1
|
Feng J, Ji K, Pan Y, Huang P, He T, Xing Y. Resveratrol Ameliorates Retinal Ischemia-Reperfusion Injury by Modulating the NLRP3 Inflammasome and Keap1/Nrf2/HO-1 Signaling Pathway. Mol Neurobiol 2024; 61:8454-8466. [PMID: 38517616 DOI: 10.1007/s12035-024-04105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
Glaucoma, as an ischemia-reperfusion (I/R) injury disease, leading irreversible blindness through the loss of retinal ganglion cells (RGCs), mediated by various pathways. Resveratrol (Res) is a polyphenolic compound that exerts protective effects against I/R injury in many tissues. This article aimed to expound the underlying mechanisms through which Res protects RGCs and reduces visual dysfunction in vivo. An experimental glaucoma model was created using 6-8-week wild-type male C57BL/6J mice. Res was injected intraperitoneally for 5 days. The mice were then grouped according to the number of days after surgery and whether Res treatment was administered. We applied the Brn3a-labeled immunofluorescence staining and flash electroretinography (ERG) to assess the survival of RGCs and visual function. The expression of components of the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome, the interleukin-1-beta (IL-1β), and vital indicators of kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme-oxygenase 1 (HO-1) pathway at the protein and RNA levels were detected respectively. The survival of RGCs was reduced after surgery compared to controls, whereas Res application rescued RGCs and improved visual dysfunction. In conclusion, our results discovered that Res administration showed neuroprotective effects through inhibition of the NLRP3 inflammasome pathway and activation of Keap1/Nrf2/HO-1 pathway. Thus, we further elucidated the potential of Res in glaucoma therapy.
Collapse
Affiliation(s)
- Jiazhen Feng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
- Eye Institute of Wuhan University, Hubei, China
| | - Kaibao Ji
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
- Eye Institute of Wuhan University, Hubei, China
| | - Yiji Pan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
- Eye Institute of Wuhan University, Hubei, China
| | - Pingping Huang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
| | - Tao He
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China.
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China.
- Eye Institute of Wuhan University, Hubei, China.
| |
Collapse
|
2
|
Akram S, Ranasinghe N, Lee TH, Chou CC. Enhancement of Thermal Tolerance and Growth Performances of Asian Seabass ( Lates calcarifer) Fed with Grape Extract Supplemented Feed. Animals (Basel) 2024; 14:2731. [PMID: 39335319 PMCID: PMC11428921 DOI: 10.3390/ani14182731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Cold snaps during the winter present a critical challenge for Asian seabass (Lates calcarifer) in Taiwan, as sudden temperature drops significantly affect their growth and survival. This study explores the effects of dietary grape extract (GE) from Vitis vinifera on the growth performance, oxidative stress regulation, and thermal tolerance of this commercially valuable fish. Over a 60-day feeding trial, four dietary groups were tested: a control diet without GE and three diets supplemented with GE at 2% (GE20), 3% (GE30), and 4% (GE40) with commercial feed. The results demonstrated that GE supplementation positively influenced growth, with the GE20 group achieving the best weight gain and feed conversion ratio among all groups. The upregulation of the growth-related gene igf-1 in the liver of the GE20 group further supported its superior growth performance. Additionally, GE-fed groups showed increased expression of antioxidant-related genes sod1 and sod2 in the liver, while gpx1 exhibited a significant increase only in the GE20 group, indicating enhanced antioxidant defenses. Cat gene expression remained unchanged, and higher GE doses reduced the expression of gpx1, cat, and igf-1. Furthermore, GE supplementation improved cold tolerance in all treated groups compared to the control. These findings suggest that dietary GE at 20 g/kg is particularly effective in enhancing growth performance and cold tolerance in Asian seabass, offering a promising strategy for boosting fish health and adaptability in aquaculture.
Collapse
Affiliation(s)
- Salman Akram
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| | - Naveen Ranasinghe
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (N.R.); (T.-H.L.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (N.R.); (T.-H.L.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Chi-Chung Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| |
Collapse
|
3
|
Ge X, Gu Y, Wang W, Guo W, Wang P, Du P. Corynoline alleviates hepatic ischemia-reperfusion injury by inhibiting NLRP3 inflammasome activation through enhancing Nrf2/HO-1 signaling. Inflamm Res 2024:10.1007/s00011-024-01949-7. [PMID: 39294398 DOI: 10.1007/s00011-024-01949-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024] Open
Abstract
OBJECTIVE Corynoline has displayed pharmacological effects in reducing oxidative stress and inflammatory responses in many disorders. However, its effects on hepatic ischemia-reperfusion (I/R) injury remain unclear. This study aimed to investigate the protective effects of corynoline against hepatic I/R injury and the underlying mechanisms. METHODS Rat models with hepatic I/R injury and BRL-3A cell models with hypoxia/reoxygenation (H/R) insult were constructed. Models were pretreated with corynoline and/or other inhibitors for functional and mechanistic examination. RESULTS Corynoline pretreatment effectively mitigated hepatic I/R injury verified by reduced serum transaminase levels, improved histological damage scores, and decreased apoptosis rates. Additionally, corynoline pretreatment significantly inhibited I/R-triggered oxidative stress and inflammatory responses, as indicated by enhanced mitochondrial function, reduced levels of ROS and MDA, reduced neutrophil infiltration and suppressed proinflammatory cytokine release. In vitro experiments further showed that corynoline pretreatment increased cellular viability, decreased LDH activity, reduced cellular apoptosis, and inhibited oxidative stress and inflammatory injury in H/R-induced BRL-3A cells. Mechanistically, corynoline significantly increased Nrf2 nuclear translocation and expression levels of its target gene, HO-1. It also blocked NLRP3 inflammasome activation both in vivo and in vitro. Furthermore, pretreatment with Nrf2 inhibitor ML-385 counteracted the protective effect of corynoline on hepatic I/R injury. Ultimately, in vitro studies revealed that the NLRP3 activator nigericin could also nullified the protective effects of corynoline in BRL-3A cells, but had minimal impact on Nrf2 nuclear translocation. CONCLUSIONS Corynoline can exert protective effects against hepatic I/R injury by inhibiting oxidative stress, inflammatory responses, and apoptosis. These effects may be associated with inhibiting ROS-induced NLRP3 inflammasome activation by enhancing Nrf2/HO-1 signaling. These data provide new understanding about the mechanism of corynoline action, suggesting it is a potential drug applied for the treatment and prevention of hepatic I/R injury.
Collapse
Affiliation(s)
- Xin Ge
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yue Gu
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, Henan Province, China
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Wendong Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wenzhi Guo
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, Henan Province, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Panliang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, Henan Province, China.
| | - Peng Du
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
4
|
Liu K, Liu J, Xu A, Ding J. The role of polydatin in inhibiting oxidative stress through SIRT1 activation: A comprehensive review of molecular targets. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118322. [PMID: 38729537 DOI: 10.1016/j.jep.2024.118322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Reynoutria japonica Houtt is a medicinal plant renowned for its diverse pharmacological properties, including heat-clearing, toxin-removing, blood circulation promotion, blood stasis removal, diuretic action, and pain relief. The plant is commonly utilized in Traditional Chinese Medicine (TCM), and its major bioactive constituents consist of polydatin (PD) and resveratrol (RES). AIM OF THE STUDY To summarize the relevant targets of PD in various oxidative stress-related diseases through the activation of Silence information regulator1 (SIRT1). Furthermore, elucidating the pharmacological effects and signaling mechanisms to establish the basis for PD's secure clinical implementation and expanded range of application. MATERIALS AND METHODS Literature published before November 2023 on the structural analysis and pharmacological activities of PD was collected using online databases such as Google Scholar, PubMed, and Web of Science. The keywords were "polydatin", "SIRT1" and "oxidative stress". The inclusion criteria were research articles published in English, including in vivo and in vitro experiments and clinical studies. Non-research articles such as reviews, meta-analyses, and letters were excluded. RESULTS PD has been found to have significantly protective and curative effects on diseases associated with oxidative stress by regulating SIRT1-related targets including peroxisome proliferator-activated receptor γ coactivator 1-alpha (PGC-1α), nuclear factor erythroid2-related factor 2 (Nrf2), high mobility group box 1 protein (HMGB1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), p38/p53, as well as endothelial nitric oxide synthase (eNOs), among others. Strong evidence suggests that PD is an effective natural product for treating diseases related to oxidative stress. CONCLUSION PD holds promise as an effective treatment for a wide range of diseases, with SIRT1-mediated oxidative stress as its potential pathway.
Collapse
Affiliation(s)
- Ke Liu
- Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jiaxi Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Anjian Xu
- Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Junying Ding
- Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Wu D, Xu J, Zhang Y, Wang Y, Bai Y, Zhan X, Gao Y, Zhou H, Hu H, Wang P, Rao Z. tBHQ mitigates fatty liver ischemia-reperfusion injury by activating Nrf2 to attenuate hepatocyte mitochondrial damage and macrophage STING activation. Int Immunopharmacol 2024; 138:112515. [PMID: 38917524 DOI: 10.1016/j.intimp.2024.112515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Liver ischemia-reperfusion (IR) injury is an inevitable pathophysiological process in various liver surgeries. Previous studies have found that IR injury is exacerbated in fatty liver due to significant hepatocellular damage and macrophage inflammatory activation, though the underlying mechanisms are not fully understood. In this study, we aim to explore the role and mechanism of Nrf2 (Nuclear factor erythroid 2-related factor 2) signaling in regulating hepatocellular damage and macrophage immune response in fatty liver IR injury. METHODS The study used high-fat diet-induced fatty liver mice to establish an IR model, alongside an in vitro co-culture system of primary hepatocytes and macrophages. This approach was used to examine mitochondrial dysfunction, oxidative stress, mitochondrial DNA (mtDNA) release, and activation of macrophage STING (Stimulator of interferon genes) signaling. We also conducted recovery verification using H-151 (a STING inhibitor) and tBHQ (an Nrf2 activator). RESULTS Compared to the control group, mice on a high-fat diet demonstrated more severe liver IR injury, as evidenced by increased histological damage, elevated liver enzyme levels, and heightened inflammatory markers. The HFD group showed significant oxidative stress and mitochondrial dysfunction and damage post-IR, as indicated by elevated levels of ROS and lipid peroxidation markers, and decreased antioxidant enzyme activity. Elevated mtDNA release from hepatocytes post-IR activated macrophage STING signaling, worsening inflammation and liver damage. However, STING signaling inhibition with H-151 in vivo or employing STING knockout macrophages significantly reduced these injuries. In-depth mechanism studies have found that the transfer of Nrf2 protein into the nucleus of liver cells after IR in fatty liver is reduced. Pre-treatment with tBHQ ameliorated liver oxidative stress, mitochondrial damage and suppressed the macrophage STING signaling activation. CONCLUSIONS Our study reveals a novel mechanism where the interaction between hepatocellular damage and macrophage inflammation intensifies liver IR injury in fatty liver. Enhancing Nrf2 activation to protect mitochondrial from oxidative stress damage and inhibiting macrophage STING signaling activation emerge as promising strategies for clinical intervention in fatty liver IR injury.
Collapse
Affiliation(s)
- Dongming Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 210029 Nanjing, China
| | - Jian Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 210029 Nanjing, China
| | - Ye Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 210029 Nanjing, China
| | - Yuechen Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 210029 Nanjing, China
| | - Yan Bai
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, China
| | - Xinyu Zhan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 210029 Nanjing, China
| | - Yiyun Gao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 210029 Nanjing, China
| | - Haoming Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 210029 Nanjing, China
| | - Haoran Hu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 210029 Nanjing, China.
| | - Ping Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 210029 Nanjing, China.
| | - Zhuqing Rao
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, China.
| |
Collapse
|
6
|
Xiong Y, Chen J, Liang W, Li K, Huang Y, Song J, Zhang B, Qiu X, Qiu D, Zhang Q, Qin Y. Blockade of the mitochondrial DNA release ameliorates hepatic ischemia-reperfusion injury through avoiding the activation of cGAS-Sting pathway. J Transl Med 2024; 22:796. [PMID: 39198913 PMCID: PMC11351313 DOI: 10.1186/s12967-024-05588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Liver surgery during the perioperative period often leads to a significant complication known as hepatic ischemia-reperfusion (I/R) injury. Hepatic I/R injury is linked to the innate immune response. The cGAS-STING pathway triggers the activation of innate immune through the detection of DNA within cells. Nevertheless, the precise mechanism and significance of the cGAS-STING pathway in hepatic I/R injury are yet to be investigated. METHODS Mouse model of hepatic I/R injury was used in the C57BL/6 WT mice and the STING knockout (STING-KO) mice. In addition, purified primary hepatocytes were used to construct oxygen-glucose deprivation reperfusion (OGD-Rep) treatment models. RESULTS Our research revealed a notable increase in mRNA and protein levels of cGAS and STING in liver during I/R injury. Interestingly, the lack of STING exhibited a safeguarding impact on hepatic I/R injury by suppressing the elevation of liver enzymes, liver cell death, and inflammation. Furthermore, pharmacological cGAS and STING inhibition recapitulated these phenomena. Macrophages play a crucial role in the activation of the cGAS-STING pathway during hepatic I/R injury. The cGAS-STING pathway experiences a significant decrease in activity and hepatic I/R injury is greatly diminished following the elimination of macrophages. Significantly, we demonstrate that the activation of the cGAS-STING pathway is primarily caused by the liberation of mitochondrial DNA (mtDNA) rather than nuclear DNA (nDNA). Moreover, the safeguarding of the liver against I/R injury is also attributed to the hindrance of mtDNA release through the utilization of inhibitors targeting mPTP and VDAC oligomerization. CONCLUSIONS The results of our study suggest that the release of mtDNA plays a significant role in causing damage to liver by activating the cGAS-STING pathway during I/R injury. Furthermore, inhibiting the release of mtDNA can provide effective protection against hepatic I/R injury.
Collapse
Affiliation(s)
- Yi Xiong
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China
| | - Jiawen Chen
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China
| | - Wei Liang
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China
| | - Kun Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China
| | - Yingqi Huang
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China
| | - Jingwen Song
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China
| | - Baoyu Zhang
- Neurosurgery Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China
| | - Xiusheng Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat- sen University, Guangzhou, 510630, Guangdong, PR China
| | - Dongbo Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat- sen University, Guangzhou, 510630, Guangdong, PR China.
| | - Qi Zhang
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China.
