1
|
Ao J, Lai C, Wu X, Chen Z, Yang W, Qiu L, Li X, Cao R. Design, synthesis and biological evaluation of novel β-carbolines as antitumor agents via targeting autophagy in colorectal cancer. Eur J Med Chem 2025; 283:117145. [PMID: 39653623 DOI: 10.1016/j.ejmech.2024.117145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025]
Abstract
A series of novel β-carbolines with a flexible amino side chain at positions 1 and 3, respectively, were designed, synthesized and evaluated as potential antitumor agents. The results revealed that most of the compounds exhibited a broad spectrum of antiproliferative activity with IC50 value lower than 20 μM against human tumor cell lines. Among them, compound 2f was the most potent antiproliferative agent with IC50 value below 5.0 μM against human tumor cell lines. Subsequent studies on the in vivo antitumor efficacy of the representative compound 2f demonstrated its ability to hinder tumor progression and significantly diminish tumor mass in a mouse model of colorectal cancer. Further investigation on mechanisms of action showed that compound 2f induced autophagy via the ATG5/ATG7 pathway in HCT116 cells. These compounds may contribute to the development of therapeutic agents for colorectal cancer.
Collapse
Affiliation(s)
- Jingsheng Ao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430072, PR China
| | - Chengyao Lai
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Xiaofei Wu
- Department of Neurology, Central War Zone General Hospital of the Chinese People's Liberation Army, Wuhan, 430072, PR China
| | - Zhiyong Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Weijie Yang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Liqin Qiu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Xiangpan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430072, PR China.
| | - Rihui Cao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
2
|
Xiao S, Peng K, Chen R, Liu X, Zhou B, He R, Yan Y, Wan R, Yin YS, Lu S, Liang X. Equol promotes the in vitro maturation of porcine oocytes by activating the NRF2/KEAP1 signaling pathway. Theriogenology 2025; 233:70-79. [PMID: 39608307 DOI: 10.1016/j.theriogenology.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
In vitro maturation (IVM) plays a critical role in embryo production. However, the quality of IVM oocytes often suffers from oxidative stress due to the excessive accumulation of ROS. Equol, a metabolite of soybean flavonoids, exhibits potent antioxidant activity. This study investigated the effects of equol on porcine oocyte IVM. Our findings showed that treatment with 5 μM equol significantly enhanced cumulus cell expansion and the first polar body extrusion in porcine oocytes. Moreover, equol also improved the subsequent embryonic development capacity of the oocytes after parthenogenetic activation. Additionally, equol improved mitochondrial function by increasing mitochondrial content, membrane potential, and ATP levels, while promoting lipid droplet accumulation in oocytes. Equol also reduced DNA damage and early apoptosis, with an associated upregulation of BCL2 and downregulation of BAX expression. Notably, equol decreased ROS levels, likely through activation of the NRF2/KEAP1 antioxidant pathway, leading to increased expression of HO-1, CAT, GPX1, and SOD. In conclusion, equol improves porcine oocyte IVM by mitigating oxidative stress via activation of the NRF2/KEAP1 pathway, offering a potential strategy for optimizing the IVM system in porcine oocytes.
Collapse
Affiliation(s)
- Sai Xiao
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ke Peng
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, 530004, China
| | - Rui Chen
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xinxin Liu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, 530004, China
| | - Benliang Zhou
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, 530004, China
| | - Rijing He
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yujun Yan
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, 530004, China
| | - Runtian Wan
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ye-Shi Yin
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, 530004, China
| | - Shengsheng Lu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xingwei Liang
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
3
|
Yoshizawa Y, Yokosuka A, Inomata M, Iguchi T, Mimaki Y. Steroidal constituents in the whole plants of Helleborus niger and their cytotoxic activity in vitro. PHYTOCHEMISTRY 2025; 229:114272. [PMID: 39260588 DOI: 10.1016/j.phytochem.2024.114272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Phytochemical investigation of the whole plants of Helleborus niger L. (Ranunculaceae) resulted in the isolation of five undescribed compounds, including one bufadienolide (1), two bufadienolide rhamnosides (2 and 3), and two ecdysteroids (12 and 13), along with eight known compounds (4-11). The chemical structures of 1-3, 12, and 13 were determined by spectroscopic studies, including 2D NMR, and chromatographic and spectroscopic analyses of the hydrolyzed products. Compounds 1-13 were evaluated for their cytotoxic activity against HL-60 human leukemia cells, A549 human lung adenocarcinoma cells, SBC-3 human small-cell lung cancer cells, and TIG-3 human normal diploid lung cells. Compounds 1-12 showed cytotoxic activity against HL-60, A549, and SBC-3 cells, with IC50 values ranging from 0.0016 to 6.1 μM. Bufadienolide rhamnoside 2 exhibited potent cell proliferation inhibitory activity against SBC-3 cells after 24-48 h of treatment and apoptosis-inducing activity in SBC-3 cells via an intrinsic pathway after 72 h of treatment. The JFCR39 panel screening of 2 suggests that the molecular target of 2 is Na+,K+-ATPase.
Collapse
Affiliation(s)
- Yuka Yoshizawa
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Akihito Yokosuka
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Mina Inomata
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Tomoki Iguchi
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yoshihiro Mimaki
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
4
|
Abdelbasset M, Saron WAA, Ma D, Rathore APS, Kozaki T, Zhong C, Mantri CK, Tan Y, Tung CC, Tey HL, Chu JJH, Chen J, Ng LG, Wang H, Ginhoux F, St John AL. Differential contributions of fetal mononuclear phagocytes to Zika virus neuroinvasion versus neuroprotection during congenital infection. Cell 2024; 187:7511-7532.e20. [PMID: 39532096 DOI: 10.1016/j.cell.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Fetal immune cell functions during congenital infections are poorly understood. Zika virus (ZIKV) can vertically transmit from mother to fetus, causing nervous system infection and congenital ZIKV syndrome (CZS). We identified differential functional roles for fetal monocyte/macrophage cell types and microglia in ZIKV dissemination versus clearance using mouse models. Trafficking of ZIKV-infected primitive macrophages from the yolk sac allowed initial fetal virus inoculation, while recruited monocytes promoted non-productive neuroinflammation. Conversely, brain-resident differentiated microglia were protective, limiting infection and neuronal death. Single-cell RNA sequencing identified transcriptional profiles linked to the protective versus detrimental contributions of mononuclear phagocyte subsets. In human brain organoids, microglia also promoted neuroprotective transcriptional changes and infection clearance. Thus, microglia are protective before birth, contrasting with the disease-enhancing roles of primitive macrophages and monocytes. Differential modulation of myeloid cell phenotypes by genetically divergent ZIKVs underscores the potential of immune cells to regulate diverse outcomes during fetal infections.
Collapse
Affiliation(s)
- Muhammad Abdelbasset
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wilfried A A Saron
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Dongliang Ma
- Neuroscience & Behavioral Disorders Programme, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Abhay P S Rathore
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA
| | - Tatsuya Kozaki
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Chengwei Zhong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Chinmay Kumar Mantri
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Yingrou Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore; National Skin Centre, National Healthcare Group, Singapore, Singapore
| | - Chi-Ching Tung
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Hong Liang Tey
- National Skin Centre, National Healthcare Group, Singapore, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine affiliated Renji Hospital, Shanghai, China
| | - Hongyan Wang
- Neuroscience & Behavioral Disorders Programme, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore; INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France; Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Ashley L St John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pathology, Duke University Medical Center, Durham, NC 27705, USA; SingHealth Duke-NUS Global Health Institute, Singapore, Singapore.
| |
Collapse
|
5
|
Xu H, Yu Z, Zhu J, Liu H, Chen X, Jiang J, Zhu M, Li J. Types of cell death in diabetic cardiomyopathy: insights from animal models. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39719881 DOI: 10.3724/abbs.2024213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
Approximately one-tenth of the global population is affected by diabetes mellitus, and its incidence continues to rise each year. In China, 1.4 million patients die from diabetes-related complications every year. Additionally, approximately 26% of patients with diabetes develop diabetic cardiomyopathy, with heart failure being one of the main causes of death in these patients. However, early detection of diabetic cardiomyopathy has proven to be difficult in a clinical setting; furthermore, there are limited guidelines and targeted means of prevention and treatment for this disease. In recent years, several studies have provided evidence for the occurrence of various forms of regulated cell death in diabetic myocardial cells, including apoptosis, necroptosis, ferroptosis, and cuproptosis, which are closely linked to the pathological progression of diabetic cardiomyopathy. Although most research on diabetic cardiomyopathy is currently in the animal trial phase, the inhibition of these regulatory cell death processes can limit or slow down the progression of diabetic cardiomyopathy. Therefore, this review discusses the appropriate animal experimental models currently available for diabetic cardiomyopathy and evaluates the roles of apoptosis, necroptosis, ferroptosis, and cuproptosis in diabetic cardiomyopathy. We hope to provide new methods and ideas for future research in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Hongjiao Xu
- Department of Anesthesiology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China
| | - Zhuang Yu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jun Zhu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Haoran Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiangyuan Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jihong Jiang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Minmin Zhu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jinbao Li
- Department of Anesthesiology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
6
|
Xu K, Zhu S, Xu F, Yang J, Deng B, Su D, Ma J, Zu M, Lin Y, Pei T, Zhu Y, Wang L, Liu D, Duan Q, Xu J, Pan Z, Tao J, Hou Z. Toxoplasma gondii induces MST2 phosphorylation mediating the activation of hippo signaling pathway to promote apoptosis and lung tissue damage. iScience 2024; 27:111312. [PMID: 39640582 PMCID: PMC11618000 DOI: 10.1016/j.isci.2024.111312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/23/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is an intracellular parasite, and its regulation of host cell apoptosis directly affects its parasitism. Studies link T. gondii-induced apoptosis to abnormal expression of mammalian STE20-like protein kinase 2 (MST2), but its precise role remains unclear. In this study, the regulatory roles in apoptosis and pathogenicity of T. gondii infection were identified in vitro and in vivo. Simultaneously, MST2 and Hippo signaling pathway activation induced by T. gondii were evaluated. MST2 overexpression and knockout were used to assess its regulatory role in apoptosis and Hippo signaling pathway. Results showed that T. gondii induced apoptosis and lung damage, with Hippo signaling pathway activation via MST2 phosphorylation. MST2 was demonstrated to regulate apoptosis and Hippo signaling pathway. Notably, MST2 knockout hindered the T. gondii-induced apoptosis and weakened Hippo signaling pathway activation. MST2 is an important target for T. gondii to control host cell fate and modulate immune responses.
Collapse
Affiliation(s)
- Kangzhi Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Shifan Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Fan Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Jin Yang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225000, China
| | - Bin Deng
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou 225000, China
| | - Dingzeyang Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Jing Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Mingyue Zu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Yifan Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Tianxu Pei
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Yuyang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Qiangde Duan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Zhiming Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| |
Collapse
|
7
|
Song B, Wu M, Qin L, Liang W, Wang X. Smart Design of Targeted Drug Delivery System for Precise Drug Delivery and Visual Treatment of Brain Gliomas. Adv Healthc Mater 2024:e2402967. [PMID: 39707642 DOI: 10.1002/adhm.202402967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/04/2024] [Indexed: 12/23/2024]
Abstract
In the treatment of glioma, which is one of the malignant tumors, although chemotherapy is used as the most common treatment method, it often suffers from low bioavailability. Therefore, improving the precision and efficiency of drugs is crucial in treating gliomas and a great challenge. Here, an advanced drug delivery system is reported for gliomas (CZQD@HA@DOX), which aggregates multiple features such as the susceptible imaging tracer property due to the use of CZQD and the targeting of HA to the receptor cluster 44 (CD44) of glioma cells, which provides the system with the functions of targeted enrichment and precise drug delivery at the tumor site. The pH-responsive drug delivery system has not only an excellent encapsulation rate but also a high drug loading capacity, and the doxorubicin loaded on it can be released centrally at the tumor microenvironment site and causes an increase of reactive oxygen species in the mitochondria and trigger oxidative stress, which leads to high expression of Bax apoptotic proteins, ultimately activating the mitochondrial pathway-mediated apoptotic process in glioma cells. Overall, this drug delivery system has great potential for application in precision targeted therapy and visual tracer imaging of gliomas.
Collapse
Affiliation(s)
- Baoqin Song
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, China
| | - Mengru Wu
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, China
| | - Lijing Qin
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, China
| | - Wanjun Liang
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, China
| | - Xiu Wang
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, China
| |
Collapse
|
8
|
Park W, Lee H, Lim W, Song G, Park S. Tri-o-tolyl phosphate impedes implantation: Malfunction of mitochondria and disruption of calcium homeostasis through MAPK and AKT signaling cascades. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:177920. [PMID: 39662411 DOI: 10.1016/j.scitotenv.2024.177920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Tri-o-tolyl phosphate (TOTP), a flame retardant containing aryl compounds, is widely used in human living environments owing to its several applications. However, Due to the overuse of TOTP, its residue has been identified in various environments and non-targeted organisms, including humans. Although extensive research is being conducted to address the toxicity of this substance, its potential reproductive toxicity in females has not been sufficiently studied. In this study, human HTR-8/SVneo and JEG-3 trophoblasts were used to investigate the effects of TOTP on implantation. Results showed that TOTP decreased cell viability and inhibited cell proliferation by triggering cell cycle arrest. It also induced apoptosis and mitochondrial dysfunction, disrupted calcium homeostasis, increased the influx of calcium ions into the mitochondria, and disturbed cell aggregation and migration. Moreover, the MAPK and AKT cell signaling pathways were altered, and crosstalk between these pathways were distinguished. Thus, inhibitors of the MAPK and AKT pathways exhibited potential for managing the toxicity of TOTP. Overall, this study demonstrated the reproductive toxicity of TOTP in human females and elucidated the underlying mechanisms. Our results highlighted the potential risks associated with TOTP.
