1
|
Sui C, Li M, Zhang Q, Li J, Gao Y, Zhang X, Wang N, Liang C, Guo L. Increased brain iron deposition in the basial ganglia is associated with cognitive and motor dysfunction in type 2 diabetes mellitus. Brain Res 2024; 1846:149263. [PMID: 39369777 DOI: 10.1016/j.brainres.2024.149263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
OBJECTIVE Compared with those in type 2 diabetes mellitus (T2DM) patients without diabetic peripheral neuropathy (DPN), alterations in brain iron levels in the basal ganglia (an iron-rich region) and motor and cognitive dysfunction in T2DM patients with DPN have not been fully elucidated. We aimed to explore changes in brain iron levels in the basal ganglia in T2DM patients with DPN using quantitative susceptibility mapping (QSM). METHODS Thirty-four patients with DPN, fifty-five patients with diabetes without DPN (non-DPN, NDPN), and fifty-one healthy controls (HCs) were recruited and underwent cognitive and motor assessments, blood biochemical tests, and brain QSM imaging. One-way ANOVA was applied to evaluate the variations in cognitive, motor and blood biochemical indicators across the three groups. Then, we performed multiple linear regression analysis to identify the possible factors associated with the significant differences in susceptibility values of the basal ganglia subregions between the two T2DM groups. RESULTS Susceptibility values in the putamen and the caudate nucleus were greater in the T2DM patients than in the HCs (DPN patients vs. HCs, p < 0.05; NDPN patients vs. HCs, p < 0.05, FDR correction), and there were no significant differences between the DPN patients and NDPN patients. Multiple linear regression analysis revealed that age and history of diabetes played crucialroles in brain iron deposition in the putamen and the caudate nucleus. Notably, DPN in T2DM patients had no effect on brain iron deposition in the putamen or the caudate nucleus. The susceptibility values of the putamen was positively correlated with the Timed Up and Go test score and negatively correlated with gait speed, the Montreal Cognitive Assessment score, and the Symbol Digit Modalities Test score in T2DM patients. CONCLUSIONS Iron-based susceptibility in the putamen, measured by QSM, can reflect motor function in T2DM patients and might indicate micropathological changes in brain tissue in T2DM patients.
Collapse
Affiliation(s)
- Chaofan Sui
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, Shandong 250021, China.
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| | - Qihao Zhang
- Department of Radiology, Weill Cornell Medical College, New York. 407 East 61st Street, New York, NY 10065, USA.
| | - Jing Li
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Yian Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, Shandong 250021, China.
| | - Xinyue Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, Shandong 250021, China.
| | - Na Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, Shandong 250021, China.
| | - Changhu Liang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, Shandong 250021, China.
| | - Lingfei Guo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, Shandong 250021, China.
| |
Collapse
|
2
|
Bonnavion P, Varin C, Fakhfouri G, Martinez Olondo P, De Groote A, Cornil A, Lorenzo Lopez R, Pozuelo Fernandez E, Isingrini E, Rainer Q, Xu K, Tzavara E, Vigneault E, Dumas S, de Kerchove d'Exaerde A, Giros B. Striatal projection neurons coexpressing dopamine D1 and D2 receptors modulate the motor function of D1- and D2-SPNs. Nat Neurosci 2024; 27:1783-1793. [PMID: 38965445 DOI: 10.1038/s41593-024-01694-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/28/2024] [Indexed: 07/06/2024]
Abstract
The role of the striatum in motor control is commonly assumed to be mediated by the two striatal efferent pathways characterized by striatal projection neurons (SPNs) expressing dopamine (DA) D1 receptors or D2 receptors (D1-SPNs and D2-SPNs, respectively), without regard to SPNs coexpressing both receptors (D1/D2-SPNs). Here we developed an approach to target these hybrid SPNs in mice and demonstrate that, although these SPNs are less abundant, they have a major role in guiding the motor function of the other two populations. D1/D2-SPNs project exclusively to the external globus pallidus and have specific electrophysiological features with distinctive integration of DA signals. Gain- and loss-of-function experiments indicate that D1/D2-SPNs potentiate the prokinetic and antikinetic functions of D1-SPNs and D2-SPNs, respectively, and restrain the integrated motor response to psychostimulants. Overall, our findings demonstrate the essential role of this population of D1/D2-coexpressing neurons in orchestrating the fine-tuning of DA regulation in thalamo-cortico-striatal loops.
Collapse
Affiliation(s)
- Patricia Bonnavion
- Neurophy Lab, ULB Neuroscience Institute, Université Libre Bruxelles (ULB), Brussels, Belgium
| | - Christophe Varin
- Neurophy Lab, ULB Neuroscience Institute, Université Libre Bruxelles (ULB), Brussels, Belgium
| | - Ghazal Fakhfouri
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, Quebec, Canada
| | - Pilar Martinez Olondo
- Neurophy Lab, ULB Neuroscience Institute, Université Libre Bruxelles (ULB), Brussels, Belgium
| | - Aurélie De Groote
- Neurophy Lab, ULB Neuroscience Institute, Université Libre Bruxelles (ULB), Brussels, Belgium
| | - Amandine Cornil
- Neurophy Lab, ULB Neuroscience Institute, Université Libre Bruxelles (ULB), Brussels, Belgium
| | - Ramiro Lorenzo Lopez
- Neurophy Lab, ULB Neuroscience Institute, Université Libre Bruxelles (ULB), Brussels, Belgium
| | - Elisa Pozuelo Fernandez
- Neurophy Lab, ULB Neuroscience Institute, Université Libre Bruxelles (ULB), Brussels, Belgium
| | - Elsa Isingrini
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, Quebec, Canada
- Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
| | - Quentin Rainer
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, Quebec, Canada
| | - Kathleen Xu
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, Quebec, Canada
| | - Eleni Tzavara
- Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- AP-HM, Hôpital Sainte Marguerite, Pôle Psychiatrie Universitaire Solaris, Marseille, France
| | - Erika Vigneault
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, Quebec, Canada
| | | | - Alban de Kerchove d'Exaerde
- Neurophy Lab, ULB Neuroscience Institute, Université Libre Bruxelles (ULB), Brussels, Belgium.
- WELBIO, WEL Research Institute, Wavre, Belgium.
| | - Bruno Giros
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, Quebec, Canada.
- Université Paris Cité, INCC UMR 8002, CNRS, Paris, France.
| |
Collapse
|
3
|
Zhang ZH, Wang B, Peng Y, Xu YW, Li CH, Ning YL, Zhao Y, Shan FB, Zhang B, Yang N, Zhang J, Chen X, Xiong RP, Zhou YG, Li P. Identification of a Hippocampus-to-Zona Incerta Projection involved in Motor Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307185. [PMID: 38958448 PMCID: PMC11434110 DOI: 10.1002/advs.202307185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/19/2024] [Indexed: 07/04/2024]
Abstract
Motor learning (ML), which plays a fundamental role in growth and physical rehabilitation, involves different stages of learning and memory processes through different brain regions. However, the neural mechanisms that underlie ML are not sufficiently understood. Here, a previously unreported neuronal projection from the dorsal hippocampus (dHPC) to the zona incerta (ZI) involved in the regulation of ML behaviors is identified. Using recombinant adeno-associated virus, the projections to the ZI are surprisingly identified as originating from the dorsal dentate gyrus (DG) and CA1 subregions of the dHPC. Furthermore, projection-specific chemogenetic and optogenetic manipulation reveals that the projections from the dorsal CA1 to the ZI play key roles in the acquisition and consolidation of ML behaviors, whereas the projections from the dorsal DG to the ZI mediate the retrieval/retention of ML behaviors. The results reveal new projections from the dorsal DG and dorsal CA1 to the ZI involved in the regulation of ML and provide insight into the stages over which this regulation occurs.
