1
|
Song H, Zhang M, Guo C, Guo X, Ma Y, Ma Y. Implication of protein post translational modifications in gastric cancer. Front Cell Dev Biol 2025; 13:1523958. [PMID: 39968176 PMCID: PMC11833226 DOI: 10.3389/fcell.2025.1523958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025] Open
Abstract
Gastric cancer (GC) is one of the most common and highly lethal malignant tumors worldwide, and its occurrence and development are regulated by multiple molecular mechanisms. Post-translational modifications (PTM) common forms include ubiquitylation, phosphorylation, acetylation and methylation. Emerging research has highlighted lactylation and glycosylation. The diverse realm of PTM and PTM crosstalk is linked to many critical signaling events involved in neoplastic transformation, carcinogenesis and metastasis. This review provides a comprehensive overview of the impact of PTM on the occurrence and progression of GC. Specifically, aberrant PTM have been shown to alter the proliferation, migration, and invasion capabilities of GC cells. Moreover, PTM are closely associated with resistance to chemotherapeutic agents in GC. Notably, this review also discusses the phenomenon of PTM crosstalk, highlighting the interactions among PTM and their roles in regulating signaling pathways and protein functions. Therefore, in-depth investigation into the mechanisms of PTM and the development of targeted therapeutic strategies hold promise for advancing early diagnosis, treatment, and prognostic evaluation of GC, offering novel insights and future research directions.
Collapse
Affiliation(s)
- Houji Song
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Mingze Zhang
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Chengwang Guo
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xi Guo
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuqi Ma
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuntao Ma
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
2
|
Liu J, Yu Y, Xu B, Liang Q, Fang T, Zhou N, Sun G. NOTCH1 regulates the DNA damage response and sorafenib resistance by activating ATM in hepatocellular carcinoma. Am J Transl Res 2024; 16:7317-7329. [PMID: 39822534 PMCID: PMC11733373 DOI: 10.62347/eafu3015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/30/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVE This study investigates the mechanism underlying sorafenib resistance in hepatocellular carcinoma cells (HCC), focusing on DNA damage repair (DDR) pathways to develop targeted therapeutic strategies. METHODS Bioinformatics analysis was used to screen genes associated with sorafenib resistance, which was further demonstrated by western blotting. Cell proliferation was determined using the EdU assay. The presence of binding sites between valproic acid (VPA) and NOTCH1 was analyzed by molecular docking. Comet and flow cytometry assays evaluated DNA damage and cell cycle arrest induced by VPA in sorafenib-resistant cells, with further mechanistic insights gained via western blotting and co-immunoprecipitation (Co-IP). RESULTS We found that NOTCH1/ATM axis plays a vital role in the prognosis of patients with liver cancer and in the behavior of sorafenib-resistant cells. HCC resistant to sorafenib exhibited enhanced cell proliferation ability. Moreover, overexpression of NOTCH1 in sorafenib-sensitive HCC cells significantly increased liver cancer cell proliferation. Conversely, silencing NOTCH1 expression in sorafenib-resistant HCC cell lines reduced their proliferative activity. Additionally, VPA enhanced the therapeutic efficacy against sorafenib-resistance cells by modulating NOTCH1/ATM/p-BRCA1/p-CHK2/γ-H2AX signaling axis and homologous recombination (HR) activity. CONCLUSION Targeting NOTCH1 and ATM is a promising strategy to overcome sorafenib resistance in HCC, particularly through the combined use of VPA and sorafenib.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University801 Heqing Road, Shanghai 200240, China
| | - Yan Yu
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University801 Heqing Road, Shanghai 200240, China
| | - Bin Xu
- Department of Ultrasonic Medicine, Shanghai Fifth People’s Hospital, Fudan University801 Heqing Road, Shanghai 200240, China
| | - Qing Liang
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University801 Heqing Road, Shanghai 200240, China
| | - Tingting Fang
- Department of Pharmacy, The Shanghai University of Medicine and Health Sciences279 Zhouzhu Highway, Pudong New Area, Shanghai 201318, China
| | - Ningming Zhou
- Department of Ultrasonic Medicine, Shanghai Fifth People’s Hospital, Fudan University801 Heqing Road, Shanghai 200240, China
| | - Guangchun Sun
- Department of Pharmacy, Shanghai Fifth People’s Hospital, Fudan University801 Heqing Road, Shanghai 200240, China
| |
Collapse
|
3
|
Qiao X, Wu X, Chen S, Niu MM, Hua H, Zhang Y. Discovery of novel and potent dual-targeting AXL/HDAC2 inhibitors for colorectal cancer treatment via structure-based pharmacophore modelling, virtual screening, and molecular docking, molecular dynamics simulation studies, and biological evaluation. J Enzyme Inhib Med Chem 2024; 39:2295241. [PMID: 38134358 PMCID: PMC10763849 DOI: 10.1080/14756366.2023.2295241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Nowadays, owing to the complex mechanism of tumorigenesis, simultaneous inhibition of multiple targets is an important anticancer strategy. Recent studies have demonstrated receptor tyrosine kinase AXL (AXL) and histone deacetylase 2 (HDAC2) are closely associated with colorectal cancer. Herein, we identified five hit compounds concurrently targeting AXL and HDAC2 using virtual screening. Inhibitory experiments revealed these hit compounds potently inhibited AXL and HDAC2 in the nanomolar range. Among them, Hit-3 showed the strongest inhibitory effects which were better than that of the positive control groups. Additionally, MD assays showed that Hit-3 could bind stably to the AXL and HDAC2 active pockets. Further MTT assays demonstrated that Hit-3 showed potent anti-proliferative activity. Most importantly, Hit-3 exhibited significant in vivo antitumor efficacy in xenograft models. Collectively, this study is the first discovery of dual-targeting AXL/HDAC2 inhibitors for colorectal cancer treatment.
Collapse
Affiliation(s)
- Xiao Qiao
- Department of Gastroenterology, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Xiangyu Wu
- Department of Gastroenterology, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Shutong Chen
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Huilian Hua
- Department of Pharmacy, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Yan Zhang
- Department of Pharmacy, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
4
|
Ye L, Xing H, Wang Y, Ma W. Genetic association between epilepsy and gliomas: Insights from Mendelian randomization and single-cell transcriptomic analyses. Epilepsy Behav 2024; 161:110114. [PMID: 39488096 DOI: 10.1016/j.yebeh.2024.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Seizures are prevalent in glioma patients, especially in those with low-grade gliomas. The interaction between gliomas and epilepsy involves complex biological mechanisms that are not fully understood. METHODS We collected Genome-Wide Association Study data for epilepsy and gliomas, performed differential expression analysis, and conducted Gene Ontology (GO) enrichment analysis on the identified genes. Single-cell RNA sequencing data (scRNA-seq) from GSE221534 dataset in Gene Expression Omnibus (GEO) were used to analyze cell-cell interactions within glioma samples from patients with and without epilepsy. RESULTS Mendelian Randomization (MR) analysis revealed significant associations between genetic variants related to epilepsy and glioma risk, suggesting a potential causal relationship, especially in astrocytomas. Differential expression analysis identified epilepsy-related genes that were significantly upregulated in astrocytoma tissues compared to normal brain tissues. GO enrichment analysis indicated that these genes are involved in critical biological processes such as neurogenesis and cellular signaling. The scRNA-seq analysis showed, compared to non-epileptic samples, glioma stem cells, microglia, and NK cells are increased in the core regions of astrocytomas in epileptic patients. Additionally, intercellular communication between tumor cells and other non-tumor cells is markedly enhanced in astrocytoma samples from epileptic patients. CONCLUSION This study provides evidence of a genetic association between epilepsy and gliomas and elucidates the biological mechanisms through which epilepsy may influence glioma progression.
Collapse
Affiliation(s)
- Liguo Ye
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Hou M, Chen J, Yang L, Qin L, Liu J, Zhao H, Guo Y, Yu QQ, Zhang Q. Identification of Fatty Acid Metabolism-Related Subtypes in Gastric Cancer Aided by Machine Learning. Cancer Manag Res 2024; 16:1463-1473. [PMID: 39439917 PMCID: PMC11495201 DOI: 10.2147/cmar.s483577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Gastric cancer, the fifth most common malignant tumor in the world, poses a serious threat to human health. However, the role of fatty acid metabolism (FAM) in gastric cancer remains incompletely understood. We aim to provide guidance for clinical decisions by utilizing public database of gastric adenocarcinoma to establish an FAM-related gene subtypes via machine learning algorithm. Methods The intersection of FMGs from KEGG, Hallmark, and Reactome bioinformatics databases and the DEGs of the TCGA-STAD cohort was used to decompose the gene matrix related to establish FAM-related gene subtypes by NMF. Comparison of immune infiltrating differences between subtypes using ESTIMATE and Cibersort algorithms. The multifactor Cox regression to identify independent risk genes for patient prognosis based on the subtypes. A prognostic model including independent risk genes was built using random survival forest and Cox regression. IHC validation in gastric cancer and adjacent tissues confirmed the above gene expression level. Results 71 DEGs related to FMGs of STAD were identified, which was used to established the FAM-related gene subtypes, C1 and C2. The immune infiltrating analysis showed that most immune features of C2 were significantly upregulated compared to C1. The independent risk genes were CGβ8, UPK1B, and OR51G based on the subtypes. A gastric cancer prognostic model consisting of independent risk genes was constructed and patients were classified into high-risk and low-risk groups with survival differential analysis. Finally, IHC showed that CGβ8 and UPK1B expression were upregulated in gastric cancer, while OR51G2 did not detect differences in expression. Conclusion The study developed a machine learning-based gastric cancer prognosis risk model using FMGs. This model effectively stratifies patients according to their risk levels and provides valuable insights for clinical decision-making, enabling accurate evaluation of patient prognosis.
Collapse
Affiliation(s)
- Maolin Hou
- Department of Internal Medicine, Siziwangqi People’s Hospital, Wulancabu, 011800, People’s Republic of China
| | - Jinghua Chen
- Department of Oncology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, 250000, People’s Republic of China
| | - Le Yang
- Department of Gastrointestinal Surgery, Jining, 272000, People’s Republic of China
| | - Lei Qin
- Department of Gastrointestinal Surgery, Jining, 272000, People’s Republic of China
| | - Jie Liu
- Department of Pediatric Intensive Care Unit, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250000, People’s Republic of China
| | - Haibo Zhao
- Department of Oncology, Jining, 272000, People’s Republic of China
| | - Yujin Guo
- Department of Clinical Pharmacology, Jining, 272000, People’s Republic of China
| | - Qing-Qing Yu
- Department of Clinical Pharmacology, Jining, 272000, People’s Republic of China
| | - Qiujie Zhang
- Department of Oncology, Jining, 272000, People’s Republic of China
| |
Collapse
|
6
|
Dunaway LS, Cook AK, Kellum CE, Edell C, Botta D, Molina PA, Sedaka RS, d’Uscio LV, Katusic ZS, Pollock DM, Inscho EW, Pollock JS. Endothelial histone deacetylase 1 activity impairs kidney microvascular NO signaling in rats fed a high-salt diet. Acta Physiol (Oxf) 2024; 240:e14201. [PMID: 39007513 PMCID: PMC11329346 DOI: 10.1111/apha.14201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
AIM We aimed to test the hypothesis that a high-salt diet (HS) impairs NO signaling in kidney microvascular endothelial cells through a histone deacetylase 1 (HDAC1)-dependent mechanism. METHODS Male Sprague Dawley rats were fed normal salt diet (NS; 0.49% NaCl) or HS (4% NaCl) for 2 weeks. NO signaling was assessed by measuring L-NAME induced vasoconstriction of the afferent arteriole using the blood perfused juxtamedullary nephron (JMN) preparation. In this preparation, kidneys were perfused with blood from a donor rat on a matching or different diet to that of the kidney donor. Kidney endothelial cells were isolated with magnetic activated cell sorting and HDAC1 activity was measured. RESULTS We found HS-induced impaired NO signaling in the afferent arteriole. This was restored by inhibition of HDAC1 with MS-275. Consistent with these findings, HDAC1 activity was increased in kidney endothelial cells. We further found the loss of NO to be dependent upon the diet of the blood donor rather than the diet of the kidney donor and the plasma from HS-fed rats to be sufficient to induce impaired NO signaling. This indicates the presence of a humoral factor we termed plasma-derived endothelial dysfunction mediator (PDEM). Pretreatment with the antioxidants, PEG-SOD and PEG-catalase, as well as the NOS cofactor, tetrahydrobiopterin, restored NO signaling. CONCLUSION We conclude that HS activates endothelial HDAC1 through PDEM leading to decreased NO signaling. This study provides novel insights into the molecular mechanisms by which a HS decreases renal microvascular endothelial NO signaling.