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat- sen University, Guangzhou, 510630, Guangdong, PR China.
| | - Yunfei Qin
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China.
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat- sen University, Guangzhou, 510630, Guangdong, PR China.
| |
Collapse
|
7
|
Emad D, Bayoumi AMA, Gebril SM, Ali DME, Waz S. Modulation of keap-1/Nrf2/HO-1 and NF-ĸb/caspase-3 signaling pathways by dihydromyricetin ameliorates sodium valproate-induced liver injury. Arch Biochem Biophys 2024; 758:110084. [PMID: 38971420 DOI: 10.1016/j.abb.2024.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Nuclear factor erythroid factor 2 (Nrf2) is the key regulatory of the antioxidant response elements. Also, Nrf2 interacts with nuclear factor kappa B (NF-ĸB) to inhibit subsequent inflammatory cascade. Activation of Nrf2 signaling ameliorates drug-induced liver injury. Sodium valproate (SVP) is an anti-epilepsy drug with a hepatotoxic adverse effect that restricts its clinical use. In this study, coadministration of Dihydromyricetin (DHM), a natural flavonoid, with SVP to rats upregulated gene expression of Nrf2 and its downstream gene, heme oxygenase 1 (HO-1), while suppressed the Nrf2 repressor, Keap-1. Additionally, DHM led to downregulation of proinflammatory factors in liver tissues, including NF-ĸB, interleukin 1 beta (IL-1β), and tumor necrosis factor alpha (TNF-α). This was accompanied by a decrease in the proapoptotic protein (cleaved caspase-3) expression level. Furthermore, biochemical and histopathological studies showed that DHM treatment improved liver function and lipid profile while decreased inflammatory cell infiltration, congestion, and hepatocellular damage. According to our knowledge, prior research has not examined the protective effect of DHM on the liver injury induced by SVP. Consequently, this study provides DHM as a promising herbal medication that, when used with SVP, can prevent its induced hepatotoxicity owing to its potential anti-oxidative, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Doaa Emad
- Department of Biochemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt.
| | - Asmaa M A Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, 61511, Egypt.
| | - Sahar M Gebril
- Department of Histology and Cell biology, Faculty of Medicine, Sohag University, Sohag, Egypt.
| | | | - Shaimaa Waz
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, 61511, Egypt.
| |
Collapse
|
8
|
Wu L, Hu Z, Song XF, Liao YJ, Xiahou JH, Li Y, Zhang ZH. Targeting Nrf2 signaling pathways in the role of bladder cancer: From signal network to targeted therapy. Biomed Pharmacother 2024; 176:116829. [PMID: 38820972 DOI: 10.1016/j.biopha.2024.116829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/09/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024] Open
Abstract
Bladder cancer (BC) is the most common malignancy of the urinary system and often recurs after tumor removal and/or is resistant to chemotherapy. In cancer cells, the activity of the signaling pathway changes significantly, affecting a wide range of cell activities from growth and proliferation to apoptosis, invasion and metastasis. Nrf2 is a transcription factor that plays an important role in cellular defense responses to a variety of cellular stresses. There is increasing evidence that Nrf2 acts as a tumor driver and that it is involved in the maintenance of malignant cell phenotypes. Abnormal expression of Nrf2 has been found to be common in a variety of tumors, including bladder cancer. Over-activation of Nrf2 can lead to DNA damage and the development of bladder cancer, and is also associated with various pathological phenomena of bladder cancer, such as metastasis, angiogenesis, and reduced toxicity and efficacy of therapeutic anticancer drugs to provide cell protection for cancer cells. However, the above process can be effectively inhibited or reversed by inhibiting Nrf2. Therefore, Nrf2 signaling may be a potential targeting pathway for bladder cancer. In this review, we will characterize this signaling pathway and summarize the effects of Nrf2 and crosstalk with other signaling pathways on bladder cancer progression. The focus will be on the impact of Nrf2 activation on bladder cancer progression and current therapeutic strategies aimed at blocking the effects of Nrf2. To better determine how to promote new chemotherapy agents, develop new therapeutic agents, and potential therapeutic targets.
Collapse
Affiliation(s)
- Liang Wu
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China.
| | - Zhao Hu
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China
| | - Xiao-Fen Song
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China
| | - Yu-Jian Liao
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China
| | - Jiang-Huan Xiahou
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China
| | - Yuan Li
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China
| | - Zhong-Hua Zhang
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China.
| |
Collapse
|
9
|
Liu N, Liang H, Hong Y, Lu X, Jin X, Li Y, Tang S, Li Y, Cao W. Gallic acid pretreatment mitigates parathyroid ischemia-reperfusion injury through signaling pathway modulation. Sci Rep 2024; 14:12971. [PMID: 38839854 PMCID: PMC11153493 DOI: 10.1038/s41598-024-63470-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Thyroid surgery often results in ischemia-reperfusion injury (IRI) to the parathyroid glands, yet the mechanisms underlying this and how to ameliorate IRI remain incompletely explored. Our study identifies a polyphenolic herbal extract-gallic acid (GA)-with antioxidative properties against IRI. Through flow cytometry and CCK8 assays, we investigate the protective effects of GA pretreatment on a parathyroid IRI model and decode its potential mechanisms via RNA-seq and bioinformatics analysis. Results reveal increased apoptosis, pronounced G1 phase arrest, and significantly reduced cell proliferation in the hypoxia/reoxygenation group compared to the hypoxia group, which GA pretreatment mitigates. RNA-seq and bioinformatics analysis indicate GA's modulation of various signaling pathways, including IL-17, AMPK, MAPK, transient receptor potential channels, cAMP, and Rap1. In summary, GA pretreatment demonstrates potential in protecting parathyroid cells from IRI by influencing various genes and signaling pathways. These findings offer a promising therapeutic strategy for hypoparathyroidism treatment.
Collapse
Affiliation(s)
- Nianqiu Liu
- Departments of Breast Surgery, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, People's Republic of China
| | - Hongmin Liang
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China
| | - Yuan Hong
- Departments of Laboratory, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, People's Republic of China
| | - Xiaokai Lu
- Departments of Ultrasound, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, People's Republic of China
| | - Xin Jin
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China
| | - Yuting Li
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China
| | - Shiying Tang
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China
| | - Yihang Li
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China
| | - Weihan Cao
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China.
| |
Collapse
|
10
|
Deng RM, Zhou J. Targeting NF-κB in Hepatic Ischemia-Reperfusion Alleviation: from Signaling Networks to Therapeutic Targeting. Mol Neurobiol 2024; 61:3409-3426. [PMID: 37991700 DOI: 10.1007/s12035-023-03787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a major complication of liver trauma, resection, and transplantation that can lead to liver dysfunction and failure. Scholars have proposed a variety of liver protection methods aimed at reducing ischemia-reperfusion damage, but there is still a lack of effective treatment methods, which urgently needs to find new effective treatment methods for patients. Many studies have reported that signaling pathway plays a key role in HIRI pathological process and liver function recovery mechanism, among which nuclear transfer factor-κB (NF-κB) signaling pathway is one of the signal transduction closely related to disease. NF-κB pathway is closely related to HIRI pathologic process, and inhibition of this pathway can delay oxidative stress, inflammatory response, cell death, and mitochondrial dysfunction. In addition, NF-κB can also interact with PI3K/Akt, MAPK, and Nrf2 signaling pathways to participate in HIRI regulation. Based on the role of NF-κB pathway in HIRI, it may be a potential target pathway for HIRI. This review emphasizes the role of inhibiting the NF-κB signaling pathway in oxidative stress, inflammatory response, cell death, and mitochondrial dysfunction in HIRI, as well as the effects of related drugs or inhibitors targeting NF-κB on HIRI. The objective of this review is to elucidate the role and mechanism of NF-κB pathway in HIRI, emphasize the important role of NF-κB pathway in the prevention and treatment of HIRI, and provide a theoretical basis for the target NF-κB pathway as a therapy for HIRI.
Collapse
Affiliation(s)
- Rui-Ming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Juan Zhou
- The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- Department of Thyroid and Breast Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
11
|
Tao X, Pan X, Zhao G, Xue M, Rui Y. Dihydromyricetin regulates KEAP1-Nrf2 pathways to enhance the survival of ischemic flap. Food Sci Nutr 2024; 12:3893-3909. [PMID: 38873488 PMCID: PMC11167164 DOI: 10.1002/fsn3.4049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 06/15/2024] Open
Abstract
In clinical flap practice, there are a lot of studies being done on how to promote the survival of distal random flap necrosis in the hypoxic and ischemic state. As a traditional Chinese medicine, dihydromyricetin (DHM) is crucial in preventing oxidative stress and apoptosis in a number of disorders. In this work, we examined the impact of DHM on the ability to survive of ischemia flaps and looked into its fundamental mechanism. Our results showed that DHM significantly increased the ischemic flaps' survival area, encouraged angiogenesis and blood flow, reduced oxidative stress and apoptosis, and stimulated KEAP1-Nrf2 (Kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor) signaling pathways. Adeno-associated virus (AAV) upregulation of KEAP1 expression also negated the favorable effects of DHM on flap survival. By activating KEAP1-Nrf2 signaling pathways, DHM therapy promotes angiogenesis while reducing oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Xianyao Tao
- Suzhou Medical College of Soochow UniversitySuzhouJiangsuChina
- Department of Hand SurgeryWuxi Ninth People's Hospital Affiliated to Soochow UniversityWuxiJiangsuChina
| | - Xiaoyun Pan
- Department of Hand SurgeryWuxi Ninth People's Hospital Affiliated to Soochow UniversityWuxiJiangsuChina
| | - Gang Zhao
- Department of Hand SurgeryWuxi Ninth People's Hospital Affiliated to Soochow UniversityWuxiJiangsuChina
| | - Mingyu Xue
- Department of Hand SurgeryWuxi Ninth People's Hospital Affiliated to Soochow UniversityWuxiJiangsuChina
| | - Yongjun Rui
- Department of Hand SurgeryWuxi Ninth People's Hospital Affiliated to Soochow UniversityWuxiJiangsuChina
| |
Collapse
|
12
|
Lin ZH, Xiang HQ, Yu YW, Xue YJ, Wu C, Lin C, Ji KT. Dihydroartemisinin alleviates doxorubicin-induced cardiotoxicity and ferroptosis by activating Nrf2 and regulating autophagy. FASEB J 2024; 38:e23677. [PMID: 38775792 DOI: 10.1096/fj.202400222rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024]
Abstract
Although the use of Doxorubicin (Dox) is extensive in the treatment of malignant tumor, the toxic effects of Dox on the heart can cause myocardial injury. Therefore, it is necessary to find an alternative drug to alleviate the Dox-induced cardiotoxicity. Dihydroartemisinin (DHA) is a semisynthetic derivative of artemisinin, which is an active ingredient of Artemisia annua. The study investigates the effects of DHA on doxorubicin-induced cardiotoxicity and ferroptosis, which are related to the activation of Nrf2 and the regulation of autophagy. Different concentrations of DHA were administered by gavage for 4 weeks in mice. H9c2 cells were pretreated with different concentrations of DHA for 24 h in vitro. The mechanism of DHA treatment was explored through echocardiography, biochemical analysis, real-time quantitative PCR, western blotting analysis, ROS/DHE staining, immunohistochemistry, and immunofluorescence. In vivo, DHA markedly relieved Dox-induced cardiac dysfunction, attenuated oxidative stress, alleviated cardiomyocyte ferroptosis, activated Nrf2, promoted autophagy, and improved the function of lysosomes. In vitro, DHA attenuated oxidative stress and cardiomyocyte ferroptosis, activated Nrf2, promoted clearance of autophagosomes, and reduced lysosomal destruction. The changes of ferroptosis and Nrf2 depend on selective degradation of keap1 and recovery of lysosome. We found for the first time that DHA could protect the heart from the toxic effects of Dox-induced cardiotoxicity. In addition, DHA significantly alleviates Dox-induced ferroptosis through the clearance of autophagosomes, including the selective degradation of keap1 and the recovery of lysosomes.
Collapse
Affiliation(s)
- Zhi-Hui Lin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hua-Qiang Xiang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yong-Wei Yu
- Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang-Jing Xue
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chang Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Cong Lin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Kang-Ting Ji
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Zhang W, Wu H, Luo S, Lu X, Tan X, Wen L, Ma X, Efferth T. Molecular insights into experimental models and therapeutics for cholestasis. Biomed Pharmacother 2024; 174:116594. [PMID: 38615607 DOI: 10.1016/j.biopha.2024.116594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Cholestatic liver disease (CLD) is a range of conditions caused by the accumulation of bile acids (BAs) or disruptions in bile flow, which can harm the liver and bile ducts. To investigate its pathogenesis and treatment, it is essential to establish and assess experimental models of cholestasis, which have significant clinical value. However, owing to the complex pathogenesis of cholestasis, a single modelling method can merely reflect one or a few pathological mechanisms, and each method has its adaptability and limitations. We summarize the existing experimental models of cholestasis, including animal models, gene-knockout models, cell models, and organoid models. We also describe the main types of cholestatic disease simulated clinically. This review provides an overview of targeted therapy used for treating cholestasis based on the current research status of cholestasis models. In addition, we discuss the respective advantages and disadvantages of different models of cholestasis to help establish experimental models that resemble clinical disease conditions. In sum, this review not only outlines the current research with cholestasis models but also projects prospects for clinical treatment, thereby bridging basic research and practical therapeutic applications.