Collapse
Affiliation(s)
- Zhuo-Hang Zhang
- The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing, 400042, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong, Chongqing, 400010, China
| | - Bo Wang
- The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing, 400042, China
| | - Yan Peng
- The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing, 400042, China
| | - Ya-Wei Xu
- The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing, 400042, China
| | - Chang-Hong Li
- The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing, 400042, China
| | - Ya-Lei Ning
- The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing, 400042, China
| | - Yan Zhao
- The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing, 400042, China
| | - Fa-Bo Shan
- The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing, 400042, China
| | - Bo Zhang
- The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing, 400042, China
| | - Nan Yang
- The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing, 400042, China
| | - Jing Zhang
- The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing, 400042, China
| | - Xing Chen
- The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing, 400042, China
| | - Ren-Ping Xiong
- The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing, 400042, China
| | - Yuan-Guo Zhou
- The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing, 400042, China
| | - Ping Li
- The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing, 400042, China
| |
Collapse
|
4
|
Shaykin JD, Denehy ED, Martin JR, Chandler CM, Luo D, Taylor CE, Sunshine MD, Turner JR, Alilain WJ, Prisinzano TE, Bardo MT. Targeting α 1- and α 2-adrenergic receptors as a countermeasure for fentanyl-induced locomotor and ventilatory depression. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104527. [PMID: 39106924 PMCID: PMC11423298 DOI: 10.1016/j.etap.2024.104527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
This study assessed the ability of α1 and α2-adrenergic drugs to decrease fentanyl-induced locomotor and ventilatory depression. Rats were given saline or fentanyl, followed by: (1) naltrexone, (2) naloxone, (3) nalmefene, (4) α1 agonist phenylephrine, (5) α1 antagonist prazosin, (6) α1D antagonist BMY-7378, (7) α2 agonist clonidine, (8) α2 antagonist yohimbine or (9) vehicle. All µ-opioid antagonists dose-dependently reversed fentanyl-induced locomotor and ventilatory depression. While the α1 drugs did not alter the effects of fentanyl, clonidine dose-dependently decreased locomotion and respiration with and without fentanyl. Conversely, yohimbine given at a low dose (0.3-1 mg/kg) stimulated ventilation when given alone and higher doses (>1 mg/kg) partially reversed (∼50 %) fentanyl-induced ventilatory depression, but not locomotor depression. High doses of yohimbine in combination with a suboptimal dose of naltrexone reversed fentanyl-induced ventilatory depression, suggestive of additivity. Yohimbine may serve as an effective adjunctive countermeasure agent combined with naltrexone to rescue fentanyl-induced ventilatory depression.
Collapse
Affiliation(s)
- Jakob D Shaykin
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | - Emily D Denehy
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | - Jocelyn R Martin
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | - Cassie M Chandler
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | - Dan Luo
- College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Chase E Taylor
- Spinal Cord and Brain Injury Research Center (SCoBIRC) and Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Michael D Sunshine
- Spinal Cord and Brain Injury Research Center (SCoBIRC) and Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Jill R Turner
- College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Warren J Alilain
- Spinal Cord and Brain Injury Research Center (SCoBIRC) and Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | | | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
5
|
Parma JO, Miller MW, Bacelar MFB. OPTIMAL theory's claims about motivation lack evidence in the motor learning literature. PSYCHOLOGY OF SPORT AND EXERCISE 2024; 74:102690. [PMID: 38908415 DOI: 10.1016/j.psychsport.2024.102690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Motivation is commonly recognized by researchers and practitioners as a key factor for motor learning. The OPTIMAL theory of motor learning (Wulf & Lewthwaite, 2016) claims that practice conditions that enhance learners' expectancies for future successful outcomes or that are autonomy supportive are motivating, thus leading to better learning. To examine the current evidence of the association between motivation and motor learning, we searched the literature for studies that manipulated expectancies and/or autonomy support. Specifically, our goals were to assess whether these manipulations resulted in group differences in motivation and, if so, whether increased motivation was associated with learning advantages. Results showed that out of 166 experiments, only 21% (n = 35) included at least one measure of motivation, even though this is the main factor proposed by OPTIMAL theory to explain the learning benefits of these manipulations. Among those, only 23% (n = 8) found group-level effects on motivation, suggesting that these manipulations might not be as motivating as expected. Of the eight experiments that found a group-level effect on motivation, five also observed learning benefits, offering limited evidence that when practice conditions increase motivation, learning is more likely to occur. Overall, the small number of studies assessing motivation precludes any reliable conclusions on the association between motivation and motor learning from being drawn. Together, our results question whether manipulations implemented in the research lines supporting OPTIMAL theory are indeed motivating and highlight the lack of sufficient evidence in these literatures to support that increased motivation benefits motor learning.
Collapse
Affiliation(s)
- Juliana O Parma
- Department of Kinesiology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA, 94132, USA.
| | - Matthew W Miller
- School of Kinesiology, Auburn University, 301 Wire Road, Kinesiology Building, Auburn, AL, 36849, USA; Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | - Mariane F B Bacelar
- Department of Kinesiology, Boise State University, 1910 University Drive, Boise, ID, 83725-1710, USA.
| |
Collapse
|
6
|
Skrobot M, Sa RD, Walter J, Vogt A, Paulat R, Lips J, Mosch L, Mueller S, Dominiak S, Sachdev R, Boehm-Sturm P, Dirnagl U, Endres M, Harms C, Wenger N. Refined movement analysis in the staircase test reveals differential motor deficits in mouse models of stroke. J Cereb Blood Flow Metab 2024; 44:1551-1564. [PMID: 39234984 PMCID: PMC11418716 DOI: 10.1177/0271678x241254718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 09/06/2024]
Abstract
Accurate assessment of post-stroke deficits is crucial in translational research. Recent advances in machine learning offer precise quantification of rodent motor behavior post-stroke, yet detecting lesion-specific upper extremity deficits remains unclear. Employing proximal middle cerebral artery occlusion (MCAO) and cortical photothrombosis (PT) in mice, we assessed post-stroke impairments via the Staircase test. Lesion locations were identified using 7 T-MRI. Machine learning was applied to reconstruct forepaw kinematic trajectories and feature analysis was achieved with MouseReach, a new data-processing toolbox. Lesion reconstructions pinpointed ischemic centers in the striatum (MCAO) and sensorimotor cortex (PT). Pellet retrieval alterations were observed, but were unrelated to overall stroke volume. Instead, forepaw slips and relative reaching success correlated with increasing cortical lesion size in both models. Striatal lesion size after MCAO was associated with prolonged reach durations that occurred with delayed symptom onset. Further analysis on the impact of selective serotonin reuptake inhibitors in the PT model revealed no clear treatment effects but replicated strong effect sizes of slips for post-stroke deficit detection. In summary, refined movement analysis unveiled specific deficits in two widely-used mouse stroke models, emphasizing the value of deep behavioral profiling in preclinical stroke research to enhance model validity for clinical translation.
Collapse
Affiliation(s)
- Matej Skrobot
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Rafael De Sa
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Josefine Walter
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health (BIH), Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Arend Vogt
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Raik Paulat
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Janet Lips
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Larissa Mosch
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Mueller
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sina Dominiak
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - Robert Sachdev
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - Philipp Boehm-Sturm
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrich Dirnagl
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health (BIH), Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- DZNE (German Center for Neurodegenerative Diseases), Berlin, Germany
| | - Matthias Endres
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- DZNE (German Center for Neurodegenerative Diseases), Berlin, Germany
- DZPG (German Center of Mental Health), Berlin, Germany
| | - Christoph Harms
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - Nikolaus Wenger
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Ludington SC, McKinney JE, Butler JM, Goolsby BC, Callan AA, Gaines-Richardson M, O’Connell LA. Activity of forkhead box P2-positive neurons is associated with tadpole begging behaviour. Biol Lett 2024; 20:20240395. [PMID: 39317327 PMCID: PMC11421926 DOI: 10.1098/rsbl.2024.0395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
Motor function is a critical aspect of social behaviour in a wide range of taxa. The transcription factor forkhead box P2 (FoxP2) is well studied in the context of vocal communication in humans, mice and songbirds, but its role in regulating social behaviour in other vertebrate taxa is unclear. We examined the distribution and activity of FoxP2-positive neurons in tadpoles of the mimic poison frog (Ranitomeya imitator). In this species, tadpoles are reared in isolated plant nurseries and are aggressive to other tadpoles. Mothers provide unfertilized egg meals to tadpoles that perform a begging display by vigorously vibrating back and forth. We found that FoxP2 is widely distributed in the tadpole brain and parallels the brain distribution in mammals, birds and fishes. We then tested the hypothesis that FoxP2-positive neurons would have differential activity levels in begging or aggression contexts compared to non-social controls. We found that FoxP2-positive neurons showed increased activation in the striatum and cerebellum during begging and in the nucleus accumbens during aggression. Overall, these findings lay a foundation for testing the hypothesis that FoxP2 has a generalizable role in social behaviour beyond vocal communication across terrestrial vertebrates.