Collapse
Affiliation(s)
- Wonhyoung Park
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hojun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Sunwoo Park
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea.
| |
Collapse
|
9
|
Chuang YF, Cheng L, Chang WH, Yu SY, Hsu HT, An LM, Yen CH, Chang FR, Lo YC. Spatheliachromen mitigates methylglyoxal-induced myotube atrophy by activating Nrf2, inhibiting ubiquitin-mediated protein degradation, and restoring mitochondrial function. Eur J Pharmacol 2024; 984:177070. [PMID: 39442745 DOI: 10.1016/j.ejphar.2024.177070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Methylglyoxal (MGO) is a potent precursor of glycative stress that leads to oxidative stress and muscle atrophy in diabetes. Spatheliachromen (FPATM-20), derived from Ficus pumila var. awkeotsang, exhibited potential antioxidant activity. PURPOSE This study aimed to evaluate the potential impact and underlying mechanisms of FPATM-20 on MGO-induced myotube atrophy and mitochondrial dysfunction in mouse skeletal C2C12 myotubes. METHODS Atrophic and antioxidant factors were evaluated using immunofluorescence, enzyme-linked immunosorbent assay, and western blotting. Mitochondrial function was assessed using the ATP assay and Seahorse Cell Mito Stress Test. The glycogen content was determined using periodic acid-Schiff staining. Molecular docking was performed to determine the interaction between FPATM-20 and Keap1. RESULTS In myotubes treated with MGO, FPATM-20 activated the Nrf2 pathway, reduced ROS levels, enhanced antioxidant defense, and increased glycogen content. FPATM-20 improved myotube viability and size, upregulated myosin heavy chain (MyHC) expression, modulated ubiquitin-proteasome molecules (nuclear FoxO3a, atrogin-1, MuRF-1, and p62/SQSTM1), and inhibited apoptosis (Bax/Bcl-2 ratio and cleaved caspase 3). Moreover, FPATM-20 restored mitochondrial function, including mitochondrial membrane potential, mitochondrial oxygen consumption rate, and mitochondrial biogenesis pathway (nuclear PGC-1α/TFAM/FNDC5). The inhibition of Nrf2 with ML385 reversed the effects of FPATM-20 on MGO. Furthermore, molecular docking confirmed the binding of FPATM-20 to Keap1, a suppressor of Nrf2, showing the crucial role of Nrf2 in protective effects. CONCLUSIONS FPATM-20 protects myotubes from MGO toxicity by activating the Nrf2 antioxidant defense, reducing protein degradation and apoptosis, and enhancing mitochondrial function. Thus, FPATM-20 may be a novel agent for preventing skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yu-Fan Chuang
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lin Cheng
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Hsuan Chang
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Yin Yu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Pharmacognosy, University of Szeged, Szeged, Hungary
| | - Hung-Te Hsu
- Department of Anesthesia, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung, Taiwan; Faculty of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Mei An
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ching Lo
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
10
|
Chen F, Xue Y, Zhang W, Zhou H, Zhou Z, Chen T, YinWang E, Li H, Ye Z, Gao J, Wang S. The role of mitochondria in tumor metastasis and advances in mitochondria-targeted cancer therapy. Cancer Metastasis Rev 2024; 43:1419-1443. [PMID: 39307891 PMCID: PMC11554835 DOI: 10.1007/s10555-024-10211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/08/2024] [Indexed: 11/05/2024]
Abstract
Mitochondria are central actors in diverse physiological phenomena ranging from energy metabolism to stress signaling and immune modulation. Accumulating scientific evidence points to the critical involvement of specific mitochondrial-associated events, including mitochondrial quality control, intercellular mitochondrial transfer, and mitochondrial genetics, in potentiating the metastatic cascade of neoplastic cells. Furthermore, numerous recent studies have consistently emphasized the highly significant role mitochondria play in coordinating the regulation of tumor-infiltrating immune cells and immunotherapeutic interventions. This review provides a comprehensive and rigorous scholarly investigation of this subject matter, exploring the intricate mechanisms by which mitochondria contribute to tumor metastasis and examining the progress of mitochondria-targeted cancer therapies.
Collapse
Affiliation(s)
- Fanglu Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhiyi Zhou
- The First People's Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy YinWang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Coelho-Junior HJ, Marzetti E, Sexton CL, Wu K, Mankowski R, Anton SD, Leeuwenburgh C, Picca A. Mitochondrial quality control measures, systemic inflammation, and lower-limb muscle power in older adults: a PROMPT secondary analysis. J Nutr Health Aging 2024; 28:100408. [PMID: 39504617 DOI: 10.1016/j.jnha.2024.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVES The study was conducted to explore associations between markers of mitochondrial quality control (MQC) from vastus lateralis muscle biopsies, serum inflammatory markers, and measures of muscle power assessed by two different tools in a sample of older adults. DESIGN Secondary analysis of data collected in the PeppeR develOpMental ProjecT (PROMPT) at the University of Florida (Gainesville, FL, USA). METHODS Forty-three older adults (n = 20 women) were included in the study. Muscle volume of the calf and thigh was quantified by three-dimensional magnetic resonance imaging. Lower-limb muscle power was estimated using 5-time sit-to-stand (5STS) muscle power equations and isokinetic test. Protein markers of MQC were measured in muscle samples by Western immoblotting (n = 12-23), while type I and II fiber cross-sectional area (CSA) and their proportion were quantified using immunohistochemistry (n = 12). Cytochrome C oxidase enzyme activity was measured spectrophotometrically. Finally, inflammatory markers were quantified in the serum using a multiplex immunoassay (n = 39). RESULTS Mean age of participants was 78.1 ± 5.5 years, and the average body mass index was 26.2 ± 4.5 kg/m2. Markers of mitochondrial biogenesis (i.e., PGC-1α), mitochondrial import proteins (i.e., cHsp70 and mtHsp70), and type I fiber CSA were significantly associated with muscle power estimated via both 5STS muscle power equations and isokinetic test (p < 0.05). Specific associations were also found according to the muscle power assessment method. 5STS muscle power measures were negatively correlated with ClvCasp3, P-AMPK, T-AMPK, P-p38, GM-CSF, INF-γ, IL1b, IL6, IL8, and TNF-α, whereas positive associations were found with BAX (p < 0.05). In contrast, isokinetic measures were significantly and positively correlated with RIP140, Hsp60, and type II muscle fiber CSA (p < 0.05). CONCLUSIONS Markers of mitochondrial biogenesis (PGC-1α), mitochondrial import proteins (cHsp70 and mtHsp70), and type I muscle fiber CSA were significantly linked to lower-limb muscle power in older adults. These results suggest that muscle power is influenced by mitochondrial signaling. We also found that the relationship between mitochondrial mediators, inflammatory markers, and muscle power varied according to the assessment tool used.
Collapse
Affiliation(s)
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCSS, Rome, Italy; Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Casey L Sexton
- Department of Physiology and Aging, University of Florida, Gainesville, FL, United States
| | - Kevin Wu
- Department of Physiology and Aging, University of Florida, Gainesville, FL, United States
| | - Robert Mankowski
- University of Alabama at Birmingham, School of Medicine, Birmingham, AL, United States
| | - Stephen D Anton
- Department of Physiology and Aging, University of Florida, Gainesville, FL, United States
| | | | - Anna Picca
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medicine and Surgery, LUM University, Casamassima, Italy.
| |
Collapse
|
12
|
Shao M, Chen J, Zhang F, Su Q, Lin X, Wang W, Chen C, Ren H, Zheng S, Hui S, Qin S, Ni Y, Zhong J, Yang J. 4-Octyl itaconate attenuates renal tubular injury in db/db mice by activating Nrf2 and promoting PGC-1α-mediated mitochondrial biogenesis. Ren Fail 2024; 46:2403653. [PMID: 39291665 PMCID: PMC11411562 DOI: 10.1080/0886022x.2024.2403653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/11/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024] Open
Abstract
Objectives: The aim of this study was to investigate the mechanism of itaconate's potential effect in diabetic kidney disease. Methods: Renal immune responsive gene 1 (IRG1) levels were measured in db/db mice and streptozotocin (STZ) + high-fat diet (HFD)-induced diabetic mice. Irg1 knockout mice were generated. db/db mice were treated with 4-octyl itaconate (4-OI, 50 mg/kg), a derivative of itaconate, for 4 weeks. Renal function and morphological changes were investigated. Ultrastructural alterations were determined by transmission electron microscopy. Results: Renal IRG1 levels were reduced in two diabetic models. STZ+HFD-treated Irg1 knockout mice exhibited aggravated renal tubular injury and worsened renal function. Treatment with 4-OI lowered urinary albumin-to-creatinine ratio and blood urea nitrogen levels, and restored renal histological changes in db/db mice. It improved mitochondrial damage, increased expressions of peroxisome-proliferator-activated receptor γ coactivator-1α (PGC-1α) and mitochondrial transcription factor A (TFAM) in the renal cortex of db/db mice. These were confirmed in vitro; 4-OI improved high glucose-induced abnormal mitochondrial morphology and TFAM expression in HK-2 cells, effects that were inhibited by PGC-1α silencing. Moreover, 4-OI reduced the number of apoptotic cells in the renal cortex of db/db mice. Further study showed that 4-OI increased renal Nrf2 expression and decreased oxidative stress levels in db/db mice. In HK-2 cells, 4-OI decreased high glucose-induced mitochondrial ROS production, which was reversed by Nrf2 silencing. Nrf2 depletion also inhibited 4-OI-mediated regulation of PGC-1α, TFAM, and mitochondrial apoptotic protein expressions. Conclusions: 4-OI attenuates renal tubular injury in db/db mice by activating Nrf2 and promoting PGC-1α-mediated mitochondrial biogenesis.
Collapse
Affiliation(s)
- Muqing Shao
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiayao Chen
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fuwei Zhang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cardiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Su
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqian Lin
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiwei Wang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cardiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Suocheng Hui
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Si Qin
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yinxing Ni
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Zhong
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Yang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Lee H, Lim W, Kweon J, Park J, Kim J, Bazer FW, Song G, Ham J. Resmethrin induces implantation failure by disrupting calcium homeostasis and forcing mitochondrial defects in porcine trophectoderm and uterine luminal epithelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176441. [PMID: 39307359 DOI: 10.1016/j.scitotenv.2024.176441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Resmethrin, a type I pyrethroid insecticide, is frequently used globally in residential and farmland areas to control pests. Owing to the repeated administration of resmethrin, and particularly because of its lipophilic nature, residues have been detected in various environments, crops, and livestock. Previous studies have shown the adverse effects of resmethrin, including neurotoxicity and hepatotoxicity. However, the toxic effects of resmethrin on the female reproductive system have rarely been investigated. In the present study, we used two cell types, porcine trophectoderm (pTr) and porcine uterine luminal epithelial (pLE) cells, to examine the toxic effects of resmethrin on implantation and its mechanisms. Our study showed that resmethrin exposure induced apoptosis and inhibited cell cycle progression, thereby reducing the viability of both cell types. In addition, calcium homeostasis was disrupted following resmethrin treatment, and disrupted calcium homeostasis impaired the mitochondrial membrane potential and mitochondrial respiration. In addition to mitochondrial dysfunction, GRP75 and ER stress-related proteins were upregulated. Furthermore, the AKT and MAPK cascades were altered, and reactive oxygen species production and inflammation occurred after resmethrin treatment. Ultimately, through various mechanisms, resmethrin decreased the migratory abilities, and it could diminish the crosstalk between the two cell lines and lower the probability of successful implantation. Overall, we demonstrated that resmethrin interfered with the implantation process by triggering various toxic mechanisms. This study presents, for the first time, evidence regarding the mechanisms through which resmethrin exerts toxic effects on the female reproductive system, thereby raising awareness regarding the potential implications of its widespread use.
Collapse
Affiliation(s)
- Hojun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junhun Kweon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jinyoung Kim
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Jiyeon Ham
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
14
|
Roholamini Z, Abbaspoor M, Aminizadeh S, Saberi S. Moderate-intensity training can ameliorate the process of cardiac apoptosis induced by lithium drug consumption in male Wistar rats. Toxicol Rep 2024; 13:101802. [PMID: 39582928 PMCID: PMC11582749 DOI: 10.1016/j.toxrep.2024.101802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
Background and objective Lithium medication, given its significant role in the treatment or reduction of psychiatric disorders, may exert adverse effects on cardiac tissue. Therefore, this study aimed to investigate the effects of different exercise training intensities on the process of cardiac apoptosis and serum levels of cardiac troponin I (cTnI) resulting from lithium administration in male Wistar rats. Methodology In the present experimental study, 35 male Wistar rats were randomly divided into five groups (n=7); Control (CTL), Lithium (Li), High-Intensity training + lithium (HIT-Li), Moderate-Intensity training + lithium (MIT-Li), and Low-Intensity training + lithium (LIT-Li). Lithium drug (dose of 40 mmol/kg dry food weight) and exercise training (5 days per week) were administered for eight weeks. Serum levels of cTnI, mRNA expression of Bcl-2, Bax, and Caspase-3, and histopatholigical changes were assessed by using the ELISA method, Real-Time PCR, and H&E staining, respectively. Results The expression of the Bcl-2 gene was significantly increased in the LIT-Li group compared to the Li group (P = 0.003). Serum levels of cTnI were considereably higher in the Li group compared to the MIT-Li group (P = 0.0001). The expression of the Bax gene, in the LIT-Li, HIT-L, and Li groups, significantly increased compared to the MIT-Li group (P = 0.0001). Histopathological scores decreased in MIT-Li compared to Li group (P = 0.001). Conclusion It seems that among different exercise intensities, the greatest protective effect against lithium consumption can be observed with moderate exercise intensity, which may potentially modulate factors influencing cardiac apoptosis and reduce lithium toxicity in the cardiac tissue of rats.
