| | - Nigel P Mongan
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, United States.,Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, United States
| | | |
Collapse
|
16
|
MAP kinase-dependent autophagy controls phorbol myristate acetate-induced macrophage differentiation of HL-60 leukemia cells. Life Sci 2022; 297:120481. [PMID: 35304128 DOI: 10.1016/j.lfs.2022.120481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
We investigated the mechanisms and the role of autophagy in the differentiation of HL-60 human acute myeloid leukemia cells induced by protein kinase C (PKC) activator phorbol myristate acetate (PMA). PMA-triggered differentiation of HL-60 cells into macrophage-like cells was confirmed by cell-cycle arrest accompanied by elevated expression of macrophage markers CD11b, CD13, CD14, CD45, EGR1, CSF1R, and IL-8. The induction of autophagy was demonstrated by the increase in intracellular acidification, accumulation/punctuation of autophagosome marker LC3-II, and the increase in autophagic flux. PMA also increased nuclear translocation of autophagy transcription factors TFEB, FOXO1, and FOXO3, as well as the expression of several autophagy-related (ATG) genes in HL-60 cells. PMA failed to activate autophagy inducer AMP-activated protein kinase (AMPK) and inhibit autophagy suppressor mechanistic target of rapamycin complex 1 (mTORC1). On the other hand, it readily stimulated the phosphorylation of mitogen-activated protein (MAP) kinases extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) via a protein kinase C-dependent mechanism. Pharmacological or genetic inhibition of ERK or JNK suppressed PMA-triggered nuclear translocation of TFEB and FOXO1/3, ATG expression, dissociation of pro-autophagic beclin-1 from its inhibitor BCL2, autophagy induction, and differentiation of HL-60 cells into macrophage-like cells. Pharmacological or genetic inhibition of autophagy also blocked PMA-induced macrophage differentiation of HL-60 cells. Therefore, MAP kinases ERK and JNK control PMA-induced macrophage differentiation of HL-60 leukemia cells through AMPK/mTORC1-independent, TFEB/FOXO-mediated transcriptional and beclin-1-dependent post-translational activation of autophagy.
Collapse
|
17
|
Alwani A, Andreasik A, Szatanek R, Siedlar M, Baj-Krzyworzeka M. The Role of miRNA in Regulating the Fate of Monocytes in Health and Cancer. Biomolecules 2022; 12:100. [PMID: 35053248 PMCID: PMC8773712 DOI: 10.3390/biom12010100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/23/2022] Open
Abstract
Monocytes represent a heterogeneous population of blood cells that provide a link between innate and adaptive immunity. The unique potential of monocytes as both precursors (e.g., of macrophages) and effector cells (as phagocytes or cytotoxic cells) makes them an interesting research and therapeutic target. At the site of a tumor, monocytes/macrophages constitute a major population of infiltrating leukocytes and, depending on the type of tumor, may play a dual role as either a bad or good indicator for cancer recovery. The functional activity of monocytes and macrophages derived from them is tightly regulated at the transcriptional and post-transcriptional level. This review summarizes the current understanding of the role of small regulatory miRNA in monocyte formation, maturation and function in health and cancer development. Additionally, signatures of miRNA-based monocyte subsets and the influence of exogenous miRNA generated in the tumor environment on the function of monocytes are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland; (A.A.); (A.A.); (R.S.); (M.S.)
| |
Collapse
|
18
|
Apodaca-Chávez E, Demichelis-Gómez R, Rosas-López A, Mejía-Domínguez NR, Galvan-López I, Addorosio M, Tracey KJ, Valdés-Ferrer SI. Circulating HMGB1 is increased in myelodysplastic syndrome but not in other bone marrow failure syndromes: proof-of-concept cross-sectional study. Ther Adv Hematol 2022; 13:20406207221125990. [PMID: 36246421 PMCID: PMC9554121 DOI: 10.1177/20406207221125990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/24/2022] [Indexed: 11/06/2022] Open
Abstract
Background Myelodysplastic syndrome (MDS) is associated with persistent immune activation. High mobility group box-1 (HMGB1) is a ubiquitous, functionally diverse, non-histone intranuclear protein. During acute and chronic inflammatory states, HMGB1 is actively released by inflammatory cells, further amplifying the inflammatory response. A role in MDS and other hypoplastic bone marrow (BM) disorders is incompletely understood. Objectives The objective of the study is to evaluate whether circulating HMGB1 is elevated in patients with MDS and other BM failure syndromes [namely, aplastic anemia (AA) and paroxysmal nocturnal hemoglobinuria (PNH)]. Design This is a observational, cross-sectional, single-center, exploratory study. Methods We evaluated circulating concentrations of HMGB1, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in patients with MDS and age-matched hematologically healthy controls as well as patients with AA and PNH. Results We included 66 patients with MDS and 65 age-matched controls as well as 44 patients with other BM failures (AA = 27, PNH = 17). Circulating levels of HMGB1 were higher in patients with MDS [median, 4.9 ng/ml; interquartile range (IQR): 2.3-8.1] than in AA (median, 2.6 ng/ml; IQR: 1.7-3.7), PNH (median, 1.7 ng/ml; IQR: 0.9-2.5), and age-matched healthy individuals (median, 1.9 ng/ml; IQR: 0.9-2.5) (p = 0.0001). We observed higher concentrations of HMGB1 in the very low/low-risk MDS patients than in the intermediate/high/very high-risk ones (p = 0.046). Finally, in comparison with patients with AA, those with hypocellular MDS (h-MDS) had significantly higher levels of circulating HMGB1 (n = 14; median concentration, 5.6 ng/ml, IQR: 2.8-7.3; p = 0.006). We determined a circulating HMGB1 value of 4.095 ng/ml as a diagnostic cutoff differentiator between h-MDS and AA. Conclusion These observations indicate that circulating HMGB1 is increased in patients with MDS. HMGB1 (but not IL-1β or TNF-α) differentiated between MDS and other BM failures, suggesting that HMGB1 may be mechanistically involved in MDS and a druggable target to decrease inflammation in MDS.
Collapse
Affiliation(s)
- Elia Apodaca-Chávez
- Departamento de Hematología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Roberta Demichelis-Gómez
- Departamento de Hematología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Adriana Rosas-López
- Departamento de Hematología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Nancy R. Mejía-Domínguez
- Departamento de Hematología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Isabela Galvan-López
- Departamento de Hematología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Meghan Addorosio
- Center for Biomedical Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Kevin J. Tracey
- Center for Biomedical Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | |
Collapse
|
19
|
Kuşçu GC, Gürel Ç, Buhur A, Oltulu F, Akman L, Köse T, Yavaşoğlu NÜK, Yavaşoğlu A. The regulatory effects of clomiphene and tamoxifen on mTOR and LC3-II expressions in relation to autophagy in experimental polycystic ovary syndrome (PCOS). Mol Biol Rep 2021; 49:1721-1729. [PMID: 34813001 DOI: 10.1007/s11033-021-06981-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a metabolic disease that causes infertility due to anovulation in women in reproductive age. It is known that clomiphene citrate (CC) and tamoxifen citrate (TMX) induce ovulation in women with PCOS. In this study, we aimed to investigate the effects of CC and TMX on the autophagy pathway in PCOS. METHODS AND RESULTS Experimental PCOS model was induced by letrozole (1 mg/kg) in rats by gavage for 21 days. After the last letrozole administration, rats were treated TMX (1 mg/kg) or CC (1 mg/kg) for 5 days. At the end of the experimental procedures, rats in all groups were sacrificed and ovarian tissues were removed. It was observed that mRNA and protein expressions of LC3-II were significantly higher in TMX and CC groups than control and PCOS groups (p < 0.05), while mRNA and protein expressions of mTOR in TMX and CC groups were found significantly lower than control and PCOS groups (p < 0.05). CONCLUSIONS In conclusion, present study suggests that TMX and CC induce autophagy in ovaries with PCOS. Autophagy is a promising target for understanding pathophysiology of this disease and for developing more effective and safe new protocols for the treatment of PCOS-related anovulation.