Collapse
Affiliation(s)
| | | | - Julie M. Butler
- Department of Biology, Stanford University, Stanford, CA94305, USA
| | | | - Ashlyn A. Callan
- Department of Biology, Stanford University, Stanford, CA94305, USA
| | | | | |
Collapse
|
8
|
Ludington SC, McKinney JE, Butler JM, Goolsby BC, Callan AA, Gaines-Richardson M, O’Connell LA. Activity of FoxP2-positive neurons is associated with tadpole begging behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.26.542531. [PMID: 37292748 PMCID: PMC10246011 DOI: 10.1101/2023.05.26.542531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Motor function is a critical aspect of social behavior in a wide range of taxa. The transcription factor FoxP2 is well studied in the context of vocal communication in humans, mice, and songbirds, but its role in regulating social behavior in other vertebrate taxa is unclear. We examined the distribution and activity of FoxP2-positive neurons in tadpoles of the mimic poison frog (Ranitomeya imitator). In this species, tadpoles are reared in isolated plant nurseries and are aggressive to other tadpoles. Mothers provide unfertilized egg meals to tadpoles that perform a begging display by vigorously vibrating back and forth. We found that FoxP2 is widely distributed in the tadpole brain and parallels the brain distribution in mammals, birds, and fishes. We then tested the hypothesis that FoxP2-positive neurons would have differential activity levels in begging or aggression contexts compared to non-social controls. We found that FoxP2-positive neurons showed increased activation in the striatum and cerebellum during begging and in the nucleus accumbens during aggression. Overall, these findings lay a foundation for testing the hypothesis that FoxP2 has a generalizable role in social behavior beyond vocal communication across terrestrial vertebrates.
Collapse
Affiliation(s)
| | | | - Julie M. Butler
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Ashlyn A. Callan
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
9
|
Giménez S, Millan A, Mora-Morell A, Ayuso N, Gastaldo-Jordán I, Pardo M. Advances in Brain Stimulation, Nanomedicine and the Use of Magnetoelectric Nanoparticles: Dopaminergic Alterations and Their Role in Neurodegeneration and Drug Addiction. Molecules 2024; 29:3580. [PMID: 39124985 PMCID: PMC11314096 DOI: 10.3390/molecules29153580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Recent advancements in brain stimulation and nanomedicine have ushered in a new era of therapeutic interventions for psychiatric and neurodegenerative disorders. This review explores the cutting-edge innovations in brain stimulation techniques, including their applications in alleviating symptoms of main neurodegenerative disorders and addiction. Deep Brain Stimulation (DBS) is an FDA-approved treatment for specific neurodegenerative disorders, including Parkinson's Disease (PD), and is currently under evaluation for other conditions, such as Alzheimer's Disease. This technique has facilitated significant advancements in understanding brain electrical circuitry by enabling targeted brain stimulation and providing insights into neural network function and dysfunction. In reviewing DBS studies, this review places particular emphasis on the underlying main neurotransmitter modifications and their specific brain area location, particularly focusing on the dopaminergic system, which plays a critical role in these conditions. Furthermore, this review delves into the groundbreaking developments in nanomedicine, highlighting how nanotechnology can be utilized to target aberrant signaling in neurodegenerative diseases, with a specific focus on the dopaminergic system. The discussion extends to emerging technologies such as magnetoelectric nanoparticles (MENPs), which represent a novel intersection between nanoformulation and brain stimulation approaches. These innovative technologies offer promising avenues for enhancing the precision and effectiveness of treatments by enabling the non-invasive, targeted delivery of therapeutic agents as well as on-site, on-demand stimulation. By integrating insights from recent research and technological advances, this review aims to provide a comprehensive understanding of how brain stimulation and nanomedicine can be synergistically applied to address complex neuropsychiatric and neurodegenerative disorders, paving the way for future therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Giménez
- Department of Psychobiology, Universidad de Valencia, 46010 Valencia, Spain; (S.G.); (N.A.)
| | - Alexandra Millan
- Department of Neurobiology and Neurophysiology, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - Alba Mora-Morell
- Faculty of Biological Sciences, Universidad de Valencia, 46100 Valencia, Spain;
| | - Noa Ayuso
- Department of Psychobiology, Universidad de Valencia, 46010 Valencia, Spain; (S.G.); (N.A.)
| | - Isis Gastaldo-Jordán
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, 46017 Valencia, Spain;
| | - Marta Pardo
- Department of Psychobiology, Universidad de Valencia, 46010 Valencia, Spain; (S.G.); (N.A.)
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), 46022 Valencia, Spain
| |
Collapse
|
10
|
Vellucci L, De Simone G, Morley-Fletcher S, Buonaguro EF, Avagliano C, Barone A, Maccari S, Iasevoli F, de Bartolomeis A. Perinatal stress modulates glutamatergic functional connectivity: A post-synaptic density immediate early gene-based network analysis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111032. [PMID: 38762163 DOI: 10.1016/j.pnpbp.2024.111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Early life stress may induce synaptic changes within brain regions associated with behavioral disorders. Here, we investigated glutamatergic functional connectivity by a postsynaptic density immediate-early gene-based network analysis. Pregnant female Sprague-Dawley rats were randomly divided into two experimental groups: one exposed to stress sessions and the other serving as a stress-free control group. Homer1 expression was evaluated by in situ hybridization technique in eighty-eight brain regions of interest of male rat offspring. Differences between the perinatal stress exposed group (PRS) (n = 5) and the control group (CTR) (n = 5) were assessed by performing the Student's t-test via SPSS 28.0.1.0 with Bonferroni correction. Additionally, all possible pairwise Spearman's correlations were computed as well as correlation matrices and networks for each experimental group were generated via RStudio and Cytoscape. Perinatal stress exposure was associated with Homer1a reduction in several cortical, thalamic, and striatal regions. Furthermore, it was found to affect functional connectivity between: the lateral septal nucleus, the central medial thalamic nucleus, the anterior part of the paraventricular thalamic nucleus, and both retrosplenial granular b cortex and hippocampal regions; the orbitofrontal cortex, amygdaloid nuclei, and hippocampal regions; and lastly, among regions involved in limbic system. Finally, the PRS networks showed a significant reduction in multiple connections for the ventrolateral part of the anteroventral thalamic nucleus after perinatal stress exposure, as well as a decrease in the centrality of ventral anterior thalamic and amygdaloid nuclei suggestive of putative reduced cortical control over these regions. Within the present preclinical setting, perinatal stress exposure is a modifier of glutamatergic early gene-based functional connectivity in neuronal circuits involved in behaviors relevant to model neurodevelopmental disorders.
Collapse
Affiliation(s)
- Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Via S. Pansini 5, 80131 Naples, Italy
| | - Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Sara Morley-Fletcher
- Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, CNRS, UMR 8576, UGSF, F-59000 Lille, France; International Associated Laboratory (LIA) "Perinatal Stress and Neurodegenerative Diseases", Sapienza University of Rome - IRCCS, Neuromed, Rome, Italy and University of Lille - CNRS, UMR 8576, Lille, France
| | - Elisabetta Filomena Buonaguro
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Camilla Avagliano
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Stefania Maccari
- Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, CNRS, UMR 8576, UGSF, F-59000 Lille, France; International Associated Laboratory (LIA) "Perinatal Stress and Neurodegenerative Diseases", Sapienza University of Rome - IRCCS, Neuromed, Rome, Italy and University of Lille - CNRS, UMR 8576, Lille, France; Department of Science and Medical-Surgical Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Naples, Italy.
| |
Collapse
|
11
|
Currim F, Tanwar R, Brown-Leung JM, Paranjape N, Liu J, Sanders LH, Doorn JA, Cannon JR. Selective dopaminergic neurotoxicity modulated by inherent cell-type specific neurobiology. Neurotoxicology 2024; 103:266-287. [PMID: 38964509 PMCID: PMC11288778 DOI: 10.1016/j.neuro.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease affecting millions of individuals worldwide. Hallmark features of PD pathology are the formation of Lewy bodies in neuromelanin-containing dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNpc), and the subsequent irreversible death of these neurons. Although genetic risk factors have been identified, around 90 % of PD cases are sporadic and likely caused by environmental exposures and gene-environment interaction. Mechanistic studies have identified a variety of chemical PD risk factors. PD neuropathology occurs throughout the brain and peripheral nervous system, but it is the loss of DAergic neurons in the SNpc that produce many of the cardinal motor symptoms. Toxicology studies have found specifically the DAergic neuron population of the SNpc exhibit heightened sensitivity to highly variable chemical insults (both in terms of chemical structure and mechanism of neurotoxic action). Thus, it has become clear that the inherent neurobiology of nigral DAergic neurons likely underlies much of this neurotoxic response to broad insults. This review focuses on inherent neurobiology of nigral DAergic neurons and how such neurobiology impacts the primary mechanism of neurotoxicity. While interactions with a variety of other cell types are important in disease pathogenesis, understanding how inherent DAergic biology contributes to selective sensitivity and primary mechanisms of neurotoxicity is critical to advancing the field. Specifically, key biological features of DAergic neurons that increase neurotoxicant susceptibility.