Collapse
Affiliation(s)
- Luke S. Dunaway
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Anthony K. Cook
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Cailin E. Kellum
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Claudia Edell
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Davide Botta
- Department of Microbiology, Immunology Institute, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Patrick A. Molina
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Randee S. Sedaka
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Livius V. d’Uscio
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN USA
| | - Zvonimir S. Katusic
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN USA
| | - David M. Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Edward W. Inscho
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Jennifer S. Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
7
|
Wang ML, Zhang YJ, He DL, Li T, Zhao MM, Zhao LM. Inhibition of PLA2G4A attenuated valproic acid- induced lysosomal membrane permeabilization and restored impaired autophagic flux: Implications for hepatotoxicity. Biochem Pharmacol 2024; 227:116438. [PMID: 39025409 DOI: 10.1016/j.bcp.2024.116438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Valproic acid (VPA) has broad efficacy against several seizures but causes liver injury limiting its prolonged clinical use. Some studies have demonstrated that VPA-induced hepatotoxicity is characterized by microvesicular hepatic steatosis. However, novel detailed mechanisms to explain VPA-induced hepatic steatosis and experimentally rigorously validated protective agents are still lacking. In this study, 8-week-old C57BL/6J mice were gavaged with VPA (500 mg/kg/d) for 4 weeks to establish an in vivo model of VPA-induced chronic liver injury. Quantitative proteomic and non-targeted lipidomic analyses were performed to explore the underlying mechanisms of VPA-induced hepatotoxicity. As a result, VPA-induced hepatotoxicity is associated with impaired autophagic flux, which is attributed to lysosomal dysfunction. Further studies revealed that VPA-induced lysosomal membrane permeabilization (LMP), allows soluble lysosomal enzymes to leak into the cytosol, which subsequently led to impaired lysosomal acidification. A lower abundance of glycerophospholipids and an increased abundance of lysophospholipids in liver tissues of mice in the VPA group strongly indicated that VPA-induced LMP may be mediated by the activation of phospholipase PLA2G4A. Metformin (Met) acted as a potential protective agent attenuating VPA-induced liver dysfunction and excessive lipid accumulation. Molecular docking and cellular thermal shift assays demonstrated that Met inhibited the activity of PLA2G4A by directly binding to it, thereby ameliorating VPA-induced LMP and autophagic flux impairment. In conclusion, this study highlights the therapeutic potential of targeting PLA2G4A-mediated lysosomal dysfunction in VPA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ming-Lu Wang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu-Jia Zhang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Da-Long He
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Tong Li
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ming-Ming Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Li-Mei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
8
|
Cook SR, Hugen S, Hayward JJ, Famula TR, Belanger JM, McNiel E, Fieten H, Oberbauer AM, Leegwater PA, Ostrander EA, Mandigers PJ, Evans JM. Genomic analyses identify 15 susceptibility loci and reveal HDAC2, SOX2-OT, and IGF2BP2 in a naturally-occurring canine model of gastric cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.604426. [PMID: 39372775 PMCID: PMC11451740 DOI: 10.1101/2024.08.14.604426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Gastric cancer (GC) is the fifth most common human cancer worldwide, but the genetic etiology is largely unknown. We performed a Bayesian genome-wide association study and selection analyses in a naturally-occurring canine model of GC, the Belgian Tervuren and Sheepdog breeds, to elucidate underlying genetic risk factors. We identified 15 loci with over 90% predictive accuracy for the GC phenotype. Variant filtering revealed germline putative regulatory variants for the EPAS1 (HIF2A) and PTEN genes and a coding variant in CD101. Although closely related to Tervuren and Sheepdogs, Belgian Malinois rarely develop GC. Across-breed analyses uncovered protective haplotypes under selection in Malinois at SOX2-OT and IGF2BP2. Among Tervuren and Sheepdogs, HDAC2 putative regulatory variants were present at comparatively high frequency and were associated with GC. Here, we describe a complex genetic architecture governing GC in a dog model, including genes such as PDZRN3, that have not been associated with human GC.
Collapse
Affiliation(s)
- Shawna R. Cook
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Sanne Hugen
- Expertisecentre of Genetics, Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jessica J. Hayward
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Thomas R. Famula
- Department of Animal Science, University of California, Davis, CA, USA
| | | | - Elizabeth McNiel
- Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts, USA
| | - Hille Fieten
- Expertisecentre of Genetics, Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Peter A.J. Leegwater
- Expertisecentre of Genetics, Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Elaine A. Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Paul J.J. Mandigers
- Expertisecentre of Genetics, Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jacquelyn M. Evans
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
9
|
Elahi LS, Condro MC, Kawaguchi R, Qin Y, Alvarado AG, Gruender B, Qi H, Li T, Lai A, Castro MG, Lowenstein PR, Garrett MC, Kornblum HI. Valproic acid targets IDH1 mutants through alteration of lipid metabolism. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:20. [PMID: 39149696 PMCID: PMC11321993 DOI: 10.1038/s44324-024-00021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/01/2024] [Indexed: 08/17/2024]
Abstract
Histone deacetylases (HDACs) have a wide range of targets and can rewire both the chromatin and lipidome of cancer cells. In this study, we show that valproic acid (VPA), a brain penetrant anti-seizure medication and histone deacetylase inhibitor, inhibits the growth of IDH1 mutant tumors in vivo and in vitro, with at least some selectivity over IDH1 wild-type tumors. Surprisingly, genes upregulated by VPA showed no enhanced chromatin accessibility at the promoter, but there was a correlation between VPA-downregulated genes and diminished promoter chromatin accessibility. VPA inhibited the transcription of lipogenic genes and these lipogenic genes showed significant decreases in promoter chromatin accessibility only in the IDH1 MT glioma cell lines tested. VPA inhibited the mTOR pathway and a key lipogenic gene, fatty acid synthase (FASN). Both VPA and a selective FASN inhibitor TVB-2640 rewired the lipidome and promoted apoptosis in an IDH1 MT but not in an IDH1 WT glioma cell line. We further find that HDACs are involved in the regulation of lipogenic genes and HDAC6 is particularly important for the regulation of FASN in IDH1 MT glioma. Finally, we show that FASN knockdown alone and VPA in combination with FASN knockdown significantly improved the survival of mice in an IDH1 MT primary orthotopic xenograft model in vivo. We conclude that targeting fatty acid metabolism through HDAC inhibition and/or FASN inhibition may be a novel therapeutic opportunity in IDH1 mutant gliomas.
Collapse
Affiliation(s)
- Lubayna S. Elahi
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Michael C. Condro
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Riki Kawaguchi
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Yue Qin
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Alvaro G. Alvarado
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Brandon Gruender
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Haocheng Qi
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Tie Li
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Albert Lai
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Maria G. Castro
- Department of Neurosurgery, Department of Cell and Developmental Biology, and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI USA
| | - Pedro R. Lowenstein
- Department of Neurosurgery, Department of Cell and Developmental Biology, and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI USA
| | | | - Harley I. Kornblum
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| |
Collapse
|
10
|
Yeon M, Kwon N, Jeoung J, Jeoung D. HDAC9 and miR-512 Regulate CAGE-Promoted Anti-Cancer Drug Resistance and Cellular Proliferation. Curr Issues Mol Biol 2024; 46:5178-5193. [PMID: 38920983 PMCID: PMC11201674 DOI: 10.3390/cimb46060311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Histone deacetylase 9 (HDAC9) is known to be upregulated in various cancers. Cancer-associated antigens (CAGEs) are cancer/testis antigens that play an important role in anti-cancer drug resistance. This study aimed to investigate the relationship between CAGEs and HDAC9 in relation to anti-cancer drug resistance. AGSR cells with an anti-cancer drug-resistant phenotype showed higher levels of CAGEs and HDAC9 than normal AGS cells. CAGEs regulated the expression of HDAC9 in AGS and AGSR cells. CAGEs directly regulated the expression of HDAC9. Rapamycin, an inducer of autophagy, increased HDAC9 expression in AGS, whereas chloroquine decreased HDAC9 expression in AGSR cells. The downregulation of HDAC9 decreased the autophagic flux, invasion, migration, and tumor spheroid formation potential in AGSR cells. The TargetScan analysis predicted that miR-512 was a negative regulator of HDAC9. An miR-512 mimic decreased expression levels of CAGEs and HDAC9. The miR-512 mimic also decreased the autophagic flux, invasion, migration, and tumor spheroid forming potential of AGSR cells. The culture medium of AGSR increased the expression of HDAC9 and autophagic flux in AGS. A human recombinant CAGE protein increased HDAC9 expression in AGS cells. AGSR cells displayed higher tumorigenic potential than AGS cells. Altogether, our results show that CAGE-HDAC9-miR-512 can regulate anti-cancer drug resistance, cellular proliferation, and autophagic flux. Our results can contribute to the understanding of the molecular roles of HDAC9 in anti-cancer drug resistance.
Collapse
Affiliation(s)
| | | | | | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Y.); (N.K.); (J.J.)
| |
Collapse
|
11
|
Shokeir AA, Awadalla A, Hamam ET, Hussein AM, Mahdi MR, Abosteta AN, Shahin M, Barakat N, El-Adl M, El-Sherbiny M, Eldesoqui M, AlMadani M, Ali SK, El-Sherbini ES, Khirallah SM. Human Wharton's jelly-derived mesenchymal stromal stem cells preconditioned with valproic acid promote cell migration and reduce renal inflammation in ischemia/reperfusion injury by activating the AKT/P13K and SDF1/CXCR4 pathways. Arch Biochem Biophys 2024; 755:109985. [PMID: 38579957 DOI: 10.1016/j.abb.2024.109985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVE To determine whether WJ-MSCs pretreated with VPA would enhance their migration to improve functional recovery of renal IRI in rats. METHODS 150 Sprague-Dawley rats were distributed into 5 groups; Sham, IRI, WJ-MSC, VPA, and WJ-MSCs + VPA. 10 rats were sacrificed after 3, 5, and 7 days. Role of WJ-MSCs pretreated with VPA was evaluated by assessment of renal function, antioxidant enzymes together with renal histopathological and immunohistopathological analyses and finally by molecular studies. RESULTS WJ-MSCs and VPA significantly improved renal function and increased antioxidants compared to IRI group. Regarding gene expression, WJ-MSCs and VPA decreased BAX and TGF-β1, up-regulated Akt, PI3K, BCL2, SDF1α, and CXCR4 related to IRI. Additionally, WJ-MSCs pretreated with VPA improved the measured parameters more than either treatment alone. CONCLUSION WJ-MSCs isolated from the umbilical cord and pretreated with VPA defended the kidney against IRI by more easily homing to the site of injury.