Collapse
Affiliation(s)
- Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hefei Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiman Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
14
|
Xiao F, Huang G, Yuan G, Li S, Wang Y, Tan Z, Liu Z, Tomlinson S, He S, Ouyang G, Zeng Y. Identification and validation of potential diagnostic signature and immune cell infiltration for HIRI based on cuproptosis-related genes through bioinformatics analysis and machine learning. Front Immunol 2024; 15:1372441. [PMID: 38690269 PMCID: PMC11058647 DOI: 10.3389/fimmu.2024.1372441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Background and aims Cuproptosis has emerged as a significant contributor in the progression of various diseases. This study aimed to assess the potential impact of cuproptosis-related genes (CRGs) on the development of hepatic ischemia and reperfusion injury (HIRI). Methods The datasets related to HIRI were sourced from the Gene Expression Omnibus database. The comparative analysis of differential gene expression involving CRGs was performed between HIRI and normal liver samples. Correlation analysis, function enrichment analyses, and protein-protein interactions were employed to understand the interactions and roles of these genes. Machine learning techniques were used to identify hub genes. Additionally, differences in immune cell infiltration between HIRI patients and controls were analyzed. Quantitative real-time PCR and western blotting were used to verify the expression of the hub genes. Results Seventy-five HIRI and 80 control samples from three databases were included in the bioinformatics analysis. Three hub CRGs (NLRP3, ATP7B and NFE2L2) were identified using three machine learning models. Diagnostic accuracy was assessed using a receiver operating characteristic (ROC) curve for the hub genes, which yielded an area under the ROC curve (AUC) of 0.832. Remarkably, in the validation datasets GSE15480 and GSE228782, the three hub genes had AUC reached 0.904. Additional analyses, including nomograms, decision curves, and calibration curves, supported their predictive power for diagnosis. Enrichment analyses indicated the involvement of these genes in multiple pathways associated with HIRI progression. Comparative assessments using CIBERSORT and gene set enrichment analysis suggested elevated expression of these hub genes in activated dendritic cells, neutrophils, activated CD4 memory T cells, and activated mast cells in HIRI samples versus controls. A ceRNA network underscored a complex regulatory interplay among genes. The genes mRNA and protein levels were also verified in HIRI-affected mouse liver tissues. Conclusion Our findings have provided a comprehensive understanding of the association between cuproptosis and HIRI, establishing a promising diagnostic pattern and identifying latent therapeutic targets for HIRI treatment. Additionally, our study offers novel insights to delve deeper into the underlying mechanisms of HIRI.
Collapse
Affiliation(s)
- Fang Xiao
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Guozhen Huang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Shuangjiang Li
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Yong Wang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Zhi Tan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Zhipeng Liu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Guoqing Ouyang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Yonglian Zeng
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| |
Collapse
|
15
|
Chen X, Jiang Z, Wang Z, He F, Fu M, Xie Z, Hu JF. A novel fluorescence probe for simultaneous detection of mitochondrial viscosity in hepatic ischemia reperfusion injury models. RSC Adv 2024; 14:11151-11156. [PMID: 38590356 PMCID: PMC10999906 DOI: 10.1039/d4ra00959b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
Acute liver failure caused by hepatic ischemia reperfusion injury (HIRI) poses a severe threat to life, emphasizing the urgent need for precise and timely early diagnosis. Viscosity, a key parameter reflecting active analyte levels at the cellular level, remains underexplored in relation to HIRI. To address this gap, we have developed a groundbreaking near-infrared molecule rotator, PN, exhibiting exceptional characteristics. PN demonstrates remarkable sensitivity, with a 32-fold change in response to viscosity, ranging from PBS to glycerol solution. PN's distinctive features include maximum emission wavelength 790 nm, as well as an impressive Stokes shift 190 nm. Moreover, PN exhibits the ability to sensitively and selectively differentiate nystatin-induced viscosity changes within living cells, and can be used for the detection of viscosity changes in the HIRI mouse model. This capability enhances our understanding of cellular responses, opening avenues for potential applications within disease models. The versatility of PN extends to its potential role in guiding timely monitoring and imaging of viscosity, offering valuable insights into disease progression.
Collapse
Affiliation(s)
- Xue Chen
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
| | - Zhelu Jiang
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
| | - Ziyu Wang
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
| | - Fenglin He
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
| | - Manlin Fu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
| | - Zhenda Xie
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
| |
Collapse
|
16
|
Hu B, Ouyang Y, Zhao T, Wang Z, Yan Q, Qian Q, Wang W, Wang S. Antioxidant Hydrogels: Antioxidant Mechanisms, Design Strategies, and Applications in the Treatment of Oxidative Stress-Related Diseases. Adv Healthc Mater 2024; 13:e2303817. [PMID: 38166174 DOI: 10.1002/adhm.202303817] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/23/2023] [Indexed: 01/04/2024]
Abstract
Oxidative stress is a biochemical process that disrupts the redox balance due to an excess of oxidized substances within the cell. Oxidative stress is closely associated with a multitude of diseases and health issues, including cancer, diabetes, cardiovascular diseases, neurodegenerative disorders, inflammatory conditions, and aging. Therefore, the developing of antioxidant treatment strategies has emerged as a pivotal area of medical research. Hydrogels have garnered considerable attention due to their exceptional biocompatibility, adjustable physicochemical properties, and capabilities for drug delivery. Numerous antioxidant hydrogels have been developed and proven effective in alleviating oxidative stress. In the pursuit of more effective treatments for oxidative stress-related diseases, there is an urgent need for advanced strategies for the fabrication of multifunctional antioxidant hydrogels. Consequently, the authors' focus will be on hydrogels that possess exceptional reactive oxygen species and reactive nitrogen species scavenging capabilities, and their role in oxidative stress therapy will be evaluated. Herein, the antioxidant mechanisms and the design strategies of antioxidant hydrogels and their applications in oxidative stress-related diseases are discussed systematically in order to provide critical insights for further advancements in the field.
Collapse
Affiliation(s)
- Bin Hu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Yongliang Ouyang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Tong Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Zhengyue Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, 999077, China
| | - Qiling Yan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Qinyuan Qian
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Wenyi Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, 999077, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| |
Collapse
|
17
|
Chen R, Xia Y, Ma Z, Ke Y, Shi Q, Ataullakhanov FI, Panteleev M. H 2O 2-Responsive Polymeric Micelles of Biodegradable Aliphatic Poly(carbonate)s as Promising Therapeutic Agents for Inflammatory Diseases. Macromol Biosci 2024; 24:e2300409. [PMID: 37975742 DOI: 10.1002/mabi.202300409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Excessive amounts of reactive oxygen species (ROS) cause various biological damages and are involved in many diseases, such as cancer, inflammatory and thrombotic complications, and neurodegenerative diseases. Thus, ROS-responsive polymers with inherent ROS scavenging activity and biodegradability are extremely needed for the efficient treatment of ROS-related diseases. Here, this work fabricates the amphiphilic diblock copolymer PEG-b-PBC via ring-opening polymerization (ROP) of phenylboronic acid ester conjugated cyclic carbonate monomer. The copolymer easily forms micelles (BCM) and scavenges ROS rapidly. BCM not only releases the delivered drug but degrades to produce the small molecules p-hydroxybenzyl alcohol (HBA) with anti-inflammatory capability in the presence of H2O2. BCM can reduce the oxidative stress of human umbilical vein endothelial cells (HUVEC) and the levels of inflammatory factors secreted by macrophages, showing antioxidative and anti-inflammatory activity. Finally, BCM exerts a significant capability to reduce the complications of inflammation and thrombosis in vivo. The biodegradable aliphatic poly(carbonate)s have the potential to be used for drug delivery systems (DDS) for diseases induced by reactive oxygen species.
Collapse
Affiliation(s)
- Runhai Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Yu Xia
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Yue Ke
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, 215123, China
| | - Fazly I Ataullakhanov
- Dmitry Rogachev Natl Res Ctr Pediat Hematol Oncol, 1 Samory Mashela St, Moscow, 117198, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow, 119991, Russia
| | - Mikhail Panteleev
- Dmitry Rogachev Natl Res Ctr Pediat Hematol Oncol, 1 Samory Mashela St, Moscow, 117198, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow, 119991, Russia
| |
Collapse
|
18
|
Wu X, Guan Y, Wang J, Song L, Zhang Y, Wang Y, Li Y, Qin L, He Q, Zhang T, Long B, Ji L. Co-catalpol alleviates fluoxetine-induced main toxicity: Involvement of ATF3/FSP1 signaling-mediated inhibition of ferroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155340. [PMID: 38401490 DOI: 10.1016/j.phymed.2024.155340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Fluoxetine is often used as a well-known first-line antidepressant. However, it is accompanied with hepatogenic injury as its main organ toxicity, thereby limiting its application despite its superior efficacy. Fluoxetine is commonly traditionally used combined with some Chinese antidepressant prescriptions containing Rehmannia glutinosa (Dihuang) for depression therapy and hepatoprotection. Our previous experiments showed that co-Dihuang can alleviate fluoxetine-induced liver injury while efficiencies, and catalpol may be the key ingredient to characterize the toxicity-reducing and synergistic effects. However, whether co-catalpol can alleviate fluoxetine-induced liver injury and its toxicity-reducing mechanism remain unclear. PURPOSE On the basis of the first recognition of the dose and duration at which pre-fluoxetine caused hepatic injury, co-catalpol's alleviation of fluoxetine-induced hepatic injury and its pathway was comprehensively elucidated. METHOD AND RESULTS The hepatoprotection of co-catalpol was evaluated by serum biochemical indexes sensitive to hepatic injury and multiple staining techniques for hepatic pathologic analysis. Subsequently, the pathway by which catalpol alleviated fluoxetine-induced hepatic injury was predicted by network pharmacology to be predominantly the inhibition of ferroptosis. These were validated and confirmed in subsequent experiments with key technologies and diagnostic reagents related to ferroptosis. Further molecular docking showed that activating transcription factor 3 (ATF3) and ferroptosis suppressor protein 1 (FSP1) were the the most prospective molecules for catalpol and fluoxetine among many ferroptosis-related molecules. The critical role of ATF3/FSP1 signaling was further observed by surface plasmon resonance, diagnostic reagents, transmission electron microscopy, Western blot, real-time PCR, immunofluorescence, and immunohistochemistry. Results showed that fluoxetine directly bound to ATF3 and FSP1; agonisting ATF3 or blocking FSP1 abolished the alleviation of catalpol on fluoxetine-induced liver injury, and both exacerbated ferroptosis. Moreover, co-catalpol significantly enhanced the antidepressant efficacy of fluoxetine against depressive behaviours in mice. CONCLUSION The hepatic impairment properties of fluoxetine were largely dependent on ATF3/FSP1 target-mediated ferroptosis. Co-catalpol alleviated fluoxetine-induced hepatic injury while enhancing its antidepressant efficacy, and that ATF3/FSP1 signaling-mediated inhibition of ferroptosis was involved in its co-administration detoxification mechanism. This study was the first to reveal the hepatotoxicity characteristics, targets, and mechanisms of fluoxetine; provide a detoxification and efficiency regimen by co-catalpol; and elucidate the detoxification mechanism.
Collapse
Affiliation(s)
- Xiaohui Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yuechen Guan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Junming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Lingling Song
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yueyue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yanmei Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yamin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Lingyu Qin
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Qingwen He
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Tianzhu Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Bingyu Long
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Lijie Ji
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
19
|
Zhang L, Gong X, Tan J, Zhang R, Li M, Liu C, Wu C, Li X. Lactobacillus reuteri mitigates hepatic ischemia/reperfusion injury by modulating gut microbiota and metabolism through the Nrf2/HO-1 signaling. Biol Direct 2024; 19:23. [PMID: 38500127 PMCID: PMC10946149 DOI: 10.1186/s13062-024-00462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND This study seeks to investigate the impacts of Lactobacillus reuteri (L. reuteri) on hepatic ischemia-reperfusion (I/R) injury and uncover the mechanisms involved. METHODS Mice in the I/R groups were orally administered low and high doses of L.reuteri (L.reuteri-low and L. reuteri-hi; 1 × 1010 CFU/d and 1 × 1011 CFU/d), for 4 weeks prior to surgery. Following this, mice in the model group were treated with an Nrf2 inhibitor (ML-385), palmitoylcarnitine, or a combination of both. RESULTS After treatment with L. reuteri, mice exhibited reduced levels of serum aminotransferase (ALT), aspartate aminotransferase (AST), and myeloperoxidase (MPO) activity, as well as a lower Suzuki score and apoptosis rate. L. reuteri effectively reversed the I/R-induced decrease in Bcl2 expression, and the significant increases in the levels of Bax, cleaved-Caspase3, p-p65/p65, p-IκB/IκB, p-p38/p38, p-JNK/JNK, and p-ERK/ERK. Furthermore, the administration of L. reuteri markedly reduced the inflammatory response and oxidative stress triggered by I/R. This treatment also facilitated the activation of the Nrf2/HO-1 pathway. L. reuteri effectively counteracted the decrease in levels of beneficial gut microbiota species (such as Blautia, Lachnospiraceae NK4A136, and Muribaculum) and metabolites (including palmitoylcarnitine) induced by I/R. Likewise, the introduction of exogenous palmitoylcarnitine demonstrated a beneficial impact in mitigating hepatic injury induced by I/R. However, when ML-385 was administered prior to palmitoylcarnitine treatment, the previously observed effects were reversed. CONCLUSION L. reuteri exerts protective effects against I/R-induced hepatic injury, and its mechanism may be related to the promotion of probiotic enrichment, differential metabolite homeostasis, and the Nrf2/HO-1 pathway, laying the foundation for future clinical applications.