Collapse
Affiliation(s)
- Fatema Currim
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Reeya Tanwar
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Josephine M Brown-Leung
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Neha Paranjape
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Liu
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laurie H Sanders
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jonathan A Doorn
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA.
| |
Collapse
|
12
|
Song MR, Lee SW. Rethinking dopamine-guided action sequence learning. Eur J Neurosci 2024; 60:3447-3465. [PMID: 38798086 DOI: 10.1111/ejn.16426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/21/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
As opposed to those requiring a single action for reward acquisition, tasks necessitating action sequences demand that animals learn action elements and their sequential order and sustain the behaviour until the sequence is completed. With repeated learning, animals not only exhibit precise execution of these sequences but also demonstrate enhanced smoothness and efficiency. Previous research has demonstrated that midbrain dopamine and its major projection target, the striatum, play crucial roles in these processes. Recent studies have shown that dopamine from the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA) serve distinct functions in action sequence learning. The distinct contributions of dopamine also depend on the striatal subregions, namely the ventral, dorsomedial and dorsolateral striatum. Here, we have reviewed recent findings on the role of striatal dopamine in action sequence learning, with a focus on recent rodent studies.
Collapse
Affiliation(s)
- Minryung R Song
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, South Korea
| | - Sang Wan Lee
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, South Korea
- Kim Jaechul Graduate School of AI, KAIST, Daejeon, South Korea
- KI for Health Science and Technology, KAIST, Daejeon, South Korea
- Center for Neuroscience-inspired AI, KAIST, Daejeon, South Korea
| |
Collapse
|
13
|
Balsdon T, Pisauro MA, Philiastides MG. Distinct basal ganglia contributions to learning from implicit and explicit value signals in perceptual decision-making. Nat Commun 2024; 15:5317. [PMID: 38909014 PMCID: PMC11193814 DOI: 10.1038/s41467-024-49538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/07/2024] [Indexed: 06/24/2024] Open
Abstract
Metacognitive evaluations of confidence provide an estimate of decision accuracy that could guide learning in the absence of explicit feedback. We examine how humans might learn from this implicit feedback in direct comparison with that of explicit feedback, using simultaneous EEG-fMRI. Participants performed a motion direction discrimination task where stimulus difficulty was increased to maintain performance, with intermixed explicit- and no-feedback trials. We isolate single-trial estimates of post-decision confidence using EEG decoding, and find these neural signatures re-emerge at the time of feedback together with separable signatures of explicit feedback. We identified these signatures of implicit versus explicit feedback along a dorsal-ventral gradient in the striatum, a finding uniquely enabled by an EEG-fMRI fusion. These two signals appear to integrate into an aggregate representation in the external globus pallidus, which could broadcast updates to improve cortical decision processing via the thalamus and insular cortex, irrespective of the source of feedback.
Collapse
Affiliation(s)
- Tarryn Balsdon
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK.
- Laboratory of Perceptual Systems, DEC, ENS, PSL University, CNRS UMR 8248, Paris, France.
| | - M Andrea Pisauro
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
- School of Psychology, University of Plymouth, Plymouth, UK
| | - Marios G Philiastides
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK.
| |
Collapse
|
14
|
Sheng M, Lu D, Sheng K, Ding JB. Activity-Dependent Remodeling of Corticostriatal Axonal Boutons During Motor Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598366. [PMID: 38915677 PMCID: PMC11195117 DOI: 10.1101/2024.06.10.598366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Motor skill learning induces long-lasting synaptic plasticity at not only the inputs, such as dendritic spines1-4, but also at the outputs to the striatum of motor cortical neurons5,6. However, very little is known about the activity and structural plasticity of corticostriatal axons during learning in the adult brain. Here, we used longitudinal in vivo two-photon imaging to monitor the activity and structure of thousands of corticostriatal axonal boutons in the dorsolateral striatum in awake mice. We found that learning a new motor skill induces dynamic regulation of axonal boutons. The activities of motor corticostriatal axonal boutons exhibited selectivity for rewarded movements (RM) and un-rewarded movements (UM). Strikingly, boutons on the same axonal branches showed diverse responses during behavior. Motor learning significantly increased the fraction of RM boutons and reduced the heterogeneity of bouton activities. Moreover, motor learning-induced profound structural dynamism in boutons. By combining structural and functional imaging, we identified that newly formed axonal boutons are more likely to exhibit selectivity for RM and are stabilized during motor learning, while UM boutons are selectively eliminated. Our results highlight a novel form of plasticity at corticostriatal axons induced by motor learning, indicating that motor corticostriatal axonal boutons undergo dynamic reorganization that facilitates the acquisition and execution of motor skills.
Collapse
Affiliation(s)
- Mengjun Sheng
- Department of Neurosurgery, Stanford University School of Medicine
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- These authors contributed equally
| | - Di Lu
- Department of Neurosurgery, Stanford University School of Medicine
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- These authors contributed equally
| | - Kaiwen Sheng
- Department of Neurosurgery, Stanford University School of Medicine
- Stanford Bioengineering PhD program, Stanford University
| | - Jun B Ding
- Department of Neurosurgery, Stanford University School of Medicine
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University
| |
Collapse
|
15
|
Ramirez-Garcia G, Escutia-Macedo X, Cook DJ, Moreno-Andrade T, Villarreal-Garza E, Campos-Coy M, Elizondo-Riojas G, Gongora-Rivera F, Garza-Villarreal EA, Fernandez-Ruiz J. Consistent spatial lesion-symptom patterns: A comprehensive analysis using triangulation in lesion-symptom mapping in a cohort of stroke patients. Magn Reson Imaging 2024; 109:286-293. [PMID: 38531463 DOI: 10.1016/j.mri.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
INTRODUCTION The relationship between brain lesions and stroke outcomes is crucial for advancing patient prognosis and developing effective therapies. Stroke is a leading cause of disability worldwide, and it is important to understand the neurological basis of its varied symptomatology. Lesion-symptom mapping (LSM) methods provide a means to identify brain areas that are strongly associated with specific symptoms. However, inner variations in LSM methods can yield different results. To address this, our study aimed to characterize the lesion-symptom mapping variability using three different LSM methods. Specifically, we sought to determine a lesion symptom core across LSM approaches enhancing the robustness of the analysis and removing potential spatial bias. MATERIAL & METHODS A cohort consisting of 35 patients with either right- or left-sided middle cerebral artery strokes were enrolled and evaluated using the NIHSS at 24 h post-stroke. Anatomical T1w MRI scans were also obtained 24 h post-stroke. Lesion masks were segmented manually and three distinctive LSM methods were implemented: ROI correlation-based, univariate, and multivariate approaches. RESULTS The results of the LSM analyses showed substantial spatial differences in the extension of each of the three lesion maps. However, upon overlaying all three lesion-symptom maps, a consistent lesion core emerged, corresponding to the territory associated with elevated NIHSS scores. This finding not only enhances the spatial accuracy of the lesion map but also underscores its clinical relevance. CONCLUSION This study underscores the significance of exploring complementary LSM approaches to investigate the association between brain lesions and stroke outcomes. By utilizing multiple methods, we can increase the robustness of our results, effectively addressing and neutralizing potential spatial bias introduced by each individual method. Such an approach holds promise for enhancing our understanding of stroke pathophysiology and optimizing patient care strategies.