Collapse
Affiliation(s)
- Gökçe Ceren Kuşçu
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Çevik Gürel
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Aylin Buhur
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Fatih Oltulu
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Levent Akman
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Timur Köse
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Izmir, Turkey
| | | | - Altuğ Yavaşoğlu
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
20
|
Autophagy is dispensable for the maintenance of hematopoietic stem cells in neonates. Blood Adv 2021; 5:1594-1604. [PMID: 33710340 DOI: 10.1182/bloodadvances.2020002410] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic stem cells (HSCs) undergo self-renewal or differentiation to sustain lifelong hematopoiesis. HSCs are preserved in quiescence with low mitochondrial activity. Recent studies indicate that autophagy contributes to HSC quiescence through suppressing mitochondrial metabolism. However, it remains unclear whether autophagy is involved in the regulation of neonatal HSCs, which proliferate actively. In this study, we clarified the role of autophagy in neonatal HSCs using 2 types of autophagy-related gene 7 (Atg7)-conditional knockout mice: Mx1-Cre inducible system and Vav-Cre system. Atg7-deficient HSCs exhibited excess cell divisions with enhanced mitochondrial metabolism, leading to bone marrow failure at adult stage. However, Atg7 deficiency minimally affected hematopoiesis and metabolic state in HSCs at neonatal stage. In addition, Atg7-deficient neonatal HSCs exhibited long-term reconstructing activity, equivalent to wild-type neonatal HSCs. Taken together, autophagy is dispensable for stem cell function and hematopoietic homeostasis in neonates and provide a novel aspect into the role of autophagy in the HSC regulation.
Collapse
|
21
|
Wei Q, Pinho S, Dong S, Pierce H, Li H, Nakahara F, Xu J, Xu C, Boulais PE, Zhang D, Maryanovich M, Cuervo AM, Frenette PS. MAEA is an E3 ubiquitin ligase promoting autophagy and maintenance of haematopoietic stem cells. Nat Commun 2021; 12:2522. [PMID: 33947846 PMCID: PMC8097058 DOI: 10.1038/s41467-021-22749-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Haematopoietic stem cells (HSCs) tightly regulate their quiescence, proliferation, and differentiation to generate blood cells during the entire lifetime. The mechanisms by which these critical activities are balanced are still unclear. Here, we report that Macrophage-Erythroblast Attacher (MAEA, also known as EMP), a receptor thus far only identified in erythroblastic island, is a membrane-associated E3 ubiquitin ligase subunit essential for HSC maintenance and lymphoid potential. Maea is highly expressed in HSCs and its deletion in mice severely impairs HSC quiescence and leads to a lethal myeloproliferative syndrome. Mechanistically, we have found that the surface expression of several haematopoietic cytokine receptors (e.g. MPL, FLT3) is stabilised in the absence of Maea, thereby prolonging their intracellular signalling. This is associated with impaired autophagy flux in HSCs but not in mature haematopoietic cells. Administration of receptor kinase inhibitor or autophagy-inducing compounds rescues the functional defects of Maea-deficient HSCs. Our results suggest that MAEA provides E3 ubiquitin ligase activity, guarding HSC function by restricting cytokine receptor signalling via autophagy.
Collapse
Affiliation(s)
- Qiaozhi Wei
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Sandra Pinho
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Shuxian Dong
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Halley Pierce
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Huihui Li
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Fumio Nakahara
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jianing Xu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chunliang Xu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Philip E Boulais
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dachuan Zhang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria Maryanovich
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Maria Cuervo
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
22
|
Exploiting the Role of Hypoxia-Inducible Factor 1 and Pseudohypoxia in the Myelodysplastic Syndrome Pathophysiology. Int J Mol Sci 2021; 22:ijms22084099. [PMID: 33921064 PMCID: PMC8071466 DOI: 10.3390/ijms22084099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 01/02/2023] Open
Abstract
Myelodysplastic syndromes (MDS) comprise a heterogeneous group of clonal hematopoietic stem (HSCs) and/or progenitor cells disorders. The established dependence of MDS progenitors on the hypoxic bone marrow (BM) microenvironment turned scientific interests to the transcription factor hypoxia-inducible factor 1 (HIF-1). HIF-1 facilitates quiescence maintenance and regulates differentiation by manipulating HSCs metabolism, being thus an appealing research target. Therefore, we examine the aberrant HIF-1 stabilization in BMs from MDS patients and controls (CTRLs). Using a nitroimidazole–indocyanine conjugate, we show that HIF-1 aberrant expression and transcription activity is oxygen independent, establishing the phenomenon of pseudohypoxia in MDS BM. Next, we examine mitochondrial quality and quantity along with levels of autophagy in the differentiating myeloid lineage isolated from fresh BM MDS and CTRL aspirates given that both phenomena are HIF-1 dependent. We show that the mitophagy of abnormal mitochondria and autophagic death are prominently featured in the MDS myeloid lineage, their severity increasing with intra-BM blast counts. Finally, we use in vitro cultured CD34+ HSCs isolated from fresh human BM aspirates to manipulate HIF-1 expression and examine its potential as a therapeutic target. We find that despite being cultured under 21% FiO2, HIF-1 remained aberrantly stable in all MDS cultures. Inhibition of the HIF-1α subunit had a variable beneficial effect in all <5%-intra-BM blasts-MDS, while it had no effect in CTRLs or in ≥5%-intra-BM blasts-MDS that uniformly died within 3 days of culture. We conclude that HIF-1 and pseudohypoxia are prominently featured in MDS pathobiology, and their manipulation has some potential in the therapeutics of benign MDS.
Collapse
|
23
|
Oliverio S, Beltran JSO, Occhigrossi L, Bordoni V, Agrati C, D'Eletto M, Rossin F, Borelli P, Amarante-Mendes GP, Demidov O, Barlev NA, Piacentini M. Transglutaminase Type 2 is Involved in the Hematopoietic Stem Cells Homeostasis. BIOCHEMISTRY (MOSCOW) 2021; 85:1159-1168. [PMID: 33202201 DOI: 10.1134/s0006297920100041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type 2 transglutaminase (TG2) is a multifunctional protein involved in various biological processes playing a key regulatory role in cell homeostasis such as cell death and autophagy. New evidence is emerging that support an important role of autophagy in regulating normal hematopoiesis. Prompted by these findings, in this study we investigated in vivo involvement of TG2 in mouse hematopoiesis under normal or nutrient deprivation conditions. We found that the number and rate of differentiation of bone marrow hematopoietic stem cell was decreased in the TG2 knockout mice. We present evidence showing that these effects on hematopoietic system are very likely due to the TG2-dependent impairment of autophagy. In fact, stimulation of autophagy by starvation is able to rescue the block of the differentiation of stem cells progenitors in the TG2 KO mice. It was also shown that the RhoA/ERK½ pathway, known to be essential for regulation of the bone marrow progenitor cells homeostasis, was significantly impaired in the absence of TG2. Hence, this study expanded our knowledge about TG2 discovering a role of this enzyme in regulation of hematopoiesis.