Collapse
Affiliation(s)
- Leiyi Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Furong District, 410011, Changsha, China
| | - Xiaoxiang Gong
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Juan Tan
- Research Associate Department of Pathology, The Xiangya Third Hospital, Central South University, 410013, Changsha, China
| | - Rongsen Zhang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Mingxia Li
- Department of Anesthesiology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, 430061, Wuhan, China
| | - Cong Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Furong District, 410011, Changsha, China
| | - Chenhao Wu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Furong District, 410011, Changsha, China
| | - Xiaojing Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Furong District, 410011, Changsha, China.
| |
Collapse
|
20
|
Wu M, Liu X, Yu Q, Shi J, Guo W, Zhang S. Adelmidrol ameliorates liver ischemia-reperfusion injury through activating Nrf2 signaling pathway. Eur J Pharmacol 2024; 964:176224. [PMID: 38110141 DOI: 10.1016/j.ejphar.2023.176224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023]
Abstract
Liver ischemia/reperfusion (I/R) injury commonly occurs after various liver surgeries. Adelmidrol, an N- palmitoylethanolamide analog, has anti-inflammatory, anti-oxidant, and anti-injury properties. To investigate whether adelmidrol could reduce liver I/R injury, we established a mouse of liver I/R injury and an AML12 cell hypoxia-reoxygenation model to perform experiments using multiple indicators. Serum ALT and AST levels, and H&E staining were used to measure liver damage; MDA content, superoxide dismutase and glutathione activities, and dihydroethidium staining were used to measure oxidative stress; mRNA expression levels of tumor necrosis factor-α, interleukin (IL)-1β, IL-6, MCP-1, and Ly6G staining were used to measure inflammatory response; and protein expression of Bax, Bcl-2, C-caspase3, and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling staining were used to measure apoptosis. The experimental results showed that adelmidrol reduced liver I/R injury. In addition, adelmidrol pretreatment elevated AML12 cell activity and reduced I/R-and H/R-induced apoptosis, inflammatory injury, and oxidative stress. ML385, an inhibitor of nuclear factor erythroid2-related factor 2 (Nrf2), reverses liver I/R injury attenuated by adelmidrol. These results suggest that adelmidrol ameliorates liver I/R injury by activating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Min Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Province, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Organ Transplantation Technology and Application Engineering, Zhengzhou, Henan, China
| | - Xudong Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Province, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Organ Transplantation Technology and Application Engineering, Zhengzhou, Henan, China
| | - Qiwen Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Province, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Organ Transplantation Technology and Application Engineering, Zhengzhou, Henan, China
| | - Jihua Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Province, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Organ Transplantation Technology and Application Engineering, Zhengzhou, Henan, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Province, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Organ Transplantation Technology and Application Engineering, Zhengzhou, Henan, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Province, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Organ Transplantation Technology and Application Engineering, Zhengzhou, Henan, China.
| |
Collapse
|
21
|
Yap SH, Lee CS, Zulkifli ND, Suresh D, Hamase K, Das KT, Rajasuriar R, Leong KH. D-Amino acids differentially trigger an inflammatory environment in vitro. Amino Acids 2024; 56:6. [PMID: 38310167 PMCID: PMC10838247 DOI: 10.1007/s00726-023-03360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/20/2023] [Indexed: 02/05/2024]
Abstract
Studies in vivo have demonstrated that the accumulation of D-amino acids (D-AAs) is associated with age-related diseases and increased immune activation. However, the underlying mechanism(s) of these observations are not well defined. The metabolism of D-AAs by D-amino oxidase (DAO) produces hydrogen peroxide (H2O2), a reactive oxygen species involved in several physiological processes including immune response, cell differentiation, and proliferation. Excessive levels of H2O2 contribute to oxidative stress and eventual cell death, a characteristic of age-related pathology. Here, we explored the molecular mechanisms of D-serine (D-Ser) and D-alanine (D-Ala) in human liver cancer cells, HepG2, with a focus on the production of H2O2 the downstream secretion of pro-inflammatory cytokine and chemokine, and subsequent cell death. In HepG2 cells, we demonstrated that D-Ser decreased H2O2 production and induced concentration-dependent depolarization of mitochondrial membrane potential (MMP). This was associated with the upregulation of activated NF-кB, pro-inflammatory cytokine, TNF-α, and chemokine, IL-8 secretion, and subsequent apoptosis. Conversely, D-Ala-treated cells induced H2O2 production, and were also accompanied by the upregulation of activated NF-кB, TNF-α, and IL-8, but did not cause significant apoptosis. The present study confirms the role of both D-Ser and D-Ala in inducing inflammatory responses, but each via unique activation pathways. This response was associated with apoptotic cell death only with D-Ser. Further research is required to gain a better understanding of the mechanisms underlying D-AA-induced inflammation and its downstream consequences, especially in the context of aging given the wide detection of these entities in systemic circulation.
Collapse
Affiliation(s)
- Siew Hwei Yap
- Centre of Excellence for Research in AIDS (CERiA), Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Cheng Siang Lee
- Centre of Excellence for Research in AIDS (CERiA), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nur Diyana Zulkifli
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Darshinie Suresh
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kumitaa Theva Das
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Reena Rajasuriar
- Centre of Excellence for Research in AIDS (CERiA), Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Peter Doherty Institute for Infection and Immunity, Melbourne University, Melbourne, VIC, Australia
| | - Kok Hoong Leong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
22
|
Wang Y, Xu R, Yan Y, He B, Miao C, Fang Y, Wan H, Zhou G. Exosomes-Mediated Signaling Pathway: A New Direction for Treatment of Organ Ischemia-Reperfusion Injury. Biomedicines 2024; 12:353. [PMID: 38397955 PMCID: PMC10886966 DOI: 10.3390/biomedicines12020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Ischemia reperfusion (I/R) is a common pathological process which occurs mostly in organs like the heart, brain, kidney, and lung. The injury caused by I/R gradually becomes one of the main causes of fatal diseases, which is an urgent clinical problem to be solved. Although great progress has been made in therapeutic methods, including surgical, drug, gene therapy, and transplant therapy for I/R injury, the development of effective methods to cure the injury remains a worldwide challenge. In recent years, exosomes have attracted much attention for their important roles in immune response, antigen presentation, cell migration, cell differentiation, and tumor invasion. Meanwhile, exosomes have been shown to have great potential in the treatment of I/R injury in organs. The study of the exosome-mediated signaling pathway can not only help to reveal the mechanism behind exosomes promoting reperfusion injury recovery, but also provide a theoretical basis for the clinical application of exosomes. Here, we review the research progress in utilizing various exosomes from different cell types to promote the healing of I/R injury, focusing on the classical signaling pathways such as PI3K/Akt, NF-κB, Nrf2, PTEN, Wnt, MAPK, toll-like receptor, and AMPK. The results suggest that exosomes regulate these signaling pathways to reduce oxidative stress, regulate immune responses, decrease the expression of inflammatory cytokines, and promote tissue repair, making exosomes a competitive emerging vector for treating I/R damage in organs.
Collapse
Affiliation(s)
- Yanying Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China; (Y.W.); (B.H.); (C.M.)
| | - Ruojiao Xu
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China; (R.X.); (Y.Y.); (Y.F.)
| | - Yujia Yan
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China; (R.X.); (Y.Y.); (Y.F.)
| | - Binyu He
- The Second Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China; (Y.W.); (B.H.); (C.M.)
| | - Chaoyi Miao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China; (Y.W.); (B.H.); (C.M.)
| | - Yifeng Fang
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China; (R.X.); (Y.Y.); (Y.F.)
| | - Haitong Wan
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China; (R.X.); (Y.Y.); (Y.F.)
| | - Guoying Zhou
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China; (R.X.); (Y.Y.); (Y.F.)
| |
Collapse
|
23
|
Ismaeel A, McDermott MM, Joshi JK, Sturgis JC, Zhang D, Ho KJ, Sufit R, Ferrucci L, Peterson CA, Kosmac K. Cocoa flavanols, Nrf2 activation, and oxidative stress in peripheral artery disease: mechanistic findings in muscle based on outcomes from a randomized trial. Am J Physiol Cell Physiol 2024; 326:C589-C605. [PMID: 38189132 PMCID: PMC11193455 DOI: 10.1152/ajpcell.00573.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/09/2024]
Abstract
The pathophysiology of muscle damage in peripheral artery disease (PAD) includes increased oxidant production and impaired antioxidant defenses. Epicatechin (EPI), a naturally occurring flavanol, has antioxidant properties that may mediate the beneficial effects of natural products such as cocoa. In a phase II randomized trial, a cocoa-flavanol-rich beverage significantly improved walking performance compared with a placebo in people with PAD. In the present work, the molecular mechanisms underlying the therapeutic effect of cocoa flavanols were investigated by analyzing baseline and follow-up muscle biopsies from participants. Increases in nuclear factor erythroid 2-related factor 2 (Nrf2) target antioxidants heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase [quinone] 1 (NQO1) in the cocoa group were significantly associated with reduced accumulation of central nuclei, a myopathy indicator, in type II muscle fibers (P = 0.017 and P = 0.023, respectively). Protein levels of the mitochondrial respiratory complex III subunit, cytochrome b-c1 complex subunit 2 (UQCRC2), were significantly higher in the cocoa group than in the placebo group (P = 0.032), and increases in UQCRC2 were significantly associated with increased levels of Nrf2 target antioxidants HO-1 and NQO1 (P = 0.001 and P = 0.035, respectively). Exposure of non-PAD human myotubes to ex vivo serum from patients with PAD reduced Nrf2 phosphorylation, an indicator of activation, increased hydrogen peroxide production and oxidative stress, and reduced mitochondrial respiration. Treatment of myotubes with EPI in the presence of serum from patients with PAD increased Nrf2 phosphorylation and protected against PAD serum-induced oxidative stress and mitochondrial dysfunction. Overall, these findings suggest that cocoa flavanols may enhance antioxidant capacity in PAD via Nrf2 activation.NEW & NOTEWORTHY The current study supports the hypothesis that in people with PAD, cocoa flavanols activate Nrf2, thereby increasing antioxidant protein levels, protecting against skeletal muscle damage, and increasing mitochondrial protein abundance. These results suggest that Nrf2 activation may be an important therapeutic target for improving walking performance in people with PAD.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Deparment of Physiology, University of Kentucky, Lexington, Kentucky, United States
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
| | - Mary M McDermott
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Jai K Joshi
- Department of Physical Therapy, University of Kentucky, Lexington, Kentucky, United States
| | - Jada C Sturgis
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
- Department of Physical Therapy, University of Kentucky, Lexington, Kentucky, United States
| | - Dongxue Zhang
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Karen J Ho
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Robert Sufit
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Luigi Ferrucci
- National Institute on Aging, Intramural Research Program, Baltimore, Maryland, United States
| | - Charlotte A Peterson
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
- Department of Physical Therapy, University of Kentucky, Lexington, Kentucky, United States
| | - Kate Kosmac
- Department of Physical Therapy, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
24
|
Feng W, Kao TC, Jiang J, Zeng X, Chen S, Zeng J, Chen Y, Ma X. The dynamic equilibrium between the protective and toxic effects of matrine in the development of liver injury: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1315584. [PMID: 38348397 PMCID: PMC10859759 DOI: 10.3389/fphar.2024.1315584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Background: Matrine, an alkaloid derived from the dried roots of Sophora flavescens Aiton, has been utilized for the treatment of liver diseases, but its potential hepatotoxicity raises concerns. However, the precise condition and mechanism of action of matrine on the liver remain inconclusive. Therefore, the objective of this systematic review and meta-analysis is to comprehensively evaluate both the hepatoprotective and hepatotoxic effects of matrine and provide therapeutic guidance based on the findings. Methods: The meta-analysis systematically searched relevant preclinical literature up to May 2023 from eight databases, including PubMed, Web of Science, Cochrane Library, Embase, China National Knowledge Infrastructure, WanFang Med Online, China Science and Technology Journal Database, and China Biomedical Literature Service System. The CAMARADES system assessed the quality and bias of the evidence. Statistical analysis was conducted using STATA, which included the use of 3D maps and radar charts to display the effects of matrine dosage and frequency on hepatoprotection and hepatotoxicity. Results: After a thorough screening, 24 studies involving 657 rodents were selected for inclusion. The results demonstrate that matrine has bidirectional effects on ALT and AST levels, and it also regulates SOD, MDA, serum TG, serum TC, IL-6, TNF-α, and CAT levels. Based on our comprehensive three-dimensional analysis, the optimal bidirectional effective dosage of matrine ranges from 10 to 69.1 mg/kg. However, at a dose of 20-30 mg/kg/d for 0.02-0.86 weeks, it demonstrated high liver protection and low toxicity. The molecular docking analysis revealed the interaction between MT and SERCA as well as SREBP-SCAP complexes. Matrine could alter Ca2+ homeostasis in liver injury via multiple pathways, including the SREBP1c/SCAP, Notch/RBP-J/HES1, IκK/NF-κB, and Cul3/Rbx1/Keap1/Nrf2. Conclusion: Matrine has bidirectional effects on the liver at doses ranging from 10 to 69.1 mg/kg by influencing Ca2+ homeostasis in the cytoplasm, endoplasmic reticulum, Golgi apparatus, and mitochondria. Systematic review registration: https://inplasy.com/, identifier INPLASY202340114.
Collapse
Affiliation(s)
- Weiyi Feng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Te-chan Kao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajie Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
25
|
Li B, Bo S, Sheng Z, Zhu H, Jiang Y, Yang B. Hepatoprotective Activity and Mechanisms of Prenylated Stilbenoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1618-1629. [PMID: 38189644 DOI: 10.1021/acs.jafc.3c09515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Dietary prenylated stilbenoids, found in various food sources, offer multiple health benefits, including liver protection. However, the underlying mechanisms of hepatoprotection remain unclear. In this study, we synthesized 13 natural prenylated stilbenoids and examined their hepatoprotective activities, with silent mating type information regulation 2 homologue-1 (SIRT1) as the primary target for screening. Among all of the prenylated stilbenoids tested, 4-C-geranyl oxyresveratrol demonstrated superior performance. It activated SIRT1 activity more effectively than resveratrol, a well-known SIRT1 activator. To further investigate the mechanism of liver protection, two in vitro models were used: the palmitic acid-induced lipid accumulation model and the H2O2-induced apoptosis model. Our findings suggested that 4-C-geranyl oxyresveratrol mitigated lipid accumulation through the SIRT1-PGC1α pathway, reduced apoptosis via the SIRT1-p53-p21 pathway, and exerted antioxidant effects through the SIRT1-Nrf2 pathway. These findings provide new insights into the chemical basis of the health benefits of prenylated stilbenoids and their potential use as functional food additives.
Collapse
Affiliation(s)
- Bailin Li
- Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengtao Bo
- Zhaoqing Public Security Judicial Appraisal Center, Zhaoqing 526000, China
| | - Zhili Sheng
- Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Zhu
- Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueming Jiang
- Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Yang
- Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Mai Y, Meng L, Deng G, Qin Y. The Role of Type 2 Diabetes Mellitus-Related Risk Factors and Drugs in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:159-171. [PMID: 38268569 PMCID: PMC10806369 DOI: 10.2147/jhc.s441672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
With changes in modern lifestyles, type 2 diabetes mellitus (T2DM) has become a global epidemic metabolic disease, and hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. T2DM is a complex metabolic disorder and has been considered an independent risk factor for HCC. Growing evidence supports that T2DM-related risk factors facilitate hepatocarcinogenesis via abundant mechanisms. With the wide implementation of microbiomics, transcriptomics, and immunotherapy, the understanding of the complex mechanisms of intestinal flora and immune cell subsets have advanced tremendously in T2DM-related HCC, uncovering new findings in T2DM-related HCC patients. In addition, reports have indicated the different effects of anti-DM drugs on the progression of HCC. In this review, we summarize the effects of major T2DM-related risk factors (including hyperglycemia, hyperinsulinemia, insulin, chronic inflammation, obesity, nonalcoholic fatty liver disease, gut microbiota and immunomodulation), and anti-DM drugs on the carcinogensis and progression of HCC, as well as their potential molecular mechanisms. In addition, other factors (miRNAs, genes, and lifestyle) related to T2DM-related HCC are discussed. We propose a refined concept by which T2DM-related risk factors and anti-DM drugs contribute to HCC and discuss research directions prompted by such evidence worth pursuing in the coming years. Finally, we put forward novel therapeutic approaches to improve the prognosis of T2DM-related HCC, including exploiting novel diagnostic biomarkers, combination therapy with immunocheckpoint inhibitors, and enhancement of the standardized management of T2DM patients.