Collapse
Affiliation(s)
- Gabriel Ramirez-Garcia
- Laboratorio de Neuropsicologia, Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Ximena Escutia-Macedo
- Laboratorio de Neuropsicologia, Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Translational Stroke Research Lab, Department of Surgery, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Talia Moreno-Andrade
- Departamento de Neurologia, Hospital Universitario Dr. Jose Eleuterio Gonzalez Universidad Autonoma de Nuevo León, Monterrey, Nuevo Leon, Mexico; Unidad de Neuromodulacion y Plasticidad Cerebral, Centro de Investigacion y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| | - Estefania Villarreal-Garza
- Departamento de Neurologia, Hospital Universitario Dr. Jose Eleuterio Gonzalez Universidad Autonoma de Nuevo León, Monterrey, Nuevo Leon, Mexico
| | - Mario Campos-Coy
- Unidad de Neuromodulacion y Plasticidad Cerebral, Centro de Investigacion y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico; Departamento de Imagen Diagnostica, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| | - Guillermo Elizondo-Riojas
- Unidad de Neuromodulacion y Plasticidad Cerebral, Centro de Investigacion y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico; Departamento de Imagen Diagnostica, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| | - Fernando Gongora-Rivera
- Departamento de Neurologia, Hospital Universitario Dr. Jose Eleuterio Gonzalez Universidad Autonoma de Nuevo León, Monterrey, Nuevo Leon, Mexico; Unidad de Neuromodulacion y Plasticidad Cerebral, Centro de Investigacion y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| | - Eduardo A Garza-Villarreal
- Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Juriquilla, Queretaro, Mexico; Departamento de Neurologia, Hospital Universitario Dr. Jose Eleuterio Gonzalez Universidad Autonoma de Nuevo León, Monterrey, Nuevo Leon, Mexico
| | - Juan Fernandez-Ruiz
- Laboratorio de Neuropsicologia, Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico; Facultad de Psicologia, Universidad Veracruzana, Xalapa, Veracruz, Mexico.
| |
Collapse
|
16
|
Ay M, Charli A, Langley M, Jang A, Padhi P, Jin H, Anantharam V, Kalyanaraman B, Kanthasamy A, Kanthasamy AG. Mito-metformin protects against mitochondrial dysfunction and dopaminergic neuronal degeneration by activating upstream PKD1 signaling in cell culture and MitoPark animal models of Parkinson's disease. Front Neurosci 2024; 18:1356703. [PMID: 38449738 PMCID: PMC10915001 DOI: 10.3389/fnins.2024.1356703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024] Open
Abstract
Impaired mitochondrial function and biogenesis have strongly been implicated in the pathogenesis of Parkinson's disease (PD). Thus, identifying the key signaling mechanisms regulating mitochondrial biogenesis is crucial to developing new treatment strategies for PD. We previously reported that protein kinase D1 (PKD1) activation protects against neuronal cell death in PD models by regulating mitochondrial biogenesis. To further harness the translational drug discovery potential of targeting PKD1-mediated neuroprotective signaling, we synthesized mito-metformin (Mito-Met), a mitochondria-targeted analog derived from conjugating the anti-diabetic drug metformin with a triphenylphosphonium functional group, and then evaluated the preclinical efficacy of Mito-Met in cell culture and MitoPark animal models of PD. Mito-Met (100-300 nM) significantly activated PKD1 phosphorylation, as well as downstream Akt and AMPKα phosphorylation, more potently than metformin, in N27 dopaminergic neuronal cells. Furthermore, treatment with Mito-Met upregulated the mRNA and protein expression of mitochondrial transcription factor A (TFAM) implying that Mito-Met can promote mitochondrial biogenesis. Interestingly, Mito-Met significantly increased mitochondrial bioenergetics capacity in N27 dopaminergic cells. Mito-Met also reduced mitochondrial fragmentation induced by the Parkinsonian neurotoxicant MPP+ in N27 cells and protected against MPP+-induced TH-positive neurite loss in primary neurons. More importantly, Mito-Met treatment (10 mg/kg, oral gavage for 8 week) significantly improved motor deficits and reduced striatal dopamine depletion in MitoPark mice. Taken together, our results demonstrate that Mito-Met possesses profound neuroprotective effects in both in vitro and in vivo models of PD, suggesting that pharmacological activation of PKD1 signaling could be a novel neuroprotective translational strategy in PD and other related neurocognitive diseases.
Collapse
Affiliation(s)
- Muhammet Ay
- Parkinson’s Disorder Research Laboratory, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, United States
| | - Adhithiya Charli
- Parkinson’s Disorder Research Laboratory, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, United States
| | - Monica Langley
- Parkinson’s Disorder Research Laboratory, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, United States
| | - Ahyoung Jang
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Piyush Padhi
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Huajun Jin
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Vellareddy Anantharam
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | | | - Arthi Kanthasamy
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Anumantha G. Kanthasamy
- Parkinson’s Disorder Research Laboratory, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, United States
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| |
Collapse
|
17
|
Gigi I, Senatore R, Marcelli A. The onset of motor learning impairments in Parkinson's disease: a computational investigation. Brain Inform 2024; 11:4. [PMID: 38286886 PMCID: PMC11333672 DOI: 10.1186/s40708-023-00215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/11/2023] [Indexed: 01/31/2024] Open
Abstract
The basal ganglia (BG) is part of a basic feedback circuit regulating cortical function, such as voluntary movements control, via their influence on thalamocortical projections. BG disorders, namely Parkinson's disease (PD), characterized by the loss of neurons in the substantia nigra, involve the progressive loss of motor functions. At the present, PD is incurable. Converging evidences suggest the onset of PD-specific pathology prior to the appearance of classical motor signs. This latent phase of neurodegeneration in PD is of particular relevance in developing more effective therapies by intervening at the earliest stages of the disease. Therefore, a key challenge in PD research is to identify and validate markers for the preclinical and prodromal stages of the illness. We propose a mechanistic neurocomputational model of the BG at a mesoscopic scale to investigate the behavior of the simulated neural system after several degrees of lesion of the substantia nigra, with the aim of possibly evaluating which is the smallest lesion compromising motor learning. In other words, we developed a working framework for the analysis of theoretical early-stage PD. While simulations in healthy conditions confirm the key role of dopamine in learning, in pathological conditions the network predicts that there may exist abnormalities of the motor learning process, for physiological alterations in the BG, that do not yet involve the presence of symptoms typical of the clinical diagnosis.
Collapse
Affiliation(s)
- Ilaria Gigi
- Institute of Cognitive Sciences and Technologies (ISTC), National Research Council of Italy (CNR), Via Beato Pellegrino 28, Padova, 35137, Veneto, Italy.
| | - Rosa Senatore
- Natural Intelligent Technologies Ltd, Piazza Vittorio Emanuele 10, Fisciano, 84084, Campania, Italy
| | - Angelo Marcelli
- Department of Information Engineering, Electrical Engineering, and Applied Mathematics (DIEM), University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Campania, Italy
| |
Collapse
|
18
|
Vautrelle N, Coizet V, Leriche M, Dahan L, Schulz JM, Zhang YF, Zeghbib A, Overton PG, Bracci E, Redgrave P, Reynolds JN. Sensory Reinforced Corticostriatal Plasticity. Curr Neuropharmacol 2024; 22:1513-1527. [PMID: 37533245 PMCID: PMC11097983 DOI: 10.2174/1570159x21666230801110359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Regional changes in corticostriatal transmission induced by phasic dopaminergic signals are an essential feature of the neural network responsible for instrumental reinforcement during discovery of an action. However, the timing of signals that are thought to contribute to the induction of corticostriatal plasticity is difficult to reconcile within the framework of behavioural reinforcement learning, because the reinforcer is normally delayed relative to the selection and execution of causally-related actions. OBJECTIVE While recent studies have started to address the relevance of delayed reinforcement signals and their impact on corticostriatal processing, our objective was to establish a model in which a sensory reinforcer triggers appropriately delayed reinforcement signals relayed to the striatum via intact neuronal pathways and to investigate the effects on corticostriatal plasticity. METHODS We measured corticostriatal plasticity with electrophysiological recordings using a light flash as a natural sensory reinforcer, and pharmacological manipulations were applied in an in vivo anesthetized rat model preparation. RESULTS We demonstrate that the spiking of striatal neurons evoked by single-pulse stimulation of the motor cortex can be potentiated by a natural sensory reinforcer, operating through intact afferent pathways, with signal timing approximating that required for behavioural reinforcement. The pharmacological blockade of dopamine receptors attenuated the observed potentiation of corticostriatal neurotransmission. CONCLUSION This novel in vivo model of corticostriatal plasticity offers a behaviourally relevant framework to address the physiological, anatomical, cellular, and molecular bases of instrumental reinforcement learning.