Collapse
Affiliation(s)
- Ahmed A Shokeir
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Amira Awadalla
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Eman T Hamam
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt; Nanomedicine Research Unit, Faculty of Medicine, Delta University for Science and Technology, Gamasa, Egypt
| | - Abdelaziz M Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed R Mahdi
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt; Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt
| | - Alyaa Naeem Abosteta
- Biochemistry Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mirna Shahin
- Mansoura Manchester Medical Program for Medical Education, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nashwa Barakat
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Adl
- Departement of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia
| | - Mamdouh Eldesoqui
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt; Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia
| | - Moneer AlMadani
- Department of Clinical Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia
| | - Sahar K Ali
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - El-Said El-Sherbini
- Biochemistry Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Salma M Khirallah
- Chemistry Department (Biochemistry Division), Faculty of Science, Port Said University, Port Said, 42526, Egypt.
| |
Collapse
|
12
|
Chakraborty S, Nandi P, Mishra J, Niharika, Roy A, Manna S, Baral T, Mishra P, Mishra PK, Patra SK. Molecular mechanisms in regulation of autophagy and apoptosis in view of epigenetic regulation of genes and involvement of liquid-liquid phase separation. Cancer Lett 2024; 587:216779. [PMID: 38458592 DOI: 10.1016/j.canlet.2024.216779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cellular physiology is critically regulated by multiple signaling nexuses, among which cell death mechanisms play crucial roles in controlling the homeostatic landscape at the tissue level within an organism. Apoptosis, also known as programmed cell death, can be induced by external and internal stimuli directing the cells to commit suicide in unfavourable conditions. In contrast, stress conditions like nutrient deprivation, infection and hypoxia trigger autophagy, which is lysosome-mediated processing of damaged cellular organelle for recycling of the degraded products, including amino acids. Apparently, apoptosis and autophagy both are catabolic and tumor-suppressive pathways; apoptosis is essential during development and cancer cell death, while autophagy promotes cell survival under stress. Moreover, autophagy plays dual role during cancer development and progression by facilitating the survival of cancer cells under stressed conditions and inducing death in extreme adversity. Despite having two different molecular mechanisms, both apoptosis and autophagy are interconnected by several crosslinking intermediates. Epigenetic modifications, such as DNA methylation, post-translational modification of histone tails, and miRNA play a pivotal role in regulating genes involved in both autophagy and apoptosis. Both autophagic and apoptotic genes can undergo various epigenetic modifications and promote or inhibit these processes under normal and cancerous conditions. Epigenetic modifiers are uniquely important in controlling the signaling pathways regulating autophagy and apoptosis. Therefore, these epigenetic modifiers of both autophagic and apoptotic genes can act as novel therapeutic targets against cancers. Additionally, liquid-liquid phase separation (LLPS) also modulates the aggregation of misfolded proteins and provokes autophagy in the cytosolic environment. This review deals with the molecular mechanisms of both autophagy and apoptosis including crosstalk between them; emphasizing epigenetic regulation, involvement of LLPS therein, and possible therapeutic approaches against cancers.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
13
|
Kong Q, Li F, Sun K, Sun X, Ma J. Valproic acid ameliorates cauda equina injury by suppressing HDAC2-mediated ferroptosis. CNS Neurosci Ther 2024; 30:e14524. [PMID: 38105511 PMCID: PMC11017456 DOI: 10.1111/cns.14524] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 12/19/2023] Open
Abstract
INTRODUCTION Persistent neuroinflammatory response after cauda equina injury (CEI) lowers nociceptor firing thresholds, accompanied by pathological pain and decreasing extremity dysfunction. Histone deacetylation has been considered a key regulator of immunity, inflammation, and neurological dysfunction. Our previous study suggested that valproic acid (VPA), a histone deacetylase inhibitor, exhibited neuroprotective effects in rat models of CEI, although the underlying mechanism remains elusive. METHODS The cauda equina compression surgery was performed to establish the CEI model. The Basso, Beattie, Bresnahan score, and the von Frey filament test were carried out to measure the animal behavior. Immunofluorescence staining of myelin basic protein and GPX4 was carried out. In addition, transmission electron microscope analysis was used to assess the effect of VPA on the morphological changes of mitochondria. RNA-sequencing was conducted to clarify the underlying mechanism of VPA on CEI protection. RESULTS In this current study, we revealed that the expression level of HDAC1 and HDAC2 was elevated after cauda equina compression model but was reversed by VPA treatment. Meanwhile, HDAC2 knockdown resulted in the improvement of motor functions and pathologic pain, similar to treatment with VPA. Histology analysis also showed that knockdown of histone deacetylase (HDAC)-2, but not HDAC1, remarkably alleviated cauda equina injury and demyelinating lesions. The potential mechanism may be related to lowering oxidative stress and inflammatory response in the injured region. Notably, the transcriptome sequencing indicated that the therapeutic effect of VPA may depend on HDAC2-mediated ferroptosis. Ferroptosis-related genes were analyzed in vivo and DRG cells further validated the reliability of RNA-sequencing results, suggesting HDAC2-H4K12ac axis participated in epigenetic modulation of ferroptosis-related genes. CONCLUSION HDAC2 is critically involved in the ferroptosis and neuroinflammation in cauda equina injury, and VPA ameliorated cauda equina injury by suppressing HDAC2-mediated ferroptosis.
Collapse
Affiliation(s)
- Qingjie Kong
- Department of OrthopedicsShanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- National Key Laboratory of Medical Immunology & Institute of ImmunologySecond Military Medical UniversityShanghaiChina
| | - Fudong Li
- Department of Orthopedic SurgerySpine Center, Shanghai Changzheng Hospital, Second Military Medical UniversityShanghaiChina
| | - Kaiqiang Sun
- Department of Orthopedic SurgerySpine Center, Shanghai Changzheng Hospital, Second Military Medical UniversityShanghaiChina
| | - Xiaofei Sun
- Department of Orthopedic SurgerySpine Center, Shanghai Changzheng Hospital, Second Military Medical UniversityShanghaiChina
| | - Jun Ma
- Department of OrthopedicsShanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
14
|
Hosseini SA, Mirzaei SA, Kermani S, Yaghoobi H. Valproate modulates the activity of multidrug resistance efflux pumps, as a chemoresistance factor in gastric cancer cells. Mol Biol Rep 2024; 51:427. [PMID: 38498238 DOI: 10.1007/s11033-024-09284-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/24/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Drug resistance is one of the most critical problems in gastric cancer therapy. This study was performed to investigate the valproic acid effects on the proliferation of sensitive and resistant cell lines of human gastric cancer, and to explore the mechanism of the agent on multi drug resistance and apoptosis genes. METHODS The cytotoxicity effect of valproic acid on the EPG85.257 and EPG85.257RDB cells was assessed by the MTT assay, and the IC50 concentration was evaluated. Apoptosis, genotoxicity, and drug resistance pump activity were evaluated using comet assay, Real-time PCR, and flow cytometry, respectively. Cell proliferation was assayed using a scratch test. RESULTS Dose-dependent toxicity was recorded after treatment of cells with valproic acid. Valproic acid represented a significant growth inhibition on EPG85.257 cells with IC50 values of 5.84 µM and 4.78 µM after 48 h and 72 h treatment, respectively. In contrast, the drug-resistant counterpart represented 8.7 µM and 7.02 µM IC50 values after the same treatment time. Valproic acid induced PTEN, Bcl2, P53, Bax, P21, and caspase3 expression in EPG85.257 cells, whereas p21, p53, PTEN, and ABCB1 were overexpressed in EPG5.257RDB. Valproic acid hindered cell migration in both cell lines (P < 0.01). Valproate genotoxicity was significantly higher in the parent cells than in their resistant EPG85.257RDB counterparts. Valproate led to a 62% reduction in the daunorubicin efflux of the MDR1 pump activity. CONCLUSIONS Valproate can affect drug resistance in gastric cancer via a unique mechanism independent of MDR1 expression.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Student Research Commitee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shahriar Kermani
- Student Research Commitee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
15
|
S A, Chakraborty A, Patnaik S. SOX4/HDAC2 Axis Enhances Cell Survivability and Reduces Apoptosis by Activating AKT/MAPK Signaling in Colorectal Cancer. Dig Dis Sci 2024; 69:835-850. [PMID: 38240850 DOI: 10.1007/s10620-023-08215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/24/2023] [Indexed: 03/25/2024]
Abstract
BACKGROUND Increased SOX4 (SRY-related HMG-box) activity aids cellular transformation and metastasis. However, its specific functions and downstream targets remain to be completely elusive in colorectal cancer (CRC). AIMS To investigate the role of SOX4 in CRC progression and the underlying mechanism. METHODS In the current study, online available datasets of CRC patients were explored to check the expression status of SOX4. To investigate the further functions, SOX4 was overexpressed and knocked down in CRC cells. Colony formation assay, flowcytometry analysis, and MTT assay were used to check for proliferation and apoptosis. Acridine orange staining was done to check the role of SOX4 in autophagy induction. Furthermore, western blot, qRT-PCR, and bioinformatic analysis was done to elucidate the downstream molecular mechanism of SOX4. RESULTS GEPIA database showed enhanced expression of SOX4 mRNA in CRC tumor, and the human protein atlas (HPA) showed strong staining of SOX4 protein in tumor when compared to the normal tissue. Ectopic expression of SOX4 enhanced colony formation ability as well as rescued cells from apoptosis. SOX4 overexpressed cells showed the formation of acidic vesicular organelles (AVOs) which indicated autophagy. Further results revealed the activation of p-AKT/MAPK molecules upon overexpression of SOX4. SOX4 expression was found to be positively correlated with histone deacetylase 2 (HDAC2). Knockdown of SOX4 or HDAC2 inhibition induced apoptosis, revealed by decrease in BCL2 and increase in BAX expression, and inactivated the p-AKT/MAPK signaling. CONCLUSION The study uncovers that SOX4/HDAC2 axis improves cell survivability and reduces apoptosis via activation of the p-AKT/MAPK pathway.
Collapse
Affiliation(s)
- Anupriya S
- School of Biotechnology, KIIT University, Campus-XI, Bhubaneswar, Odisha, 751024, India
| | - Averi Chakraborty
- School of Biotechnology, KIIT University, Campus-XI, Bhubaneswar, Odisha, 751024, India
| | - Srinivas Patnaik
- School of Biotechnology, KIIT University, Campus-XI, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
16
|
Hosseini SA, Ghatrehsamani M, Yaghoobi H, Elahian F, Mirzaei SA. Epigenetic disruption of histone deacetylase-2 accelerated apoptotic signaling and retarded malignancy in gastric cells. Epigenomics 2024; 16:277-292. [PMID: 38356395 DOI: 10.2217/epi-2023-0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Background: The objective of this research was to determine whether HDAC2 function is associated with gastric cancer progression. Methods: HDAC2 was knocked out in EPG85.257 cells using CRISPR/Cas9 and tumorigenesis pathways were evaluated. Results: Cell proliferation, colony formation, wound healing and transwell invasion were inhibited in ΔHDAC2:EPG85.257 cells. Quantitative analyses revealed a significant downregulation of MMP1, p53, Bax, MAPK1, MAPK3, pro-Caspase3, ERK1/2, p-ERK1/2, AKT1/2/3, p-AKT1/2/3, p-NF-κB (p65), Twist, Snail and p-FAK transcripts/proteins, while SIRT1, PTEN, p21 and Caspase3 were upregulated in ΔHDAC2:EPG85.257 cells. Conclusion: These results indicated that HDAC2 enhanced migration, colony formation and transmigration ability. HDAC2 inhibition may improve gastric cancer chemotherapy pathways.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahdi Ghatrehsamani
- Cellular & Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Cellular & Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
17
|
Reyes ME, Pulgar V, Vivallo C, Ili CG, Mora-Lagos B, Brebi P. Epigenetic modulation of cytokine expression in gastric cancer: influence on angiogenesis, metastasis and chemoresistance. Front Immunol 2024; 15:1347530. [PMID: 38455038 PMCID: PMC10917931 DOI: 10.3389/fimmu.2024.1347530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Cytokines are proteins that act in the immune response and inflammation and have been associated with the development of some types of cancer, such as gastric cancer (GC). GC is a malignant neoplasm that ranks fifth in incidence and third in cancer-related mortality worldwide, making it a major public health issue. Recent studies have focused on the role these cytokines may play in GC associated with angiogenesis, metastasis, and chemoresistance, which are key factors that can affect carcinogenesis and tumor progression, quality, and patient survival. These inflammatory mediators can be regulated by epigenetic modifications such as DNA methylation, histone protein modification, and non-coding RNA, which results in the silencing or overexpression of key genes in GC, presenting different targets of action, either direct or mediated by modifications in key genes of cytokine-related signaling pathways. This review seeks insight into the relationship between cytokine-associated epigenetic regulation and its potential effects on the different stages of development and chemoresistance in GC.