Collapse
Affiliation(s)
- S Oliverio
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - J S O Beltran
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy.,Clinical and Experimental Hematology Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - L Occhigrossi
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - V Bordoni
- National Institute for Infectious Diseases I. R. C. C. S. "Lazzaro Spallanzani" Rome, 00149, Italy
| | - C Agrati
- National Institute for Infectious Diseases I. R. C. C. S. "Lazzaro Spallanzani" Rome, 00149, Italy
| | - M D'Eletto
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - F Rossin
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - P Borelli
- Clinical and Experimental Hematology Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - G P Amarante-Mendes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - O Demidov
- Laboratory of Molecular Medicine, Institute of Cytology, Russian Academy of Sciences, St.-Petersburg, 194064, Russia
| | - N A Barlev
- Laboratory of Molecular Medicine, Institute of Cytology, Russian Academy of Sciences, St.-Petersburg, 194064, Russia
| | - M Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy. .,National Institute for Infectious Diseases I. R. C. C. S. "Lazzaro Spallanzani" Rome, 00149, Italy.,Laboratory of Molecular Medicine, Institute of Cytology, Russian Academy of Sciences, St.-Petersburg, 194064, Russia
| |
Collapse
|
24
|
Saulle E, Spinello I, Quaranta MT, Pasquini L, Pelosi E, Iorio E, Castelli G, Chirico M, Pisanu ME, Ottone T, Voso MT, Testa U, Labbaye C. Targeting Lactate Metabolism by Inhibiting MCT1 or MCT4 Impairs Leukemic Cell Proliferation, Induces Two Different Related Death-Pathways and Increases Chemotherapeutic Sensitivity of Acute Myeloid Leukemia Cells. Front Oncol 2021; 10:621458. [PMID: 33614502 PMCID: PMC7892602 DOI: 10.3389/fonc.2020.621458] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/22/2020] [Indexed: 12/31/2022] Open
Abstract
Metabolism in acute myeloid leukemia (AML) cells is dependent primarily on oxidative phosphorylation. However, in order to sustain their high proliferation rate and metabolic demand, leukemic blasts use a number of metabolic strategies, including glycolytic metabolism. Understanding whether monocarboxylate transporters MCT1 and MCT4, which remove the excess of lactate produced by cancer cells, represent new hematological targets, and whether their respective inhibitors, AR-C155858 and syrosingopine, can be useful in leukemia therapy, may reveal a novel treatment strategy for patients with AML. We analyzed MCT1 and MCT4 expression and function in hematopoietic progenitor cells from healthy cord blood, in several leukemic cell lines and in primary leukemic blasts from patients with AML, and investigated the effects of AR-C155858 and syrosingopine, used alone or in combination with arabinosylcytosine, on leukemic cell proliferation. We found an inverse correlation between MCT1 and MCT4 expression levels in leukemic cells, and showed that MCT4 overexpression is associated with poor prognosis in AML patients. We also found that AR-C155858 and syrosingopine inhibit leukemic cell proliferation by activating two different cell-death related pathways, i.e., necrosis for AR-C155858 treatment and autophagy for syrosingopine, and showed that AR-C155858 and syrosingopine exert an anti-proliferative effect, additive to chemotherapy, by enhancing leukemic cells sensitivity to chemotherapeutic agents. Altogether, our study shows that inhibition of MCT1 or MCT4 impairs leukemic cell proliferation, suggesting that targeting lactate metabolism may be a new therapeutic strategy for AML, and points to MCT4 as a potential therapeutic target in AML patients and to syrosingopine as a new anti-proliferative drug and inducer of autophagy to be used in combination with conventional chemotherapeutic agents in AML treatment.
Collapse
Affiliation(s)
- Ernestina Saulle
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Isabella Spinello
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Teresa Quaranta
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Luca Pasquini
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Egidio Iorio
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mattea Chirico
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | | | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Santa Lucia Foundation, I.R.C.C.S., Neuro-Oncohematology, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Santa Lucia Foundation, I.R.C.C.S., Neuro-Oncohematology, Rome, Italy
| | - Ugo Testa
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Catherine Labbaye
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
25
|
Oatley M, Bölükbası ÖV, Svensson V, Shvartsman M, Ganter K, Zirngibl K, Pavlovich PV, Milchevskaya V, Foteva V, Natarajan KN, Baying B, Benes V, Patil KR, Teichmann SA, Lancrin C. Single-cell transcriptomics identifies CD44 as a marker and regulator of endothelial to haematopoietic transition. Nat Commun 2020; 11:586. [PMID: 31996681 PMCID: PMC6989687 DOI: 10.1038/s41467-019-14171-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
The endothelial to haematopoietic transition (EHT) is the process whereby haemogenic endothelium differentiates into haematopoietic stem and progenitor cells (HSPCs). The intermediary steps of this process are unclear, in particular the identity of endothelial cells that give rise to HSPCs is unknown. Using single-cell transcriptome analysis and antibody screening, we identify CD44 as a marker of EHT enabling us to isolate robustly the different stages of EHT in the aorta-gonad-mesonephros (AGM) region. This allows us to provide a detailed phenotypical and transcriptional profile of CD44-positive arterial endothelial cells from which HSPCs emerge. They are characterized with high expression of genes related to Notch signalling, TGFbeta/BMP antagonists, a downregulation of genes related to glycolysis and the TCA cycle, and a lower rate of cell cycle. Moreover, we demonstrate that by inhibiting the interaction between CD44 and its ligand hyaluronan, we can block EHT, identifying an additional regulator of HSPC development. The endothelial to haematopoietic transition (EHT) is the process where haemogenic endothelium differentiates into haematopoietic stem and progenitor cells (HSPCs). Here the authors use single cell transcriptomics and antibody screening to identify CD44 as a marker of EHT that is required for EHT and HSPC development.
Collapse
Affiliation(s)
- Morgan Oatley
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy
| | - Özge Vargel Bölükbası
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy.,Stem Cell and Regenerative Biology Department, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Valentine Svensson
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK.,European Molecular Biology Laboratory, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK.,Pachter Lab, Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, USA
| | - Maya Shvartsman
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy
| | - Kerstin Ganter
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy
| | - Katharina Zirngibl
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Polina V Pavlovich
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy.,Moscow Institute of Physics and Technology, Institutskii Per. 9, Moscow Region, Dolgoprudny, 141700, Russia.,Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, D-79108, Freiburg, Germany
| | - Vladislava Milchevskaya
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Institut für Medizinische Statistik und Bioinformatik, Bachemer Strasse 86, 50931, Köln, Germany
| | - Vladimira Foteva
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy
| | - Kedar N Natarajan
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK.,Department of Biochemistry and Molecular Biology, The University of Southern Denmark, Danish Institute for Advanced Study, Campusvej 55, 5230, Odense M, Denmark
| | - Bianka Baying
- European Molecular Biology Laboratory, Genomics Core Facility, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Vladimir Benes
- European Molecular Biology Laboratory, Genomics Core Facility, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Kiran R Patil
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Sarah A Teichmann
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Christophe Lancrin
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy.
| |
Collapse
|
26
|
Abstract
Across all branches of the immune system, the process of autophagy is fundamentally important in cellular development, function and homeostasis. Strikingly, this evolutionarily ancient pathway for intracellular recycling has been adapted to enable a high degree of functional complexity and specialization. However, although the requirement for autophagy in normal immune cell function is clear, the mechanisms involved are much less so and encompass control of metabolism, selective degradation of substrates and organelles and participation in cell survival decisions. We review here the crucial functions of autophagy in controlling the differentiation and homeostasis of multiple immune cell types and discuss the potential mechanisms involved.
Collapse
|
27
|
Robert G, Jacquel A, Auberger P. Chaperone-Mediated Autophagy and Its Emerging Role in Hematological Malignancies. Cells 2019; 8:E1260. [PMID: 31623164 PMCID: PMC6830112 DOI: 10.3390/cells8101260] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) ensures the selective degradation of cellular proteins endowed with a KFERQ-like motif by lysosomes. It is estimated that 30% of all cellular proteins can be directed to the lysosome for CMA degradation, but only a few substrates have been formally identified so far. Mechanistically, the KFERQ-like motifs present in substrate proteins are recognized by the molecular chaperone Hsc70c (Heat shock cognate 71 kDa protein cytosolic), also known as HSPA8, and directed to LAMP2A, which acts as the CMA receptor at the lysosomal surface. Following linearization, the protein substrate is next transported to the lumen of the lysosomes, where it is degraded by resident proteases, mainly cathepsins and eventually recycled to sustain cellular homeostasis. CMA is induced by different stress conditions, including energy deprivation that also activates macro-autophagy (MA), that may make it difficult to decipher the relative impact of both pathways on cellular homeostasis. Besides common inducing triggers, CMA and MA might be induced as compensatory mechanisms when either mechanism is altered, as it is the often the case in different pathological settings. Therefore, CMA activation can compensate for alterations of MA and vice versa. In this context, these compensatory mechanisms, when occurring, may be targeted for therapeutic purposes. Both processes have received particular attention from scientists and clinicians, since modulation of MA and CMA may have a profound impact on cellular proteostasis, metabolism, death, differentiation, and survival and, as such, could be targeted for therapeutic intervention in degenerative and immune diseases, as well as in cancer, including hematopoietic malignancies. The role of MA in cancer initiation and progression is now well established, but whether and how CMA is involved in tumorigenesis has been only sparsely explored. In the present review, we encompass the description of the mechanisms involved in CMA, its function in the physiology and pathogenesis of hematopoietic cells, its emerging role in cancer initiation and development, and, finally, the potential therapeutic opportunity to target CMA or CMA-mediated compensatory mechanisms in hematological malignancies.