Collapse
Affiliation(s)
- Nicolas Vautrelle
- Department of Anatomy, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
- Department of Psychology, University of Sheffield, Sheffield, S10 2TP, UK
| | - Véronique Coizet
- Department of Psychology, University of Sheffield, Sheffield, S10 2TP, UK
- Institut des Neurosciences de Grenoble, Université Joseph Fourier, Inserm, U1216, 38706 La Tronche Cedex, France
| | - Mariana Leriche
- Department of Anatomy, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
- Department of Psychology, University of Sheffield, Sheffield, S10 2TP, UK
| | - Lionel Dahan
- Department of Psychology, University of Sheffield, Sheffield, S10 2TP, UK
- Centre de Recherches sur la Cognition Animale, Université de Toulouse, UPS, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Jan M. Schulz
- Department of Anatomy, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
- Department of Biomedicine, University of Basel, CH - 4056 Basel, Switzerland
| | - Yan-Feng Zhang
- Department of Anatomy, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, United Kingdom
| | - Abdelhafid Zeghbib
- Department of Psychology, University of Sheffield, Sheffield, S10 2TP, UK
| | - Paul G. Overton
- Department of Psychology, University of Sheffield, Sheffield, S10 2TP, UK
| | - Enrico Bracci
- Department of Psychology, University of Sheffield, Sheffield, S10 2TP, UK
| | - Peter Redgrave
- Department of Psychology, University of Sheffield, Sheffield, S10 2TP, UK
| | - John N.J. Reynolds
- Department of Anatomy, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
19
|
Rodríguez-Urgellés E, Casas-Torremocha D, Sancho-Balsells A, Ballasch I, García-García E, Miquel-Rio L, Manasanch A, Del Castillo I, Chen W, Pupak A, Brito V, Tornero D, Rodríguez MJ, Bortolozzi A, Sanchez-Vives MV, Giralt A, Alberch J. Thalamic Foxp2 regulates output connectivity and sensory-motor impairments in a model of Huntington's Disease. Cell Mol Life Sci 2023; 80:367. [PMID: 37987826 PMCID: PMC10663254 DOI: 10.1007/s00018-023-05015-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/25/2023] [Accepted: 10/07/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Huntington's Disease (HD) is a disorder that affects body movements. Altered glutamatergic innervation of the striatum is a major hallmark of the disease. Approximately 30% of those glutamatergic inputs come from thalamic nuclei. Foxp2 is a transcription factor involved in cell differentiation and reported low in patients with HD. However, the role of the Foxp2 in the thalamus in HD remains unexplored. METHODS We used two different mouse models of HD, the R6/1 and the HdhQ111 mice, to demonstrate a consistent thalamic Foxp2 reduction in the context of HD. We used in vivo electrophysiological recordings, microdialysis in behaving mice and rabies virus-based monosynaptic tracing to study thalamo-striatal and thalamo-cortical synaptic connectivity in R6/1 mice. Micro-structural synaptic plasticity was also evaluated in the striatum and cortex of R6/1 mice. We over-expressed Foxp2 in the thalamus of R6/1 mice or reduced Foxp2 in the thalamus of wild type mice to evaluate its role in sensory and motor skills deficiencies, as well as thalamo-striatal and thalamo-cortical connectivity in such mouse models. RESULTS Here, we demonstrate in a HD mouse model a clear and early thalamo-striatal aberrant connectivity associated with a reduction of thalamic Foxp2 levels. Recovering thalamic Foxp2 levels in the mouse rescued motor coordination and sensory skills concomitant with an amelioration of neuropathological features and with a repair of the structural and functional connectivity through a restoration of neurotransmitter release. In addition, reduction of thalamic Foxp2 levels in wild type mice induced HD-like phenotypes. CONCLUSIONS In conclusion, we show that a novel identified thalamic Foxp2 dysregulation alters basal ganglia circuits implicated in the pathophysiology of HD.
Collapse
Affiliation(s)
- Ened Rodríguez-Urgellés
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Anna Sancho-Balsells
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Iván Ballasch
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Esther García-García
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Lluis Miquel-Rio
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036, Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| | - Arnau Manasanch
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Ignacio Del Castillo
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Wanqi Chen
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Anika Pupak
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Veronica Brito
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Daniel Tornero
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), University of Barcelona, 08036, Barcelona, Spain
| | - Manuel J Rodríguez
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Analia Bortolozzi
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036, Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Albert Giralt
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), University of Barcelona, 08036, Barcelona, Spain.
| | - Jordi Alberch
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), University of Barcelona, 08036, Barcelona, Spain.
| |
Collapse
|
20
|
Wessel MJ, Beanato E, Popa T, Windel F, Vassiliadis P, Menoud P, Beliaeva V, Violante IR, Abderrahmane H, Dzialecka P, Park CH, Maceira-Elvira P, Morishita T, Cassara AM, Steiner M, Grossman N, Neufeld E, Hummel FC. Noninvasive theta-burst stimulation of the human striatum enhances striatal activity and motor skill learning. Nat Neurosci 2023; 26:2005-2016. [PMID: 37857774 PMCID: PMC10620076 DOI: 10.1038/s41593-023-01457-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 09/07/2023] [Indexed: 10/21/2023]
Abstract
The stimulation of deep brain structures has thus far only been possible with invasive methods. Transcranial electrical temporal interference stimulation (tTIS) is a novel, noninvasive technology that might overcome this limitation. The initial proof-of-concept was obtained through modeling, physics experiments and rodent models. Here we show successful noninvasive neuromodulation of the striatum via tTIS in humans using computational modeling, functional magnetic resonance imaging studies and behavioral evaluations. Theta-burst patterned striatal tTIS increased activity in the striatum and associated motor network. Furthermore, striatal tTIS enhanced motor performance, especially in healthy older participants as they have lower natural learning skills than younger subjects. These findings place tTIS as an exciting new method to target deep brain structures in humans noninvasively, thus enhancing our understanding of their functional role. Moreover, our results lay the groundwork for innovative, noninvasive treatment strategies for brain disorders in which deep striatal structures play key pathophysiological roles.
Collapse
Affiliation(s)
- Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Elena Beanato
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Traian Popa
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Fabienne Windel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Pierre Vassiliadis
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Pauline Menoud
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Valeriia Beliaeva
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Ines R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | | - Patrycja Dzialecka
- Department of Brain Sciences, Imperial College London, London, UK
- United Kingdom Dementia Research Institute, Imperial College London, London, UK
| | - Chang-Hyun Park
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Pablo Maceira-Elvira
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Takuya Morishita
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Antonino M Cassara
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Melanie Steiner
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Nir Grossman
- Department of Brain Sciences, Imperial College London, London, UK
- United Kingdom Dementia Research Institute, Imperial College London, London, UK
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland.
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland.
| |
Collapse
|
21
|
Liu K, Song M, Gao S, Yao L, Zhang L, Feng J, Wang L, Gao R, Wang Y. The Dynamics of Dopamine D 2 Receptor-Expressing Striatal Neurons and the Downstream Circuit Underlying L-Dopa-Induced Dyskinesia in Rats. Neurosci Bull 2023; 39:1411-1425. [PMID: 37022638 PMCID: PMC10465438 DOI: 10.1007/s12264-023-01054-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/05/2022] [Indexed: 04/07/2023] Open
Abstract
L-dopa (l-3,4-dihydroxyphenylalanine)-induced dyskinesia (LID) is a debilitating complication of dopamine replacement therapy for Parkinson's disease. The potential contribution of striatal D2 receptor (D2R)-positive neurons and downstream circuits in the pathophysiology of LID remains unclear. In this study, we investigated the role of striatal D2R+ neurons and downstream globus pallidus externa (GPe) neurons in a rat model of LID. Intrastriatal administration of raclopride, a D2R antagonist, significantly inhibited dyskinetic behavior, while intrastriatal administration of pramipexole, a D2-like receptor agonist, yielded aggravation of dyskinesia in LID rats. Fiber photometry revealed the overinhibition of striatal D2R+ neurons and hyperactivity of downstream GPe neurons during the dyskinetic phase of LID rats. In contrast, the striatal D2R+ neurons showed intermittent synchronized overactivity in the decay phase of dyskinesia. Consistent with the above findings, optogenetic activation of striatal D2R+ neurons or their projections in the GPe was adequate to suppress most of the dyskinetic behaviors of LID rats. Our data demonstrate that the aberrant activity of striatal D2R+ neurons and downstream GPe neurons is a decisive mechanism mediating dyskinetic symptoms in LID rats.