Collapse
Affiliation(s)
- Yuhua Mai
- Department of Endocrinology, The First Affiliated Hospital of GuangXi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, People’s Republic of China
| | - Liheng Meng
- Department of Endocrinology, The First Affiliated Hospital of GuangXi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Ganlu Deng
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, People’s Republic of China
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Yingfen Qin
- Department of Endocrinology, The First Affiliated Hospital of GuangXi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
27
|
Vajdi M, Hassanizadeh S, Hassanizadeh R, Bagherniya M. Curcumin supplementation effect on liver enzymes in patients with nonalcoholic fatty liver disease: a GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Nutr Rev 2024:nuad166. [PMID: 38213188 DOI: 10.1093/nutrit/nuad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
CONTEXT Clinical evidence from investigations of the effects of curcumin on liver enzymes in patients with nonalcoholic fatty liver disease (NAFLD) have led to inconsistent results. OBJECTIVE The aim of this systematic review and meta-analysis was to investigate the overall effects of curcumin and curcumin plus piperine supplementation on liver enzymes such as alanine aminotransferase (ALT), alkaline phosphatase (ALP), and aspartate aminotransferase (AST) in patients with NAFLD. DATA SOURCES The Scopus, Web of Science, PubMed, and Cochrane Library databases were searched from inception through July 2023, using search terms representing NAFLD and liver enzymes. Articles were screened independently by 2 researchers based on PICOS inclusion criteria. DATA EXTRACTION The following data were extracted: first author's name, study location, year of publication, mean age, study duration, study design, participants' sex, number of participants in each group, dose of curcumin supplementation, and ALT, ALP, and AST concentrations. Risk of bias was assessed using the Cochrane Collaboration's modified risk-of-bias tool. DATA ANALYSIS Fixed- or random-effects meta-analysis was performed to estimate the effects of curcumin on liver enzymes, considering heterogeneity across studies. The I2 and Cochran's Q tests were used to assess heterogeneity between studies. RESULTS Overall, 15 randomized controlled trials comprising 905 participants were eligible for this meta-analysis. Curcumin supplementation significantly reduced ALT (weighted mean difference [WMD], -4.10, 95%CI, -7.16 to -1.04) and AST (WMD, -3.27; 95%CI, -5.16 to -1.39), but not ALP (WMD, -0.49; 95%CI, -1.79 to 0.82). Curcumin plus piperine supplementation had no significant effect on ALT (WMD, -3.79; 95%CI, -13.30 to 5.72), and AST (WMD, -1.1; 95%CI, -3.32 to 1.09). CONCLUSIONS Curcumin supplementation improved AST and ALT levels compared with the control group. However, better-designed randomized controlled trials with larger sample sizes and of higher quality are needed to assess the effects of curcumin on ALP. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023448231.
Collapse
Affiliation(s)
- Mahdi Vajdi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Hassanizadeh
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Hassanizadeh
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Mohammad Bagherniya
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
28
|
Piao MJ, Fernando PMDJ, Kang KA, Fernando PDSM, Herath HMUL, Kim YR, Hyun JW. Rosmarinic Acid Inhibits Ultraviolet B-Mediated Oxidative Damage via the AKT/ERK-NRF2-GSH Pathway In Vitro and In Vivo. Biomol Ther (Seoul) 2024; 32:84-93. [PMID: 38148554 PMCID: PMC10762280 DOI: 10.4062/biomolther.2023.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
Rosmarinic acid (RA) is a phenolic ester that protects human keratinocytes against oxidative damage induced by ultraviolet B (UVB) exposure, however, the mechanisms underlying its effects remain unclear. This study aimed to elucidate the cell signaling mechanisms that regulate the antioxidant activity of RA and confirm its cyto-protective role. To explore the signaling mechanisms, we used the human keratinocyte cell line HaCaT and SKH1 hairless mouse skin. RA enhanced glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS) expression in HaCaT cells in a dose- and time-dependent manner. Moreover, RA induced nuclear factor erythroid-2-related factor 2 (NRF2) nuclear translocation and activated the signaling kinases protein kinase B (AKT) and extracellular signal-regulated kinase (ERK). Treatment with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, the ERK inhibitor U0126, and small interfering RNA (siRNA) gene silencing suppressed RA-enhanced GCLC, GSS, and NRF2 expression, respectively. Cell viability tests showed that RA significantly prevented UVB-induced cell viability decrease, whereas the glutathione (GSH) inhibitors buthionine sulfoximine, LY294002, and U0126 significantly reduced this effect. Moreover, RA protected against DNA damage and protein carbonylation, lipid peroxidation, and apoptosis caused by UVB-induced oxidative stress in a concentration-dependent manner in SKH1 hairless mouse skin tissues. These results suggest that RA protects against UVB-induced oxidative damage by activating AKT and ERK signaling to regulate NRF2 signaling and enhance GSH biosynthesis. Thus, RA treatment may be a promising approach to protect the skin from UVB-induced oxidative damage.
Collapse
Affiliation(s)
- Mei Jing Piao
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | | | - Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | | | | | - Young Ree Kim
- Department of Laboratory Medicine, Jeju National University Hospital, and College of Medicine, Jeju National University, Jeju 63241, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
29
|
Li Y, Liang K, Yuan L, Gao J, Wei L, Zhao L. The role of thioredoxin and glutathione systems in arsenic-induced liver injury in rats under glutathione depletion. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:547-563. [PMID: 36528894 DOI: 10.1080/09603123.2022.2159016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Antioxidant systems like thioredoxin (Trx) and glutaredoxin (Grx) maintain oxidative stress balance. These systems have cross-talk supported by some in vitro studies. We investigated the underlying mechanisms of arsenic-induced liver injury in glutathione-deficient rats and whether there was any cross-talk between the Trx and Grx systems. The rats in arsenic-treated groups were administered with sodium arsenite (10, 20 mg/kg b w/d) for four weeks. In buthionine sulfoximine (BSO, an inhibitor of GSH) and 20 mg/kg arsenic combined groups, rats were injected with 2 mmol/kg BSO intraperitoneally twice per week. BSO exacerbated arsenic-induced liver injury by increasing arsenic accumulation in urine, serum, and liver while decreasing glutathione activity and resulting in upregulated mRNA expression of the Trx system and downregulation of Grx mRNA expression. The impact of Trx lasted longer than that of the Grx. The Trx system remained highly expressed, while GSH, Grx1, and Grx2 levels were decreased. The inhibitory effect of only BSO treatment on Grx1 and Grx2 was not pronounced. However, the combined impact of arsenic and BSO upregulated Trx expression, primarily related to further reduction of GSH. As a result, the suppressed Grxs were protected by the upregulated Trxs, which serve as a backup antioxidant defense system in the liver.
Collapse
Affiliation(s)
- Yuanyuan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health and Family Planning Commission (23618504), Harbin, China
| | - Kun Liang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health and Family Planning Commission (23618504), Harbin, China
- Department of Science and Education, Bayan Nur Hospital, Bayan Nur, China
| | - Lin Yuan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health and Family Planning Commission (23618504), Harbin, China
| | - Jing Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health and Family Planning Commission (23618504), Harbin, China
- Department of Public Health, Dalian Health Development Center, Dalian, China
| | - Linquan Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health and Family Planning Commission (23618504), Harbin, China
| | - Lijun Zhao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health and Family Planning Commission (23618504), Harbin, China
| |
Collapse
|
30
|
São José VPBD, Grancieri M, Toledo RCL, Mejia EGD, da Silva BP, Martino HSD. A bioactive compound digested chia protein is capable of modulating NFκB mediated hepatic inflammation in mice fed a high-fat diet. Food Res Int 2024; 175:113740. [PMID: 38128992 DOI: 10.1016/j.foodres.2023.113740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The consumption of diets high in saturated fat can induce damages in liver morphology and function, which leads to increased inflammation, oxidative stress, and hepatic steatosis. Chia seed (Salvia hispanica L.) is rich in protein, which provides bioactive peptides with potential benefits, including antioxidant and anti-inflammatory functions. Then, this study aimed to analyze the effect of digested total protein (DTP) of chia on inflammation, oxidative stress, and morphological changes in liver of C57BL/6 mice fed a diet rich in saturated fat. Male C57BL/6 mice (n = 8/group), 8 weeks old, were fed standard diet (AIN), high-fat diet (HF), standard diet added digested protein (AIN + DTP) or high-fat diet added digested protein (HF + DTP) for 8 weeks. In animals fed a high-fat diet, chia DTP was able to reduce weight gain, food efficiency ratio and hepatosomatic index. In addition, it presented antioxidant capacity, which reduced catalase activity and lipid peroxidation. DTP was also able to reduce hepatic inflammation by reducing p65-NFκB expression and IL-1β expression and quantification. The APSPPVLGPP peptide present in chia DTP presented binding capacity with PPAR-α, which contributed to the reduction of hepatic fat accumulation evidenced by histological analysis. Thus, chia DTP improved hepatic inflammatory and histological parameters, being an effective food in reducing the liver damage caused by a high-fat diet.
Collapse
Affiliation(s)
| | - Mariana Grancieri
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espírito Santo, Alegre 29500-000, ES, Brazil
| | - Renata Celi Lopes Toledo
- Department of Nutrition and Health. Universidade Federal de Viçosa. Av. Purdue, s/n, Campus Universitário, Viçosa, MG Zip Code: 36.570-900, Brazil
| | - Elvira Gonzalez de Mejia
- Department of Food Science & Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bárbara Pereira da Silva
- Department of Nutrition and Health. Universidade Federal de Viçosa. Av. Purdue, s/n, Campus Universitário, Viçosa, MG Zip Code: 36.570-900, Brazil
| | - Hércia Stampini Duarte Martino
- Department of Nutrition and Health. Universidade Federal de Viçosa. Av. Purdue, s/n, Campus Universitário, Viçosa, MG Zip Code: 36.570-900, Brazil.
| |
Collapse
|
31
|
Zhang Y, Wei H, Wang M, Yu Y, Gu M, Zhong H, Dong S. Dexmedetomidine alleviates ferroptosis following hepatic ischemia-reperfusion injury by upregulating Nrf2/GPx4-dependent antioxidant responses. Biomed Pharmacother 2023; 169:115915. [PMID: 38000361 DOI: 10.1016/j.biopha.2023.115915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) adversely affects liver transplant and resection outcomes. Recently, ferroptosis has been associated with HIRI. Dexmedetomidine (Dex), a potent sedative with anti-inflammatory, antioxidant, and anti-apoptotic properties, protects organs from hypoxic or ischemia-reperfusion (I/R) injuries. However, the mechanisms underlying this protective effect against I/R-induced liver injury remain unclear. This study evaluated the effect of Dex on HIRI in mouse models and the oxygen-glucose deprivation/reperfusion (OGD/R) AML12 cell model. We examined ferroptosis-related markers, including Fe2+ levels, reactive oxygen species (ROS) content, mitochondrial morphology, GPX4 protein expression, 4-hydroxynonenal (4-HNE), and Nrf2. The Nrf2 inhibitor ML385 was used in combination with Dex to treat HIRI mice and OGD/R-induced cellular models to explore the pathways by which Dex counteracts ferroptosis. Our results showed that Dex treatment significantly ameliorated OGD/R-induced ferroptosis in AML12 cells, including reduced Fe2+, ROS, malondialdehyde (MDA), and 4-HNE levels. Dex also ameliorated liver tissue damage and reduced serum AST, ALT, and inflammatory factor levels in HIRI mice. Additionally, Dex increased the levels of GSH, an antioxidative stress marker, and GPX4 expression in HIRI mice. Mechanistically, Nrf2 expression and nuclear translocation were significantly inhibited in both HIRI mice and OGD/R-treated AML12 cells. Dex treatment also restored the I/R-induced inhibition of Nrf2 expression and nuclear translocation. ML385 significantly inhibited Dex-promoted Nrf2 nuclear aggregation with Gpx4 protein expression, hindering the efficacy of Dex. In conclusion, Dex ameliorates ferroptosis in HIRI by positively regulating the Nrf2/GPx4 axis, potentially presenting a therapeutic avenue for addressing HIRI.
Collapse
Affiliation(s)
- Yongjun Zhang
- Department of Anesthesiology, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu 610213, China
| | - Hua Wei
- Department of Pharmacy, Chengdu Second People's Hospital, Chengdu, China
| | - Mengmei Wang
- Department of Anesthesiology, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu 610213, China
| | - Yang Yu
- Department of Anesthesiology, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu 610213, China
| | - Mengyue Gu
- Department of Anesthesiology, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu 610213, China
| | - Hui Zhong
- Department of Anesthesiology, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu 610213, China.
| | - Shuhua Dong
- Department of Anesthesiology, Chengdu BOE Hospital, Chengdu 611743, Sichuan, China.
| |
Collapse
|
32
|
Wang R, Shen H, Zhang J, Li X, Guo Y, Zhao Z, Wang P, Xie N, Li Y, Qu G, Xie S. Dimethyl Bisphenolate Ameliorates Carbon Tetrachloride-Induced Liver Injury by Regulating Oxidative Stress-Related Genes. Molecules 2023; 28:7989. [PMID: 38138479 PMCID: PMC10746066 DOI: 10.3390/molecules28247989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Liver disease accounts for millions of deaths per year all over the world due to complications from cirrhosis and liver injury. In this study, a novel compound, dimethyl bisphenolate (DMB), was synthesized to investigate its role in ameliorating carbon tetrachloride (CCl4)-induced liver injury through the regulation of oxidative stress-related genes. The structure of DMB was confirmed based on its hydrogen spectrum and mass spectrometry. DMB significantly reduced the high levels of ALT, AST, DBIL, TBIL, ALP, and LDH in a dose-dependent manner in the sera of CCl4-treated rats. The protective effects of DMB on biochemical indicators were similar to those of silymarin. The ROS fluorescence intensity increased in CCl4-treated cells but significantly weakened in DMB-treated cells compared with the controls. DMB significantly increased the content of oxidative stress-related GSH, Nrf2, and GCLC dose-dependently but reduced MDA levels in CCl4-treated cells or the liver tissues of CCl4-treated rats. Moreover, DMB treatment decreased the expression levels of P53 and Bax but increased those of Bcl2. In summary, DMB demonstrated protective effects on CCl4-induced liver injury by regulating oxidative stress-related genes.