Collapse
Affiliation(s)
- Guillaume Robert
- Mediterranean Center for Molecular Medicine ,Université Nice Côte d'Azur, C3M/Inserm1065, 06100 Nice, France.
| | - Arnaud Jacquel
- Mediterranean Center for Molecular Medicine ,Université Nice Côte d'Azur, C3M/Inserm1065, 06100 Nice, France
| | - Patrick Auberger
- Mediterranean Center for Molecular Medicine ,Université Nice Côte d'Azur, C3M/Inserm1065, 06100 Nice, France.
| |
Collapse
|
28
|
Mestre Citrinovitz AC, Strowitzki T, Germeyer A. Decreased Autophagy Impairs Decidualization of Human Endometrial Stromal Cells: A Role for ATG Proteins in Endometrial Physiology. Int J Mol Sci 2019; 20:ijms20123066. [PMID: 31234569 PMCID: PMC6628477 DOI: 10.3390/ijms20123066] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022] Open
Abstract
During the menstrual cycle, the endometrium undergoes cyclic changes of cellular proliferation, differentiation, and death, an essential preparation of the endometrium for its interaction with the implanting embryo. In particular, the differentiation of endometrial stromal cells, named decidualization, ensures the formation of a proper feto-maternal interface for a regulated trophoblast invasion and correct placental orientation and growth. Interestingly, autophagy, an intracellular degradation process of great importance for the maintenance of cellular homeostasis, plays an important role in cell proliferation, differentiation, and growth. In the endometrium, increased detection of autophagy markers correlates with the progression of the menstrual cycle. However, until now, it was unknown whether autophagy contributes to the proper function of the endometrium. In this study, we show that autophagy is increased during in vitro decidualization of human endometrial stromal cells. Furthermore, we demonstrate that the knockdowns of two important autophagy-related (ATG) proteins, ATG7 and ATG5, impaired decidualization, confirming a positive role of these proteins and of autophagy for the correct decidualization of human endometrial stromal cells. In conclusion, in this work, we describe a previously unknown functional connection between autophagy and endometrial physiology.
Collapse
Affiliation(s)
- Ana Cecilia Mestre Citrinovitz
- Department of Gynecological Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg, INF 440, 69120 Heidelberg, Germany.
| | - Thomas Strowitzki
- Department of Gynecological Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg, INF 440, 69120 Heidelberg, Germany.
| | - Ariane Germeyer
- Department of Gynecological Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg, INF 440, 69120 Heidelberg, Germany.
| |
Collapse
|
29
|
Martano G, Borroni EM, Lopci E, Cattaneo MG, Mattioli M, Bachi A, Decimo I, Bifari F. Metabolism of Stem and Progenitor Cells: Proper Methods to Answer Specific Questions. Front Mol Neurosci 2019; 12:151. [PMID: 31249511 PMCID: PMC6584756 DOI: 10.3389/fnmol.2019.00151] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/28/2019] [Indexed: 01/01/2023] Open
Abstract
Stem cells can stay quiescent for a long period of time or proliferate and differentiate into multiple lineages. The activity of stage-specific metabolic programs allows stem cells to best adapt their functions in different microenvironments. Specific cellular phenotypes can be, therefore, defined by precise metabolic signatures. Notably, not only cellular metabolism describes a defined cellular phenotype, but experimental evidence now clearly indicate that also rewiring cells towards a particular cellular metabolism can drive their cellular phenotype and function accordingly. Cellular metabolism can be studied by both targeted and untargeted approaches. Targeted analyses focus on a subset of identified metabolites and on their metabolic fluxes. In addition, the overall assessment of the oxygen consumption rate (OCR) gives a measure of the overall cellular oxidative metabolism and mitochondrial function. Untargeted approach provides a large-scale identification and quantification of the whole metabolome with the aim to describe a metabolic fingerprinting. In this review article, we overview the methodologies currently available for the study of invitro stem cell metabolism, including metabolic fluxes, fingerprint analyses, and single-cell metabolomics. Moreover, we summarize available approaches for the study of in vivo stem cell metabolism. For all of the described methods, we highlight their specificities and limitations. In addition, we discuss practical concerns about the most threatening steps, including metabolic quenching, sample preparation and extraction. A better knowledge of the precise metabolic signature defining specific cell population is instrumental to the design of novel therapeutic strategies able to drive undifferentiated stem cells towards a selective and valuable cellular phenotype.
Collapse
Affiliation(s)
| | - Elena Monica Borroni
- Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Egesta Lopci
- Nuclear Medicine Unit, Humanitas Clinical and Research Hospital-IRCCS, Rozzano, Italy
| | - Maria Grazia Cattaneo
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Milena Mattioli
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Ilaria Decimo
- Laboratory of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
30
|
Ruvolo PP, Hu CW, Qiu Y, Ruvolo VR, Go RL, Hubner SE, Coombes KR, Andreeff M, Qutub AA, Kornblau SM. LGALS3 is connected to CD74 in a previously unknown protein network that is associated with poor survival in patients with AML. EBioMedicine 2019; 44:126-137. [PMID: 31105032 PMCID: PMC6604360 DOI: 10.1016/j.ebiom.2019.05.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023] Open
Abstract
Background Galectin 3 (LGALS3) gene expression is associated with poor survival in acute myeloid leukemia (AML) but the prognostic impact of LGALS3 protein expression in AML is unknown. LGALS3 supports diverse survival pathways including RAS mediated cascades, protein expression and stability of anti-apoptotic BCL2 family members, and activation of proliferative pathways including those mediated by beta Catenin. CD74 is a positive regulator of CD44 and CXCR4 signaling and this molecule may be critical for AML stem cell function. At present, the role of LGALS3 and CD74 in AML is unclear. In this study, we examine protein expression of LGALS3 and CD74 by reverse phase protein analysis (RPPA) and identify new protein networks associated with these molecules. In addition, we determine prognostic potential of LGALS3, CD74, and their protein networks for clinical correlates in AML patients. Methods RPPA was used to determine relative expression of LGALS3, CD74, and 229 other proteins in 231 fresh AML patient samples and 205 samples were from patients who were treated and evaluable for outcome. Pearson correlation analysis was performed to identify proteins associated with LGALS3 and CD74. Progeny clustering was performed to generate protein networks. String analysis was performed to determine protein:protein interactions in networks and to perform gene ontology analysis. Kaplan-Meir method was used to generate survival curves. Findings LGALS3 is highest in monocytic AML patients and those with elevated LGALS3 had significantly shorter remission duration compared to patients with lower LGALS3 levels (median 21.9 vs 51.3 weeks, p = 0.016). Pearson correlation of LGALS3 with 230 other proteins identifies a distinct set of 37 proteins positively correlated with LGALS3 expression levels with a high representation of proteins involved in AKT and ERK signaling pathways. Thirty-one proteins were negatively correlated with LGALS3 including an AKT phosphatase. Pearson correlation of proteins associated with CD74 identified 12 proteins negatively correlated with CD74 and 16 proteins that are positively correlated with CD74. CD74 network revealed strong association with CD44 signaling and a high representation of apoptosis regulators. Progeny clustering was used to build protein networks based on LGALS3 and CD74 associated proteins. A strong relationship of the LGALS3 network with the CD74 network was identified. For AML patients with both the LGALS3 and CD74 protein cluster active, median overall survival was only 24.3 weeks, median remission duration was 17.8 weeks, and no patient survived beyond one year. Interpretation The findings from this study identify for the first time protein networks associated with LGALS3 and CD74 in AML. Each network features unique pathway characteristics. The data also suggest that the LGALS3 network and the CD74 network each support AML cell survival and the two networks may cooperate in a novel high risk AML population. Fund Leukemia Lymphoma Society provided funds to SMK for RPPA study of AML patient population. Texas Leukemia provided funds to PPR and SMK to study CD74 and LGALS3 expression in AML patients using RPPA. No payment was involved in the production of this manuscript.