Collapse
Affiliation(s)
- Kuncheng Liu
- Department of Physiology and Pathophysiology and Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, China
- Department of Clinical Medicine, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, China
| | - Miaomiao Song
- Department of Physiology and Pathophysiology and Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, China
| | - Shasha Gao
- Department of Physiology and Pathophysiology and Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, China
| | - Lu Yao
- Department of Physiology and Pathophysiology and Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, China
| | - Li Zhang
- Department of Physiology and Pathophysiology and Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, China
| | - Jie Feng
- Department of Physiology and Pathophysiology and Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, China
| | - Ling Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710004, China
| | - Rui Gao
- Department of Medical Imaging and Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710061, China
| | - Yong Wang
- Department of Physiology and Pathophysiology and Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
22
|
Chen JF, Choi DS, Cunha RA. Striatopallidal adenosine A 2A receptor modulation of goal-directed behavior: Homeostatic control with cognitive flexibility. Neuropharmacology 2023; 226:109421. [PMID: 36634866 PMCID: PMC10132052 DOI: 10.1016/j.neuropharm.2023.109421] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/30/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
Dysfunction of goal-directed behaviors under stressful or pathological conditions results in impaired decision-making and loss of flexibility of thoughts and behaviors, which underlie behavioral deficits ranging from depression, obsessive-compulsive disorders and drug addiction. Tackling the neuromodulators fine-tuning this core behavioral element may facilitate the development of effective strategies to control these deficits present in multiple psychiatric disorders. The current investigation of goal-directed behaviors has concentrated on dopamine and glutamate signaling in the corticostriatal pathway. In accordance with the beneficial effects of caffeine intake on mood and cognitive dysfunction, we now propose that caffeine's main site of action - adenosine A2A receptors (A2AR) - represent a novel target to homeostatically control goal-directed behavior and cognitive flexibility. A2AR are abundantly expressed in striatopallidal neurons and colocalize and interact with dopamine D2, NMDA and metabotropic glutamate 5 receptors to integrate dopamine and glutamate signaling. Specifically, striatopallidal A2AR (i) exert an overall "break" control of a variety of cognitive processes, making A2AR antagonists a novel strategy for improving goal-directed behavior; (ii) confer homeostatic control of goal-directed behavior by acting at multiple sites with often opposite effects, to enhance cognitive flexibility; (iii) integrate dopamine and adenosine signaling through multimeric A2AR-D2R heterocomplexes allowing a temporally precise fine-tuning in response to local signaling changes. As the U.S. Food and Drug Administration recently approved the A2AR antagonist Nourianz® (istradefylline) to treat Parkinson's disease, striatal A2AR-mediated control of goal-directed behavior may offer a new and real opportunity for improving deficits of goal-directed behavior and enhance cognitive flexibility under various neuropsychiatric conditions. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
Affiliation(s)
- Jiang-Fan Chen
- Molecular Neuropharmacology Laboratory, Wenzhou Medical University, Wenzhou, China; Department of Neurology, School of Medicine, Boston University, Boston, MA, USA.
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, USA; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
23
|
Kövesdi E, Udvarácz I, Kecskés A, Szőcs S, Farkas S, Faludi P, Jánosi TZ, Ábrahám IM, Kovács G. 17β-estradiol does not have a direct effect on the function of striatal cholinergic interneurons in adult mice in vitro. Front Endocrinol (Lausanne) 2023; 13:993552. [PMID: 36686456 PMCID: PMC9848397 DOI: 10.3389/fendo.2022.993552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
The striatum is an essential component of the basal ganglia that is involved in motor control, action selection and motor learning. The pathophysiological changes of the striatum are present in several neurological and psychiatric disorder including Parkinson's and Huntington's diseases. The striatal cholinergic neurons are the main regulators of striatal microcircuitry. It has been demonstrated that estrogen exerts various effects on neuronal functions in dopaminergic and medium spiny neurons (MSN), however little is known about how the activity of cholinergic interneurons are influenced by estrogens. In this study we examined the acute effect of 17β-estradiol on the function of striatal cholinergic neurons in adult mice in vitro. We also tested the effect of estrus cycle and sex on the spontaneous activity of cholinergic interneurons in the striatum. Our RNAscope experiments showed that ERα, ERβ, and GPER1 receptor mRNAs are expressed in some striatal cholinergic neurons at a very low level. In cell-attached patch clamp experiments, we found that a high dose of 17β-estradiol (100 nM) affected the spontaneous firing rate of these neurons only in old males. Our findings did not demonstrate any acute effect of a low concentration of 17β-estradiol (100 pM) or show any association of estrus cycle or sex with the activity of striatal cholinergic neurons. Although estrogen did not induce changes in the intrinsic properties of neurons, indirect effects via modulation of the synaptic inputs of striatal cholinergic interneurons cannot be excluded.
Collapse
Affiliation(s)
- Erzsébet Kövesdi
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - Ildikó Udvarácz
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - Angéla Kecskés
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Szilárd Szőcs
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Szidónia Farkas
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - Péter Faludi
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - Tibor Z. Jánosi
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - István M. Ábrahám
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - Gergely Kovács
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| |
Collapse
|
24
|
Cataldi S, Lacefield C, Shashaank N, Kumar G, Boumhaouad S, Sulzer D. Decreased Dorsomedial Striatum Direct Pathway Neuronal Activity Is Required for Learned Motor Coordination. eNeuro 2022; 9:ENEURO.0169-22.2022. [PMID: 36171055 PMCID: PMC9557335 DOI: 10.1523/eneuro.0169-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022] Open
Abstract
It has been suggested that the dorsomedial striatum (DMS) is engaged in the early stages of motor learning for goal-directed actions, whereas at later stages, control is transferred to the dorsolateral striatum (DLS), a process that enables learned motor actions to become a skill or habit. It is not known whether these striatal regions are simultaneously active while the expertise is acquired. To address this question, we developed a mouse "Treadmill Training Task" that tracks changes in mouse locomotor coordination during running practice and simultaneously provides a means to measure local neuronal activity using photometry. To measure change in motor coordination over treadmill practice sessions, we used DeepLabCut (DLC) and custom-built code to analyze body position and paw movements. By evaluating improvements in motor coordination during training with simultaneous neuronal calcium activity in the striatum, we found that DMS direct pathway neurons exhibited decreased activity as the mouse gained proficiency at running. In contrast, direct pathway activity in the DLS was similar throughout training. Pharmacological blockade of D1 dopamine receptors in these subregions during task performance demonstrated that dopamine neurotransmission in the direct pathway activity is necessary for efficient motor coordination learning. These results provide new tools to measure changes in fine motor skills with simultaneous recordings of brain activity and reveal fundamental features of the neuronal substrates of motor learning.
Collapse
Affiliation(s)
- Stefano Cataldi
- Departments of Psychiatry, Columbia University Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
| | - Clay Lacefield
- Departments of Psychiatry, Columbia University Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY 10032
| | - N Shashaank
- Department of Computer Science, Columbia University, Schapiro Center for Engineering and Physical Science Research, New York, NY 10027
- New York Genome Center, New York, NY 10013
| | - Gautam Kumar
- Neuroscience Program, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Siham Boumhaouad
- Departments of Psychiatry, Columbia University Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
- Physiology and Physiopathology, Faculty of Sciences, Mohammed V University, Rabat 1014, Morocco
| | - David Sulzer
- Departments of Psychiatry, Columbia University Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
- Departments of Neurology, Columbia University, New York, NY 10032
- Department of Pharmacology, Columbia University, New York, NY 10032
| |
Collapse
|
25
|
Kamat A, Makled B, Norfleet J, Schwaitzberg SD, Intes X, De S, Dutta A. Directed information flow during laparoscopic surgical skill acquisition dissociated skill level and medical simulation technology. NPJ SCIENCE OF LEARNING 2022; 7:19. [PMID: 36008451 PMCID: PMC9411170 DOI: 10.1038/s41539-022-00138-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 08/04/2022] [Indexed: 05/11/2023]
Abstract
Virtual reality (VR) simulator has emerged as a laparoscopic surgical skill training tool that needs validation using brain-behavior analysis. Therefore, brain network and skilled behavior relationship were evaluated using functional near-infrared spectroscopy (fNIRS) from seven experienced right-handed surgeons and six right-handed medical students during the performance of Fundamentals of Laparoscopic Surgery (FLS) pattern of cutting tasks in a physical and a VR simulator. Multiple regression and path analysis (MRPA) found that the FLS performance score was statistically significantly related to the interregional directed functional connectivity from the right prefrontal cortex to the supplementary motor area with F (2, 114) = 9, p < 0.001, and R2 = 0.136. Additionally, a two-way multivariate analysis of variance (MANOVA) found a statistically significant effect of the simulator technology on the interregional directed functional connectivity from the right prefrontal cortex to the left primary motor cortex (F (1, 15) = 6.002, p = 0.027; partial η2 = 0.286) that can be related to differential right-lateralized executive control of attention. Then, MRPA found that the coefficient of variation (CoV) of the FLS performance score was statistically significantly associated with the CoV of the interregionally directed functional connectivity from the right primary motor cortex to the left primary motor cortex and the left primary motor cortex to the left prefrontal cortex with F (2, 22) = 3.912, p = 0.035, and R2 = 0.262. This highlighted the importance of the efference copy information from the motor cortices to the prefrontal cortex for postulated left-lateralized perceptual decision-making to reduce behavioral variability.