Collapse
Affiliation(s)
- Rong Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China; (R.W.); (H.S.); (J.Z.); (X.L.); (Y.G.); (Y.L.)
- Shandong Laboratory of Advanced Materials and Green Manufacturing (Yantai), Yantai 264000, China
- College of Life Sciences, Yantai University, Yantai 264005, China;
| | - Huanhuan Shen
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China; (R.W.); (H.S.); (J.Z.); (X.L.); (Y.G.); (Y.L.)
| | - Jiaxiang Zhang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China; (R.W.); (H.S.); (J.Z.); (X.L.); (Y.G.); (Y.L.)
| | - Xiyan Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China; (R.W.); (H.S.); (J.Z.); (X.L.); (Y.G.); (Y.L.)
| | - Yang Guo
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China; (R.W.); (H.S.); (J.Z.); (X.L.); (Y.G.); (Y.L.)
| | - Zhenjun Zhao
- College of Life Sciences, Yantai University, Yantai 264005, China;
| | - Pingyu Wang
- Department of Epidemiology, Binzhou Medical University, Yantai 264003, China;
| | - Ning Xie
- Department of Breast and Thyroid Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264000, China;
| | - Youjie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China; (R.W.); (H.S.); (J.Z.); (X.L.); (Y.G.); (Y.L.)
| | - Guiwu Qu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China; (R.W.); (H.S.); (J.Z.); (X.L.); (Y.G.); (Y.L.)
| | - Shuyang Xie
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China; (R.W.); (H.S.); (J.Z.); (X.L.); (Y.G.); (Y.L.)
- Shandong Laboratory of Advanced Materials and Green Manufacturing (Yantai), Yantai 264000, China
- College of Life Sciences, Yantai University, Yantai 264005, China;
| |
Collapse
|
33
|
Yavuz A, Tuna AT, Ozdemir C, Mortas T, Küçük A, Kasapbaşı E, Arslan M, Kavutçu M, Kurtipek Ö. Effects of fullerene C60 on liver tissue in liver ischemia reperfusion injury in rats undergoing sevoflurane anesthesia. Libyan J Med 2023; 18:2281116. [PMID: 37976165 PMCID: PMC11018324 DOI: 10.1080/19932820.2023.2281116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023] Open
Abstract
This study aimed to investigate the effects of fullerene C60 on rat liver tissue in a liver ischemia reperfusion injury (IRI) model under sevoflurane anesthesia to evaluate the ability of nanoparticles to prevent hepatic complications. A total of 36 adult female Wistar Albino rats were divided into six groups, each containing six groups as follows: sham group (Group S), fullerene C60 group (Group FC60), ischemia-reperfusion group (Group IR), ischemia-reperfusion-sevoflurane group (Group IR-Sevo), ischemia-reperfusion-fullerene C60 group (Group IR-FC60), and ischemia-reperfusion-fullerene C60-sevoflurane group (Group IR-FC60-Sevo). Fullerene C60 100 mg/kg was administered to IR-FC60 and IR-FC60-Sevo groups. In the IR group, 2 h of ischemia and 2 h of reperfusion were performed. At the end of reperfusion, liver tissues were removed for biochemical assays and histopathological examinations. Hepatocyte degeneration, sinusoidal dilatation, prenecrotic cells, and mononuclear cell infiltration in the parenchyma were significantly higher in Group IR than in all other groups. Thiobarbituric acid reactive substances levels were significantly higher in Group IR than in the other groups, and the lowest thiobarbituric acid reactive substances level was in Group IR-FC60 than in the other groups, except for Groups S and FC60. Catalase and Glutathione-S-transferase activities were reduced in the IR group compared to all other groups. Fullerene C60 had protective effects against liver IR injury in rats under sevoflurane anesthesia. The use of fullerene C60 could reduce the adverse effects of IRI and the associated costs of liver transplantation surgery.
Collapse
Affiliation(s)
- Aydın Yavuz
- Faculty of Medicine, Department of General Surgery, Gazi University, Ankara, Turkey
| | - Ayca Tas Tuna
- Faculty of Medicine, Department of Anesthesiology and Reanimation, Sakarya University, Sakarya, Turkey
| | - Cagrı Ozdemir
- Mamak State Hospital, Department of Anesthesiology and Reanimation, Ankara, Turkey
| | - Tülay Mortas
- Faculty of Medicine, Department of Histology and Embryology, Kırıkkale University, Kırıkkale, Turkey
| | - Ayşegül Küçük
- Faculty of Medicine, Department of Physiology, Kütahya University of Health Sciences, Kütahya, Turkey
| | - Esat Kasapbaşı
- Faculty of Medicine, Department of Anesthesiology and Reanimation, Gazi University, Ankara, Turkey
| | - Mustafa Arslan
- Faculty of Medicine, Department of Anesthesiology and Reanimation, Life Sciences Application and Research Center, Gazi University, Ankara, Turkey
| | - Mustafa Kavutçu
- Faculty of Medicine, Department of Biochemistry, Gazi University, Ankara, Turkey
| | - Ömer Kurtipek
- Faculty of Medicine, Department of Anesthesiology and Reanimation, Gazi University, Ankara, Turkey
| |
Collapse
|
34
|
Li H, Chen Y, Ding M, Yan Z, Guo W, Guo R. Pectolinarigenin attenuates hepatic ischemia/reperfusion injury via activation of the PI3K/AKT/Nrf2 signaling pathway. Chem Biol Interact 2023; 386:110763. [PMID: 37832626 DOI: 10.1016/j.cbi.2023.110763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/15/2023]
Abstract
Hepatic ischemia/reperfusion (I/R) injury is an unavoidable complication of liver hepatectomy, transplantation, and systemic shock. Pectolinarigenin (Pec) is a flavonoid with many biological activities, which include anti-inflammatory, anti-apoptotic, and antioxidant stress. This study explored whether Pec pretreatment could reduce hepatic I/R injury and the potential mechanisms at play. After pretreatment of mice and AML12 cells with Pec, I/R and hypoxia/reoxygenation (H/R) models were established. By examining markers related to liver injury, cell viability, oxidative stress, inflammatory response, and apoptosis, the effect of Pec on important processes involved in hepatic I/R injury was assessed. Protein levels associated with the PI3K/AKT/Nrf2 pathway were analyzed by relative quantification to investigate possible pathways through which Pec plays a role in the I/R process. Pec treatment corrected abnormal transaminase levels resulting from I/R injury, improved liver injury, and increased AML12 cell viability. Moreover, Pec treatment inhibited oxidative stress, inflammation and apoptosis and could activate the PI3K/AKT/Nrf2 pathway during I/R and H/R. Further studies found that LY294002 (PI3K inhibitor) suppressed the protective effect of Pec on hepatic I/R injury. In summary, our results show that Pec inhibits oxidative stress, inflammatory responses, and apoptosis, thereby attenuating I/R-induced liver injury and H/R-induced cell damage via activation of the PI3K/AKT/Nrf2 pathway.
Collapse
Affiliation(s)
- Hao Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yabin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory for Hepatopathy and Transplantation Medicine, Zhengzhou, China.
| | - Mingjie Ding
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China.
| | - Zhiping Yan
- Henan Key Laboratory for Hepatopathy and Transplantation Medicine, Zhengzhou, China; National Organ Transplantation Physician Training Center, Zhengzhou, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory for Hepatopathy and Transplantation Medicine, Zhengzhou, China; Department of Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Ran Guo
- Henan Key Laboratory for Hepatopathy and Transplantation Medicine, Zhengzhou, China; Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China.
| |
Collapse
|
35
|
Li JJ, Dai WQ, Mo WH, Xu WQ, Li YY, Guo CY, Xu XF. Fucoidan Ameliorates Ferroptosis in Ischemia-reperfusion-induced Liver Injury through Nrf2/HO-1/GPX4 Activation. J Clin Transl Hepatol 2023; 11:1341-1354. [PMID: 37719959 PMCID: PMC10500289 DOI: 10.14218/jcth.2023.00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/17/2023] [Accepted: 05/10/2023] [Indexed: 07/03/2023] Open
Abstract
Background and Aims Liver ischemia-reperfusion (IR) injury is a common pathological process in liver surgery. Ferroptosis, which is closely related to lipid peroxidation, has recently been confirmed to be involved in the pathogenesis of IR injury. However, the development of drugs that regulate ferroptosis has been slow, and a complete understanding of the mechanisms underlying ferroptosis has not yet been achieved. Fucoidan (Fu) is a sulfated polysaccharide that has attracted research interest due to its advantages of easy access and wide biological activity. Methods In this study, we established models of IR injury using erastin as an activator of ferroptosis, with the ferroptosis inhibitor ferrostatin-1 (Fer-1) as the control. We clarified the molecular mechanism of fucoidan in IR-induced ferroptosis by determining lipid peroxidation levels, mitochondrial morphology, and key pathways in theta were involved. Results Ferroptosis was closely related to IR-induced hepatocyte injury. The use of fucoidan or Fer-1 inhibited ferroptosis by eliminating reactive oxygen species and inhibiting lipid peroxidation and iron accumulation, while those effects were reversed after treatment with erastin. Iron accumulation, mitochondrial membrane rupture, and active oxygen generation related to ferroptosis also inhibited the entry of nuclear factor erythroid 2-related factor 2 (Nrf2) into the nucleus and reduced downstream heme oxygenase-1 (HO-1) and glutathione peroxidase 4 (GPX4) protein levels. However, fucoidan pretreatment produced adaptive changes that reduced irreversible cell damage induced by IR or erastin. Conclusions Fucoidan inhibited ferroptosis in liver IR injury via the Nrf2/HO-1/GPX4 axis.
Collapse
Affiliation(s)
- Jing-Jing Li
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, China
| | - Wei-Qi Dai
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, China
| | - Wen-Hui Mo
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, China
| | - Wen-Qiang Xu
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, China
| | - Yue-Yue Li
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, China
| | - Chuan-Yong Guo
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuan-Fu Xu
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, China
| |
Collapse
|
36
|
Tang Z, Wang Y, Liu Y, Li C. Salidroside inhibits renal ischemia/reperfusion injury‑induced ferroptosis by the PI3K/AKT signaling pathway. Exp Ther Med 2023; 26:507. [PMID: 37822587 PMCID: PMC10562959 DOI: 10.3892/etm.2023.12206] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/09/2023] [Indexed: 10/13/2023] Open
Abstract
Renal ischemia/reperfusion injury (RIRI) represents the principal factor underlying acute kidney injury (AKI), which primarily stems from cellular injuries and ferroptosis caused by reactive oxygen species (ROS). Salidroside (SA), an antioxidant natural ester, has been attributed with the potential to protect against RIRI. In the present study, rats received daily SA doses (1, 10, or 100 mg/kg) by gavage for 7 consecutive days before surgery. The results revealed aggravated renal injury in the RIRI group, which was effectively prevented by SA pretreatment (10 and 100 mg/kg), with the 1 mg/kg dosage demonstrating lesser efficacy. Additionally, the results indicated that SA pretreatment mitigated the RIRI-related upregulation of antioxidative superoxide dismutase. In vitro studies corroborated SA's ability to maintain hypoxia/reoxygenation-treated NRK cell viability, with the protective effect being observed at SA concentrations ≥1 µM and peaking at 100 µM. Furthermore, the results showed that SA safeguarded renal tubular epithelial cells from oxidative damage, reduced ROS accumulation, and inhibited ferroptosis via activation of the PI3K/AKT signaling pathway. Therefore, the results of the present study highlight the promising therapeutic potential of SA as an effective intervention for RIRI via targeting of PI3K/AKT signaling pathway-mediated anti-oxidative and anti-ferroptotic mechanisms.