Collapse
Affiliation(s)
- Zahrasadat Roholamini
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Abbaspoor
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Soheil Aminizadeh
- Department of Physiology and Pharmacology, Afzalipour School of Medicine, and Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shadan Saberi
- Department of Physiology and Pharmacology, Afzalipour School of Medicine, and Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
15
|
Sun KY, Bai XY, Zhang L, Zhang X, Hu QQ, Song YX, Qiang RR, Zhang N, Zou JL, Yang YL, Xiang Y. A new strategy for the treatment of intracerebral hemorrhage: Ferroptosis. Exp Neurol 2024; 382:114961. [PMID: 39288829 DOI: 10.1016/j.expneurol.2024.114961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Intracerebral hemorrhage, is a cerebrovascular disease with high morbidity, mortality, and disability. Due to the lack of effective clinical treatments, the development of new drugs to treat intracerebral hemorrhage is necessary. In recent years, ferroptosis has been found to play an important role in the pathophysiological process of intracerebral hemorrhage, which can be treated by inhibiting ferroptosis and thus intracerebral hemorrhage. This article aims to explain the mechanism of ferroptosis and its relationship to intracerebral hemorrhage. In the meantime, it briefly discusses the molecules identified to alleviate intracerebral hemorrhage by inhibiting ferroptosis, along with other clinical agents that are expected to treat intracerebral hemorrhage through this mechanism. In addition, a brief overview of the morphological alterations of different forms of cell death and their role in ICH is provided. Finally, the challenges that may arise in translating ferroptosis inhibitors from basic research to clinical use are presented. This article serves as a reference and provides insights to aid in the treatment of intracerebral hemorrhage in the clinic.
Collapse
Affiliation(s)
- Ke Yao Sun
- School of Medicine, Yan'an University, Yan'an, China
| | - Xin Yue Bai
- School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xin Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Qian Qian Hu
- School of Medicine, Yan'an University, Yan'an, China
| | - Yu Xuan Song
- School of Medicine, Yan'an University, Yan'an, China
| | | | - Ning Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Jia Lun Zou
- School of Medicine, Yan'an University, Yan'an, China
| | - Yan Ling Yang
- School of Medicine, Yan'an University, Yan'an, China
| | - Yang Xiang
- School of Medicine, Yan'an University, Yan'an, China; College of Physical Education, Yan'an University, Yan'an, China.
| |
Collapse
|
16
|
Hekmatshoar Y, Karabay AZ, Ozkan T, Koc A, Sunguroglu A. Methylsulfonylmethane induces caspase-dependent apoptosis in acute myeloid leukemia cell lines. Fundam Clin Pharmacol 2024; 38:1094-1102. [PMID: 39114894 DOI: 10.1111/fcp.13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/20/2024] [Accepted: 07/16/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous ailment in both biological and clinical concepts. Numerous efforts have been devoted to discover natural compounds for combating cancer, which showed great potential in cancer management. Methylsulfonylmethane (MSM), an organosulfur dietary supplement, is utilized for improving various clinical conditions, particularly osteoarthritis. MSM can exert antitumor activity in a wide range of cancers. OBJECTIVES The molecular mechanisms of action underlying antileukemic activity of MSM remain unclear. In this regard, we aimed to investigate the anticancer properties of MSM on human AML cell lines (U937 and HL60) with focus on underlying cell death mechanism. METHODS Anticancer activity of the MSM was examined employing MTT assay, Annexin V-PE/7AAD staining, caspase3/7 activity test, and real-time qPCR. Both cell lines were treated with different concentrations (50-400 mM) of MSM for 24 h. Pretreatment of the cells with a caspase inhibitor (i.e., Z-VAD-fmk) was performed for the assessment of apoptosis induction. RESULTS The results of MTT assay revealed that in both cell lines, the MSM markedly reduced cell viability in comparison to the control cells. Additionally, findings of Annexin V-7AAD staining revealed that MSM induced apoptosis and activated caspase 3/7 in both cell lines markedly. Real-time quantitative PCR results also supported the induction of apoptosis in AML cells. MSM altered the expression levels of various apoptotic genes (BAX, BAD, and BIM). CONCLUSION Overall, our results indicated that MSM could induce apoptosis in AML cell lines in a dose-dependent manner, which therefore could be utilized as an antileukemic agent.
Collapse
Affiliation(s)
- Yalda Hekmatshoar
- Department of Medical Biology, Faculty of Medicine, Altinbas University, Istanbul, Turkey
| | - Arzu Zeynep Karabay
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Tulin Ozkan
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Asli Koc
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Asuman Sunguroglu
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
17
|
Li F, Tao J, Zhou M, Yu X, Xiao T, Wang C, Duan X. Mechanism of ginsenoside Rb 3 against OGD/R damage based on metabonomic and PCR array analyses. Biomed Rep 2024; 21:187. [PMID: 39420925 PMCID: PMC11484189 DOI: 10.3892/br.2024.1875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024] Open
Abstract
In order to study the mechanisms of ginsenoside Rb3 (G-Rb3) against oxygen-glucose deprivation/reoxygenation (OGD/R) injury in HT22 cells based on metabolomics and PCR array, HT22 cells were randomly divided into control group, model group, G-Rb3 high-dose group (10 µmol/l) and G-Rb3 low-dose group (5 µmol/l). Except for the control group, which was left untreated, the remaining groups were incubated with 10 mmol/l Na2S2O4 in sugar-free DMEM medium for 2 h and then replaced with serum-free high-sugar DMEM medium for 2 h in order to replicate in vitro OGD/R model. Trypan blue staining was used to detect the cell viability; flow cytometry was used to detect apoptosis; western blotting was used to detect the protein expression levels of Bax, Bcl-2 and caspase-3. The metabolomics were used to analyze the differential metabolites of G-Rb3 affecting OGD/R in order to find the relevant metabolic pathways. PCR array assay was performed to identify the expression of the differential genes. G-Rb3 could inhibit HT22 apoptosis according to the result of cell morphology, trypan blue staining and flow cytometry. The levels of Bax and caspase-3 protein expression were decreased, whereas the level of Bcl-2 protein expression was increased after the treatment of G-Rb3. Metabolomics results showed that a total of 31 differential metabolites between OGD/R group and G-Rb3 group, such as guanosine level, was downregulated, the levels of enalaprilat and sorbitol were upregulated, affecting ABC transporters, galactose metabolism, citrate cycle and other related metabolic pathways; according to the result of PCR array, it was observed that G-Rb3 significantly downregulated Trp63, Trp73, Dapk1, Casp14 and Cd70 pro-apoptotic genes. In conclusion, G-Rb3 has a significant protective effect on the OGD/R model simulated in vitro, and the mechanism may be related to the inhibition of apoptosis by affecting metabolites.
Collapse
Affiliation(s)
- Fuhui Li
- College of Notoginseng Medicine, Wenshan University, Wenshan, Yunnan 663099, P.R. China
| | - Jie Tao
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Mingmin Zhou
- College of Notoginseng Medicine, Wenshan University, Wenshan, Yunnan 663099, P.R. China
| | - Xingzhi Yu
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Tian Xiao
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Chaoliang Wang
- College of Notoginseng Medicine, Wenshan University, Wenshan, Yunnan 663099, P.R. China
| | - Xiaohua Duan
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
18
|
Franco-Campos F, Fernández-Franzón M, Rodríguez-Carrasco Y, Ruiz MJ. Amitraz mechanisms of cytotoxicity in a characterized SH-SY5Y cells spheroid model. Toxicology 2024; 509:153987. [PMID: 39489475 DOI: 10.1016/j.tox.2024.153987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
In recent years, spheroids (tridimensional cell cultures) have emerged as a more physiologically relevant replacement for monolayer models. Their distinctive advantage is the formation of an extracellular matrix that facilitates enhanced cellular interaction and communication, approximating the conditions observed in vivo. Therefore, the potential for conducting intricate cellular and molecular techniques in these models could offer a more precise assessment of pivotal proteins within various cellular pathways of interest. Amitraz (AMZ), an acaricide classified as a formamidine chemical, has been detected in honey at concentrations exceeding legal limits. The objective of this study was to characterize a spheroid model of SH-SY5Y cells and determine the cytotoxic effect of AMZ and its mechanisms of action on this spheroid. The formation of mature spheroids was observed on the seventh day following seeding. The results obtained with SH-SY5Y spheroids were an IC50 of 238.8 ± 17 µM and 224.3 ± 19 µM, respectively, after 24 and 48 h of exposure by the MTT assay. The findings revealed that AMZ did not exhibit any indications of inflammatory over-expression markers in the spheroids. Nevertheless, at 238.8 µM of AMZ, an increase incidence of late apoptosis within spheroid cells and Bcl-2 protein expression in peripheral spheroid cells were observed through annexin V and propidium iodide probe and immunofluorescence analysis. In conclusion, the results demonstrated that spheroids could be useful for an accurate assessment of toxicity, representing a viable alternative method for determining the mechanisms of action of AMZ and related compounds.
Collapse
Affiliation(s)
- Felipe Franco-Campos
- Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox). Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, Valencia 46100, Spain
| | - Mónica Fernández-Franzón
- Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox). Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, Valencia 46100, Spain
| | - Yelko Rodríguez-Carrasco
- Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox). Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, Valencia 46100, Spain.
| | - María José Ruiz
- Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox). Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, Valencia 46100, Spain
| |
Collapse
|
19
|
Gao W, Hua X, Liao S, Xiahou Z, Yang H, Hu L, Chi Y. Newly Synthesized Citral Derivatives Serve as Novel Inhibitor in HepG2 Cells. ChemistryOpen 2024:e202400112. [PMID: 39599962 DOI: 10.1002/open.202400112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
2H-pyran compound 1 synthesized from 6-methylpyridine-2,4-diol and citral, has been used for Cu-catalyzed N-arylation with a range of arylboric acids to obtain arylated pyranopyridine core structure derivatives (yield up to 77 %). Among them, compound 3 h exhibited a much better inhibitory effect on HepG2 liver cancer cells compared to citral, and the IC50 value was 5.3 μM following exposure with the newly synthesized derivatives (herein named 3 h for short in this paper), which was lower than that of the cisplatin (6.5 μM). Meanwhile, the cell-cycle arrest of HepG2 cells occurred in the S phase, and the apoptosis of HepG2 cells was significantly increased with increasing drug concentration. In addition, real-time fluorescence quantification PCR and Western blotting experiments showed that the expression of apoptotic protein BAX was increased, while the expression of anti-apoptotic protein BCL2 was inhibited in a dose-dependent fashion. The results of these experiments indicated that apoptosis was promoted in HepG2 cells via apoptotic signaling pathway activated by 3 h. Furthermore, 3 h effectively decreased the phosphorylation levels of PI3 K, ATK and ERK, resulting in the inhibitions of MAPK/ERK and PI3 K/ATK signaling pathways. Briefly, 3 h has been found to show inhibitory effects on the survival of HepG2 liver cancer cells and may be used as anti-cancer drug in the future.
Collapse
Affiliation(s)
- Wei Gao
- Camphor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, 330032, China
| | - Xiaoju Hua
- Camphor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, 330032, China
| | | | - Zhikai Xiahou
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, 100091, China
| | - Haikuan Yang
- Camphor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, 330032, China
| | - Lifang Hu
- Institute for Quality & Safety and Standards of Agricultural, Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, 330299, China
| | - Yunyang Chi
- Camphor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, 330032, China
| |
Collapse
|
20
|
Hosseinkhani S, Amandadi M, Ghanavatian P, Zarein F, Ataei F, Nikkhah M, Vandenabeele P. Harnessing luciferase chemistry in regulated cell death modalities and autophagy: overview and perspectives. Chem Soc Rev 2024; 53:11557-11589. [PMID: 39417351 DOI: 10.1039/d3cs00743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Regulated cell death is a fate of cells in (patho)physiological conditions during which extrinsic or intrinsic signals or redox equilibrium pathways following infection, cellular stress or injury are coupled to cell death modalities like apoptosis, necroptosis, pyroptosis or ferroptosis. An immediate survival response to cellular stress is often induction of autophagy, a process that deals with removal of aggregated proteins and damaged organelles by a lysosomal recycling process. These cellular processes and their regulation are crucial in several human diseases. Exploiting high-throughput assays which discriminate distinct cell death modalities and autophagy are critical to identify potential therapeutic agents that modulate these cellular responses. In the past few years, luciferase-based assays have been widely developed for assessing regulated cell death and autophagy pathways due to their simplicity, sensitivity, known chemistry, different spectral properties and high-throughput potential. Here, we review basic principles of bioluminescent reactions from a mechanistic perspective, along with their implication in vitro and in vivo for probing cell death and autophagy pathways. These include applying luciferase-, luciferin-, and ATP-based biosensors for investigating regulated cell death modalities. We discuss multiplex bioluminescence platforms which simultaneously distinguish between the various cell death phenomena and cellular stress recovery processes such as autophagy. We also highlight the recent technological achievements of bioluminescent tools for the prediction of drug effectiveness in pathways associated with regulated cell death.
Collapse
Affiliation(s)
- Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mojdeh Amandadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Parisa Ghanavatian
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fateme Zarein
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
21
|
Zi-Chang N, Ran A, Hui-Hui S, Qi J, Jun-Li S, Yan-Xu C, Yu-Hong L, Shu-Fei F, Hao-Ping M. Columbianadin Ameliorates Myocardial Injury by Inhibiting Autophagy Through the PI3K/Akt/mTOR Signaling Pathway in AMI Mice and Hypoxic H9c2 Cells. Phytother Res 2024. [PMID: 39568432 DOI: 10.1002/ptr.8387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
Acute myocardial infarction (AMI) is a leading cause of mortality among cardiovascular diseases, yet effective therapies for AMI are limited. Previous studies have suggested cardioprotective effects of columbianadin (CBN), but its specific role in AMI and the underlying mechanisms remain unclear. This study aims to investigate whether CBN influences AMI and to elucidate the underlying mechanisms. We conducted a network pharmacology analysis to investigate the relationship between CBN and AMI. The AMI model was established by ligating the left anterior descending (LAD) artery in C57BL/6J mice, which were subsequently administered CBN. Hypoxic H9c2 cells were utilized to evaluate the effects of CBN in vitro. Our study revealed that CBN treatment significantly reduced myocardial infarction in AMI mice. It enhanced mitochondrial function and suppressed autophagy flux in hypoxic H9c2 cells. Furthermore, CBN downregulated the expression of LC3, Beclin1, and Atg 5 genes and proteins. In response to CBN treatment, the phosphorylation levels of PI3K, Akt, and mTOR increased. Notably, RAPA attenuated the protective effect of CBN in enhancing the survival of hypoxic H9c2 cells and abolished its regulation of autophagy-related proteins via the PI3K/Akt/mTOR signaling pathway. In conclusion, CBN reduces myocardial damage by suppressing autophagy via the PI3K/Akt/mTOR signaling pathway in AMI mice and hypoxic H9c2 cells.