Collapse
Affiliation(s)
- Anil Kamat
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Basiel Makled
- US Army Futures Command, Combat Capabilities Development Command Soldier Center STTC, Orlando, FL, USA
| | - Jack Norfleet
- US Army Futures Command, Combat Capabilities Development Command Soldier Center STTC, Orlando, FL, USA
| | | | - Xavier Intes
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Suvranu De
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Anirban Dutta
- Neuroengineering and Informatics for Rehabilitation Laboratory, Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
26
|
The HDAC inhibitor CI-994 acts as a molecular memory aid by facilitating synaptic and intracellular communication after learning. Proc Natl Acad Sci U S A 2022; 119:e2116797119. [PMID: 35613054 PMCID: PMC9295763 DOI: 10.1073/pnas.2116797119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Memory formation relies on a plethora of functions, including epigenetic modifications. Over recent years, multiple studies have indicated the potential of HDAC inhibitors (HDACis) as cognitive enhancers, but their mode of action is not fully understood. Here, we tested whether HDACi treatment improves memory formation via “cognitive epigenetic priming,” stipulating that HDACis—without inherent target specificity—specifically enhance naturally occurring plasticity processes. We found that combining HDACis with fear learning, but not either treatment alone, enhances synaptic plasticity as well as memory-promoting transcriptional signaling in the hippocampus, a brain area recruited by fear learning, but not in unrelated areas. These results lend experimental support to the theory of cognitive epigenetic priming. Long-term memory formation relies on synaptic plasticity, neuronal activity-dependent gene transcription, and epigenetic modifications. Multiple studies have shown that HDAC inhibitor (HDACi) treatments can enhance individual aspects of these processes and thereby act as putative cognitive enhancers. However, their mode of action is not fully understood. In particular, it is unclear how systemic application of HDACis, which are devoid of substrate specificity, can target pathways that promote memory formation. In this study, we explore the electrophysiological, transcriptional, and epigenetic responses that are induced by CI-994, a class I HDACi, combined with contextual fear conditioning (CFC) in mice. We show that CI-994–mediated improvement of memory formation is accompanied by enhanced long-term potentiation in the hippocampus, a brain region recruited by CFC, but not in the striatum, a brain region not primarily implicated in fear learning. Furthermore, using a combination of bulk and single-cell RNA-sequencing, we find that, when paired with CFC, HDACi treatment engages synaptic plasticity-promoting gene expression more strongly in the hippocampus, specifically in the dentate gyrus (DG). Finally, using chromatin immunoprecipitation-sequencing (ChIP-seq) of DG neurons, we show that the combined action of HDACi application and conditioning is required to elicit enhancer histone acetylation in pathways that underlie improved memory performance. Together, these results indicate that systemic HDACi administration amplifies brain region-specific processes that are naturally induced by learning.
Collapse
|
27
|
Abramov AY. The brain—from neurodevelopment to neurodegeneration. FEBS J 2022; 289:2010-2012. [DOI: 10.1111/febs.16436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Andrey Y. Abramov
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London UK
| |
Collapse
|
28
|
von Gall C. The Effects of Light and the Circadian System on Rhythmic Brain Function. Int J Mol Sci 2022; 23:ijms23052778. [PMID: 35269920 PMCID: PMC8911243 DOI: 10.3390/ijms23052778] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Life on earth has evolved under the influence of regularly recurring changes in the environment, such as the 24 h light/dark cycle. Consequently, organisms have developed endogenous clocks, generating 24 h (circadian) rhythms that serve to anticipate these rhythmic changes. In addition to these circadian rhythms, which persist in constant conditions and can be entrained to environmental rhythms, light drives rhythmic behavior and brain function, especially in nocturnal laboratory rodents. In recent decades, research has made great advances in the elucidation of the molecular circadian clockwork and circadian light perception. This review summarizes the role of light and the circadian clock in rhythmic brain function, with a focus on the complex interaction between the different components of the mammalian circadian system. Furthermore, chronodisruption as a consequence of light at night, genetic manipulation, and neurodegenerative diseases is briefly discussed.
Collapse
Affiliation(s)
- Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, 40225 Dusseldorf, Germany
| |
Collapse
|
29
|
Calvert GHM, Carson RG. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. Neurosci Biobehav Rev 2021; 132:260-288. [PMID: 34801578 DOI: 10.1016/j.neubiorev.2021.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
CALVERT, G.H.M., and CARSON, R.G. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. NEUROSCI BIOBEHAV REV 21(1) XXX-XXX, 2021. - Cross education (CE) is the process whereby a regimen of unilateral limb training engenders bilateral improvements in motor function. The contralateral gains thus derived may impart therapeutic benefits for patients with unilateral deficits arising from orthopaedic injury or stroke. Despite this prospective therapeutic utility, there is little consensus concerning its mechanistic basis. The precise means through which the neuroanatomical structures and cellular processes that mediate CE may be influenced by age-related neurodegeneration are also almost entirely unknown. Notwithstanding the increased incidence of unilateral impairment in later life, age-related variations in the expression of CE have been examined only infrequently. In this narrative review, we consider several mechanisms which may mediate the expression of CE with specific reference to the ageing CNS. We focus on the adaptive potential of cellular processes that are subserved by a specific set of neuroanatomical pathways including: the corticospinal tract, corticoreticulospinal projections, transcallosal fibres, and thalamocortical radiations. This analysis may inform the development of interventions that exploit the therapeutic utility of CE training in older persons.
Collapse
Affiliation(s)
- Glenn H M Calvert
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland; School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
30
|
Early life exposure to poly I:C impairs striatal DA-D2 receptor binding, myelination and associated behavioural abilities in rats. J Chem Neuroanat 2021; 118:102035. [PMID: 34597812 DOI: 10.1016/j.jchemneu.2021.102035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/01/2021] [Accepted: 09/25/2021] [Indexed: 11/22/2022]
Abstract
Early-life viral infections critically influence the brain development and have been variously reported to cause neuropsychiatric diseases such as Schizophrenia, Parkinson's diseases, demyelinating diseases, etc. To investigate the alterations in the dopaminergic system, myelination and associated behavioral impairments following neonatal viral infection, the viral immune activation model was created by an intraperitoneal injection of Poly I:C (5 mg/kg bw/ip) to neonatal rat pups on PND-7. The DA-D2 receptor binding was assessed in corpus striatum by using 3H-Spiperone at 3, 6 and 12 weeks of age. MOG immunolabelling was performed to check myelination stature and myelin integrity, while corpus callosum calibre was assessed by Luxol fast blue staining. Relative behavioral tasks i.e., motor activity, motor coordination and neuromuscular strength were assessed by open field, rotarod and grip strength meter respectively at 3, 6 and 12 weeks of age. Following Poly I:C exposure, a significant decrease in DA-D2 receptor binding, reduction in corpus callosum calibre and MOG immunolabelling indicating demyelination and a significant decrease in locomotor activity, neuromuscular strength and motor coordination signify motor deficits and hypokinetic influence of early life viral infection. Thus, the findings suggest that early life poly I:C exposure may cause demyelination and motor deficits by decreasing DA-D2 receptor binding affinity.
Collapse
|