Collapse
Affiliation(s)
- Zhe Tang
- Department of Urology, The First People's Hospital of Jing Zhou/The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Yong Wang
- Department of Urology, Ying Shan Hospital of Traditional Chinese Medicine, Ying Shan, Hubei 438700, P.R. China
| | - Yan Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chenglong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
37
|
Xie W, Deng L, Lin M, Huang X, Qian R, Xiong D, Liu W, Tang S. Sirtuin1 Mediates the Protective Effects of Echinacoside against Sepsis-Induced Acute Lung Injury via Regulating the NOX4-Nrf2 Axis. Antioxidants (Basel) 2023; 12:1925. [PMID: 38001778 PMCID: PMC10669561 DOI: 10.3390/antiox12111925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Currently, the treatment for sepsis-induced acute lung injury mainly involves mechanical ventilation with limited use of drugs, highlighting the urgent need for new therapeutic options. As a pivotal aspect of acute lung injury, the pathologic activation and apoptosis of endothelial cells related to oxidative stress play a crucial role in disease progression, with NOX4 and Nrf2 being important targets in regulating ROS production and clearance. Echinacoside, extracted from the traditional Chinese herbal plant Cistanche deserticola, possesses diverse biological activities. However, its role in sepsis-induced acute lung injury remains unexplored. Moreover, although some studies have demonstrated the regulation of NOX4 expression by SIRT1, the specific mechanisms are yet to be elucidated. Therefore, this study aimed to investigate the effects of echinacoside on sepsis-induced acute lung injury and oxidative stress in mice and to explore the intricate regulatory mechanism of SIRT1 on NOX4. We found that echinacoside inhibited sepsis-induced acute lung injury and oxidative stress while preserving endothelial function. In vitro experiments demonstrated that echinacoside activated SIRT1 and promoted its expression. The activated SIRT1 was competitively bound to p22 phox, inhibiting the activation of NOX4 and facilitating the ubiquitination and degradation of NOX4. Additionally, SIRT1 deacetylated Nrf2, promoting the downstream expression of antioxidant enzymes, thus enhancing the NOX4-Nrf2 axis and mitigating oxidative stress-induced endothelial cell pathologic activation and mitochondrial pathway apoptosis. The SIRT1-mediated anti-inflammatory and antioxidant effects of echinacoside were validated in vivo. Consequently, the SIRT1-regulated NOX4-Nrf2 axis may represent a crucial target for echinacoside in the treatment of sepsis-induced acute lung injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha 410013, China; (W.X.); (L.D.); (M.L.); (X.H.); (R.Q.); (D.X.)
| | - Siyuan Tang
- Xiangya Nursing School, Central South University, Changsha 410013, China; (W.X.); (L.D.); (M.L.); (X.H.); (R.Q.); (D.X.)
| |
Collapse
|
38
|
Kryl’skii ED, Kravtsova SE, Popova TN, Matasova LV, Shikhaliev KS, Medvedeva SM. 6-Hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline Demonstrates Anti-Inflammatory Properties and Reduces Oxidative Stress in Acetaminophen-Induced Liver Injury in Rats. Curr Issues Mol Biol 2023; 45:8321-8336. [PMID: 37886968 PMCID: PMC10605539 DOI: 10.3390/cimb45100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
We examined the effects of 6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline on markers of liver injury, oxidative status, and the extent of inflammatory and apoptotic processes in rats with acetaminophen-induced liver damage. The administration of acetaminophen caused the accumulation of 8-hydroxy-2-deoxyguanosine and 8-isoprostane in the liver and serum, as well as an increase in biochemiluminescence indicators. Oxidative stress resulted in the activation of pro-inflammatory cytokine and NF-κB factor mRNA synthesis and increased levels of immunoglobulin G, along with higher activities of caspase-3, caspase-8, and caspase-9. The administration of acetaminophen also resulted in the development of oxidative stress, leading to a decrease in the level of reduced glutathione and an imbalance in the function of antioxidant enzymes. This study discovered that 6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline reduced oxidative stress by its antioxidant activity, hence reducing the level of pro-inflammatory cytokine and NF-κB mRNA, as well as decreasing the concentration of immunoglobulin G. These changes resulted in a reduction in the activity of caspase-8 and caspase-9, which are involved in the activation of ligand-induced and mitochondrial pathways of apoptosis and inhibited the effector caspase-3. In addition, 6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline promoted the normalization of antioxidant system function in animals treated with acetaminophen. As a result, the compound being tested alleviated inflammation and apoptosis by decreasing oxidative stress, which led to improved liver marker indices and ameliorated histopathological alterations.
Collapse
Affiliation(s)
- Evgenii D. Kryl’skii
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia; (E.D.K.)
| | - Svetlana E. Kravtsova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia; (E.D.K.)
| | - Tatyana N. Popova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia; (E.D.K.)
| | - Larisa V. Matasova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia; (E.D.K.)
| | - Khidmet S. Shikhaliev
- Department of Organic Chemistry, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia
| | - Svetlana M. Medvedeva
- Department of Organic Chemistry, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia
| |
Collapse
|
39
|
Wang X, Zhu W, Xing M, Zhu H, Chen E, Zhou J. Matrine disrupts Nrf2/GPX4 antioxidant system and promotes hepatocyte ferroptosis. Chem Biol Interact 2023; 384:110713. [PMID: 37716422 DOI: 10.1016/j.cbi.2023.110713] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/14/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Matrine (MT) is an alkaloid isolated from Sophora flavescens with various bioactivities and is widely used clinically. However, the broader its clinical use, the greater its toxicity concerns. We investigate the role of ferroptosis in MT-induced liver injury caused by an imbalance in the antioxidant pathway. Our results showed that MT could cause pathological changes in liver tissues and lead to a significant reduction in L02 cell viability. MT also reduced superoxide dismutase (SOD) and glutathione (GSH), increased malondialdehyde (MDA), reactive oxygen species (ROS), and lipid peroxidation levels, and disrupted iron homeostasis, leading to ferroptosis. In addition, MT decreased the protein levels of FTH, Nrf2, xCT, GPX4, HO-1 and ferroptosis suppressor protein 1 (FSP1) and increased the protein levels of TRF1 and DMT1, characteristic indicators of ferroptosis. Interestingly, the cytotoxic effects of MT were alleviated by ferroptosis inhibitor, Nrf2 agonist, or selenium supplementation. These results revealed that MT triggers hepatocyte ferroptosis by inhibiting the Nrf2/GPX4 antioxidant system.
Collapse
Affiliation(s)
- Xi Wang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Wenjing Zhu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Miao Xing
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Haiyan Zhu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Enqing Chen
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Jie Zhou
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China.
| |
Collapse
|
40
|
Lin Q, Guo Y, Li J, He S, Chen Y, Jin H. Antidiabetic Effect of Collagen Peptides from Harpadon nehereus Bones in Streptozotocin-Induced Diabetes Mice by Regulating Oxidative Stress and Glucose Metabolism. Mar Drugs 2023; 21:518. [PMID: 37888453 PMCID: PMC10608435 DOI: 10.3390/md21100518] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Oxidative stress and abnormal glucose metabolism are the important physiological mechanisms in the occurrence and development of diabetes. Antioxidant peptides have been reported to attenuate diabetes complications by regulating levels of oxidative stress, but few studies have focused on peptides from marine bone collagen. In this study, we prepared the peptides with a molecular weight of less than 1 kD (HNCP) by enzymolysis and ultrafiltration derived from Harpadon nehereus bone collagen. Furthermore, the effects of HNCP on blood glucose, blood lipid, liver structure and function, oxidative stress, and glucose metabolism were studied using HE staining, kit detection, and Western blotting experiment in streptozocin-induced type 1 diabetes mice. After the 240 mg/kg HNCP treatment, the levels of blood glucose, triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) in streptozotocin-induced diabetes mice decreased by 32.8%, 42.2%, and 43.2%, respectively, while the levels of serum insulin and hepatic glycogen increased by 142.0% and 96.4%, respectively. The antioxidant enzymes levels and liver function in the diabetic mice were markedly improved after HNCP intervention. In addition, the levels of nuclear factor E2-related factor 2 (Nrf2), glucokinase (GK), and phosphorylation of glycogen synthase kinase-3 (p-GSK3β) in the liver were markedly up-regulated after HNCP treatment, but the glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase1 (PEPCK1) were down-regulated. In conclusion, HNCP could attenuate oxidative stress, reduce blood glucose, and improve glycolipid metabolism in streptozocin-induced type 1 diabetes mice.
Collapse
Affiliation(s)
- Qianxia Lin
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Q.L.)
| | - Yueping Guo
- Jinhua Food and Drug Inspection and Testing Institute, Jinhua 321015, China
| | - Jie Li
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Q.L.)
| | - Shuqi He
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Q.L.)
| | - Yan Chen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Q.L.)
| | - Huoxi Jin
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Q.L.)
| |
Collapse
|
41
|
Wei H, Li T, Zhang Y, Liu X, Gong R, Bao J, Li J. Cold stimulation causes oxidative stress, inflammatory response and apoptosis in broiler heart via regulating Nrf2/HO-1 and NF-κB pathway. J Therm Biol 2023; 116:103658. [PMID: 37463527 DOI: 10.1016/j.jtherbio.2023.103658] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023]
Abstract
To investigate the effect of cold stimulation on heart, 300 1-day-old female broilers were divided into control (CON) and two cold stimulation (CS3 and CS9) groups. Birds in CON group were reared in normal ambient temperature during day 1-43; while birds in CS3 and CS9 groups were reared at 3 °C and 9 °C below CON group for 5 h at 1-day intervals from day 15 to day 35, respectively. Heart tissues were collected at day 22, 29, 36, and 43 to determine the indexes related to oxidative stress, inflammation and apoptosis. The H&E staining displayed that inflammatory cell infiltration and myocardial fiber break were obviously observed in CS9 group, and cardiac pathological score in CS9 group was higher than CON and CS3 groups (P < 0.05) at day 22, 36, and 43. Overall, compared to CON group, the concentrations of MDA and H2O2 were elevated, the activities of SOD, CAT, GPx, and T-AOC were reduced, and mRNA expression of CAT, GPx, SOD, nuclear factor-erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) was downregulated in CS9 group at each time-point (P < 0.05). Compared to CON group, mRNA expression of NF-κBp65, COX-2, iNOS, PTGEs, TNF-α, and IL-1β, and mRNA and protein expression of Bax, Bak, Cyt-c, caspase-3, and caspase-9 were increased, while Bcl-2 and Bcl-2/Bax ratio were decreased in CS9 group (P < 0.05) at the most detected time-points. There were no significant differences in the levels of indexes associated with oxidative stress, Nrf2/HO-1 antioxidant system, inflammation, and apoptosis between CON and CS3 groups at the most detected time-points (P > 0.05). Therefore, this study suggests that severe cold stimulation at 9 °C below normal rearing temperature induces cardiomyocyte inflammation and apoptosis by regulating Nrf2/HO-1 pathway-related oxidative stress in broilers, and mild cold stimulation of CS3 group can improve the adaptability of hearts to cold environment.
Collapse
Affiliation(s)
- Haidong Wei
- College of Life Science, Northeast Agricultural University, 150030, Harbin, China
| | - Tingting Li
- College of Life Science, Northeast Agricultural University, 150030, Harbin, China
| | - Yong Zhang
- College of Life Science, Northeast Agricultural University, 150030, Harbin, China
| | - Xiaotao Liu
- College of Life Science, Northeast Agricultural University, 150030, Harbin, China
| | - Rixin Gong
- College of Life Science, Northeast Agricultural University, 150030, Harbin, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, 150030, Harbin, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, 150030, Harbin, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, 150030, Harbin, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, 150030, Harbin, China.
| |
Collapse
|
42
|
Dery KJ, Yao S, Cheng B, Kupiec-Weglinski JW. New therapeutic concepts against ischemia-reperfusion injury in organ transplantation. Expert Rev Clin Immunol 2023; 19:1205-1224. [PMID: 37489289 PMCID: PMC10529400 DOI: 10.1080/1744666x.2023.2240516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
INTRODUCTION Ischemia-reperfusion injury (IRI) involves a positive amplification feedback loop that stimulates innate immune-driven tissue damage associated with organ procurement from deceased donors and during transplantation surgery. As our appreciation of its basic immune mechanisms has improved in recent years, translating putative biomarkers into therapeutic interventions in clinical transplantation remains challenging. AREAS COVERED This review presents advances in translational/clinical studies targeting immune responses to reactive oxygen species in IRI-stressed solid organ transplants, especially livers. Here we focus on novel concepts to rejuvenate suboptimal donor organs and improve transplant function using pharmacologic and machine perfusion (MP) strategies. Cellular damage induced by cold ischemia/warm reperfusion and the latest mechanistic insights into the microenvironment's role that leads to reperfusion-induced sterile inflammation is critically discussed. EXPERT OPINION Efforts to improve clinical outcomes and increase the donor organ pool will depend on improving donor management and our better appreciation of the complex mechanisms encompassing organ IRI that govern the innate-adaptive immune interface triggered in the peritransplant period and subsequent allo-Ag challenge. Computational techniques and deep machine learning incorporating the vast cellular and molecular mechanisms will predict which peri-transplant signals and immune interactions are essential for improving access to the long-term function of life-saving transplants.
Collapse
Affiliation(s)
- Kenneth J. Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Siyuan Yao
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Brian Cheng
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jerzy W. Kupiec-Weglinski
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
43
|
Dehzad MJ, Ghalandari H, Amini MR, Askarpour M. Effects of curcumin/turmeric supplementation on liver function in adults: A GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Complement Ther Med 2023; 74:102952. [PMID: 37178581 DOI: 10.1016/j.ctim.2023.102952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
INTRODUCTION Liver conditions are major burdens upon health systems around the world. Turmeric /curcumin is believed to possess therapeutic features in ameliorating various metabolic disorders. In this systematic review and meta-analysis of the randomized controlled trials (RCTs), we examined the effect of turmeric/curcumin supplementation on some liver function tests (LFTs). METHODS We comprehensively searched online databases (i.e. PubMed, Scopus, Web of Science, Cochrane Library, and Google Scholar) from inception up to October 2022. Final outcomes included aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyl transferase (GGT). Weighted mean differences (WMDs) were reported. In case of between-study heterogeneity, subgroup analysis was conducted. Non-linear dose-response analysis was carried out to detect the potential effect of dosage and duration. The registration code is CRD42022374871. RESULTS Thirty-one RCTs were included in the meta-analysis. Turmeric/curcumin supplementation significantly reduced blood levels of ALT (WMD = -4.09 U/L; 95 % CI = -6.49, -1.70) and AST (WMD = -3.81 U/L; 95 % CI = -5.71, -1.91), but not GGT (WMD: -12.78 U/L; 95 % CI: -28.20, 2.64). These improvements, though statistically significant, do not ensure clinical effectiveness. CONCLUSION It seems that turmeric/curcumin supplementation might be effective in improving AST and ALT levels. However, further clinical trials are needed to examine its effect on GGT. Quality of the evidence across the studies was low for AST and ALT and very low for GGT. Therefore, more studies with high quality are needed to assess this intervention on hepatic health.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Askarpour
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
44
|
Zhong XQ, Li GD, Wang KY, Xu Y. Puerarin alleviates nonalcoholic steatohepatitis by upregulating the Nrf2 pathway. Shijie Huaren Xiaohua Zazhi 2023; 31:352-360. [DOI: 10.11569/wcjd.v31.i9.352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND The incidence of nonalcoholic steatohepatitis (NASH) is on the rise, and inflammation and oxidative stress play a key role in the progression of NASH. Puerarin has anti-inflammatory and antioxidant activity, but the effect and mechanism of action of puerarin on NASH need to be further explored.
AIM To explore the effect and mechanisms of action of puerarin in the treatment of NASH.
METHODS NASH was induced in C57BL/6 mice with a methionine and choline deficiency (MCD) diet. Mice were randomly divided into a normal diet group, a NASH model group, and a puerarin group. Each group were fed the corresponding diet for 4 wk. Serum and liver samples were collected to evaluate histological changes, inflammation, liver function, and oxidative stress.