Collapse
Affiliation(s)
- Niu Zi-Chang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - An Ran
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shi Hui-Hui
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Jin Qi
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Song Jun-Li
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Chang Yan-Xu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Li Yu-Hong
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Fu Shu-Fei
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Shcool of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Mao Hao-Ping
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
22
|
Liu C, Dan L, Li Q, Bajinka O, Yuan X. The mechanisms of Pin1 as targets for cancer therapy. Front Immunol 2024; 15:1482088. [PMID: 39624096 PMCID: PMC11609185 DOI: 10.3389/fimmu.2024.1482088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/25/2024] [Indexed: 01/03/2025] Open
Abstract
Targeted therapy has considerable promise for the effective eradication of cancer at the primary tumor site prior to subsequent metastasis. Using this therapeutic approach, gaining an understanding of mechanistic cancer models is essential for facilitating the inhibition or suppression of tumor growth. Among different oncogenes and proteins, the protein interacting with never-in-mitosis kinase-1 (Pin1) is particularly important. The interaction between Pin1 and phosphorylated threonine-proline motifs results in significant alterations in protein structure and function. In this review, we provide a comprehensive summary of the processes involving Pin1 and its mechanisms in the context of cancer therapy. Pin1 enhances signaling pathways in a number of different human cancers and plays a pivotal role in the suppressive mechanisms relevant to cancer treatment. It is essential for the regulation of proline-directed phosphorylation and for modulating tumor suppressors. Inhibitors of Pin1, particularly naturally occurring substances, have been found to inhibit the carcinogenic activity of Pin1, and consequently this protein could represent an excellent candidate for novel cancer treatment strategies, offering a valuable therapeutic target in carcinogenesis and treatment resistance.
Collapse
Affiliation(s)
- Chuanfeng Liu
- Department of Pulmonary and Critical Care Medicine, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
| | - Lingying Dan
- Department of Endocrinology, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
| | - Quan Li
- Department of Pulmonary and Critical Care Medicine, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
| | - Ousman Bajinka
- School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, Gambia
| | - Xingxing Yuan
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
23
|
Xu L, Yang X, Liu XT, Li XY, Zhu HZ, Xie YH, Wang SW, Li Y, Zhao Y. Carvacrol alleviates LPS-induced myocardial dysfunction by inhibiting the TLR4/MyD88/NF-κB and NLRP3 inflammasome in cardiomyocytes. J Inflamm (Lond) 2024; 21:47. [PMID: 39548566 PMCID: PMC11568595 DOI: 10.1186/s12950-024-00411-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 09/16/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Sepsis-induced myocardial dysfunction (SIMD) may contribute to the poor prognosis of septic patients. Carvacrol (2-methyl-5-isopropyl phenol), a phenolic monoterpene compound extracted from various aromatic plants and fragrance essential oils, has multiple beneficial effects such as antibacterial, anti-inflammatory, and antioxidant properties. These attributes make it potentially useful for treating many diseases. This study aims to investigate the effects of CAR on LPS-induced myocardial dysfunction and explore the underlying mechanism. RESULTS H9c2 cells were stimulated with 10 µg/ml LPS for 12 h, and c57BL/6 mice were intraperitoneally injected with 10 mg/kg LPS to establish a septic-myocardial injury model. Our results showed that CAR could improve cardiac function, significantly reduce serum levels of inflammatory cytokines (including TNF-α, IL-1β, and IL-6), decrease oxidative stress, and inhibit cardiomyocyte apoptosis in LPS-injured mice. Additionally, CAR significantly downregulated the expression of TLR4, MyD88, and NF-κB in LPS-injured mice and H9c2 cells. It also inhibited the upregulation of inflammasome components (such as NLRP3, GSDMD, and IL-1β) in H9c2 cells triggered by LPS. CONCLUSION Taken together, CAR exhibited potential cardioprotective effects against sepsis, which may be mainly attributed to the TLR4/MyD88/NF-κB pathway and the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Lu Xu
- The College of Life Science, Northwest University, Xi'an, China
| | - Xu Yang
- The College of Life Science, Northwest University, Xi'an, China
| | - Xiao-Ting Liu
- The College of Life Science, Northwest University, Xi'an, China
| | - Xia-Yun Li
- The College of Life Science, Northwest University, Xi'an, China
| | - Han-Zhao Zhu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Yan-Hua Xie
- The College of Life Science, Northwest University, Xi'an, China
| | - Si-Wang Wang
- The College of Life Science, Northwest University, Xi'an, China.
| | - Yao Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China.
| | - Ye Zhao
- The College of Life Science, Northwest University, Xi'an, China.
| |
Collapse
|
24
|
Chen Z, Luo R, Xu T, Wang L, Deng S, Wu J, Wang H, Lin Y, Bu M. Design, synthesis and antitumor effects of lupeol quaternary phosphonium salt derivatives. Bioorg Med Chem 2024; 113:117934. [PMID: 39369566 DOI: 10.1016/j.bmc.2024.117934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Lupeol is a natural pentacyclic triterpenoid with a wide range of biological activities. To improve the water solubility and targeting of lupeol, in the following study, we synthesized 27 lupeol derivatives in the first series by introducing lipophilic cations with lupeol as the lead compound. Through the screening of different cancer cells, we found that some of the derivatives showed better activity than cisplatin against human non-small cell lung cancer A549 cells, among which compound 6c was found to have an IC50 value of 1.83 μM and a selectivity index of 21.02 (IC50MRC-5/IC50A549) against A549 cells. To further improve the antiproliferative activity of the compounds, we replaced the ester linkage of the linker with a carbamate linkage and synthesized a second series of five lupeol derivatives which were screened for activity, among which compound 14f was found to have an IC50 value of 1.36 μM and a selectivity index of 15.60 (IC50MRC-5/IC50A549) against A549 cells. We further evaluated the bioactivity of compounds 6c and 14f and found that both compounds induced apoptosis in A549 cells, promoted an increase in intracellular reactive oxygen species and decrease in mitochondrial membrane potential, and inhibited the cell cycle in the S phase. Of the compounds, compound 14f showed stronger bioactivity than compound 6c. We then selected compound 14f for molecular-level Western blot evaluation and in vivo evaluation in the zebrafish xenograft A549 tumor cell model. Compound 14f was found to significantly downregulate Bcl-2 protein expression and upregulate Bax, Cyt C, cleaved caspase-9, and cleaved caspase-3 protein expression, and 14f was found to be able to inhibit the proliferation of A549 cells in the zebrafish xenograft model. The above results suggest that compound 14f has great potential in the development of antitumor drugs targeting mitochondria.
Collapse
Affiliation(s)
- Zongxing Chen
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Ran Luo
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Tianci Xu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Lu Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Siqi Deng
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Jiale Wu
- College of Pharmacy, Hainan University, Haikou 570228, Hainan, PR China
| | - Haijun Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Yu Lin
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Ming Bu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China.
| |
Collapse
|
25
|
Ismail NZ, Khairuddean M, Al-Anazi M, Arsad H. Tri-chalcone suppressed breast cancer cell proliferation and induced apoptosis through intrinsic and extrinsic pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8993-9006. [PMID: 38874806 DOI: 10.1007/s00210-024-03220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Breast cancer development depends critically on antiproliferative and apoptotic mechanisms. However, the mechanisms underlying the antiproliferative and apoptosis effects of breast cancer treated with tri-chalcone remain unclear. Tri-chalcones have been demonstrated in prior studies to inhibit the proliferation of breast cancer cells (MCF-7). Following the discovery, this study seeks to investigate the effect of tri-chalcone compounds on targets involved in antiproliferative and apoptosis mechanisms. In this study, we employed bioinformatics analysis along with in vitro evaluation using tri-chalcone-treated MCF-7 cells to determine the responses of antiproliferative and apoptosis mechanisms. The analysis revealed that the compounds interact with six apoptosis target receptors: TNFα, Bak, Bcl-2, caspase-9, and caspase-8. Tri-chalcone S1-2 exhibited the strongest binding affinities for TNFα (-7.39 kcal/mol), caspase-8 (-8.43 kcal/mol), caspase-9 (-8.53 kcal/mol), Bcl-2 (-8.51 kcal/mol), and Bak (-7.15 kcal/mol). The tri-chalcone S1-2 paired with the corresponding proteins showed minor flexibility and extremely small changes of less than 0.25 nm during the MD simulation. Additionally, tri-chalcone S1-2 had a significant inhibitory effect on the proliferation of MCF-7 cells (5.31 ± 0.26 µg/mL) compared to other compounds. S1-2 also induced apoptosis, affecting nearly half (43.80%) of the total early and late apoptosis in MCF-7 cells. S1-2-treated MCF-7 cells also demonstrated upregulations of genes TNFα (1.50), Bak (1.42), caspase-8 (1.24), and caspase-9 (1.61), accompanied by a downregulation of gene Bcl-2 (0.71). The discovery gives us a better understanding of how tri-chalcone S1-2 suppressed MCF-7 cell proliferation and induced apoptosis through intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Noor Zafirah Ismail
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Melati Khairuddean
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| | - Menier Al-Anazi
- Department of Chemistry, Faculty of Science, University of Tabuk, 71491, Tabuk, Kingdom of Saudi Arabia
| | - Hasni Arsad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| |
Collapse
|
26
|
Zhang D, Fang X, Xia W, Sun Q, Zhang X, Qi Y, Yu Y, Zhou Z, Du D, Tao C, Wang Z, Li J. Rutin enhances mitochondrial function and improves the developmental potential of vitrified ovine GV-stage oocyte. Theriogenology 2024; 229:214-224. [PMID: 39217650 DOI: 10.1016/j.theriogenology.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/25/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Vitrification of oocyte has become an important component of assisted reproductive technology and has important implications for animal reproduction and the preservation of biodiversity. However, vitrification adversely affects mitochondrial function and oocyte developmental potential, mainly because of oxidative damage. Rutin is a highly effective antioxidant, but no information is available to the effect of rutin on the mitochondrial function and development in vitrified oocytes. Therefore, we studied the effects of rutin supplementation of vitrification solution on mitochondrial function and developmental competence of ovine germinal vesicle (GV) stage oocytes post vitrification. The results showed that supplementation of vitrification solution with 0.6 mM rutin significantly increased the cleavage rate (71.6 % vs. 59.3 %) and blastocyst rate (18.9 % vs. 6.8 %) compared to GV-stage oocytes in the vitrified group. Then, we analyzed the reactive oxygen species (ROS), glutathione (GSH), mitochondrial activity and membrane potential (ΔΨm), endoplasmic reticulum (ER) Ca2+, and annexin V (AV) of vitrified sheep GV-stage oocytes. Vitrified sheep oocytes exhibited increased levels of ROS and Ca2+, higher rate of AV-positive oocytes, and decreased mitochondrial activity, GSH and ΔΨm levels. However, rutin supplementation in vitrification solution decreased the levels of ROS, Ca2+ and AV-positive oocytes rate, and increased the GSH and ΔΨm levels in vitrified oocytes. Results revealed that rutin restored mitochondrial function, regulated Ca2+ homeostasis and decreased apoptosis potentially caused by mitophagy in oocytes. To understand the mechanism of rutin functions in vitrified GV-stage oocytes in sheep, we analyzed the transcriptome and found that rutin mediated oocytes development and mitochondrial function, mainly by affecting oxidative phosphorylation and the mitophagy pathways. In conclusion, supplementing with 0.6 mM rutin in vitrification solution significantly enhanced developmental potential through improving mitochondrial function and decreased apoptosis potentially caused by mitophagy after vitrification of ovine GV-stage oocytes.
Collapse
Affiliation(s)
- Di Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Xiaohuan Fang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Wei Xia
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China; Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding, 071000, PR China
| | - Qingyi Sun
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Xinbo Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Yatian Qi
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Yang Yu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Zhenmin Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Dongyan Du
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Chenyu Tao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Zhigang Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China; Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding, 071000, PR China
| | - Junjie Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China; Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding, 071000, PR China.
| |
Collapse
|
27
|
Kot Y, Klochkov V, Prokopiuk V, Sedyh O, Tryfonyuk L, Grygorova G, Karpenko N, Tomchuk O, Kot K, Onishchenko A, Yefimova S, Tkachenko A. GdVO 4:Eu 3+ and LaVO 4:Eu 3+ Nanoparticles Exacerbate Oxidative Stress in L929 Cells: Potential Implications for Cancer Therapy. Int J Mol Sci 2024; 25:11687. [PMID: 39519237 PMCID: PMC11546343 DOI: 10.3390/ijms252111687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
The therapeutic potential of redox-active nanoscale materials as antioxidant- or reactive oxygen species (ROS)-inducing agents was intensely studied. Herein, we demonstrate that the synthesized and characterized GdVO4:Eu3+ and LaVO4:Eu3+ nanoparticles, which have been already shown to have redox-active, anti-inflammatory, antibacterial, and wound healing properties, both in vitro and in vivo, worsen oxidative stress of L929 cells triggered by hydrogen peroxide or tert-butyl hydroperoxide (tBuOOH) at the concentrations that are safe for intact L929 cells. This effect was observed upon internalization of the investigated nanosized materials and is associated with the cleavage of caspase-3 and caspase-9 without recruitment of caspase-8. Such changes in the caspase cascade indicate activation of the intrinsic caspase-9-dependent mitochondrial but not the extrinsic death, receptor-mediated, and caspase-8-dependent apoptotic pathway. The GdVO4:Eu3+ and LaVO4:Eu3+ nanoparticle-induced apoptosis of oxidatively compromised L929 cells is mediated by ROS overgeneration, Ca2+ overload, endoplasmic reticulum stress-associated JNK (c-Jun N-terminal kinase), and DNA damage-inducible transcript 3 (DDIT3). Our findings demonstrate that GdVO4:Eu3+ and LaVO4:Eu3+ nanoparticles aggravate the oxidative stress-induced damage to L929 cells, indicating that they might potentially be applied as anti-cancer agents.