Collapse
Affiliation(s)
- María Elena Reyes
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Victoria Pulgar
- Millennium Institute on Immunology and Immunotherapy. Laboratory of Integrative Biology, Center for Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Carolina Vivallo
- Departamento de Anatomía Patológica, Universidad de La Frontera, Temuco, Chile
| | - Carmen Gloria Ili
- Millennium Institute on Immunology and Immunotherapy. Laboratory of Integrative Biology, Center for Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Bárbara Mora-Lagos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Priscilla Brebi
- Millennium Institute on Immunology and Immunotherapy. Laboratory of Integrative Biology, Center for Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
18
|
Chowdhury SG, Karmakar P. Revealing the role of epigenetic and post-translational modulations of autophagy proteins in the regulation of autophagy and cancer: a therapeutic approach. Mol Biol Rep 2023; 51:3. [PMID: 38063905 DOI: 10.1007/s11033-023-08961-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023]
Abstract
Autophagy is a process that is characterized by the destruction of redundant components and the removal of dysfunctional ones to maintain cellular homeostasis. Autophagy dysregulation has been linked to various illnesses, such as neurodegenerative disorders and cancer. The precise transcription of the genes involved in autophagy is regulated by a network of epigenetic factors. This includes histone modifications and histone-modifying enzymes. Epigenetics is a broad category of heritable, reversible changes in gene expression that do not include changes to DNA sequences, such as chromatin remodeling, histone modifications, and DNA methylation. In addition to affecting the genes that are involved in autophagy, the epigenetic machinery can also alter the signals that control this process. In cancer, autophagy plays a dual role by preventing the development of tumors on one hand and this process may suppress tumor progression. This may be the control of an oncogene that prevents autophagy while, conversely, tumor suppression may promote it. The development of new therapeutic strategies for autophagy-related disorders could be initiated by gaining a deeper understanding of its intricate regulatory framework. There is evidence showing that certain machineries and regulators of autophagy are affected by post-translational and epigenetic modifications, which can lead to alterations in the levels of autophagy and these changes can then trigger disease or affect the therapeutic efficacy of drugs. The goal of this review is to identify the regulatory pathways associated with post-translational and epigenetic modifications of different proteins in autophagy which may be the therapeutic targets shortly.
Collapse
Affiliation(s)
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
19
|
Aljarboa AS, Alhusaini AM, Sarawi WS, Mohammed R, Ali RA, Hasan IH. The implication of LPS/TLR4 and FXR receptors in hepatoprotective efficacy of indole-3-acetic acid and chenodeoxycholic acid. Life Sci 2023; 334:122182. [PMID: 37863258 DOI: 10.1016/j.lfs.2023.122182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/05/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
AIM Valproic acid (VPA) belongs to the first-generation antiepileptic drugs, yet its prolonged use can cause life-threatening liver damage. The importance of our study is to investigate the protective effect of indole-3-acetic acid (IAA), chenodeoxycholic acid (CDCA) and their combination on VPA-induced liver injury focusing on lipopolysaccharides (LPS)/toll-like receptor 4 (TLR4) pathway and farnesoid X receptor (FXR). METHODS Thirty rats were randomly assigned into five groups, normal control group, VPA group received 500 mg/kg of VPA intraperitoneally. The remaining groups were orally treated with either 40 mg/kg of IAA, 90 mg/kg of CDCA, or a combination of both, along with VPA. All treatments were administered one hour after the administration of VPA for three weeks. KEY FINDINGS VPA group showed significant elevations in the liver weight/body weight ratio, serum aminotransferases, triglyceride, and total cholesterol levels. Hepatic glutathione (GSH) level and superoxide dismutase (SOD) activity were significantly decreased, while malondialdehyde (MDA) level, tumor necrosis factor-α (TNF-α), interleukin-1beta (IL-1β), lipopolysaccharide (LPS) and caspase 3 were significantly increased. Likewise, immunohistochemical analysis revealed that TLR4 expression was elevated, whereas FXR expression was downregulated in hepatocytes. IAA substantially ameliorated all previously altered parameters, whereas CDCA treatment showed a partial improvement compared to IAA. Surprisingly, combination therapy of IAA with CDCA showed an additive effect only in the hepatic expression of TLR4 and FXR proteins. SIGNIFICANCE IAA could be a promising protective agent against VPA-induced liver injury.
Collapse
Affiliation(s)
- Amjad S Aljarboa
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia.
| | - Ahlam M Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia.
| | - Wedad S Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia.
| | - Raeesa Mohammed
- Department of Histology, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia.
| | - Rehab A Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia.
| | - Iman H Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia.
| |
Collapse
|
20
|
Khadempar S, Lotfi M, Haghiralsadat F, Saidijam M, Ghasemi N, Afshar S. Lansoprazole as a potent HDAC2 inhibitor for treatment of colorectal cancer: An in-silico analysis and experimental validation. Comput Biol Med 2023; 166:107518. [PMID: 37806058 DOI: 10.1016/j.compbiomed.2023.107518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Histone deacetylase 2 (HDAC2), belonging to the class I HDAC family, holds significant therapeutic potential as a crucial target for diverse cancer types. As key players in the realm of epigenetic regulatory enzymes, histone deacetylases (HDACs) are intricately involved in the onset and progression of cancer. Consequently, pursuing isoform-specific inhibitors targeting histone deacetylases (HDACs) has garnered substantial interest in both biological and medical circles. The objective of the present investigation was to employ a drug repurposing approach to discover novel and potent HDAC2 inhibitors. MATERIALS AND METHODS In this study, our protocol is presented on virtual screening to identify novel potential HDAC2 inhibitors through 3D-QSAR, molecular docking, pharmacophore modeling, and molecular dynamics (MD) simulation. Afterward, In-vitro assays were employed to evaluate the cytotoxicity, apoptosis, and migration of HCT-116 cell lines under treatment of hit compound and valproic acid as a control inhibitor. The expression levels of HDAC2, TP53, BCL2, and BAX were evaluated by QRT-PCR. RESULTS RMSD, RMSF, H-bond, and DSSP analysis results confirmed that among bioinformatically selected compounds, lansoprazole exhibited the highest HDAC2 inhibitory potential. Experimental validation revealed that lansoprazole displayed significant antiproliferative activity. The determined IC50 value was 400 ± 2.36 μM. Furthermore, the apoptotic cells ratio concentration-dependently increased under Lansoprazole treatment. Results of the Scratch assay indicated that lansoprazole led to decreasing the migration of CRC cells. Finally, under Lansoprazole treatment the expression level of BCL2 and HDAC2 decreased and BAX and TP53 increased. CONCLUSION Taking together the results of the current study indicated that Lansoprazole as a novel HDAC2 inhibitor, could be used as a potential therapeutic agent for the treatment of CRC. Although, further experimental studies should be performed before using this compound in the clinic.
Collapse
Affiliation(s)
- Saedeh Khadempar
- Department of Medical Genetics, Shahid Sadoughi University of Medical Science, Yazd, Iran.
| | - Marzieh Lotfi
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Science, Yazd, Iran.
| | - Fatemeh Haghiralsadat
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasrin Ghasemi
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Science, Yazd, Iran.
| | - Saeid Afshar
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
21
|
Wen J, Chen Y, Yang J, Dai C, Yu S, Zhong W, Liu L, He C, Zhang W, Yang T, Liu L, Hu J. Valproic acid increases CAR T cell cytotoxicity against acute myeloid leukemia. J Immunother Cancer 2023; 11:e006857. [PMID: 37524506 PMCID: PMC10391797 DOI: 10.1136/jitc-2023-006857] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/02/2023] Open
Abstract
The treatment of B cell malignancies has dramatically changed with the introduction of immunotherapy, especially chimeric antigen receptor T (CAR-T) cell therapy. However, only limited efficacy is observed in acute myeloid leukaemia (AML). In the study, We detected CD123 and CLL-1 expression on leukaemia cells from Relapsed/Refractory AML (R/R AML) patients. Then, we constructed anti-CD123 CAR and CLL-1 CAR with different co-stimulation domains (CD28 or 4-1BB) and detected their anti-AML effects. To increase the efficacy of CAR-T cell therapy, we tested different strategies, including application of combined checkpoint inhibitors and histone deacetylase inhibitors (HDACi) in vivo and in vitro We found CD123 and CLL-1 were highly expressed on AML cells. The proportions of T cell subsets and NK cells involved in anti-tumour or anti-inflammation processes in AML patients significantly decreased when compared with healthy donors. Both CD123 CAR and CLL-1 CAR displayed specific anti-AML effects in vitro To improve the lysis effects of CAR-T cells, we combined CAR-T cell therapy with different agents. PD-1/PD-L1 antibodies only slightly improved the potency of CAR-T cell therapy (CD123 CAR-T 60.92% ± 2.9087% vs. 65.43% ± 2.1893%, 60.92% ± 2.9087% vs. 67.43% ± 3.4973%; 37.37% ± 3.908% vs. 41.89% ± 5.1568%, 37.37% ± 3.908% vs. 42.84% ± 4.2635%). However, one HDACi (valproic acid [VPA]) significantly improved CAR-T cell potency against AML cells (CLL-1 CAR-T 34.97% ± 0.3051% vs. 88.167% ± 1.5327%, p < 0.0001; CD123 CAR-T 26.87% ± 2.7010% vs. 82.56% ± 3.086%, p < 0.0001 in MV411; CLL-1 CAR-T 78.77% ± 1.2061% vs. 93.743% ± 1.2333%, p < 0.0001; CD123 CAR-T 64.10% ± 1.5130% vs. 94.427% ± 0.142%, p = 0.0001 in THP-1). Combination therapy prolonged the overall survival of mice when compared with single CD123 CAR-T cell therapy (median survival: 180 days vs. unfollowed). A possible mechanism is that activated CD8+T cells upregulate natural-killer group 2 member D (NKG2D), and VPA upregulates NKG2D ligand expression in AML cells, contributing to NKG2D-mediated cytotoxicity of CAR-T cells against tumour cells. In conclusion, CD123 and CLL-1 are promising targets for AML CAR-T cell therapy. A combination of VPA pre-treatment and CAR-T against AML exhibits synergic effects.