RESULTS Compared with the normal diet group, hepatic triglycerides and cholesterol were significantly increased in the NASH model group. Histological analysis showed that there was more significant fatty changes, inflammation, and fibrosis in the liver of mice in the NASH model group compared with those in the normal diet group. Compared with the normal diet group, glutathione and superoxide dismutase were significantly decreased, but malondialdehyde was significantly increased in the NASH model group. Compared with the NASH model group, serum triglycerides and cholesterol in the puerarin group were significantly reduced, and serum inflammatory factors (TNF-α and IL-1β) were significantly decreased in the puerarin group (P < 0.05). The mRNA expression of fibrosis-related genes (αSMA, PAI-1, COL1A1, and TGFβ) in the liver of mice in the puerarin group were sharply decreased compared with those in the NASH model group. Compared with the NASH model group, glutathione and superoxide dismutase were significantly increased in the puerarin group. Nuclear NF-E2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1) expression was significantly increased in the puerarin group compared with the NASH model group (P < 0.05).
CONCLUSION Puerarin can significantly improve MCD diet-induced NASH. The mechanisms may be related to its anti-inflammation and anti-fibrosis effects and up-regulation of the Nrf2 pathway. Our study offers novel insights into the pathogenesis of NASH and provides further evidence for the potential use of puerarin as an anti-NASH agent.
Collapse
|
45
|
Rajendran P, Althumairy D, Bani-Ismail M, Bekhet GM, Ahmed EA. Isoimperatorin therapeutic effect against aluminum induced neurotoxicity in albino mice. Front Pharmacol 2023; 14:1103940. [PMID: 37180724 PMCID: PMC10172992 DOI: 10.3389/fphar.2023.1103940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Background: Although aluminum (Al) is not biologically crucial to the human body, classical studies have demonstrated that excessive human exposure to Al can induce oxidative damage, neuroinflammatory conditions and neurotoxic manifestations implicated in Alzheimer's disease (AD). Exposure to Al was reported to be associated with oxidative damage, neuroinflammation, and to enhance progressive multiregional neurodegeneration in animal models. Several plant-derived natural biomolecules have been recently used to reduce the toxic effects of Al through decreasing the oxidative stress and the associated diseases. A good candidate still to be tested is an active natural furanocoumarin, the isoimperatorin (IMP) that can be extracted from Lemon and lime oils and other plants. Here, we examined the neuroprotective effects of IMP on aluminum chloride (AlCl3)-induced neurotoxicity in albino mice. Methods: Twenty-four male albino mice were used in this study. Mice were randomly devided into 5 groups. The first group was given distilled water as a control, the second group was given AlCl3 orally (10 mg/wt/day) starting from the 2nd week to the end of the 6th week, the third group received AlCl3 orally and IMP interperitoneally, i. p. (30 mg/wt/day) starting from week 2 till week 6 where IMP was supplement 1st and then 4 h later AlCl3 was given to mice. The fourth group received the control (IMP 30 mg/wt, i. p.) from the 2nd week till the end of the experiment. Rodent models of central nervous system (CNS) disorders were assessed using object location memory and Y-maze tests in 6th week began. Essential anti-inflammatory and oxidative stress indicators were evaluated, including interleukin-1 β (IL-1β), tumor necrosis factor α (TNF-α), malondialdehyde (MDA), total antioxidant capacity (TAC), and catalase activity (CAT). In addition, serum levels of brain neurotransmitters such as corticosterone, acetylcholine (ACh), dopamine and serotonin in brain homogenates were measured calorimetrically. Results: The study results revealed that the daily treatment of AlCl3 upregulated the TNF-α and IL-1β levels, increased MDA accumulation, and decreased TAC and CAT activity. In addition, aluminum induced a reduction in concentrations of ACh, serotonin and dopamine in the brain. However, IMP significantly ameliorates the effect of AlCl3 through modulating the antioxidant and regulating the inflammatory response through targeting Nrf2 (NF-E2-related factor 2) and mitogen-activated protein kinase (MAPK). Conclusion: Thus, IMP might be a promising treatment option for neurotoxicity and neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, which are associated with neuro-inflammation and oxidative stress.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Centre of Molecular Medicine and Diagnostics, Department of Bio-Chemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Duaa Althumairy
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohammad Bani-Ismail
- Department of Basic Medical Sciences, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba, Jordan
| | - Gamal M. Bekhet
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Zoology, Faculty of Science, Alexandria University Egypt, Alexandria, Egypt
| | - Emad A. Ahmed
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Laboratory of Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
46
|
An Y, Luo Q, Han D, Guan L. Abietic acid inhibits acetaminophen-induced liver injury by alleviating inflammation and ferroptosis through regulating Nrf2/HO-1 axis. Int Immunopharmacol 2023; 118:110029. [PMID: 36963265 DOI: 10.1016/j.intimp.2023.110029] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/26/2023]
Abstract
Abietic acid has been known to exhibit anti-inflammatory activity. This study was designed to investigate the protective effects of abietic acid on acetaminophen (APAP)-induced liver injury. The data demonstrated that abietic acid significantly ameliorated APAP-induced liver pathological changes, TNF-α and IL-1β production. APAP could increase malondialdehyde (MDA) and Fe2+ levels, and decrease ATP and glutathione (GSH) levels, as well as glutathione peroxidase 4 (GPX4) and xCT expression. However, these changes induced by APAP were prevented by abietic acid, indicating abietic acid could inhibit APAP-induced ferroptosis. Furthermore, abietic acid inhibited APAP-induced NF-κB activation and increased the expression of Nrf2 and HO-1. Additionally, the inhibitory effects of abietic acid on APAP-induced liver injury were prevented in Nrf2-/- mice. In vitro, the inhibition of abietic acid on APAP-induced inflammation and ferroptosis were reversed when Nrf2 was knockdown. In summary, abietic acidexhibited a therapeutic effectagainst liver injury by attenuating inflammation and ferroptosis.
Collapse
Affiliation(s)
- Yuan An
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Qiang Luo
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Donghai Han
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Lianyue Guan
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
47
|
Aguilar EC, Fernandes-Braga W, Leocádio PCL, Campos GP, Lemos VS, de Oliveira RP, Caetano de Faria AM, Dos Santos Aggum Capettini L, Alvarez-Leite JI. Dietary gluten worsens hepatic steatosis by increasing inflammation and oxidative stress in ApoE-/- mice fed a high-fat diet. Food Funct 2023; 14:3332-3347. [PMID: 36940107 DOI: 10.1039/d3fo00149k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disorder in the world. We have seen that gluten intake exacerbated obesity and atherosclerosis in apolipoprotein E knockout (ApoE-/-) mice. In this study, we investigated the effect of gluten consumption on inflammation and oxidative stress in the liver of mice with NAFLD. Male ApoE-/- mice were fed a gluten-free (GF-HFD) or gluten-containing (G-HFD) high-fat diet for 10 weeks. Blood, liver, and spleen were collected to perform the analyses. The animals of the gluten group had increased hepatic steatosis, followed by increased serum AST and ALT. Gluten intake increased hepatic infiltration of neutrophils, macrophages, and eosinophils, as well as the levels of chemotaxis-related factors CCL2, Cxcl2, and Cxcr3. The production of the TNF, IL-1β, IFNγ, and IL-4 cytokines in the liver was also increased by gluten intake. Furthermore, gluten exacerbated the hepatic lipid peroxidation and nitrotyrosine deposition, which were associated with increased production of ROS and nitric oxide. These effects were related to increased expression of NADPH oxidase and iNOS, as well as decreased activity of superoxide dismutase and catalase enzymes. There was an increased hepatic expression of the NF-κB and AP1 transcription factors, corroborating the worsening effect of gluten on inflammation and oxidative stress. Finally, we found an increased frequency of CD4+FOXP3+ lymphocytes in the spleen and increased gene expression of Foxp3 in the livers of the G-HFD group. In conclusion, dietary gluten aggravates NAFLD, exacerbating hepatic inflammation and oxidative stress in obese ApoE-deficient mice.
Collapse
Affiliation(s)
- Edenil Costa Aguilar
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais/UFMG, Caixa Postal 486, 30161-970 Belo Horizonte, Brazil.
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais/UFMG, Caixa Postal 486, 30161-970 Belo Horizonte, Brazil. .,Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, USA
| | - Paola Caroline Lacerda Leocádio
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais/UFMG, Caixa Postal 486, 30161-970 Belo Horizonte, Brazil.
| | - Gianne Paul Campos
- Department of Pharmacology, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Virginia Soares Lemos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | | | - Ana Maria Caetano de Faria
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais/UFMG, Caixa Postal 486, 30161-970 Belo Horizonte, Brazil.
| | | | - Jacqueline I Alvarez-Leite
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais/UFMG, Caixa Postal 486, 30161-970 Belo Horizonte, Brazil.
| |
Collapse
|
48
|
Chaabani R, Bejaoui M, Ben Jeddou I, Zaouali MA, Haouas Z, Belgacem S, Peralta C, Ben Abdennebi H. Effect of the Non-steroidal Anti-inflammatory Drug Diclofenac on Ischemia-Reperfusion Injury in Rat Liver: A Nitric Oxide-Dependent Mechanism. Inflammation 2023:10.1007/s10753-023-01802-9. [PMID: 36933163 DOI: 10.1007/s10753-023-01802-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/15/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
Ischemia/reperfusion injury (IRI) is an inevitable complication of liver surgery and transplantation. The purpose of this study was to examine the beneficial effects of diclofenac on hepatic IRI and the mechanism behind it. Wistar rats' livers were subjected to warm ischemia for 60 min followed by 24 h of reperfusion. Diclofenac was administered intravenously 15 min before ischemia at 10, 20, and 40 mg/kg body weight. To determine the mechanism of diclofenac protection, the NOS inhibitor L-Nitro-arginine methyl ester (L-NAME) was administered intravenously 10 min after diclofenac injection (40 mg/kg). Liver injury was evaluated by aminotransferases (ALT and AST) activities and histopathological analysis. Oxidative stress parameters (SOD, GPX, MPO, GSH, MDA, and PSH) were also determined. Then, eNOS gene transcription and p-eNOS and iNOS protein expressions were evaluated. The transcription factors PPAR-γ and NF-κB in addition to the regulatory protein IκBα were also investigated. Finally, the gene expression levels of inflammatory (COX-2, IL-6, IL-1β, IL-18, TNF-α, HMGB-1, and TLR-4) and apoptosis (Bcl-2 and Bax) markers were measured. Diclofenac, at the optimal dose of 40 mg/kg, decreased liver injury and maintained histological integrity. It also reduced oxidative stress, inflammation, and apoptosis. Its mechanism of action essentially depended on eNOS activation rather than COX-2 inhibition, since pre-treatment with L-NAME abolished all the protective effects of diclofenac. To our knowledge, this is the first study demonstrating that diclofenac protects rat liver against warm IRI through the induction of NO-dependent pathway. Diclofenac reduced oxidative balance, attenuated the activation of the subsequent pro-inflammatory response and decreased cellular and tissue damage. Therefore, diclofenac could be a promising molecule for the prevention of liver IRI.
Collapse
Affiliation(s)
- Roua Chaabani
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| | - Mohamed Bejaoui
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia.
| | - Ikram Ben Jeddou
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| | - Mohamed Amine Zaouali
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| | - Zohra Haouas
- Laboratory of Histology, Embryology and Cytogenetics (LR18ES40), Faculty of Medicine, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| | - Sameh Belgacem
- Laboratory of Medical and Molecular Parasitology-Mycology LP3M (LR12ES08), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| | - Carmen Peralta
- Instituto de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Campus Casanova, Casanova 143, 08036, Barcelona, Spain
| | - Hassen Ben Abdennebi
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| |
Collapse
|
49
|
Inhibition of γδ-TcR or IL17a Reduces T-Cell and Neutrophil Infiltration after Ischemia/Reperfusion Injury in Mouse Liver. J Clin Med 2023; 12:jcm12051751. [PMID: 36902538 PMCID: PMC10002490 DOI: 10.3390/jcm12051751] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/24/2023] Open
Abstract
Neutrophil and T-cell recruitment contribute to hepatic ischemia/reperfusion injury. The initial inflammatory response is orchestrated by Kupffer cells and liver sinusoid endothelial cells. However, other cell types, including γδ-Τ cells, seem to be key mediators in further inflammatory cell recruitment and proinflammatory cytokine release, including IL17a. In this study, we used an in vivo model of partial hepatic ischemia/reperfusion injury (IRI) to investigate the role of the γδ-Τ-cell receptor (γδTcR) and the role of IL17a in the pathogenesis of liver injury. Forty C57BL6 mice were subjected to 60 min of ischemia followed by 6 h of reperfusion (RN 6339/2/2016). Pretreatment with either anti-γδΤcR antibodies or anti-IL17a antibodies resulted in a reduction in histological and biochemical markers of liver injury as well as neutrophil and T-cell infiltration, inflammatory cytokine production and the downregulation of c-Jun and NF-κΒ. Overall, neutralizing either γδTcR or IL17a seems to have a protective role in liver IRI.
Collapse
|
50
|
Makievskaya CI, Popkov VA, Andrianova NV, Liao X, Zorov DB, Plotnikov EY. Ketogenic Diet and Ketone Bodies against Ischemic Injury: Targets, Mechanisms, and Therapeutic Potential. Int J Mol Sci 2023; 24:2576. [PMID: 36768899 PMCID: PMC9916612 DOI: 10.3390/ijms24032576] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The ketogenic diet (KD) has been used as a treatment for epilepsy since the 1920s, and its role in the prevention of many other diseases is now being considered. In recent years, there has been an intensive investigation on using the KD as a therapeutic approach to treat acute pathologies, including ischemic ones. However, contradictory data are observed for the effects of the KD on various organs after ischemic injury. In this review, we provide the first systematic analysis of studies conducted from 1980 to 2022 investigating the effects and main mechanisms of the KD and its mimetics on ischemia-reperfusion injury of the brain, heart, kidneys, liver, gut, and eyes. Our analysis demonstrated a high diversity of both the composition of the used KD and the protocols for the treatment of animals, which could be the reason for contradictory effects in different studies. It can be concluded that a true KD or its mimetics, such as β-hydroxybutyrate, can be considered as positive exposure, protecting the organ from ischemia and its negative consequences, whereas the shift to a rather similar high-calorie or high-fat diet leads to the opposite effect.
Collapse
Affiliation(s)
- Ciara I. Makievskaya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Xinyu Liao
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|