Collapse
Affiliation(s)
- Yuriy Kot
- Department of Biochemistry, V.N. Karazin Kharkiv National, 4 Svobody Sq, 61022 Kharkiv, Ukraine; (Y.K.); (K.K.)
| | - Vladimir Klochkov
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky Ave, 61072 Kharkiv, Ukraine; (V.K.); (O.S.); (G.G.); (N.K.)
| | - Volodymyr Prokopiuk
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya Str., 61015 Kharkiv, Ukraine; (V.P.); (A.O.)
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky Ave, 61022 Kharkiv, Ukraine
| | - Olha Sedyh
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky Ave, 61072 Kharkiv, Ukraine; (V.K.); (O.S.); (G.G.); (N.K.)
| | - Liliya Tryfonyuk
- Institute of Health, National University of Water and Environmental Engineering, 11 Soborna Str., 33028 Rivne, Ukraine;
| | - Ganna Grygorova
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky Ave, 61072 Kharkiv, Ukraine; (V.K.); (O.S.); (G.G.); (N.K.)
| | - Nina Karpenko
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky Ave, 61072 Kharkiv, Ukraine; (V.K.); (O.S.); (G.G.); (N.K.)
| | - Oleksandr Tomchuk
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, UK;
| | - Kateryna Kot
- Department of Biochemistry, V.N. Karazin Kharkiv National, 4 Svobody Sq, 61022 Kharkiv, Ukraine; (Y.K.); (K.K.)
| | - Anatolii Onishchenko
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya Str., 61015 Kharkiv, Ukraine; (V.P.); (A.O.)
| | - Svetlana Yefimova
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky Ave, 61072 Kharkiv, Ukraine; (V.K.); (O.S.); (G.G.); (N.K.)
| | - Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 25250 Vestec, Czech Republic
| |
Collapse
|
28
|
Wu X, Peng X, Zhang Y, Peng W, Lu X, Deng T, Nie G. New application of ombuoside in protecting auditory cells from cisplatin-induced ototoxicity via the apoptosis pathway. Heliyon 2024; 10:e39166. [PMID: 39640804 PMCID: PMC11620119 DOI: 10.1016/j.heliyon.2024.e39166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Hearing loss is caused by many factors including ototoxic drug-induced hair cell damage. Ombuoside, an antioxidant isolated from Gynostemma pentaphyllum, has been suggested to serve as a new neuroprotective drug. However, the role of ombuoside in protecting inner ear hair cells from ototoxic drug-induced damage has not been investigated. Here, we demonstrated the protective potential of ombuoside in mitigating drug-induced ototoxicity in vivo and in vitro. We used cisplatin, a highly ototoxic anti-tumor drug, to induce hair cell damage. Our results showed that ombuoside significantly increased the survival of cisplatin-treated HEI-OC1 cells. Further mechanism research suggested that ombuoside protects HEI-OCI cells from cisplatin-induced apoptosis by reducing the cisplatin-induced upregulation of apoptosis-promoting proteins Bax, Bak, as well as apoptosis indicator proteins cytochrome C and cleaved-caspase-3, and the downregulation of apoptosis-inhibiting proteins Bcl-2. Ombuoside also protects the cells from the excessive ROS production and mitochondrial membrane depolarization triggered by cisplatin. These results demonstrated the potential for ombuoside in protecting hair cells from cisplatin by suppressing ROS generation and the mitochondrial apoptotic cascade. Ombuoside showed promise in protecting hair cells from cisplatin-induced apoptosis by suppressing ROS generation and the mitochondrial apoptotic cascade. Furthermore, ombuoside co-treatment in mouse cochlear explants and zebrafish lateral neuromasts rescued the decreased number and deformed morphology of hair cells resulting from cisplatin exposure. These findings further validated our conclusions and indicated that ombuoside is a potential protector against hearing loss caused by ototoxicity as a clinical side effect of cisplatin.
Collapse
Affiliation(s)
- Xingxing Wu
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518035, China
| | - Xixia Peng
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yue Zhang
- Department of Otolaryngology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Wanjun Peng
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518035, China
| | - Xiaochan Lu
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Tingting Deng
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518035, China
| | - Guohui Nie
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518035, China
| |
Collapse
|
29
|
Arito M, Tsutiya A, Sato M, Omoteyama K, Sato T, Motonaga Y, Suematsu N, Kurokawa MS, Kato T. Role of layilin in regulating mitochondria-mediated apoptosis: a study on B cell lymphoma (BCL)-2 family proteins. BMC Mol Cell Biol 2024; 25:24. [PMID: 39455917 PMCID: PMC11515419 DOI: 10.1186/s12860-024-00521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Malignant gliomas exhibit rapid tumor progression and resistance to treatment, leading to high lethality. One of the causes is the reduced progression of apoptosis in glioma cells. Layilin is a type 1 transmembrane protein with a C-type lectin motif in its extracellular domain. We previously reported that layilin is mainly localized to mitochondria or their close proximity and that layilin is essential for maintaining of the fragmented type of mitochondria. This study investigates the effects of layilin on mitochondria-mediated apoptosis, focusing on B cell lymphoma (BCL)-2 family proteins in a glioma cell line of A172 cells. RESULTS We compared the levels of pro-apoptotic BCL-2 family proteins of BAD, BAK, BAX, and BIM and anti-apoptotic BCL-2 family proteins of BCL-2 and BCL-XL between layilin- knockdown (KD) cells and control cells using western blot. The protein levels of BAD were significantly smaller in layilin-KD cells than in control cells, while those of BCL-2 were significantly larger. We then compared the mitochondrial membrane potential (ΔΨm) under p-trifluoromethoxyphenyl hydrazone (FCCP)-treated conditions using MT-1 staining. In layilin-KD cells, ΔΨm was significantly larger and FCCP-induced ΔΨm reduction was significantly lower than in control cells. Furthermore, we examined the levels of cell membrane-bound Annexin V and DNA-bound propidium idodide (PI) in layilin-KD cells with/without staurosporine (STS) treatment. Layilin-KD significantly decreased levels of cell membrane-bound Annexin V with/without STS treatment. On the other hand, PI levels were not changed by layilin-KD. We also investigated the amounts of the active caspase (CASP)-3, CASP-6, CASP-7, and poly (ADP-ribose) polymerase-1 (PARP1, cleaved form), as well as DNA fragmentation in layilin-KD cells under apoptotic conditions induced by STS, using western blot and the DNA ladder method, respectively. Under STS-treated conditions, the amounts of active CASP-3, CASP-7, and poly (ADP-ribose) PARP1 were significantly smaller in layilin-KD cells than in control cells. Accordingly, DNA fragmentation was significantly suppressed in layilin-KD cells compared to control cells under STS-treated conditions. CONCLUSION This study demonstrates that layilin contributes to ΔΨm reduction to promote apoptosis by up-regulating BAD and down-regulating BCL-2 in glioma cells. Our data elucidates a new function of layilin: regulation of mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- Mitsumi Arito
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Atsuhiro Tsutiya
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Masaaki Sato
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Kazuki Omoteyama
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Toshiyuki Sato
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Yusei Motonaga
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Naoya Suematsu
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Manae S Kurokawa
- Disease Biomarker Analysis and Molecular Regulation, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Tomohiro Kato
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| |
Collapse
|
30
|
Oidor-Chan VH, Sánchez-López A, Cano-Martinez A, García-Niño WR, Soria-Castro E, del Valle-Mondragón L, Zarco-Olvera G, Patlán M, Guarner-Lans V, Rodríguez-Maldonado E, Flores-Estrada J, Castrejón-Téllez V, Ibarra-Lara L. Pharmacological Preconditioning with Fenofibrate in Cardiomyocyte Cultures of Neonatal Rats Subjected to Hypoxia/Reoxygenation, High Glucose, and Their Combination. Int J Mol Sci 2024; 25:11391. [PMID: 39518943 PMCID: PMC11547148 DOI: 10.3390/ijms252111391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Pharmacological preconditioning is an alternative to protect the heart against the consequences of damage from ischemia/reperfusion (I/R). It is based on the administration of specific drugs that imitate the effect of ischemic preconditioning (IPC). Peroxisomal proliferator-activated receptors (PPARs) can prevent apoptosis in pathologies such as I/R and heart failure. Therefore, our objective was to determine if the stimulation of PPARα with fenofibrate (feno) decreases the apoptotic process induced by hypoxia/reoxygenation (HR), high glucose (HG), and HR/HG. For that purpose, cardiomyocyte cultures were divided into the following groups: Group 1-control (Ctrl); Group 2-HR; Group 3-HR + 10 μM feno; Group 4-HG, (25 mM glucose); Group 5-HG + feno; Group 6-HR/HG, and Group 7-HR/HG + feno. Our results indicate that cell viability decreases in neonatal cardiomyocytes undergoing HR, HG, and their combination, while feno improved cell viability. Feno treatment decreased apoptosis compared with HG-, HR-, or HG/HR-vehicle-treated. Nuclear- and mitochondrial-apoptosis markers increased in neonatal cardiomyocytes from HR, HG, and HR/HG; while the cytotoxicity decreased in cells treated with feno. In addition, the expression of Bax, Bad, and caspase 9 decreased due to feno, while 14-3-3ɛ and Bcl2 were increased. Inner mitochondrial cytochrome C increased with feno in every condition, as well as mitochondrial activity. Feno treatment prevented injury in the ultrastructure and in the mitochondrial membranes. Thus, our results suggest that feno decreases apoptosis in neonatal cardiomyocytes, improving the ultrastructure of mitochondria in the pathological conditions studied.
Collapse
Affiliation(s)
- Víctor Hugo Oidor-Chan
- Department of Biotechnology, Autonomous Metropolitan University, Iztapalapa Campus, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1ª. Sección, Alcaldía Iztapalapa, Mexico City 09310, Mexico;
| | - Araceli Sánchez-López
- Department of Pharmacobiology, Center for Research and Advanced Studies of the National Polytechnic Institute, Calz. de los Tenorios 235, Col Granjas Coapa, Tlalpan, Mexico City 14330, Mexico;
| | - Agustina Cano-Martinez
- Department of Physiology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (A.C.-M.); (V.G.-L.)
| | - Willy Ramses García-Niño
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (W.R.G.-N.); (E.S.-C.)
| | - Elizabeth Soria-Castro
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (W.R.G.-N.); (E.S.-C.)
| | - Leonardo del Valle-Mondragón
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (L.d.V.-M.); (G.Z.-O.)
| | - Gabriela Zarco-Olvera
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (L.d.V.-M.); (G.Z.-O.)
| | - Mariana Patlán
- Subdirection of Basic and Technological Research, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Veronica Guarner-Lans
- Department of Physiology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (A.C.-M.); (V.G.-L.)
| | - Emma Rodríguez-Maldonado
- Laboratory of Cell Biology, Department of Physiology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Javier Flores-Estrada
- Division of Investigation, Juarez Hospital of Mexico, Av. Instituto Politecnico Nacional No. 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico;
| | - Vicente Castrejón-Téllez
- Department of Physiology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (A.C.-M.); (V.G.-L.)
| | - Luz Ibarra-Lara
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (L.d.V.-M.); (G.Z.-O.)
| |
Collapse
|
31
|
Yoon HJ, Jiang E, Liu J, Jin H, Yoon HS, Choi JS, Moon JY, Yoon KC. A Selective Melatonin 2 Receptor Agonist, IIK7, Relieves Blue Light-Induced Corneal Damage by Modulating the Process of Autophagy and Apoptosis. Int J Mol Sci 2024; 25:11243. [PMID: 39457025 PMCID: PMC11508435 DOI: 10.3390/ijms252011243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
This study aims to investigate the effect of the selective MT2 receptor agonist, IIK7, on corneal autophagy and apoptosis, aiming to reduce corneal epithelial damage and inflammation from blue light exposure in mice. Eight-week-old C57BL/6 mice were divided into BL-exposed (BL) and BL-exposed with IIK7 treatment (BL + IIK7 group). Mice underwent blue light exposure (410 nm, 100 J) twice daily with assessments at baseline and on days 3, 7, and 14. Corneal samples were analyzed for MT2 receptor expression, autophagy markers (LC3-II and p62), and apoptosis indicators (BAX expression and TUNEL assay). Then, mice were assigned to normal control, BL, and BL + IIK7. Ocular surface parameters, including corneal fluorescein staining scores, tear volume, and tear film break-up time, were evaluated on days 7 and 14. On day 14, reactive oxygen species (ROS) levels and CD4+ IFN-γ+ T cells percentages were measured. The BL group exhibited higher LC3-II and p62 expression, while the BL + IIK7 group showed reduced expression (p < 0.05). The TUNEL assay showed reduced apoptosis in the BL + IIK7 group compared to the BL group. ROS levels were lower in the BL + IIK7 group. The BL + IIK7 group showed improved ocular surface parameters, including decreased corneal fluorescein staining and increased tear volume. The percentages of CD4+ IFN-γ+ T cells indicated reduced inflammatory responses in the BL + IIK7 group. The MT2 receptor agonist IIK7 regulates corneal autophagy and apoptosis, reducing corneal epithelial damage and inflammation from blue light exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Medical School, and Hospital, Gwangju 61469, Republic of Korea; (H.-J.Y.)