Collapse
Affiliation(s)
- Peter P Ruvolo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Division of Molecular Hematology and Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Chenyue W Hu
- Department of Biomechanical Engineering, University Texas San Antonio, San Antonio, TX, USA
| | - Yihua Qiu
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Division of Molecular Hematology and Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivian R Ruvolo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Division of Molecular Hematology and Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robin L Go
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Division of Molecular Hematology and Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stefan E Hubner
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Division of Molecular Hematology and Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin R Coombes
- Departments of Biomedical Informatics, The Ohio State University, USA
| | - Michael Andreeff
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Division of Molecular Hematology and Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amina A Qutub
- Department of Biomechanical Engineering, University Texas San Antonio, San Antonio, TX, USA
| | - Steven M Kornblau
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Division of Molecular Hematology and Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
31
|
Lee J, Kim HS. The Role of Autophagy in Eosinophilic Airway Inflammation. Immune Netw 2019; 19:e5. [PMID: 30838160 PMCID: PMC6399092 DOI: 10.4110/in.2019.19.e5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a homeostatic mechanism that discards not only invading pathogens but also damaged organelles and denatured proteins via lysosomal degradation. Increasing evidence suggests a role for autophagy in inflammatory diseases, including infectious diseases, Crohn's disease, cystic fibrosis, and pulmonary hypertension. These studies suggest that modulating autophagy could be a novel therapeutic option for inflammatory diseases. Eosinophils are a major type of inflammatory cell that aggravates airway inflammatory diseases, particularly corticosteroid-resistant inflammation. The eosinophil count is a useful tool for assessing which patients may benefit from inhaled corticosteroid therapy. Recent studies demonstrate that autophagy plays a role in eosinophilic airway inflammatory diseases by promoting airway remodeling and loss of function. Genetic variant in the autophagy gene ATG5 is associated with asthma pathogenesis, and autophagy regulates apoptotic pathways in epithelial cells in individuals with chronic obstructive pulmonary disease. Moreover, autophagy dysfunction leads to severe inflammation, especially eosinophilic inflammation, in chronic rhinosinusitis. However, the mechanism underlying autophagy-mediated regulation of eosinophilic airway inflammation remains unclear. The aim of this review is to provide a general overview of the role of autophagy in eosinophilic airway inflammation. We also suggest that autophagy may be a new therapeutic target for airway inflammation, including that mediated by eosinophils.
Collapse
Affiliation(s)
- Jinju Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hun Sik Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.,Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.,Stem Cell Immunomodulation Research Center (SCIRC), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
32
|
Rane D, Patil T, More V, Patra SS, Bodhale N, Dandapat J, Sarkar A. Neutrophils: Interplay between host defense, cellular metabolism and intracellular infection. Cytokine 2018; 112:44-51. [DOI: 10.1016/j.cyto.2018.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/21/2018] [Accepted: 07/06/2018] [Indexed: 12/19/2022]
|
33
|
Yang G, Driver JP, Van Kaer L. The Role of Autophagy in iNKT Cell Development. Front Immunol 2018; 9:2653. [PMID: 30487800 PMCID: PMC6246678 DOI: 10.3389/fimmu.2018.02653] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/29/2018] [Indexed: 01/04/2023] Open
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells are innate-like T cells that express an invariant T cell receptor (TCR) α-chain and recognize self and foreign glycolipid antigens. They can rapidly respond to agonist activation and stimulate an extensive array of immune responses. Thymic development and function of iNKT cells are regulated by many different cellular processes, including autophagy, a self-degradation mechanism. In this mini review, we discuss the current understanding of how autophagy regulates iNKT cell development and effector lineage differentiation. Importantly, we propose that iNKT cell development is tightly controlled by metabolic reprogramming.
Collapse
Affiliation(s)
- Guan Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
34
|
Hasani S, Boroujeni ME, Aliaghaei A, Baghai K, Rostami A. Dopaminergic induction of human adipose-derived mesenchymal stem cells is accompanied by transcriptional activation of autophagy. Cell Biol Int 2018; 42:1688-1694. [DOI: 10.1002/cbin.11056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 09/16/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Sanaz Hasani
- Faculty of Medical Biotechnology; Department of Stem Cells and Regenerative Medicine; National Institute of Genetic Engineering and Biotechnology; Tehran Iran
| | - Mahdi Eskandarian Boroujeni
- Faculty of Medical Biotechnology; Department of Stem Cells and Regenerative Medicine; National Institute of Genetic Engineering and Biotechnology; Tehran Iran
| | - Abbas Aliaghaei
- Cell Biology and Anatomical Sciences; School of Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Kaveh Baghai
- Basic and Molecular Epidemiology of Gastrointestinal Disorder Research center; Research institute for Gastroenterology and Liver Diseases; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Amin Rostami
- Gastroenterology and Liver Disease Research Center; Research institute for Gastroenterology and Liver Diseases; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
35
|
Implication and Regulation of AMPK during Physiological and Pathological Myeloid Differentiation. Int J Mol Sci 2018; 19:ijms19102991. [PMID: 30274374 PMCID: PMC6213055 DOI: 10.3390/ijms19102991] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 12/25/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a heterotrimeric serine/threonine kinase consisting of the arrangement of various α β, and γ isoforms that are expressed differently depending on the tissue or the cell lineage. AMPK is one of the major sensors of energy status in mammalian cells and as such plays essential roles in the regulation of cellular homeostasis, metabolism, cell growth, differentiation, apoptosis, and autophagy. AMPK is activated by two upstream kinases, the tumor suppressor liver kinase B1 (LKB1) and the calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) through phosphorylation of the kinase on Thr172, leading to its activation. In addition, AMPK inhibits the mTOR pathway through phosphorylation and activation of tuberous sclerosis protein 2 (TSC2) and causes direct activation of unc-51-like autophagy activating kinase 1 (ULK1) via phosphorylation of Ser555, thus promoting initiation of autophagy. Although it is well established that AMPK can control the differentiation of different cell lineages, including hematopoietic stem cells (HSCs), progenitors, and mature hematopoietic cells, the role of AMPK regarding myeloid cell differentiation is less documented. The differentiation of monocytes into macrophages triggered by colony stimulating factor 1 (CSF-1), a process during which both caspase activation (independently of apoptosis induction) and AMPK-dependent stimulation of autophagy are necessary, is one noticeable example of the involvement of AMPK in the physiological differentiation of myeloid cells. The present review focuses on the role of AMPK in the regulation of the physiological and pathological differentiation of myeloid cells. The mechanisms of autophagy induction by AMPK will also be addressed, as autophagy has been shown to be important for differentiation of hematopoietic cells. In addition, myeloid malignancies (myeloid leukemia or dysplasia) are characterized by profound defects in the establishment of proper differentiation programs. Reinduction of a normal differentiation process in myeloid malignancies has thus emerged as a valuable and promising therapeutic strategy. As AMPK seems to exert a key role in the differentiation of myeloid cells, notably through induction of autophagy, we will also discuss the potential to target this pathway as a pro-differentiating and anti-leukemic strategy in myeloid malignancies.