Collapse
MESH Headings
- Animals
- Mice
- Valproic Acid/pharmacology
- Valproic Acid/therapeutic use
- Receptors, Chimeric Antigen/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- NK Cell Lectin-Like Receptor Subfamily K/metabolism
- Cell Line, Tumor
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- T-Lymphocytes
Collapse
Affiliation(s)
- Jingjing Wen
- Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fuzhou, China
- Department of Lymphoma, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Yanxin Chen
- Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fuzhou, China
| | - Jiajie Yang
- Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fuzhou, China
- Institute of Precision Medicine, Fujian Medical University, Fuzhou, People's Republic of China
| | - Chunye Dai
- School of Life Sciences, Fudan University, Shanghai, China
| | - Shenjie Yu
- Department of Internal medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Wenting Zhong
- Department of Research and Development, ST Phi Therapeutics Co., Ltd, Hangzhou, China
| | - Lilin Liu
- Department of Research and Development, ST Phi Therapeutics Co., Ltd, Hangzhou, China
| | - Chengguanng He
- Department of Research and Development, ST Phi Therapeutics Co., Ltd, Hangzhou, China
| | - Wenmin Zhang
- Institute of Precision Medicine, Fujian Medical University, Fuzhou, People's Republic of China
- Pathological Diagnosis Center & Oncology Institution, Fujian Medical University, Fuzhou, China
| | - Ting Yang
- Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fuzhou, China
| | - Lingfeng Liu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jianda Hu
- Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fuzhou, China
- Institute of Precision Medicine, Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
22
|
Zhang YH, Wang T, Li YF, Deng YN, He XL, Wang LJ. N-acetylcysteine improves autism-like behavior by recovering autophagic deficiency and decreasing Notch-1/Hes-1 pathway activity. Exp Biol Med (Maywood) 2023; 248:966-978. [PMID: 37377100 PMCID: PMC10525405 DOI: 10.1177/15353702231179924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 04/16/2023] [Indexed: 06/29/2023] Open
Abstract
N-acetylcysteine (NAC) has been reported to improve social interaction behavior, irritability, self-injury, and anxiety-like behavior in autism. However, the molecular mechanism underlying the therapeutic roles of NAC in autism remains unknown. This study mainly aimed to investigate the therapeutic effect of NAC on valproic acid (VPA)-induced autism model and the underlying mechanisms. Our results showed that NAC ameliorated the deficits in sociability and the anxiety- and repetitive-like behaviors displayed by VPA-exposed rats. In addition, VPA exposure induced autophagic deficiency and enhanced Notch-1/Hes-1 pathway activity based on lowered Beclin-1 and LC3B levels, while increased expression of p62, Notch-1, and Hes-1 expression at the protein level. However, NAC recovered VPA-induced autophagic deficiency and reduced Notch-1/Hes-1 pathway activity in a VPA-exposed autism rat model and SH-SY5Y neural cells. The present results demonstrated that NAC improves autism-like behavioral abnormalities by inactivating Notch-1/Hes-1 signaling pathway and recovering autophagic deficiency. Taken together, this study helps to elucidate a novel molecular mechanism that underlies the therapeutic actions of NAC in autism and suggests its potential to ameliorate behavioral abnormalities in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ying-Hua Zhang
- Department of Human Anatomy & Histoembryology, Henan Key Laboratory of Biological Psychiatry, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ting Wang
- Department of Human Anatomy & Histoembryology, Henan Key Laboratory of Biological Psychiatry, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yan-Fang Li
- Department of Human Anatomy & Histoembryology, Henan Key Laboratory of Biological Psychiatry, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ya-Nan Deng
- Department of Human Anatomy & Histoembryology, Henan Key Laboratory of Biological Psychiatry, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| | - Xue-Ling He
- Department of Human Anatomy & Histoembryology, Henan Key Laboratory of Biological Psychiatry, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| | - Li-Jun Wang
- Department of Human Anatomy & Histoembryology, Henan Key Laboratory of Biological Psychiatry, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Key Laboratory of Molecular Neurology, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
23
|
Yang HT, Wang G, Zhu PC, Xiao ZY. Silencing EIF3A ameliorates pulmonary arterial hypertension through HDAC1 and PTEN/PI3K/AKT pathway in vitro and in vivo. Exp Cell Res 2023; 426:113555. [PMID: 36921705 DOI: 10.1016/j.yexcr.2023.113555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Pulmonary vascular remodeling caused by the excessive proliferation of pulmonary arterial smooth muscle cells (PASMCs) is the hallmark feature of pulmonary arterial hypertension (PAH). Eukaryotic initiation factor 3 subunit A (EIF3A) exhibited proliferative activity in multiple cell types. The present study investigated the role of EIF3A in the progression of PAH. A monocrotaline (MCT)-induced PAH rat model was constructed, and adeno-associated virus type 1 (AAV1) carrying EIF3A shRNA was intratracheally delivered to PAH rats to block EIF3A expression. PASMCs were isolated from rats and treated with PDGF-BB to simulate PASMC proliferation, and shRNA for EIF3 was conducted to investigate the mechanism behind the role of EIF3A in PASMC function in vitro. EIF3A expression was upregulated in pulmonary arteries, and EIF3A inhibition effectively improved pulmonary hypertension and right ventricular hypertrophy and suppressed MCT-induced vascular remodeling in vivo. In addition, we found that genetic knockdown of EIF3A reduced PDGF-triggered proliferation and arrested cell cycle, accompanied by downregulated proliferation-related protein expression in PASMCs. Mechanistically, the histone deacetylase 1 (HDAC1)-mediated PTEN/PI3K/AKT pathway was recognized as a primary mechanism in PAH progression. Silencing EIF3A decreased HDAC1 expression, and further inhibited the excessive proliferation of PASMCs by increasing the phosphatase and tension homolog (PTEN) expression and suppressing the AKT phosphorylation. Notably, HDAC1 expression reversed the effect of silencing EIF3A on PAH and PTEN/PI3K/AKT pathway. Collectively, silencing EIF3A improved PAH by decreasing PASMC proliferation through the HDAC1-mediated PTEN/PI3K/AKT pathway. These findings suggest that targeting EIF3A may represent a potential approach for the treatment of PAH.
Collapse
Affiliation(s)
- Hai-Tao Yang
- Dalian Medical University, Dalian, Liaoning, China; Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Guan Wang
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Peng-Cheng Zhu
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhao-Yang Xiao
- Department of Anesthesiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
24
|
Nam YS, Choi YM, Lee S, Cho HH. Valproic Acid Inhibits Progressive Hereditary Hearing Loss in a KCNQ4 Variant Model through HDAC1 Suppression. Int J Mol Sci 2023; 24:ijms24065695. [PMID: 36982769 PMCID: PMC10058529 DOI: 10.3390/ijms24065695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Genetic or congenital hearing loss still has no definitive cure. Among genes related to genetic hearing loss, the potassium voltage-gated channel subfamily Q member 4 (KCNQ4) is known to play an essential role in maintaining ion homeostasis and regulating hair cell membrane potential. Variants of the KCNQ4 show reductions in the potassium channel activity and were responsible for non-syndromic progressive hearing loss. KCNQ4 has been known to possess a diverse variant. Among those variants, the KCNQ4 p.W276S variant produced greater hair cell loss related to an absence of potassium recycling. Valproic acid (VPA) is an important and commonly used histone deacetylase (HDAC) inhibitor for class I (HDAC1, 2, 3, and 8) and class IIa (HDAC4, 5, 7, and 9). In the current study, systemic injections of VPA attenuated hearing loss and protected the cochlear hair cells from cell death in the KCNQ4 p.W276S mouse model. VPA activated its known downstream target, the survival motor neuron gene, and increased acetylation of histone H4 in the cochlea, demonstrating that VPA treatment directly affects the cochlea. In addition, treatment with VPA increased the KCNQ4 binding with HSP90β by inhibiting HDAC1 activation in HEI-OC1 in an in vitro study. VPA is a candidate drug for inhibiting late-onset progressive hereditary hearing loss from the KCNQ4 p.W276S variant.
Collapse
|
25
|
Dunaway LS, Cook AK, Botta D, Molina PA, d’Uscio LV, Katusic ZS, Pollock DM, Inscho EW, Pollock JS. Endothelial Histone Deacetylase 1 Activity Impairs Kidney Microvascular NO Signaling in Rats fed a High Salt Diet. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531731. [PMID: 36945391 PMCID: PMC10028933 DOI: 10.1101/2023.03.08.531731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Aim We aimed to identify new mechanisms by which a high salt diet (HS) decreases NO production in kidney microvascular endothelial cells. Specifically, we hypothesized HS impairs NO signaling through a histone deacetylase 1 (HDAC1)-dependent mechanism. Methods Male Sprague Dawley rats were fed normal salt diet (NS; 0.49% NaCl) or high salt diet (4% NaCl) for two weeks. NO signaling was assessed by measuring L-NAME induced vasoconstriction of the afferent arteriole using the blood perfused juxtamedullary nephron (JMN) preparation. In this preparation, kidneys were perfused with blood from a donor rat on a matching or different diet to that of the kidney donor. Kidney endothelial cells were isolated with magnetic activated cell sorting and HDAC1 activity was measured. Results We found that HS impaired NO signaling in the afferent arteriole. This was restored by inhibition of HDAC1 with MS-275. Consistent with these findings, HDAC1 activity was increased in kidney endothelial cells. We further found the loss of NO to be dependent upon the diet of the blood donor rather than the diet of the kidney donor and the plasma from HS fed rats to be sufficient to induce dysfunction suggesting a humoral factor, we termed Plasma Derived Endothelial-dysfunction Mediator (PDEM), mediates the endothelial dysfunction. The antioxidants, PEG-SOD and PEG-catalase, as well as the NOS cofactor, tetrahydrobiopterin, restored NO signaling. Conclusion We conclude that HS activates endothelial HDAC1 through PDEM leading to decreased NO signaling. This study provides novel insights into the molecular mechanisms by which a HS decreases renal microvascular endothelial NO signaling.
Collapse
Affiliation(s)
- Luke S. Dunaway
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Anthony K. Cook
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Davide Botta
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Patrick A. Molina
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Livius V. d’Uscio
- Department of Anesthesiology and Pharmacology, Mayo Clinic, Rochester, MN USA
| | - Zvonimir S. Katusic
- Department of Anesthesiology and Pharmacology, Mayo Clinic, Rochester, MN USA
| | - David M. Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Edward W. Inscho
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Jennifer S. Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
26
|
Jo H, Shim K, Kim HU, Jung HS, Jeoung D. HDAC2 as a Target for developing Anti-cancer Drugs. Comput Struct Biotechnol J 2023; 21:2048-2057. [PMID: 36968022 PMCID: PMC10030825 DOI: 10.1016/j.csbj.2023.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
Histone deacetylases (HDACs) deacetylate histones H3 and H4. An imbalance between histone acetylation and deacetylation can lead to various diseases. HDAC2 is present in the nucleus. It plays a critical role in modifying chromatin structures and regulates the expression of various genes by functioning as a transcriptional regulator. The roles of HDAC2 in tumorigenesis and anti-cancer drug resistance are discussed in this review. Several reports suggested that HDAC2 is a prognostic marker of various cancers. The roles of microRNAs (miRNAs) that directly regulate the expression of HDAC2 in tumorigenesis are also discussed in this review. This review also presents HDAC2 as a valuable target for developing anti-cancer drugs.
Collapse
|
27
|
Safdar A, Ismail F. A comprehensive review on pharmacological applications and drug-induced toxicity of valproic acid. Saudi Pharm J 2023; 31:265-278. [PMID: 36942277 PMCID: PMC10023552 DOI: 10.1016/j.jsps.2022.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Valproic acid, a branching short chain fatty acid, is a popular drug to treat epilepsy and acts as a mood-stabilizing drug. The obstruction of ion channels and Gamma Amino Butyrate transamino butyrate GABA has been linked to antiepileptic effects. Valproic acid has been characterized as a Histone deacetylase inhibitor, functioning directly transcription of gene levels by blocking the deacetylation of histones and increasing the accessibility of transcription sites. Study has been extensively focused on pharmaceutical activity of valproic acid through various pharmacodynamics activity from absorption, distribution and excretion particularly in patients who are resistant to or intolerant of lithium or carbamazepine, as well as those with mixed mania or rapid cycling.