| |
Collapse
|
32
|
Natrus L, Lisakovska O, Smirnov A, Osadchuk Y, Klys Y. Apoptotic and proliferative processes in the small intestine of rats with type 2 diabetes mellitus after metformin and propionic acid treatment. Front Pharmacol 2024; 15:1477793. [PMID: 39478962 PMCID: PMC11521949 DOI: 10.3389/fphar.2024.1477793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Background Propionic acid (PA) is an intermediate product of metabolism of intestinal bacteria and may protect the intestinal barrier from disruption. The aim of the study was to investigate the apoptotic and proliferative processes in the small intestine (SI) of rats with type 2 diabetes mellitus (T2DM) on the background of metformin monotherapy and its combination with PA. Methods Male Wistar rats were divided: 1) control; 2) T2DM (3-month high-fat diet followed by streptozotocin injection of 25 mg/kg of body weight); 3) T2DM + metformin (60 mg/kg, 14 days, orally); 4) T2DM + PA (60 mg/kg, 14 days, orally); 5) T2DM + PA + metformin. Western blotting, RT-PCR, and scanning electron microscopy were performed. Results We observed profound changes in the SI of diabetic rats suggesting the disturbed intestinal homeostasis: impaired mitochondrial ultrastructure, increased cristae volume, and decreased content of proliferative marker Ki67 with almost unchanged proapoptotic caspase-3 and its p17 subunit levels. Metformin and PA monotherapies also led to an increased cristae volume, however, after their combination, a tendency to normalization of ultrastructure of mitochondria was observed. While there was a significant inhibition of proliferation in T2DM and, in greater extent, after metformin and PA monotherapies, differential influence on apoptosis in the SI was observed. While metformin inhibited apoptosis via Bax declining, PA mainly acted via caspase-3-dependent mechanism elevating its active p17 subunit. Conclusion PA supplementation for the improvement of diabetes-induced gastrointestinal complications concurrently with metformin may be consider as a perspective supportive therapy. Data related to PA action on SI may be valuable during the development of new treatment strategies for diabetes-induced intestinal disturbances raised after metformin treatment.
Collapse
Affiliation(s)
- Larysa Natrus
- Department of Modern Technologies of Medical Diagnostics and Treatment, Bogomolets National Medical University, Kyiv, Ukraine
| | - Olha Lisakovska
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Anton Smirnov
- Department of Socio-Humanitarian and Biomedical Sciences, Kharkiv Institute of Medicine and Biomedical Sciences, Kharkiv, Ukraine
| | - Yuliia Osadchuk
- Department of Modern Technologies of Medical Diagnostics and Treatment, Bogomolets National Medical University, Kyiv, Ukraine
| | - Yuliia Klys
- Department of Modern Technologies of Medical Diagnostics and Treatment, Bogomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
33
|
Wang Y, Pei H, Chen W, Du R, Li J, He Z. Deer Blood Hydrolysate Protects against D-Galactose-Induced Premature Ovarian Failure in Mice by Inhibiting Oxidative Stress and Apoptosis. Nutrients 2024; 16:3473. [PMID: 39458468 PMCID: PMC11510239 DOI: 10.3390/nu16203473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Premature ovarian failure (POF) is a common disease among women, which can cause many complications and seriously threaten women's physical and mental health. Currently, hormone replacement therapy is the primary treatment for premature ovarian failure. However, the side effects are serious and will increase the chance of breast cancer and endometrial cancer. Deer blood hydrolysate (DBH) is the product of enzymatic hydrolysis of deer blood, has antioxidant, anti-ageing, and anti-fatigue effects, and has the potential to improve premature ovarian failure. METHODS In our experiment, a mouse model of premature ovarian failure was established through intraperitoneal injection of 400 mg/kg/d of D-gal for 42 days. At the same time, different doses of DBH were gavaged to observe its ameliorative effect on premature ovarian failure. RESULTS The experimental findings indicated that DBH could restore the irregular oestrus cycle of POF mice, improve the abnormal amounts in serum hormones follicle-stimulating hormone (FSH), luteinising hormone (LH), progesterone (P) and estradiol (E2), increase the number of primordial follicles and decrease the number of atretic follicles. In addition, DBH also raised the level of superoxide dismutase (SOD) and reduced the level of malondialdehyde (MDA) and reduced the apoptosis of ovarian granulosa cells in mice. The WB assay results showed that gavage of DBH restored the decrease in the indication of nuclear factor erythroid 2-related factor 2 (Nrf2), Heme Oxygenase-1 (Ho-1), and B-cell lymphoma-2 (Bcl-2) proteins and reduced the elevated expression of Kelch-like ECH-associated protein 1 (Keap1), Bcl-2 associated X protein (Bax), and Cysteinyl aspartate specific proteinase-3 (Caspase-3) proteins that were induced by D-gal. CONCLUSIONS To sum up, the present research indicated that DBH can ameliorate D-gal-induced oxidative stress and apoptosis by regulating the Nrf2/HO-1 signalling pathway and the Bcl-2/Bax/caspase-3 apoptosis pathway, which can be used for further development as a nutraceutical product to improve premature ovarian failure.
Collapse
Affiliation(s)
- Yu Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| | - Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| |
Collapse
|
34
|
Sanz-Villafruela J, Bermejo-Casadesús C, Riesco-Llach G, Iglesias M, Martínez-Alonso M, Planas M, Feliu L, Espino G, Massaguer A. Bombesin-Targeted Delivery of β-Carboline-Based Ir(III) and Ru(II) Photosensitizers for a Selective Photodynamic Therapy of Prostate Cancer. Inorg Chem 2024; 63:19140-19155. [PMID: 39361042 PMCID: PMC11483813 DOI: 10.1021/acs.inorgchem.4c02583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024]
Abstract
Despite advances in Ir(III) and Ru(II) photosensitizers (PSs), their lack of selectivity for cancer cells has hindered their use in photodynamic therapy (PDT). We disclose the synthesis and characterization of two pairs of Ir(III) and Ru(II) polypyridyl complexes bearing two β-carboline ligands (N^N') functionalized with -COOMe (L1) or -COOH (L2), resulting in PSs of formulas [Ir(C^N)2(N^N')]Cl (Ir-Me: C^N = ppy, N^N' = L1; Ir-H: C^N = ppy, N^N' = L2) and [Ru(N^N)2(N^N')](Cl)2 (Ru-Me: N^N = bpy, N^N' = L1; Ru-H: N^N = bpy, N^N' = L2). To enhance their selectivity toward cancer cells, Ir-H and Ru-H were coupled to a bombesin derivative (BN3), resulting in the metallopeptides Ir-BN and Ru-BN. Ir(III) complexes showed higher anticancer activity than their Ru(II) counterparts, particularly upon blue light irradiation, but lacked cancer cell selectivity. In contrast, Ir-BN and Ru-BN exhibited selective photocytoxicity against prostate cancer cells, with a lower effect against nonmalignant fibroblasts. All compounds generated ROS and induced severe mitochondrial toxicity upon photoactivation, leading to apoptosis. Additionally, the ability of Ir-Me to oxidize NADH was demonstrated, suggesting a mechanism for mitochondrial damage. Our findings indicated that the conjugation of metal PSs with BN3 creates efficient PDT agents, achieving selectivity through targeting bombesin receptors and local photoactivation.
Collapse
Affiliation(s)
- Juan Sanz-Villafruela
- Universidad
de Burgos, Departamento de
Química, Facultad de Ciencias, Plaza Misael Bañuelos s/n, Burgos 09001, Spain
| | - Cristina Bermejo-Casadesús
- Universitat
de Girona, Departament de
Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, Girona 17003, Spain
| | - Gerard Riesco-Llach
- LIPPSO,
Departament de Química, Facultat de Ciències, Universitat de Girona, Maria Aurelia Capmany 69, Girona 17003, Spain
| | - Mònica Iglesias
- Universitat
de Girona, Departament de Química,
Facultat de Ciències, Maria Aurelia Capmany 69, Girona 17003, Spain
| | - Marta Martínez-Alonso
- Universidad
de Burgos, Departamento de
Química, Facultad de Ciencias, Plaza Misael Bañuelos s/n, Burgos 09001, Spain
| | - Marta Planas
- LIPPSO,
Departament de Química, Facultat de Ciències, Universitat de Girona, Maria Aurelia Capmany 69, Girona 17003, Spain
| | - Lidia Feliu
- LIPPSO,
Departament de Química, Facultat de Ciències, Universitat de Girona, Maria Aurelia Capmany 69, Girona 17003, Spain
| | - Gustavo Espino
- Universidad
de Burgos, Departamento de
Química, Facultad de Ciencias, Plaza Misael Bañuelos s/n, Burgos 09001, Spain
| | - Anna Massaguer
- Universitat
de Girona, Departament de
Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, Girona 17003, Spain
| |
Collapse
|
35
|
Zheng H, Wu J, Feng J, Cheng H. Cellular Senescence and Anti-Aging Strategies in Aesthetic Medicine: A Bibliometric Analysis and Brief Review. Clin Cosmet Investig Dermatol 2024; 17:2243-2259. [PMID: 39399066 PMCID: PMC11471065 DOI: 10.2147/ccid.s403417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Background Skin aging is the most obvious feature of human aging, and delaying aging has become a hot and difficult research topic in aesthetic medicine. The accumulation of dysfunctional senescent cells is one of the important mechanisms of skin aging, based on which a series of anti-aging strategies have been generated. In this paper, from the perspective of cellular senescence, we utilize bibliometrics and research review to explore the research hotspots and trends in this field, with a view to providing references for skin health and aesthetic medicine. Methods We obtained literature related to this field from the Web of Science Core Collection database from 1994 to 2024. Bibliometrix packages in R, CiteSpace, VOSviewer, Origin, and Scimago Graphica were utilized for data mining and visualization. Results A total of 2,796 documents were included in the analysis. The overall trend of publications showed a continuous and rapid increase from 2016-2023, but the total citations improved poorly over time. In this field, Journal of Cosmetic Dermatology, Journal of Investigative Dermatology, Experimental Gerontology are core journals. Kim J, Lee JH, Lee S, Rattan SIS, Chung JH and Kim JH are the core authors in this field. Seoul National University is the first in terms of publications. Korea is the country with the most publications, but USA has the most total citations. Top 10 keywords include: gene-expression, skin, cellular senescence, cell, oxidative stress, antioxidants, in vitro, fibroblasts, mechanism, cancer. Current research trends are focused on neurodegeneration, skin rejuvenation, molecular docking, fibrosis, wound healing, SASP, skin barrier, and antioxidants. The core literature and references reflect topics such as the major molecular pathways in the aging process, and the relationship with tumors. Conclusion This field of research has been rapidly rising in recent years. Relevant research hotspots focus on oxidative stress, fibroblasts, and senescence-associated secretory phenotype. Anti-aging strategies targeting cellular senescence hold great promise, including removal of senescent cells or attenuation of SASP factors, corresponding to senolytics and senomorphics therapies, respectively.
Collapse
Affiliation(s)
- Huilan Zheng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Jingping Wu
- Department of Medical Cosmetology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Jinhong Feng
- Department of Medical Cosmetology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Hongbin Cheng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| |
Collapse
|
36
|
La Marca JE, Kelly GL, Strasser A, Diepstraten ST. Don't fear the reaper: The role of regulated cell death in tumorigenesis and BH3-mimetics for cancer therapy. Dev Cell 2024; 59:2532-2548. [PMID: 39378839 DOI: 10.1016/j.devcel.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 10/10/2024]
Abstract
From its earliest characterization, it has been recognized that there is a role for regulated (programmed) cell death in cancer. As our understanding of the different types of programmed cell death processes and their molecular control has advanced, so have the technologies that allow us to manipulate these processes to, for example, fight against cancer. In this review, we describe the roles of the different forms of regulated cell death in the development of cancer as well as their potential therapeutic exploitation. In that vein, we explore the development and use of BH3-mimetics, a unique class of drugs that can directly activate the apoptotic cell death machinery to treat cancer. Finally, we address key challenges that face the field to improve the use of these therapeutics and the efforts that are being undertaken to do so.
Collapse
Affiliation(s)
- John E La Marca
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Genome Engineering and Cancer Modelling Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia.
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Sarah T Diepstraten
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
37
|
Ansari A, Bhattacharyya T, Das P, Chandra Y, Kundu TK, Banerjee R. Lipid-Conjugated Reduced Haloperidol in Association with Glucose-Based Nanospheres: A Strategy for Glioma Treatment. Mol Pharm 2024; 21:5053-5070. [PMID: 39302161 DOI: 10.1021/acs.molpharmaceut.4c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Aggressive glioma exhibits a poor survival rate. Increased tumor aggression is linked to both tumor cells and tumor-associated macrophages (TAMs), which induce pro-aggression, invasion, and metastasis. Imperatively, for effective treatment, it is important to target both glioma cells and TAMs. Haloperidol, a neuropsychotic drug, avidly targets the sigma receptor (SR), which is expressed in higher levels in both the cell types. Herein, we present the development of a novel cationic lipid-conjugated reduced haloperidol (±RHPC8), which aims to mediate the SR-targeted antiglioma effect. Hypothetically, ±RHPC8 would act simultaneously as an SR-targeting ligand and anticancer agent. As the blood-brain barrier (BBB) obstructs direct targeting of in situ glioma, we used BBB-crossing glucose-based carbon nanospheres (CSPs) to deliver ±RHPC8 within the glioma tumor-bearing mouse brain. The resultant ±RHPC8-CSP nanoconjugate targeted SR-expressing glioma cells. In both orthotopic and subcutaneous mouse tumor models, ±RHPC8-CSP prolonged survival and regressed tumors compared to other treated groups. Notably, ±RHPC8-CSP was significantly taken up by SR-expressing TAMs thus resulting in macrophage polarization from M2 to M1, as exhibited by markedly reduced expression of immunosuppressive cytokines released by TAMs, including TGF-β, IL-10, and VEGF. In conclusion, the designed ±RHPC8-CSP nanoconjugate presented an effective nanodrug delivery system for brain cancer treatment.