Collapse
|
36
|
Ito K, Bonora M, Ito K. Metabolism as master of hematopoietic stem cell fate. Int J Hematol 2018; 109:18-27. [PMID: 30219988 DOI: 10.1007/s12185-018-2534-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022]
Abstract
HSCs have a fate choice when they divide; they can self-renew, producing new HSCs, or produce daughter cells that will mature to become committed cells. Technical challenges, however, have long obscured the mechanics of these choices. Advances in flow-sorting have made possible the purification of HSC populations, but available HSC-enriched fractions still include substantial heterogeneity, and single HSCs have proven extremely difficult to track and observe. Advances in single-cell approaches, however, have led to the identification of a highly purified population of hematopoietic stem cells (HSCs) that make a critical contribution to hematopoietic homeostasis through a preference for self-renewing division. Metabolic cues are key regulators of this cell fate choice, and the importance of controlling the population and quality of mitochondria has recently been highlighted to maintain the equilibrium of HSC populations. Leukemic cells also demand tightly regulated metabolism, and shifting the division balance of leukemic cells toward commitment has been considered as a promising therapeutic strategy. A deeper understanding of precisely how specific modes of metabolism control HSC fate is, therefore, of great biological interest, and more importantly will be critical to the development of new therapeutic strategies that target HSC division balance for the treatment of hematological disease.
Collapse
Affiliation(s)
- Kyoko Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Massimo Bonora
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA.
- Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Albert Einstein Cancer Center and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
37
|
Ito K, Ito K. Hematopoietic stem cell fate through metabolic control. Exp Hematol 2018; 64:1-11. [PMID: 29807063 DOI: 10.1016/j.exphem.2018.05.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 01/02/2023]
Abstract
Hematopoietic stem cells maintain a quiescent state in the bone marrow to preserve their self-renewal capacity, but also undergo cell divisions as required. Organelles such as the mitochondria sustain cumulative damage during these cell divisions and this damage may eventually compromise the cells' self-renewal capacity. Hematopoietic stem cell divisions result in either self-renewal or differentiation, with the balance between the two affecting hematopoietic homeostasis directly; however, the heterogeneity of available hematopoietic stem cell-enriched fractions, together with the technical challenges of observing hematopoietic stem cell behavior, has long hindered the analysis of individual hematopoietic stem cells and prevented the elucidation of this process. Recent advances in genetic models, metabolomics analyses, and single-cell approaches have revealed the contributions made to hematopoietic stem cell self-renewal by metabolic cues, mitochondrial biogenesis, and autophagy/mitophagy, which have highlighted mitochondrial quality control as a key factor in the equilibrium of hematopoietic stem cells. A deeper understanding of precisely how specific modes of metabolism control hematopoietic stem cells fate at the single-cell level is therefore not only of great biological interest, but will also have clear clinical implications for the development of therapies for hematological diseases.
Collapse
Affiliation(s)
- Kyoko Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA; Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA; Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Albert Einstein Cancer Center and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
38
|
Zeng H, Nanayakkara GK, Shao Y, Fu H, Sun Y, Cueto R, Yang WY, Yang Q, Sheng H, Wu N, Wang L, Yang W, Chen H, Shao L, Sun J, Qin X, Park JY, Drosatos K, Choi ET, Zhu Q, Wang H, Yang X. DNA Checkpoint and Repair Factors Are Nuclear Sensors for Intracellular Organelle Stresses-Inflammations and Cancers Can Have High Genomic Risks. Front Physiol 2018; 9:516. [PMID: 29867559 PMCID: PMC5958474 DOI: 10.3389/fphys.2018.00516] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/20/2018] [Indexed: 12/28/2022] Open
Abstract
Under inflammatory conditions, inflammatory cells release reactive oxygen species (ROS) and reactive nitrogen species (RNS) which cause DNA damage. If not appropriately repaired, DNA damage leads to gene mutations and genomic instability. DNA damage checkpoint factors (DDCF) and DNA damage repair factors (DDRF) play a vital role in maintaining genomic integrity. However, how DDCFs and DDRFs are modulated under physiological and pathological conditions are not fully known. We took an experimental database analysis to determine the expression of 26 DNA DDCFs and 42 DNA DDRFs in 21 human and 20 mouse tissues in physiological/pathological conditions. We made the following significant findings: (1) Few DDCFs and DDRFs are ubiquitously expressed in tissues while many are differentially regulated.; (2) the expression of DDCFs and DDRFs are modulated not only in cancers but also in sterile inflammatory disorders and metabolic diseases; (3) tissue methylation status, pro-inflammatory cytokines, hypoxia regulating factors and tissue angiogenic potential can determine the expression of DDCFs and DDRFs; (4) intracellular organelles can transmit the stress signals to the nucleus, which may modulate the cell death by regulating the DDCF and DDRF expression. Our results shows that sterile inflammatory disorders and cancers increase genomic instability, therefore can be classified as pathologies with a high genomic risk. We also propose a new concept that as parts of cellular sensor cross-talking network, DNA checkpoint and repair factors serve as nuclear sensors for intracellular organelle stresses. Further, this work would lead to identification of novel therapeutic targets and new biomarkers for diagnosis and prognosis of metabolic diseases, inflammation, tissue damage and cancers.
Collapse
Affiliation(s)
- Huihong Zeng
- Department of Histology and Embryology, Basic Medical School, Nanchang University, Nanchang, China
| | - Gayani K Nanayakkara
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hangfei Fu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yu Sun
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ramon Cueto
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - William Y Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Qian Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Ultrasound, Xijing Hospital, Shaanxi, China
| | - Haitao Sheng
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Emergency Medicine, Shengjing Hospital, Liaoning, China
| | - Na Wu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Endocrinology, Shengjing Hospital, Liaoning, China
| | - Luqiao Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Cardiovascular Medicine, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Wuping Yang
- Department of Histology and Embryology, Basic Medical School, Nanchang University, Nanchang, China
| | - Hongping Chen
- Department of Histology and Embryology, Basic Medical School, Nanchang University, Nanchang, China
| | - Lijian Shao
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Jianxin Sun
- Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Xuebin Qin
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Joon Y Park
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Konstantinos Drosatos
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Eric T Choi
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Departments of Pharmacology, and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Qingxian Zhu
- Department of Histology and Embryology, Basic Medical School, Nanchang University, Nanchang, China
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
39
|
Gauster M, Maninger S, Siwetz M, Deutsch A, El-Heliebi A, Kolb-Lenz D, Hiden U, Desoye G, Herse F, Prokesch A. Downregulation of p53 drives autophagy during human trophoblast differentiation. Cell Mol Life Sci 2018; 75:1839-1855. [PMID: 29080089 PMCID: PMC5910494 DOI: 10.1007/s00018-017-2695-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 01/21/2023]
Abstract
The placental barrier is crucial for the supply of nutrients and oxygen to the developing fetus and is maintained by differentiation and fusion of mononucleated cytotrophoblasts into the syncytiotrophoblast, a process only partially understood. Here transcriptome and pathway analyses during differentiation and fusion of cultured trophoblasts yielded p53 signaling as negative upstream regulator and indicated an upregulation of autophagy-related genes. We further showed p53 mRNA and protein levels decreased during trophoblast differentiation. Reciprocally, autophagic flux increased and cytoplasmic LC3B-GFP puncta became more abundant, indicating enhanced autophagic activity. In line, in human first trimester placenta p53 protein mainly localized to the cytotrophoblast, while autophagy marker LC3B as well as late autophagic compartments were predominantly detectable in the syncytiotrophoblast. Importantly, ectopic overexpression of p53 reduced levels of LC3B-II, supporting a negative regulatory role on autophagy in differentiating trophoblasts. This was also shown in primary trophoblasts and human first trimester placental explants, where pharmacological stabilization of p53 decreased LC3B-II levels. In summary our data suggest that differentiation-dependent downregulation of p53 is a prerequisite for activating autophagy in the syncytiotrophoblast.