Collapse
|
28
|
Shu F, Xiao H, Li QN, Ren XS, Liu ZG, Hu BW, Wang HS, Wang H, Jiang GM. Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets. Signal Transduct Target Ther 2023; 8:32. [PMID: 36646695 PMCID: PMC9842768 DOI: 10.1038/s41392-022-01300-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/19/2022] [Accepted: 12/18/2022] [Indexed: 01/17/2023] Open
Abstract
Autophagy is a conserved lysosomal degradation pathway where cellular components are dynamically degraded and re-processed to maintain physical homeostasis. However, the physiological effect of autophagy appears to be multifaced. On the one hand, autophagy functions as a cytoprotective mechanism, protecting against multiple diseases, especially tumor, cardiovascular disorders, and neurodegenerative and infectious disease. Conversely, autophagy may also play a detrimental role via pro-survival effects on cancer cells or cell-killing effects on normal body cells. During disorder onset and progression, the expression levels of autophagy-related regulators and proteins encoded by autophagy-related genes (ATGs) are abnormally regulated, giving rise to imbalanced autophagy flux. However, the detailed mechanisms and molecular events of this process are quite complex. Epigenetic, including DNA methylation, histone modifications and miRNAs, and post-translational modifications, including ubiquitination, phosphorylation and acetylation, precisely manipulate gene expression and protein function, and are strongly correlated with the occurrence and development of multiple diseases. There is substantial evidence that autophagy-relevant regulators and machineries are subjected to epigenetic and post-translational modulation, resulting in alterations in autophagy levels, which subsequently induces disease or affects the therapeutic effectiveness to agents. In this review, we focus on the regulatory mechanisms mediated by epigenetic and post-translational modifications in disease-related autophagy to unveil potential therapeutic targets. In addition, the effect of autophagy on the therapeutic effectiveness of epigenetic drugs or drugs targeting post-translational modification have also been discussed, providing insights into the combination with autophagy activators or inhibitors in the treatment of clinical diseases.
Collapse
Affiliation(s)
- Feng Shu
- grid.452859.70000 0004 6006 3273Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Han Xiao
- grid.452859.70000 0004 6006 3273Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Qiu-Nuo Li
- grid.452859.70000 0004 6006 3273Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Xiao-Shuai Ren
- grid.452859.70000 0004 6006 3273Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Zhi-Gang Liu
- grid.284723.80000 0000 8877 7471Cancer Center, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong China
| | - Bo-Wen Hu
- grid.452859.70000 0004 6006 3273Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Hong-Sheng Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Hao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China.
| |
Collapse
|
29
|
Leite M, Seruca R, Gonçalves JM. Drug Repurposing in Gastric Cancer: Current Status and Future Perspectives. HEREDITARY GASTRIC AND BREAST CANCER SYNDROME 2023:281-320. [DOI: 10.1007/978-3-031-21317-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
30
|
The role and application of transcriptional repressors in cancer treatment. Arch Pharm Res 2023; 46:1-17. [PMID: 36645575 DOI: 10.1007/s12272-023-01427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
Gene expression is modulated through the integration of many regulatory elements and their associated transcription factors (TFs). TFs bind to specific DNA sequences and either activate or repress transcriptional activity. Through decades of research, it has been established that aberrant expression or functional abnormalities of TFs can lead to uncontrolled cell division and the development of cancer. Initial studies on transcriptional regulation in cancer have focused on TFs as transcriptional activators. However, recent studies have demonstrated several different mechanisms of transcriptional repression in cancer, which could be potential therapeutic targets for the development of specific anti-cancer agents. In the first section of this review, "Emerging roles of transcriptional repressors in cancer development," we summarize the current understanding of transcriptional repressors and their involvement in the molecular processes of cancer progression. In the subsequent section, "Therapeutic applications," we provide an updated overview of the available therapeutic targets for drug discovery and discuss the new frontier of such applications.
Collapse
|
31
|
Shanmukha KD, Paluvai H, Lomada SK, Gokara M, Kalangi SK. Histone deacetylase (HDACs) inhibitors: Clinical applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:119-152. [DOI: 10.1016/bs.pmbts.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
32
|
Araújo D, Ribeiro E, Amorim I, Vale N. Repurposed Drugs in Gastric Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010319. [PMID: 36615513 PMCID: PMC9822219 DOI: 10.3390/molecules28010319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
Gastric cancer (GC) is one of the major causes of death worldwide, ranking as the fifth most incident cancer in 2020 and the fourth leading cause of cancer mortality. The majority of GC patients are in an advanced stage at the time of diagnosis, presenting a poor prognosis and outcome. Current GC treatment approaches involve endoscopic detection, gastrectomy and chemotherapy or chemoradiotherapy in an adjuvant or neoadjuvant setting. Drug development approaches demand extreme effort to identify molecular mechanisms of action of new drug candidates. Drug repurposing is based on the research of new therapeutic indications of drugs approved for other pathologies. In this review, we explore GC and the different drugs repurposed for this disease.
Collapse
Affiliation(s)
- Diana Araújo
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
33
|
Badie A, Gaiddon C, Mellitzer G. Histone Deacetylase Functions in Gastric Cancer: Therapeutic Target? Cancers (Basel) 2022; 14:5472. [PMID: 36358890 PMCID: PMC9659209 DOI: 10.3390/cancers14215472] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 09/05/2023] Open
Abstract
Gastric cancer (GC) is one of the most aggressive cancers. Therapeutic treatments are based on surgery combined with chemotherapy using a combination of platinum-based agents. However, at metastatic stages of the disease, survival is extremely low due to late diagnosis and resistance mechanisms to chemotherapies. The development of new classifications has not yet identified new prognostic markers for clinical use. The studies of epigenetic processes highlighted the implication of histone acetylation status, regulated by histone acetyltransferases (HATs) and by histone deacetylases (HDACs), in cancer development. In this way, inhibitors of HDACs (HDACis) have been developed and some of them have already been clinically approved to treat T-cell lymphoma and multiple myeloma. In this review, we summarize the regulations and functions of eighteen HDACs in GC, describing their known targets, involved cellular processes, associated clinicopathological features, and impact on survival of patients. Additionally, we resume the in vitro, pre-clinical, and clinical trials of four HDACis approved by Food and Drug Administration (FDA) in cancers in the context of GC.
Collapse
Affiliation(s)
| | | | - Georg Mellitzer
- Laboratoire Streinth, Université de Strasbourg, Inserm UMR_S 1113 IRFAC, 67200 Strasbourg, France
| |
Collapse
|
34
|
Kundu R, Banerjee S, Baidya SK, Adhikari N, Jha T. A quantitative structural analysis of AR-42 derivatives as HDAC1 inhibitors for the identification of promising structural contributors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:861-883. [PMID: 36412121 DOI: 10.1080/1062936x.2022.2145353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Alteration and abnormal epigenetic mechanisms can lead to the aberration of normal biological functions and the occurrence of several diseases. The histone deacetylase (HDAC) family of enzymes is one of the prime regulators of epigenetic functions modifying the histone proteins, and thus, regulating epigenetics directly. HDAC1 is one of those HDACs which have important contributions to cellular epigenetics. The abnormality of HDAC is correlated to the occurrence, progression, and poor prognosis in several disease conditions namely neurodegenerative disorders, cancer cell proliferation, metastasis, chemotherapy resistance, and survival in various cancers. Therefore, the progress of potent and effective HDAC1 inhibitors is one of the prime approaches to combat such diseases. In this study, both regression and classification-based molecular modelling studies were conducted on some AR-42 derivatives as HDAC1 inhibitors to elucidate the crucial structural aspects that are responsible for regulating their biological responses. This study revealed that the molecular polarizability, van der Waals volume, the presence of aromatic rings as well as the higher number of hydrogen bond acceptors might affect prominently their inhibitory activity and might be responsible for proper fitting and interactions at the HDAC1 active site to pertain effective inhibition.
Collapse
Affiliation(s)
- R Kundu
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S K Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - N Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - T Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
35
|
Ezhilarasan D, Mani U. Valproic acid induced liver injury: An insight into molecular toxicological mechanism. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103967. [PMID: 36058508 DOI: 10.1016/j.etap.2022.103967] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Valproic acid (VPA) is an anti-seizure drug that causes idiosyncratic liver injury. 2-propyl-4-pentenoic acid (Δ4VPA), a metabolite of VPA, has been implicated in VPA-induced hepatotoxicity. This review summarizes the pathogenesis involved in VPA-induced liver injury. The VPA induce liver injury mainly by i) liberation of Δ4VPA metabolites; ii) decrease in glutathione stores and antioxidants, resulting in oxidative stress; iii) inhibition of fatty acid β-oxidation, inducing mitochondrial DNA depletion and hypermethylation; a decrease in proton leak; oxidative phosphorylation impairment and ATP synthesis decrease; iv) induction of fatty liver via inhibition of carnitine palmitoyltransferase I, enhancing nuclear receptor peroxisome proliferator-activated receptor-gamma and acyl-CoA thioesterase 1, and inducing long-chain fatty acid uptake and triglyceride synthesis. VPA administration aggravates liver injury in individuals with metabolic syndromes. Therapeutic drug monitoring, routine serum levels of transaminases, ammonia, and lipid parameters during VPA therapy may thus be beneficial in improving the safety profile or preventing the progression of DILI.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600 077, India.
| | - Uthirappan Mani
- Animal House Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India
| |
Collapse
|
36
|
Chen J, Zhang X, Hu W, Bai Y, Zhou Y. ARIG inhibition improves the prognosis of liver cancer through autophagy regulation and tumor immunity enhancement. Genes Dis 2022. [PMID: 37492740 PMCID: PMC10363631 DOI: 10.1016/j.gendis.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
37
|
Hai R, Yang D, Zheng F, Wang W, Han X, Bode AM, Luo X. The emerging roles of HDACs and their therapeutic implications in cancer. Eur J Pharmacol 2022; 931:175216. [PMID: 35988787 DOI: 10.1016/j.ejphar.2022.175216] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 12/25/2022]
Abstract
Deregulation of protein post-translational modifications is intensively involved in the etiology of diseases, including degenerative diseases, inflammatory injuries, and cancers. Acetylation is one of the most common post-translational modifications of proteins, and the acetylation levels are controlled by two mutually antagonistic enzyme families, histone acetyl transferases (HATs) and histone deacetylases (HDACs). HATs loosen the chromatin structure by neutralizing the positive charge of lysine residues of histones; whereas HDACs deacetylate certain histones, thus inhibiting gene transcription. Compared with HATs, HDACs have been more intensively studied, particularly regarding their clinical significance. HDACs extensively participate in the regulation of proliferation, migration, angiogenesis, immune escape, and therapeutic resistance of cancer cells, thus emerging as critical targets for clinical cancer therapy. Compared to HATs, inhibitors of HDAC have been clinically used for cancer treatment. Here, we enumerate and integratethe mechanisms of HDAC family members in tumorigenesis and cancer progression, and address the new and exciting therapeutic implications of single or combined HDAC inhibitor (HDACi) treatment.