Collapse
Affiliation(s)
- Aasia Ansari
- Department of Oils, Lipid, Science & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Tithi Bhattacharyya
- Department of Oils, Lipid, Science & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Pritam Das
- Department of Oils, Lipid, Science & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Yogesh Chandra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560 064, India
| | - Rajkumar Banerjee
- Department of Oils, Lipid, Science & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| |
Collapse
|
38
|
Gáspár R, Nógrádi-Halmi D, Demján V, Diószegi P, Igaz N, Vincze A, Pipicz M, Kiricsi M, Vécsei L, Csont T. Kynurenic acid protects against ischemia/reperfusion injury by modulating apoptosis in cardiomyocytes. Apoptosis 2024; 29:1483-1498. [PMID: 39153038 PMCID: PMC11416393 DOI: 10.1007/s10495-024-02004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/19/2024]
Abstract
Acute myocardial infarction, often associated with ischemia/reperfusion injury (I/R), is a leading cause of death worldwide. Although the endogenous tryptophan metabolite kynurenic acid (KYNA) has been shown to exert protection against I/R injury, its mechanism of action at the cellular and molecular level is not well understood yet. Therefore, we examined the potential involvement of antiapoptotic mechanisms, as well as N-methyl-D-aspartate (NMDA) receptor modulation in the protective effect of KYNA in cardiac cells exposed to simulated I/R (SI/R). KYNA was shown to attenuate cell death induced by SI/R dose-dependently in H9c2 cells or primary rat cardiomyocytes. Analysis of morphological and molecular markers of apoptosis (i.e., membrane blebbing, apoptotic nuclear morphology, DNA double-strand breaks, activation of caspases) revealed considerably increased apoptotic activity in cardiac cells undergoing SI/R. The investigated apoptotic markers were substantially improved by treatment with the cytoprotective dose of KYNA. Although cardiac cells were shown to express NMDA receptors, another NMDA antagonist structurally different from KYNA was unable to protect against SI/R-induced cell death. Our findings provide evidence that the protective effect of KYNA against SI/R-induced cardiac cell injury involves antiapoptotic mechanisms, that seem to evoke independently of NMDA receptor signaling.
Collapse
Affiliation(s)
- Renáta Gáspár
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Dóra Nógrádi-Halmi
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Virág Demján
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Petra Diószegi
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Anna Vincze
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary
| | - Márton Pipicz
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE-Neuroscience Research Group, Szeged, Hungary
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 9, 6720, Szeged, Hungary.
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary.
| |
Collapse
|
39
|
Li H, Wang M, Huang Y. Anthracycline-induced cardiotoxicity: An overview from cellular structural perspective. Biomed Pharmacother 2024; 179:117312. [PMID: 39167843 DOI: 10.1016/j.biopha.2024.117312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Anthracyclines are broad-spectrum anticancer drugs, but their clinical use is limited due to their severe cardiotoxicity. Anthracycline-induced cardiotoxicity (AIC) remains a significant cause of heart disease-related mortality in many cancer survivors. The underlying mechanisms of AIC have been explored over the past few decades. Reactive oxygen species and drug-induced inhibition of topoisomerase II beta are well-studied mechanisms, with mitochondria being a prominently investigated organelle. Emerging mechanisms such as ferroptosis, Ca2+ overload, autophagy and inflammation mediators have been implicated in recent years. In this review, our goal is to summarize and update the roles of various mechanisms in AIC, focusing on different cellular levels and further explore promising therapeutic approaches targeting these organelles or pathways.
Collapse
Affiliation(s)
- Hansheng Li
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei Province 430060, China.
| | - Meilun Wang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei Province 430060, China.
| | - Yan Huang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei Province 430060, China.
| |
Collapse
|
40
|
Yang L, Meng B, Gong X, Jiang Y, Shentu X, Xue Z. Investigation of the synergistic effect mechanism underlying sequential use of palbociclib and cisplatin through integral proteomic and glycoproteomic analysis. Anticancer Drugs 2024; 35:806-816. [PMID: 39011652 PMCID: PMC11392100 DOI: 10.1097/cad.0000000000001633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Chemoresistance largely hampers the clinical use of chemodrugs for cancer patients, combination or sequential drug treatment regimens have been designed to minimize chemotoxicity and resensitize chemoresistance. In this work, the cytotoxic effect of cisplatin was found to be enhanced by palbociclib pretreatment in HeLa cells. With the integration of liquid chromatography-mass spectrometry-based proteomic and N-glycoproteomic workflow, we found that palbociclib alone mainly enhanced the N-glycosylation alterations in HeLa cells, while cisplatin majorly increased the different expression proteins related to apoptosis pathways. As a result, the sequential use of two drugs induced a higher expression level of apoptosis proteins BAX and BAK. Those altered N-glycoproteins induced by palbociclib were implicated in pathways that were closely associated with cell membrane modification and drug sensitivity. Specifically, the top four frequently glycosylated proteins FOLR1, L1CAM, CD63, and LAMP1 were all associated with drug resistance or drug sensitivity. It is suspected that palbociclib-induced N-glycosylation on the membrane protein allowed the HeLa cell to become more vulnerable to cisplatin treatment. Our study provides new insights into the mechanisms underlying the sequential use of target drugs and chemotherapy drugs, meanwhile suggesting a high-efficiency approach that involves proteomic and N-glycoproteomic to facilitate drug discovery.
Collapse
Affiliation(s)
- Lulu Yang
- Faculty of Life Sciences, China Jiliang University, Hangzhou
| | - Bo Meng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xuping Shentu
- Faculty of Life Sciences, China Jiliang University, Hangzhou
| | - Zhichao Xue
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| |
Collapse
|
41
|
Lee H, An G, Lim W, Song G. Flusilazole induced developmental toxicity, neurotoxicity, and cardiovascular toxicity via apoptosis and oxidative stress in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109993. [PMID: 39106914 DOI: 10.1016/j.cbpc.2024.109993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
Flusilazole is a well-known triazole fungicide applied to various crops and fruits worldwide. Flusilazole residues are frequently detected in the environment, and many researchers have reported the hazardous effects of flusilazole on non-target organisms; however, the developmental toxicity of flusilazole has not been fully elucidated. In this study, we investigated flusilazole-induced developmental defects in zebrafish, which are used in toxicology studies to assess the toxic effects of chemicals on aquatic species or vertebrates. We confirmed that flusilazole exposure affected the viability and hatching rate of zebrafish larvae, and resulted in morphological defects, reduced body length, diminished eye and head sizes, and inflated pericardial edema. Apoptosis, oxidative stress, and inflammation were also observed. These factors interrupted the normal organ formation during early developmental stages, and transgenic models were used to identify organ defects. We confirmed the effects of flusilazole on the nervous system using olig2:dsRed transgenic zebrafish, and on the cardiovascular system using cmlc2:dsRed and fli1:eGFP transgenic zebrafish. Our results demonstrate the developmental toxicity of flusilazole and its mechanisms in zebrafish as well as the detrimental effects of flusilazole.
Collapse
Affiliation(s)
- Hojun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, USA
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
42
|
Hu H, Chen J, Zhang F, Sheng Z, Yang Y, Xie Y, Zhou L, Liu Y. Evaluation of Efficiency of Liposome-Entrapped Iridium(III) Complexes Inhibiting Tumor Growth In Vitro and In Vivo. J Med Chem 2024; 67:16195-16208. [PMID: 39264254 DOI: 10.1021/acs.jmedchem.4c01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In this paper, three new iridium(III) complexes: [Ir(piq)2(DFIPP)]PF6 (piq = deprotonated 1-phenylisoquinoline, DFIPP = 3,4-difluoro-2-(1H-imidazo[4,5-f][1,10]phenenthrolin-2-yl)phenol, 3a), [Ir(bzq)2(DFIPP)]PF6 (bzq = deprotonated benzo[h]quinoline, 3b), and [Ir(ppy)2(DFIPP)]PF6 (ppy = deprotonated 1-phenylpyridine, 3c), were synthesized and characterized. The complexes were found to be nontoxic to tumor cells via 3-(4,5-dimethylthiazole-2-yl)-diphenyltetrazolium bromide (MTT) assay. Surprisingly, its liposome-entrapped complexes 3alip, 3blip, and 3clip on B16 cells showed strong cytotoxicity (IC50 = 13.6 ± 2.8, 9.6 ± 1.1, and 18.9 ± 2.1 μM). Entry of 3alip, 3blip, and 3clip into B16 cells decreases mitochondrial membrane potential, regulates Bcl-2 family proteins, releases cytochrome c, triggers caspase family cascade reaction, and induces apoptosis. In addition, we also found that 3alip, 3blip, and 3clip triggered ferroptosis and autophagy. In vivo studies demonstrated that 3blip inhibited melanoma growth in C57 mice with a high inhibitory rate of 83.95%, and no organic damage was found in C57 mice.
Collapse
Affiliation(s)
- Huiyan Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Fan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhujun Sheng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yan Yang
- Department of Pharmacy, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, PR China
| | - Yufeng Xie
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lin Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| |
Collapse
|
43
|
Liu W, Jia Q, Pang H, Kang B, Lin J. An exploratory study of cervical disc degeneration model and mechanism of acupuncture therapy in rabbits. Vet J 2024; 308:106244. [PMID: 39270968 DOI: 10.1016/j.tvjl.2024.106244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Acupuncture is an important therapy method in traditional Chinese medicine for treating intervertebral disc degeneration (IVDD), offering a wide range of applications. It is based on the theory of Chinese veterinary medicine and combines the stage of the disease course and individual differences for syndrome differentiation and treatment. However, there are few studies on the acupuncture treatment of cervical disc degeneration (CDD) in rabbits. Treatment based on syndrome differentiation is the basic principle of Chinese veterinary treatment. The selection of acupoints for external treatment should be based on individual etiology and pathogenesis. Nevertheless, most current studies do not follow this guideline. In this study, we established the CDD model and explored the mechanism of acupuncture treatment in alleviating CDD in rabbits by selecting a group of main acupoints including cervical Jiaji, Fengchi, Tianzhu, Naohu, Dazhui, and Houxi acupoints, combined with Western medicine's understanding of the pathogenesis of cervical spondylosis, from the anti-inflammatory, analgesic, and tissue-repairing perspectives. Magnetic resonance imaging (MRI) confirmed the successful establishment of the rabbit CDD model. Acupuncture stimulation reduced the increase of average and maximum neck temperature due to CDD in rabbits. The acupuncture treatment relieved the spinal disc damage in the neck of the rabbit, which also decreased the expression level of pro-apoptotic factor Bax and increased the expression level of anti-apoptotic factor Bcl-2. In addition, it can alleviate the abnormal apoptosis of rabbit intervertebral disc, decrease the expression level of inflammatory factors such as TNF-α, IL-1β, IL-2, and PGE2α, and alleviate the intense inflammation and pain response caused by CDD in rabbits. In conclusion, Acupuncture treatment can slow down the CDD of rabbits by regulating the inflammatory response and abnormal apoptosis of intervertebral disc tissue.
Collapse
Affiliation(s)
- Wei Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qianyu Jia
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Haidong Pang
- Veterinary Teaching Hospital of China Agricultural University, Beijing 100193, China
| | - Bo Kang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiahao Lin
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
44
|
Bertazzon M, Hurtado-Pico A, Plaza-Sirvent C, Schuster M, Preußner M, Kuropka B, Liu F, Kirsten AZA, Schmitt XJ, König B, Álvaro-Benito M, Abualrous ET, Albert GI, Kliche S, Heyd F, Schmitz I, Freund C. The nuclear GYF protein CD2BP2/U5-52K is required for T cell homeostasis. Front Immunol 2024; 15:1415839. [PMID: 39308865 PMCID: PMC11412891 DOI: 10.3389/fimmu.2024.1415839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/11/2024] [Indexed: 09/25/2024] Open
Abstract
The question whether interference with the ubiquitous splicing machinery can lead to cell-type specific perturbation of cellular function is addressed here by T cell specific ablation of the general U5 snRNP assembly factor CD2BP2/U5-52K. This protein defines the family of nuclear GYF domain containing proteins that are ubiquitously expressed in eukaryotes with essential functions ascribed to early embryogenesis and organ function. Abrogating CD2BP2/U5-52K in T cells, allows us to delineate the consequences of splicing machinery interferences for T cell development and function. Increased T cell lymphopenia and T cell death are observed upon depletion of CD2BP2/U5-52K. A substantial increase in exon skipping coincides with the observed defect in the proliferation/differentiation balance in the absence of CD2BP2/U5-52K. Prominently, skipping of exon 7 in Mdm4 is observed, coinciding with upregulation of pro-apoptotic gene expression profiles upon CD2BP2/U5-52K depletion. Furthermore, we observe enhanced sensitivity of naïve T cells compared to memory T cells to changes in CD2BP2/U5-52K levels, indicating that depletion of this general splicing factor leads to modulation of T cell homeostasis. Given the recent structural characterization of the U5 snRNP and the crosslinking mass spectrometry data given here, design of inhibitors of the U5 snRNP conceivably offers new ways to manipulate T cell function in settings of disease.