Collapse
Affiliation(s)
- Martin Gauster
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Neue Stiftingtalstraße 6, F/03/38, 8010, Graz, Austria.
| | - Sabine Maninger
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Neue Stiftingtalstraße 6, F/03/38, 8010, Graz, Austria
| | - Monika Siwetz
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Neue Stiftingtalstraße 6, F/03/38, 8010, Graz, Austria
| | - Alexander Deutsch
- Division of Hematology, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Amin El-Heliebi
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Neue Stiftingtalstraße 6, F/03/38, 8010, Graz, Austria
| | - Dagmar Kolb-Lenz
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Neue Stiftingtalstraße 6, F/03/38, 8010, Graz, Austria
- Center for Medical Research, Core Facility Ultrastructure Analysis, Medical University Graz, Graz, Austria
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University Graz, Graz, Austria
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University Graz, Graz, Austria
| | - Florian Herse
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Andreas Prokesch
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Neue Stiftingtalstraße 6, F/03/38, 8010, Graz, Austria.
| |
Collapse
|
40
|
Low Autophagy (ATG) Gene Expression Is Associated with an Immature AML Blast Cell Phenotype and Can Be Restored during AML Differentiation Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1482795. [PMID: 29743969 PMCID: PMC5878891 DOI: 10.1155/2018/1482795] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/21/2017] [Accepted: 12/31/2017] [Indexed: 02/06/2023]
Abstract
Autophagy is an intracellular degradation system that ensures a dynamic recycling of a variety of building blocks required for self-renewal, homeostasis, and cell survival under stress. We used primary acute myeloid leukemia (AML) samples and human AML cell lines to investigate the regulatory mechanisms of autophagy and its role in AML differentiation. We found a significantly lower expression of key autophagy- (ATG-) related genes in primary AML as compared to healthy granulocytes, an increased autophagic activity during all-trans retinoic acid- (ATRA-) induced neutrophil differentiation, and an impaired AML differentiation upon inhibition of ATG3, ATG4D, and ATG5. Supporting the notion of noncanonical autophagy, we found that ATRA-induced autophagy was Beclin1-independent compared to starvation- or arsenic trioxide- (ATO-) induced autophagy. Furthermore, we identified PU.1 as positive transcriptional regulator of ATG3, ATG4D, and ATG5. Low PU.1 expression in AML may account for low ATG gene expression in this disease. Low expression of the autophagy initiator ULK1 in AML can partially be attributed to high expression of the ULK1-targeting microRNA-106a. Our data clearly suggest that granulocytic AML differentiation relies on noncanonical autophagy pathways and that restoring autophagic activity might be beneficial in differentiation therapies.
Collapse
|
41
|
Russo M, Russo GL. Autophagy inducers in cancer. Biochem Pharmacol 2018; 153:51-61. [PMID: 29438677 DOI: 10.1016/j.bcp.2018.02.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 02/07/2018] [Indexed: 12/19/2022]
Abstract
Autophagy is a complex, physiological process devoted to degrade and recycle cellular components. Proteins and organelles are first phagocytized by autophagosomes, then digested in lysosomes, and finally recycled to be utilized again during cellular metabolism. Moreover, autophagy holds an important role in the physiopathology of several diseases. In cancer, excellent works demonstrated the dual functions of autophagy in tumour biology: autophagy activation can promote cancer cells survival (protective autophagy), or contribute to cancer cell death (cytotoxic/nonprotective autophagy). A better understanding of the dichotomy roles of autophagy in cancer biology can help to identify or design new drugs able to induce/enhance (or block) autophagic flux. These features will necessary be tissue-dependent and confined to a specific time of treatment. The intent of this review is to focus on the different potentialities of autophagy inducers in cancer prevention versus therapy in order to elicit a desirable clinical response. Few promising synthetic and natural compounds have been identified and the pros and cons of their role in autophagy regulation is reviewed here. In the complex framework of autophagy modulation, "connecting the dots" is not a simple work and the lack of clinical studies further complicates the scenario, but the final goal to obtain clinically relevant autophagy inducers can reveal an unexpected landscape.
Collapse
Affiliation(s)
- Maria Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy.
| |
Collapse
|
42
|
Ye Z, Li ZH, He SZ. miRNA-1273g-3p Involvement in Development of Diabetic Retinopathy by Modulating the Autophagy-Lysosome Pathway. Med Sci Monit 2017; 23:5744-5751. [PMID: 29197896 PMCID: PMC5724349 DOI: 10.12659/msm.905336] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Diabetic retinopathy (DR) is one of the most common and serious complications of diabetes mellitus (DM). The autophagy-lysosome pathway (ALP) is one of the main intracellular self-digestive degradation systems. Lysosomal impairment and autophagic dysfunction are early events in the pathogenesis of DR, suggesting autophagy might be a novel therapeutic strategy for DR treatment. Material/Methods In our study, we screened a differentially expressed miRNA, miR-1273g-3p, in streptozotocin (STZ)-injected DR rat retinal pigment epithelial (RPE) cells. miR-1273g-3p inhibitor and mimic were employed to treat RPE cells to assess the role of miR-1273g-3p. QRT-PCR and Western blot analysis were performed to examine the function of miR-1273g-3p on ALP-related and DR-related proteins. Results miR-1273g-3p was highly expressed in STZ-induced DM RPE cells. miR-1273g-3p mimic promoted the expression of DR-related MMP-2, MMP-9, and TNF-α proteins, and ALP-related LC3, cathepsin B, and cathepsin L factors, but miR-1273g-3p inhibitor suppressed the levels of these factors. Conclusions miR-1273g-3p is involved in the progression of DR by modulating the autophagy-lysosome pathway. These findings provided new evidence of the close relationship between DR and ALP, and reveal a new target for DR therapy.
Collapse
Affiliation(s)
- Zi Ye
- Department of Ophthalmology, The PLA General Hospital, Beijing, China (mainland)
| | - Zhao-Hui Li
- Department of Ophthalmology, The PLA General Hospital, Beijing, China (mainland)
| | - Shou-Zhi He
- Department of Ophthalmology, The PLA General Hospital, Beijing, China (mainland)
| |
Collapse
|
43
|
Abstract
In this issue of Immunity, Riffelmacher et al. (2017) show that autophagy is necessary for the release of free fatty acids from intracellular stores within neutrophil precursor cells. This limits glycolysis, increases oxidative phosphorylation, and is essential for neutrophil maturation.
Collapse
Affiliation(s)
- Zhichao Fan
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA; Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
44
|
Dembitz V, Lalic H, Visnjic D. 5-Aminoimidazole-4-carboxamide ribonucleoside-induced autophagy flux during differentiation of monocytic leukemia cells. Cell Death Discov 2017; 3:17066. [PMID: 28975042 PMCID: PMC5624282 DOI: 10.1038/cddiscovery.2017.66] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/29/2017] [Accepted: 08/18/2017] [Indexed: 12/30/2022] Open
Abstract
Pharmacological modulators of AMP-dependent kinase (AMPK) have been suggested in treatment of cancer. The biguanide metformin and 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) have been reported to inhibit proliferation of solid tumors and hematological malignancies, but their role in differentiation is less explored. Our previous study demonstrated that AICAR alone induced AMPK-independent expression of differentiation markers in monocytic U937 leukemia cells, and no such effects were observed in response to metformin. The aim of this study was to determine the mechanism of AICAR-mediated effects and to test for the possible role of autophagy in differentiation of leukemia cells. The results showed that AICAR-mediated effects on the expression of differentiation markers were not mimicked by A769662, a more specific direct AMPK activator. Long-term incubation of U937 cells with AICAR and other differentiation agents, all-trans-retinoic acid (ATRA) and phorbol 12-myristate 13-acetate, increased the expression of the autophagy marker LC3B-II, and these effects were not observed in response to metformin. Western blot and immunofluorescence analyses of U937 cells treated with bafilomycin A1 or transfected with mRFP-GFP-LC3 proved that the increase in the expression of LC3B-II was due to an increase in autophagy flux, and not to a decrease in lysosomal degradation. 3-Methyladenine inhibited the expression of differentiation markers in response to all inducers, but had stimulatory effects on autophagy flux at dose that effectively inhibited the production of phosphatidylinositol 3-phosphate. The small inhibitory RNA-mediated down-modulation of Beclin 1 and hVPS34 had no effects on AICAR and ATRA-mediated increase in the expression of differentiation markers. These results show that AICAR and other differentiation agents induce autophagy flux in U937 cells and that the effects of AICAR and ATRA on the expression of differentiation markers do not depend on the normal levels of key proteins of the classical or canonical autophagy pathway.