Collapse
Affiliation(s)
- Rihan Hai
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Deyi Yang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Feifei Zheng
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Weiqin Wang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Xing Han
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China; Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan, 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China.
| |
Collapse
|
38
|
HDAC8 Promotes Liver Metastasis of Colorectal Cancer via Inhibition of IRF1 and Upregulation of SUCNR1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2815187. [PMID: 36035205 PMCID: PMC9400431 DOI: 10.1155/2022/2815187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/07/2022] [Accepted: 06/03/2022] [Indexed: 12/24/2022]
Abstract
Histone deacetylases (HDACs) are well-characterized for their involvement in tumor progression. Herein, the current study set out to unravel the association of HDAC8 with colorectal cancer (CRC). Bioinformatics analyses were carried out to retrieve the expression patterns of HDAC8 in CRC and the underlying mechanism. Following expression determination, the specific roles of HDAC8, IRF1, and SUCNR1 in CRC cell functions were analyzed following different interventions. Additionally, tumor formation and liver metastasis in nude mice were operated to verify the fore experiment. Bioinformatics analyses predicted the involvement of the HDAC8/IRF1/SUCNR1 axis in CRC. In vitro cell experiments showed that HDAC8 induced the CRC cell growth by reducing IRF1 expression. Meanwhile, IRF1 limited SUCNR1 expression by binding to its promoter. SUCNR1 triggered the growth and metastasis of CRC by inhibiting cell autophagy. HDAC8 blocked IRF1-mediated SUCNR1 inhibition and thereby inhibited autophagy, accelerating CRC cell growth. Lastly, HDAC8 facilitated the development of CRC and liver metastasis by regulating the IRF1/SUCNR1 axis in vivo. Taken together, our findings highlighted the critical role for the HDAC8/IRF1/SUCNR1 axis in the regulation of autophagy and the resultant liver metastasis in CRC.
Collapse
|
39
|
Xu C, Liu Z, Yan C, Xiao J. Application of apoptosis-related genes in a multiomics-related prognostic model study of gastric cancer. Front Genet 2022; 13:901200. [PMID: 35991578 PMCID: PMC9389051 DOI: 10.3389/fgene.2022.901200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/12/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most common tumors in the world, and apoptosis is closely associated with GC. A number of therapeutic methods have been implemented to increase the survival in GC patients, but the outcomes remain unsatisfactory. Apoptosis is a highly conserved form of cell death, but aberrant regulation of the process also leads to a variety of major human diseases. As variations of apoptotic genes may increase susceptibility to gastric cancer. Thus, it is critical to identify novel and potent tools to predict the overall survival (OS) and treatment efficacy of GC. The expression profiles and clinical characteristics of TCGA-STAD and GSE15459 cohorts were downloaded from TCGA and GEO. Apoptotic genes were extracted from the GeneCards database. Apoptosis risk scores were constructed by combining Cox regression and LASSO regression. The GSE15459 and TCGA internal validation sets were used for external validation. Moreover, we explored the relationship between the apoptosis risk score and clinical characteristics, drug sensitivity, tumor microenvironment (TME) and tumor mutational burden (TMB). Finally, we used GSVA to further explore the signaling pathways associated with apoptosis risk. By performing TCGA-STAD differential analysis, we obtained 839 differentially expressed genes, which were then analyzed by Cox regressions and LASSO regression to establish 23 genes associated with apoptosis risk scores. We used the test validation cohort from TCGA-STAD and the GSE15459 dataset for external validation. The AUC values of the ROC curve for 2-, 3-, and 5-years survival were 0.7, 0.71, and 0.71 in the internal validation cohort from TCGA-STAD and 0.77, 0.74, and 0.75 in the GSE15459 dataset, respectively. We constructed a nomogram by combining the apoptosis risk signature and some clinical characteristics from TCGA-STAD. Analysis of apoptosis risk scores and clinical characteristics demonstrated notable differences in apoptosis risk scores between survival status, sex, grade, stage, and T stage. Finally, the apoptosis risk score was correlated with TME characteristics, drug sensitivity, TMB, and TIDE scores.
Collapse
Affiliation(s)
- Chengfei Xu
- Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Zilin Liu
- Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Chuanjing Yan
- Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- *Correspondence: Chuanjing Yan, ; Jiangwei Xiao,
| | - Jiangwei Xiao
- Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- *Correspondence: Chuanjing Yan, ; Jiangwei Xiao,
| |
Collapse
|
40
|
Wu KC, Liao KS, Yeh LR, Wang YK. Drug Repurposing: The Mechanisms and Signaling Pathways of Anti-Cancer Effects of Anesthetics. Biomedicines 2022; 10:biomedicines10071589. [PMID: 35884894 PMCID: PMC9312706 DOI: 10.3390/biomedicines10071589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. There are only limited treatment strategies that can be applied to treat cancer, including surgical resection, chemotherapy, and radiotherapy, but these have only limited effectiveness. Developing a new drug for cancer therapy is protracted, costly, and inefficient. Recently, drug repurposing has become a rising research field to provide new meaning for an old drug. By searching a drug repurposing database ReDO_DB, a brief list of anesthetic/sedative drugs, such as haloperidol, ketamine, lidocaine, midazolam, propofol, and valproic acid, are shown to possess anti-cancer properties. Therefore, in the current review, we will provide a general overview of the anti-cancer mechanisms of these anesthetic/sedative drugs and explore the potential underlying signaling pathways and clinical application of these drugs applied individually or in combination with other anti-cancer agents.
Collapse
Affiliation(s)
- King-Chuen Wu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Kai-Sheng Liao
- Department of Pathology, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Li-Ren Yeh
- Department of Anesthesiology, E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
- Department of Medical Imaging and Radiology, Shu-Zen College of Medicine and Management, Kaohsiung 82144, Taiwan
- Correspondence: (L.-R.Y.); (Y.-K.W.); Tel.: +886-7-6150-022 (L.-R.Y.); +886-6-2353-535 (ext. 5333) (Y.-K.W.)
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: (L.-R.Y.); (Y.-K.W.); Tel.: +886-7-6150-022 (L.-R.Y.); +886-6-2353-535 (ext. 5333) (Y.-K.W.)
| |
Collapse
|
41
|
Zhang K, Wang J, Zhu Y, Liu X, Li J, Shi Z, Cao M, Li Y. Identification of Hub Genes Associated With the Development of Stomach Adenocarcinoma by Integrated Bioinformatics Analysis. Front Oncol 2022; 12:844990. [PMID: 35686089 PMCID: PMC9170954 DOI: 10.3389/fonc.2022.844990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Objective This study was conducted in order to gain a better understanding of the molecular mechanisms of stomach adenocarcinoma (STAD), which is necessary to predict the prognosis of STAD and develop novel gene therapy strategies. Methods In this study, the gene expression profile of GSE118916 in the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas Program (TCGA) was used to explore the differential co-expression genes of STAD and normal tissues. Results A total of 407 STAD samples were collected, consisting of 375 from stomach adenocarcinoma tissues and 32 from normal tissues, as well as RNA-seq count data for 19,600 genes. Forty-two differentially expressed genes were screened by weighted gene co-expression network analysis (WGCNA) and differentially expressed gene analysis. According to the functional annotation analysis of the clusterProfiler R package, these genes were analyzed for GO function enrichment, digestion (biological process), tube bottom material membrane (cell component), and oxidoreductase activity (molecular function). The KEGG pathway was enriched in gastric acid secretion and chemical carcinogenesis. In addition, Cytoscape's cytoHubba plug-in was used to identify seven hub genes (EWSR1, ESR1, CLTC, PCMT1, TP53, HUWE1, and HDAC1) in a protein-protein interaction (PPI) network consisting of 7 nodes and 11 edges. Compared with normal tissues, CLTC and TP53 genes were upregulated in stomach adenocarcinoma (P < 0.05). TP53 was expressed differently in stages II and IV, EWSR1 was expressed differently in stages II and III, and ESR1 was expressed differently in stages I-III. Among the seven hub genes, Kaplan-Meier analysis and TCGG showed that the expression levels of HDAC1 and CLTC were significantly correlated with OS in patients with stomach adenocarcinoma (P < 0.05). GEPIA2 analysis showed that ESR1 expression was closely correlated with OS and DFS in gastric adenocarcinoma (P < 0.05). Then, the expression of the genes and their correlations were revealed by the R2 Platform (http://r2.amc.nl). Finally, we collected 18 pairs of gastric mucosal tissues from normal people and cancer tissues from patients with stomach adenocarcinoma. The expression levels of the above seven hub genes and their relative protein expression were detected by RT-PCR and immunohistochemistry (IHC). The results showed that the gene and protein expression levels in stomach adenocarcinoma tissues were increased than those in the normal group. Conclusion In summary, we believe that the identified hub genes were related to the occurrence of stomach adenocarcinoma, especially the expression of ESR1, HDAC1, and CLTC genes, which are related to the prognosis and overall survival of patients and may become the potential for the future diagnosis and treatment of STAD.
Collapse
Affiliation(s)
- Kehui Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - YingYing Zhu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolin Liu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhe Shi
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengxing Cao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
42
|
Qiao D, Xing J, Duan Y, Wang S, Yao G, Zhang S, Jin J, Lin Z, Chen L, Piao Y. The molecular mechanism of baicalein repressing progression of gastric cancer mediating miR-7/FAK/AKT signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154046. [PMID: 35306368 DOI: 10.1016/j.phymed.2022.154046] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/20/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Baicalein (BAI) has a significant anti-cancerous function in the treatment of gastric cancer (GC). Focal adhesion kinase (FAK) is a key regulatory molecule in integrin and growth factor receptor mediated signaling. MicroRNA-7 (miR-7), has been considered as a potential tumor suppressor in a variety of cancers. However, the possible mechanisms by which BAI inhibiting progression of gastric cancer mediating miR-7/FAK/AKT signaling pathway remain unclear. PURPOSE To investigate the molecular mechanism and effects of BAI inhibiting progression of gastric cancer mediating miR-7/FAK/AKT signaling pathway. METHODS Gastric cancer cell lines with FAK knockdown and overexpression were constructed by lentivirus transfection. After BAI treatment, the effects of FAK protein on proliferation, metastasis and angiogenesis of gastric cancer cells were detected by MTT, EdU, colony formation, wound healing, transwell and Matrigel tube formation assays. In vivo experiment was performed by xenograft model. Immunofluorescence and western blot assay were used to detect the effects of FAK protein on the expression levels of EMT markers and PI3K/AKT signaling pathway related proteins. qRT-PCR and luciferase reporter assay were used to clarify the targeting relationship between miR-7 and FAK. RESULTS BAI can regulate FAK to affect proliferation, metastasis and angiogenesis of gastric cancer cells through PI3K/AKT signaling pathway. qRT-PCR showed BAI can upregulated the expression of miR-7 and luciferase reporter assay showed the targeting relationship between miR-7 and FAK. Additionally, miR-7 mediates cell proliferation, metastasis and angiogenesis by directly targeting FAK 3'UTR to inhibit FAK expression. CONCLUSION BAI repressing progression of gastric cancer mediating miR-7/FAK/AKT signaling pathway.