Collapse
Affiliation(s)
- Miriam Bertazzon
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Almudena Hurtado-Pico
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Marc Schuster
- Systems-Oriented Immunology and Inflammation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marco Preußner
- Department of Chemistry and Biochemistry, RNA Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Benno Kuropka
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Fan Liu
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Xiao Jakob Schmitt
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Benjamin König
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Miguel Álvaro-Benito
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
- School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute, Madrid, Spain
| | - Esam T. Abualrous
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
- Department of Physics, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Gesa I. Albert
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation GCI3, Otto-von-Guericke-University, Magdeburg, Germany
| | - Florian Heyd
- Department of Chemistry and Biochemistry, RNA Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Ingo Schmitz
- Department of Molecular Immunology, Ruhr-University Bochum, Bochum, Germany
| | - Christian Freund
- Department of Chemistry and Biochemistry, Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
45
|
Jiang S, Wang P, Sun X, Zhang M, Zhang S, Cao Y, Wang Y, Liu L, Gao X. Mechanistic study of leukopenia treatment by Qijiao shengbai Capsule via the Bcl2/Bax/CASAPSE3 pathway. Front Pharmacol 2024; 15:1451553. [PMID: 39295929 PMCID: PMC11408280 DOI: 10.3389/fphar.2024.1451553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024] Open
Abstract
Background Leukopenia can be caused by chemotherapy, which suppresses bone marrow function and can impact the effectiveness of cancer treatment. Qijiao Shengbai Capsule (QJSB) is commonly used to treat leukopenia, but the specific bioactive components and mechanisms of action are not well understood. Objectives and results This study aimed to analyze the active ingredients of QJSB and its potential targets for treating leukopenia using network pharmacology and molecular docking. Through a combination of serum pharmacochemistry, multi-omics, network pharmacology, and validation experiments in a murine leukopenia model, the researchers sought to understand how QJSB improves leukopenia. The study identified 16 key components of QJSB that act in vivo to increase the number of white blood cells in leukopenic mice. Multi-omics analysis and network pharmacology revealed that the PI3K-Akt and MAPK signaling pathways are important in the treatment of leukopenia with QJSB. Five specific targets (JUN, FOS, BCl-2, CASPAS-3) were identified as key targets. Conclusion Validation experiments confirmed that QJSB regulates genes related to cell growth and inhibits apoptosis, suggesting that apoptosis may play a crucial role in leukopenia development and that QJSB may improve immune function by regulating apoptotic proteins and increasing CD4+ T cell count in leukopenic mice.
Collapse
Affiliation(s)
- Siyue Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Pengjiao Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Xiaodong Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Min Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Shuo Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Experimental Animal Center of Guizhou Medical University, Guiyang, China
| | - Yu Cao
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Yuben Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Li Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Xiuli Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| |
Collapse
|
46
|
Alhamdi HW, Alfaifi MY, Shati AA, Elbehairi SEI, Er-Rajy M, Elshaarawy RFM, Hassan YA, Zakrya R. New multifunctional hybrids as modulators of apoptosis markers and topoisomerase II in breast cancer therapy: synthesis, characterization, and in vitro and in silico studies. RSC Adv 2024; 14:28555-28568. [PMID: 39247509 PMCID: PMC11378026 DOI: 10.1039/d4ra04219k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Recently, molecular hybrids of two or more active pharmacophores have shown promise for designing and synthesizing anticancer drugs. Herein, a new multifunctional hybrid (PAHMQ), combining azobenzene and quinoline pharmacophores, and its M(ii) complexes (MPAHMQ) have been successfully developed and structurally characterized. The MTT assay revealed CuBHTP as the most efficient and safe breast cancer treatment, with an IC50 of 11.18 ± 0.39 μg mL-1 and a high selectivity index (SI) of 5.63 for cancer MCF-7 cells over healthy MCF10A cells. Moreover, the CuPAHMQ-treated MCF-7 cells experience a dramatic impact with regard to key apoptotic markers, including an increase in P53 and Bax expression, with a decrease in Bcl-2 expression levels compared to the untreated MCF-7 cells. Additionally, CuPAHMQ effectively halted the growth and division of MCF-7 cells by inducing cell cycle arrest in the crucial G1 and S phases, ultimately inhibiting both Topo II activity and cell proliferation. Molecular docking investigations validated the CuPAHMQ complex's groove binding and topoisomerase II binding, establishing it as a potent anticancer drug.
Collapse
Affiliation(s)
- Heba W Alhamdi
- College of Sciences, Biology Department, King Khalid University Abha 61413 Saudi Arabia
| | - Mohammad Y Alfaifi
- King Khalid University, Faculty of Science, Biology Department Abha 9004 Saudi Arabia
- Tissue Culture and Cancer Biology Research Laboratory, King Khalid University Abha 9004 Saudi Arabia
| | - Ali A Shati
- King Khalid University, Faculty of Science, Biology Department Abha 9004 Saudi Arabia
- Tissue Culture and Cancer Biology Research Laboratory, King Khalid University Abha 9004 Saudi Arabia
| | - Serag Eldin I Elbehairi
- King Khalid University, Faculty of Science, Biology Department Abha 9004 Saudi Arabia
- Tissue Culture and Cancer Biology Research Laboratory, King Khalid University Abha 9004 Saudi Arabia
- Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company) 51 Wezaret El-Zeraa St., Agouza Giza Egypt
| | - Mohammed Er-Rajy
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University Fez Morocco
| | - Reda F M Elshaarawy
- Department of Chemistry, Faculty of Science, Suez University 43533 Suez Egypt
| | - Yasser A Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology Gamasa Egypt
| | - Rozan Zakrya
- Chemistry Department, Faculty of Science, Port-Said University Port-Said Egypt
| |
Collapse
|
47
|
Ul Haq F, Imran M, Ullah S, Aftab U, Akhtar T, Khan AH, Ullah R, Ejaz H, Gaffar F, Khan I. Morchella conica, Morchella esculenta and Morchella delicosa Induce Apoptosis in Breast and Colon Cancer Cell Lines via Pro-apoptotic and Anti-apoptotic Regulation. Chin J Integr Med 2024:10.1007/s11655-024-3819-0. [PMID: 39225882 DOI: 10.1007/s11655-024-3819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE To explore the potential apoptotic mechanisms of 3 Morchella extracts (Morchella conica, Morchella esculenta and Morchella delicosa) on breast and colon cancer cell lines using apoptotic biomarkers. METHODS Human breast cell line (MCF-7) and colon cancer cell line (SW-480) were treated with methanol and ethanol extracts of 3 Morchella species with concentration ranging from 0.0625 to 2 mg/mL. After that their effects on gene expression of apoptosis related markers (pro-apoptotic markers including Bax, caspase-3, caspase-7, and caspase-9, and the antiapoptotic marker including Bcl-2) were determined using reverse transcription polymerase chain reaction. RESULTS All Morchella extracts reduced breast and colon cancer cells proliferation at half inhibitory concentration (IC50) of 0.02 ±0.01 to 0.68 ±0.30 mg/mL. As expected, all Morchella extracts significantly increased gene expressions of Bax, caspase-3, caspase-7, and caspase-9 and downregulated the gene expression of Bcl-2 in MCF-7 and SW-480 cell lines (P<0.05). CONCLUSIONS Morchella extracts demonstrated significant anti-proliferative activity against breast and colon cancer cell lines via an apoptosis induction mechanism. Anticancer activity of Morchella extracts and activation of apoptosis in breast and colon cancer cells suggest that it may be used to develop chemotherapeutic agents against cancer in future.
Collapse
Affiliation(s)
- Faiz Ul Haq
- Department of Microbiology, University of Health Sciences, Lahore, 54600, Pakistan
| | - Muhammad Imran
- Department of Microbiology, University of Health Sciences, Lahore, 54600, Pakistan.
| | - Sami Ullah
- Department of Forensic Sciences, University of Health Sciences, Lahore, 54600, Pakistan
| | - Usman Aftab
- Department of Pharmacology, University of Health Sciences, Lahore, 54600, Pakistan
| | - Tasleem Akhtar
- Department of Pharmacology, University of Health Sciences, Lahore, 54600, Pakistan
| | - Asif Haleem Khan
- Department of Hematology, University of Health Sciences, Lahore, 54600, Pakistan
| | - Roh Ullah
- Department of Hematology, University of Health Sciences, Lahore, 54600, Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Fatema Gaffar
- Institute of Allied Health Sciences, De Montfort University, Leicester, LE1 9BH, UK
| | - Imad Khan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| |
Collapse
|
48
|
Zuo X, Bai HJ, Zhao QL, Zhang SH, Zhao X, Feng XZ. 17β-Trenbolone Exposure Enhances Muscle Activity and Exacerbates Parkinson's Disease Progression in Male Mice. Mol Neurobiol 2024:10.1007/s12035-024-04455-3. [PMID: 39222261 DOI: 10.1007/s12035-024-04455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's disease (PD) ranks as the second most prevalent neurodegenerative disorder, and while the neuroprotective effects of estrogen are well-documented, the impact of androgens on neurological disorders remains understudied. The consequences of exposure to 17-trenbolone (17-TB), an environmental endocrine disruptor with androgen-like properties, on the mammalian nervous system have received limited attention. Therefore, in this study, we aimed to investigate the biological effects of 17-TB exposure on PD. In our investigation using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model, we discovered that 17-TB exposure elevated testosterone hormone levels prevented androgen receptor (AR) reduction, upregulated the expression of muscular dystrophic factors (Atrogin1, MuRF1, Musa1, and Myostatin), improved muscle strength, and enhanced locomotor activity in the open field test. However, it is noteworthy that exposure to 17-TB also led to an upregulation of neuroinflammatory cytokines (NLRP3, IL-6, IL-1α, and IL-1β) in PD mice. Crucially, 17-TB exposure induced downregulation of nigral apoptotic proteins DJ-1 and Bcl-2 while upregulating Bax and Caspase-3 in PD mice. This exacerbated neuronal apoptosis, ultimately intensifying dopaminergic neuronal degeneration and death in the substantia nigra and striatum of PD mice. In conclusion, our findings indicate that while 17-TB mitigates muscle atrophy and enhances motor activity in PD mice, it concurrently exacerbates neuroinflammation, induces neuronal apoptosis, and worsens dopaminergic neuronal death, thereby aggravating the progression of MPTP-induced Parkinsonism. This underscores the importance of considering potential environmental risks in neurodegeneration associated with Parkinson's disease, providing a cautionary tale for our daily exposure to environmental endocrine chemical disruptors.
Collapse
Affiliation(s)
- Xiang Zuo
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Hui-Juan Bai
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Qi-Li Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Shu-Hui Zhang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China.
| | - Xi-Zeng Feng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
49
|
Badea MA, Balas M, Ionita D, Dinischiotu A. Carbon nanotubes conjugated with cisplatin activate different apoptosis signaling pathways in 2D and 3D-spheroid triple-negative breast cancer cell cultures: a comparative study. Arch Toxicol 2024; 98:2843-2866. [PMID: 38739308 PMCID: PMC11324667 DOI: 10.1007/s00204-024-03779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
The type of experimental model for the in vitro testing of drug formulations efficiency represents an important tool in cancer biology, with great attention being granted to three-dimensional (3D) cultures as these offer a closer approximation of the clinical sensitivity of drugs. In this study, the effects induced by carboxyl-functionalized single-walled carbon nanotubes complexed with cisplatin (SWCNT-COOH-CDDP) and free components (SWCNT-COOH and CDDP) were compared between conventional 2D- and 3D-spheroid cultures of human breast cancer cells. The 2D and 3D breast cancer cultures were exposed to various doses of SWCNT-COOH (0.25-2 μg/mL), CDDP (0.158-1.26 μg/mL) and the same doses of SWNCT-COOH-CDDP complex for 24 and 48 h. The anti-tumor activity, including modulation of cell viability, oxidative stress, proliferation, apoptosis, and invasion potential, was explored by spectrophotometric and fluorometric methods, immunoblotting, optical and fluorescence microscopy. The SWCNT-COOH-CDDP complex proved to have high anti-cancer efficiency on 2D and 3D cultures by inhibiting cell proliferation and activating cell death. A dose of 0.632 μg/mL complex triggered different pathways of apoptosis in 2D and 3D cultures, by intrinsic, extrinsic, and reticulum endoplasmic pathways. Overall, the 2D cultures showed higher susceptibility to the action of complex compared to 3D cultures and SWCNT-COOH-CDDP proved enhanced anti-tumoral activity compared to free CDDP.
Collapse
Affiliation(s)
- Madalina Andreea Badea
- Faculty of Biology, Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 90-92 Sos. Panduri, 050663, Bucharest, Romania
| | - Mihaela Balas
- Faculty of Biology, Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania.
| | - Daniela Ionita
- Faculty of Applied Chemistry and Materials Science, Department of General Chemistry, Politehnica University of Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Anca Dinischiotu
- Faculty of Biology, Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
50
|
Ni Y, Chen H, Zhan Q, Zhuang Z. Nuclear export of PML promotes p53-mediated apoptosis and ferroptosis. Cell Signal 2024; 121:111278. [PMID: 38944257 DOI: 10.1016/j.cellsig.2024.111278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Promyelocytic leukemia protein (PML), a tumor suppressor protein, plays a key role in cell cycle regulation, apoptosis, senescence and cellular metabolism. Here, we report that PML promotes apoptosis and ferroptosis. Our data showed that PML over-expression inhibited cell proliferation and migration. PML over-expression increased apoptotic cells, nuclear condensation and the loss of mitochondrial membrane potential, accompanied by regulation of Bcl-2 family proteins and reactive oxygen species (ROS) level, suggesting that PML enhanced apoptosis. Meanwhile, PML over-expression not only increased lipid ROS accumulation and Malondialdehyde (MDA) content but also downregulated solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) expression, indicating that PML enhanced ferroptosis. Additionally, knockdown of p53 attenuated the effect of PML on SLC7A11 and GPX4, and inhibited the increase of lipid ROS and ROS by PML over-expression. Moreover, translocation of PML from nucleus to cytoplasm not only promoted apoptosis and ferroptosis, but also inhibited cell proliferation. Taken together, PML promotes apoptosis and ferroptosis, in which the mediation of p53 and the nuclear export of PML play important roles.
Collapse
Affiliation(s)
- Yue Ni
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510631, China
| | - Hongce Chen
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Qiuqiang Zhan
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510631, China
| | - Zhengfei Zhuang
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|