Collapse
Affiliation(s)
- Vilma Dembitz
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, Zagreb 10 000, Croatia
| | - Hrvoje Lalic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, Zagreb 10 000, Croatia
| | - Dora Visnjic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, Zagreb 10 000, Croatia
| |
Collapse
|
45
|
Riffelmacher T, Richter FC, Simon AK. Autophagy dictates metabolism and differentiation of inflammatory immune cells. Autophagy 2017; 14:199-206. [PMID: 28806133 PMCID: PMC5902226 DOI: 10.1080/15548627.2017.1362525] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The role of macroautophagy/autophagy, a conserved lysosomal degradation pathway, during cellular differentiation has been well studied over the last decade. In particular, evidence for its role during immune cell differentiation is growing. Despite the description of a variety of dramatic immune phenotypes in tissue-specific autophagy knockout models, the underlying mechanisms are still under debate. One of the proposed mechanisms is the impact of autophagy on the altered metabolic states during immune cell differentiation. This concept is strengthened through novel molecular insights into how AMPK and MTOR signaling cascades affect both autophagy and metabolism. In this review, we discuss direct and indirect evidence linking autophagy, metabolic pathways and immune cell differentiation including T, B, and innate lymphocytes as well as in myeloid cells that are direct mediators of inflammation. Herein, we propose a model for autophagy-driven immunometabolism controlling immune cell differentiation.
Collapse
Affiliation(s)
- Thomas Riffelmacher
- a MRC Weatherall Institute of Molecular Medicine , Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital , Headington , Oxford , UK
| | - Felix Clemens Richter
- b Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences , University of Oxford , Oxford , UK
| | - Anna Katharina Simon
- b Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences , University of Oxford , Oxford , UK
| |
Collapse
|
46
|
Riffelmacher T, Clarke A, Richter FC, Stranks A, Pandey S, Danielli S, Hublitz P, Yu Z, Johnson E, Schwerd T, McCullagh J, Uhlig H, Jacobsen SEW, Simon AK. Autophagy-Dependent Generation of Free Fatty Acids Is Critical for Normal Neutrophil Differentiation. Immunity 2017; 47:466-480.e5. [PMID: 28916263 PMCID: PMC5610174 DOI: 10.1016/j.immuni.2017.08.005] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/15/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Abstract
Neutrophils are critical and short-lived mediators of innate immunity that require constant replenishment. Their differentiation in the bone marrow requires extensive cytoplasmic and nuclear remodeling, but the processes governing these energy-consuming changes are unknown. While previous studies show that autophagy is required for differentiation of other blood cell lineages, its function during granulopoiesis has remained elusive. Here, we have shown that metabolism and autophagy are developmentally programmed and essential for neutrophil differentiation in vivo. Atg7-deficient neutrophil precursors had increased glycolytic activity but impaired mitochondrial respiration, decreased ATP production, and accumulated lipid droplets. Inhibiting autophagy-mediated lipid degradation or fatty acid oxidation alone was sufficient to cause defective differentiation, while administration of fatty acids or pyruvate for mitochondrial respiration rescued differentiation in autophagy-deficient neutrophil precursors. Together, we show that autophagy-mediated lipolysis provides free fatty acids to support a mitochondrial respiration pathway essential to neutrophil differentiation. Autophagy is critical for neutrophil differentiation in vivo Differentiating neutrophils shift from glycolysis to fatty acid oxidation By degrading lipid droplets, autophagy provides fatty acids, enabling this shift Fatty acids restore energy metabolism and differentiation in Atg7–/– granulopoiesis
Collapse
Affiliation(s)
- Thomas Riffelmacher
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK; MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Alexander Clarke
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Felix C Richter
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Amanda Stranks
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Sumeet Pandey
- Translational Gastroenterology Unit, Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Sara Danielli
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Philip Hublitz
- MRC Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Zhanru Yu
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Errin Johnson
- The Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Tobias Schwerd
- Translational Gastroenterology Unit, Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - James McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Holm Uhlig
- Translational Gastroenterology Unit, Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Sten Eirik W Jacobsen
- MRC Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK; Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cell and Molecular Biology, Wallenberg Institute for Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Karolinska University Hospital, Stockholm, Sweden
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK; MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| |
Collapse
|
47
|
Qian M, Fang X, Wang X. Autophagy and inflammation. Clin Transl Med 2017; 6:24. [PMID: 28748360 PMCID: PMC5529308 DOI: 10.1186/s40169-017-0154-5] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/18/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a homeostatic mechanism involved in the disposal of damaged organelles, denatured proteins as well as invaded pathogens through a lysosomal degradation pathway. Recently, increasing evidences have demonstrated its role in both innate and adaptive immunity, and thereby influence the pathogenesis of inflammatory diseases. The detection of autophagy machinery facilitated the measurement of autophagy during physiological and pathophysiological processes. Autophagy plays critical roles in inflammation through influencing the development, homeostasis and survival of inflammatory cells, including macrophages, neutrophils and lymphocytes; effecting the transcription, processing and secretion of a number of cytokines, as well as being regulated by cytokines. Recently, autophagy-dependent mechanisms have been studied in the pathogenesis of several inflammatory diseases, including infectious diseases, Crohn’s disease, cystic fibrosis, pulmonary hypertension, chronic obstructive pulmonary diseases and so on. These studies suggested that modulation of autophagy might lead to therapeutic interventions for diseases associated with inflammation. Here we highlight recent advances in investigating the roles of autophagy in inflammation as well as inflammatory diseases.
Collapse
Affiliation(s)
- Mengjia Qian
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Medical School, Shanghai, China
| | - Xiaocong Fang
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Medical School, Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Medical School, Shanghai, China.
| |
Collapse
|
48
|
Li Y, Li G, Wang K, Xie YY, Zhou RP, Meng Y, Ding R, Ge JF, Chen FH. Autophagy contributes to 4-Amino-2-Trifluoromethyl-Phenyl Retinate-induced differentiation in human acute promyelocytic leukemia NB4 cells. Toxicol Appl Pharmacol 2017; 319:1-11. [PMID: 28130038 DOI: 10.1016/j.taap.2017.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 12/18/2022]
Abstract
As a classic differentiation agent, all-trans retinoic acid (ATRA) has been widely used in treatment of acute promyelocytic leukemia (APL). However, clinical application of ATRA has limitations. Our previous studies suggested that 4-Amino-2-Trifluoromethyl-Phenyl Retinate (ATPR), a novel all-trans retinoic acid (ATRA) derivative designed and synthesized by our team, could induce differentiation of APL cells in vivo and in vitro. To explore the underlying mechanism of ATPR, the effect of ATPR on autophagy of APL cells was observed in the present study. The results showed that the differentiation effect of ATPR on APL cells was accompanied with autophagy induction and PML-RARα degradation via activating Notch1 signaling pathway. Moreover, inhibition of autophagy using 3-methyladenine (3-MA) or small interfering RNA (siRNA) that targets essential autophagy gene ATG5 abrogated the ATPR-induced cell differentiation. Furthermore, when pretreated with DAPT, a γ-secretase inhibitor, the Notch1 signaling pathway was blocked in APL cells, followed by the reduction of ATPR-induced autophagy and differentiation. Taken together, these results suggested that autophagy play an important role in ATPR-induced cell differentiation, which may provide a novel approach to cure APL patients.
Collapse
Affiliation(s)
- Yue Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ge Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ke Wang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ya-Ya Xie
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ren-Peng Zhou
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Yao Meng
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ran Ding
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Jin-Fang Ge
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Fei-Hu Chen
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China.
| |
Collapse
|