Collapse
Affiliation(s)
- Dan Qiao
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China
| | - Jian Xing
- Department of Image, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| | - Yunxiao Duan
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China
| | - Shiyu Wang
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China
| | - Guangyuan Yao
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China
| | - Shengjun Zhang
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China
| | - Jingchun Jin
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China; Department of Internal Medicine of Yanbian University Hospital, Yanji 133000, P.R. China
| | - Zhenhua Lin
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China; Department of Internal Medicine of Yanbian University Hospital, Yanji 133000, P.R. China
| | - Liyan Chen
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China
| | - Yingshi Piao
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China.
| |
Collapse
|
43
|
Valproic acid modulates collagen architecture in the postoperative conjunctival scar. J Mol Med (Berl) 2022; 100:947-961. [PMID: 35583819 DOI: 10.1007/s00109-021-02171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/10/2021] [Accepted: 11/29/2021] [Indexed: 10/18/2022]
Abstract
Valproic acid (VPA), widely used for the treatment of neurological disorders, has anti-fibrotic activity by reducing collagen production in the postoperative conjunctiva. In this study, we investigated the capacity of VPA to modulate the postoperative collagen architecture. Histochemical examination revealed that VPA treatment was associated with the formation of thinner collagen fibers in the postoperative days 7 and 14 scars. At the micrometer scale, measurements by quantitative multiphoton microscopy indicated that VPA reduced mean collagen fiber thickness by 1.25-fold. At the nanometer scale, collagen fibril thickness and diameter measured by transmission electron microscopy were decreased by 1.08- and 1.20-fold, respectively. Moreover, delicate filamentous structures in random aggregates or closely associated with collagen fibrils were frequently observed in VPA-treated tissue. At the molecular level, VPA reduced Col1a1 but induced Matn2, Matn3, and Matn4 in the postoperative day 7 conjunctival tissue. Elevation of matrilin protein expression induced by VPA was sustained till at least postoperative day 14. In primary conjunctival fibroblasts, Matn2 expression was resistant to both VPA and TGF-β2, Matn3 was sensitive to both VPA and TGF-β2 individually and synergistically, while Matn4 was modulable by VPA but not TGF-β2. MATN2, MATN3, and MATN4 localized in close association with COL1A1 in the postoperative conjunctiva. These data indicate that VPA has the capacity to reduce collagen fiber thickness and potentially collagen assembly, in association with matrilin upregulation. These properties suggest potential VPA application for the prevention of fibrotic progression in the postoperative conjunctiva. KEY MESSAGES: VPA reduces collagen fiber and fibril thickness in the postoperative scar. VPA disrupts collagen fiber assembly in conjunctival wound healing. VPA induces MATN2, MATN3, and MATN4 in the postoperative scar.
Collapse
|
44
|
Yang Y, Shu X, Xie C. An Overview of Autophagy in Helicobacter pylori Infection and Related Gastric Cancer. Front Cell Infect Microbiol 2022; 12:847716. [PMID: 35463631 PMCID: PMC9033262 DOI: 10.3389/fcimb.2022.847716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is considered a class I carcinogen in the pathogenesis of gastric cancer. In recent years, the interaction relationship between H. pylori infection and autophagy has attracted increasing attention. Most investigators believe that the pathogenesis of gastric cancer is closely related to the formation of an autophagosome-mediated downstream signaling pathway by H. pylori infection-induced cells. Autophagy is involved in H. pylori infection and affects the occurrence and development of gastric cancer. In this paper, the possible mechanism by which H. pylori infection affects autophagy and the progression of related gastric cancer signaling pathways are reviewed.
Collapse
Affiliation(s)
| | - Xu Shu
- *Correspondence: Xu Shu, ; Chuan Xie,
| | - Chuan Xie
- *Correspondence: Xu Shu, ; Chuan Xie,
| |
Collapse
|
45
|
AZİRAK S, BİLGİÇ S, TAŞTEMİR KORKMAZ D, SEVİMLİ M, ÖZER MK. Timokinon’un sıçanların pankreas dokusunda valproik asidin neden olduğu hasarı iyileştirmeye etkisi. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1020753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
46
|
Feng Y, Lu Y, Li J, Zhang H, Li Z, Feng H, Deng X, Liu D, Shi T, Jiang W, He Y, Zhang J, Wang Z. Design, synthesis and biological evaluation of novel o-aminobenzamide derivatives as potential anti-gastric cancer agents in vitro and in vivo. Eur J Med Chem 2022; 227:113888. [PMID: 34628244 DOI: 10.1016/j.ejmech.2021.113888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
Although gastric cancer has become a major public health problem, oral agents applied in clinics for gastric cancer therapy are scarce. Therefore, to explore new oral chemical entities with high efficiency and low toxicity, 41 o-aminobenzamide derivatives based on the scaffolds of MS-275 and SAHA were designed, synthesized, and evaluated for their anti-gastric cancer abilities in vitro and in vivo. Structure-activity relationships were discussed, leading to the identification of compounds F8 (IC50 = 0.28 μM against HGC-27 cell) and T9 (IC50 = 1.84 μM against HGC-27 cell) with improved cytotoxicity, anti-gastric cancer proliferation potency, induction of cell apoptosis and cell cycle arrest ability, inhibition of cell migration and invasion. What is worth mentioning is that compound F8 was more efficient and less toxic than the positive drug capecitabine in vivo on the HGC-27-xenograft model. Meanwhile, compound F8 exhibited suitable pharmacokinetic properties and less acute toxicity (LD50 > 1000 mg/kg). Besides, western blotting analysis, IHC analysis, differentially expressed proteins analysis and ABPP experiment indicated that compound F8 could modulate molecular pathways involved in apoptosis and cell cycle progression. Consequently, compound F8 is a strong candidate for the development of human gastric cancer therapy.
Collapse
Affiliation(s)
- Yiyue Feng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yingmei Lu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhao Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Hanzhong Feng
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xuemei Deng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Dan Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Weifan Jiang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yongxing He
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China.
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
47
|
Han W, Guan W. Valproic Acid: A Promising Therapeutic Agent in Glioma Treatment. Front Oncol 2021; 11:687362. [PMID: 34568018 PMCID: PMC8461314 DOI: 10.3389/fonc.2021.687362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Glioma, characterized by infiltrative growth and treatment resistance, is regarded as the most prevalent intracranial malignant tumor. Due to its poor prognosis, accumulating investigation has been performed for improvement of overall survival (OS) and progression-free survival (PFS) in glioma patients. Valproic acid (VPA), one of the most common histone deacetylase inhibitors (HDACIs), has been detected to directly or synergistically exert inhibitory effects on glioma in vitro and in vivo. In this review, we generalize the latest advances of VPA in treating glioma and its underlying mechanisms and clinical implications, providing a clearer profile for clinical application of VPA as a therapeutic agent for glioma.
Collapse
Affiliation(s)
- Wei Han
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Guan
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
48
|
Aminoquinolines as Translational Models for Drug Repurposing: Anticancer Adjuvant Properties and Toxicokinetic-Related Features. JOURNAL OF ONCOLOGY 2021; 2021:3569349. [PMID: 34527050 PMCID: PMC8437624 DOI: 10.1155/2021/3569349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/21/2021] [Indexed: 01/04/2023]
Abstract
The indiscriminate consumption of antimalarials against coronavirus disease-2019 emphasizes the longstanding clinical weapons of medicines. In this work, we conducted a review on the antitumor mechanisms of aminoquinolines, focusing on the responses and differences of tumor histological tissues and toxicity related to pharmacokinetics. This well-defined analysis shows similar mechanistic forms triggered by aminoquinolines in different histological tumor tissues and under coexposure conditions, although different pharmacological potencies also occur. These molecules are lysosomotropic amines that increase the antiproliferative action of chemotherapeutic agents, mainly by cell cycle arrest, histone acetylation, physiological changes in tyrosine kinase metabolism, inhibition of PI3K/Akt/mTOR pathways, cyclin D1, E2F1, angiogenesis, ribosome biogenesis, triggering of ATM-ATR/p53/p21 signaling, apoptosis, and presentation of tumor peptides. Their chemo/radiotherapy sensitization effects may be an adjuvant option against solid tumors, since 4-aminoquinolines induce lysosomal-mediated programmed cytotoxicity of cancer cells and accumulation of key markers, predominantly, LAMP1, p62/SQSTM1, LC3 members, GAPDH, beclin-1/Atg6, α-synuclein, and granules of lipofuscin. Adverse effects are dose-dependent, though most common with chloroquine, hydroxychloroquine, amodiaquine, and other aminoquinolines are gastrointestinal changes, blurred vision ventricular arrhythmias, cardiac arrest, QTc prolongation, severe hypoglycemia with loss of consciousness, and retinopathy, and they are more common with chloroquine than with hydroxychloroquine and amodiaquine due to pharmacokinetic features. Additionally, psychological/neurological effects were also detected during acute or chronic use, but aminoquinolines do not cross the placenta easily and low quantity is found in breast milk despite their long mean residence times, which depends on the coexistence of hepatic diseases (cancer-related or not), first pass metabolism, and comedications. The low cost and availability on the world market have converted aminoquinolines into “star drugs” for pharmaceutical repurposing, but a continuous pharmacovigilance is necessary because these antimalarials have multiple modes of action/unwanted targets, relatively narrow therapeutic windows, recurrent adverse effects, and related poisoning self-treatment. Therefore, their use must obey strict rules, ethical and medical prescriptions, and clinical and laboratory monitoring.
Collapse
|
49
|
Singh D, Gupta S, Verma I, Morsy MA, Nair AB, Ahmed ASF. Hidden pharmacological activities of valproic acid: A new insight. Biomed Pharmacother 2021; 142:112021. [PMID: 34463268 DOI: 10.1016/j.biopha.2021.112021] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/28/2021] [Accepted: 08/07/2021] [Indexed: 12/24/2022] Open
Abstract
Valproic acid (VPA) is an approved drug for managing epileptic seizures, bipolar disorders, and migraine. VPA has been shown to elevate the level of gamma-aminobutyric acid (GABA) in the brain through competitive inhibition of GABA transaminase, thus promoting the availability of synaptic GABA and facilitating GABA-mediated responses. VPA, which is a small chain of fatty acids, prevents histone deacetylases (HDACs). HDACs play a crucial role in chromatin remodeling and gene expression through posttranslational changes of chromatin-associated histones. Recent studies reported a possible effect of VPA against particular types of cancers. This effect was partially attributed to its role in regulating epigenetic modifications through the inhibition of HDACs, which affect the expression of genes associated with cell cycle control, cellular differentiation, and apoptosis. In this review, we summarize the current information on the actions of VPA in diseases such as diabetes mellitus, kidney disorders, neurodegenerative diseases, muscular dystrophy, and cardiovascular disorders.
Collapse
Affiliation(s)
- Dhirendra Singh
- Department of Pharmacology, M.M. College of Pharmacy, M.M. (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Sumeet Gupta
- Department of Pharmacology, M.M. College of Pharmacy, M.M. (Deemed to be University), Mullana, Ambala, Haryana, India.
| | - Inderjeet Verma
- Department of Pharmacology, M.M. College of Pharmacy, M.M. (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia; Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| |
Collapse
|
50
|
Zhang XH, Kang HQ, Tao YY, Li YH, Zhao JR, Ya-Gao, Ma LY, Liu HM. Identification of novel 1,3-diaryl-1,2,4-triazole-capped histone deacetylase 6 inhibitors with potential anti-gastric cancer activity. Eur J Med Chem 2021; 218:113392. [PMID: 33831778 DOI: 10.1016/j.ejmech.2021.113392] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022]
Abstract
Histone deacetylase 6 (HDAC6) has emerged as a critical regulator of many cellular pathways in tumors due to its unique structure basis and abundant substrate types. Over the past few decades, the role played by HDAC6 inhibitors as anticancer agents has sparked great interest of biochemists worldwide. However, they were less reported for gastric cancer therapy. In this paper, with the help of bioisosteric replacement, in-house library screening, and lead optimization strategies, we designed, synthesized and verified a series of 1,3-diaryl-1,2,4-triazole-capped HDAC6 inhibitors with promising anti-gastric cancer activities. Amongst, compound 9r displayed the best inhibitory activity towards HDAC6 (IC50 = 30.6 nM), with 128-fold selectivity over HDAC1. Further BLI and CETSA assay proved the high affinity of 9r to HDAC6. In addition, 9r could dose-dependently upregulate the levels of acetylated α-tubulin, without significant effect on acetylated histone H3 in MGC803 cells. Besides, 9r exhibited potent antiproliferative effect on MGC803 cells, and promoted apoptosis and suppressed the metastasis without obvious toxicity, suggesting 9r would serve as a potential lead compound for the development of novel therapeutic agents of gastric cancer.
Collapse
Affiliation(s)
- Xin-Hui Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Hui-Qin Kang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yuan-Yuan Tao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yi-Han Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jun-Ru Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ya-Gao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; China Meheco Topfond Pharmaceutical Co., Ltd, Zhumadian, 463000, PR China.
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|