1
|
Bouzid A, Belcadhi M, Souissi A, Chelly M, Frikha F, Gargouri H, Bonnet C, Jebali F, Loukil S, Petit C, Masmoudi S, Hamoudi R, Ben Said M. Whole exome sequencing identifies ABHD14A and MRNIP as novel candidate genes for developmental language disorder. Sci Rep 2025; 15:367. [PMID: 39747128 PMCID: PMC11696457 DOI: 10.1038/s41598-024-83115-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Developmental language disorder (DLD) is a neurodevelopmental disorder involving impaired language abilities. Its genetic etiology is heterogeneous, involving rare variations in multiple susceptibility loci. However, family-based studies on gene mutations are scarce. We performed whole-exome sequencing (WES) of a first-time-described Tunisian-family with DLD. Analyses of segregation patterns with stringent filtering of the exome data identified disease-causing compound heterozygous variants. In the MRNIP gene, two variants were detected including a synonymous low-frequency variant c.345G > C and a nonsense rare variant c.112G > A predicted pathogenic. In the ABHD14A gene, four variants were identified including a rare missense variant c.689T > G and three splice-site variants c.70-8C > T, c.282-25A > T and c.282-10G > C with low-frequency MAF < 5%. Complementary analyses showed that these variants are predicted pathogenic and the missense variant Leu230Arg significantly affects the stability and structure modelling of the ABHD14A protein. Biological functions and interconnections analyses predicted the potential roles of ABHD14A and MRNIP in neuronal development pathways. These results suggest ABHD14A and MRNIP, as putative candidate genes for DLD susceptibility. Our findings reveal the involvement of novel candidate genes in the genetic etiology of DLD and explore the potential future utility of WES in the diagnosis of such complex disorders.
Collapse
Affiliation(s)
- Amal Bouzid
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia.
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| | - Malek Belcadhi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia
- Department of Otorhinolaryngology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Amal Souissi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Meryam Chelly
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia
- Department of Engineering, University of Messina, C.da Di Dio, I-98166, Messina, Italy
| | - Fakher Frikha
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia
- Faculty of Sciences of Sfax, Department of Biology, University of Sfax, Sfax, Tunisia
| | - Hela Gargouri
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Crystel Bonnet
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Paris, F-75012, France
| | - Fida Jebali
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Salma Loukil
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Christine Petit
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Paris, F-75012, France
- Collège de France, Paris, F-75005, France
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Division of Surgery and Interventional Science, University College London, London, UK.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah, United Arab Emirates.
- BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah, United Arab Emirates.
| | - Mariem Ben Said
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia.
| |
Collapse
|
2
|
Schiavon M, Burton BK, Hemager N, Greve AN, Spang KS, Ellersgaard D, Plessen KJ, Jepsen JRM, Thorup AAE, Werge T, Nordentoft M, Nudel R. Language, Motor Ability and Related Deficits in Children at Familial Risk of Schizophrenia or Bipolar Disorder. Schizophr Bull 2024:sbae181. [PMID: 39468758 DOI: 10.1093/schbul/sbae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
BACKGROUND It is known that impairments in linguistic ability and motor function tend to co-occur in children, and that children from families with parental mental illness such as schizophrenia tend to perform poorly in both domains, but the exact nature of these links has not yet been fully elucidated. DESIGN In this study, we leveraged the first wave of the Danish High Risk and Resilience Study (VIA 7), which includes both genetic data and measures covering multiple developmental domains. The VIA 7 cohort comprises 522 7-year-old children born to parents with schizophrenia (N = 202), bipolar disorder (N = 120) or neither (N = 200). We investigated the relationships between linguistic ability and motor function using correlation and regression analyses, focusing on developmental coordination disorder (DCD) and specific language impairment (SLI) and their potential associations with the three risk groups. RESULTS We found significant correlations between most measures of language and motor function and significant associations of DCD and SLI with language and movement measures, respectively, the largest effect being that of DCD on receptive language, with a significant interaction effect: DCD was associated with poorer performance in children from schizophrenia families compared to bipolar disorder and control families. Both disorders showed higher prevalence among children with familial high risk of mental illness. We did not find significant evidence of genetic overlap between DCD and SLI. CONCLUSIONS Our results suggest strong links between the domains of motor function and linguistic ability. Children of parents with schizophrenia are at high risk of comorbid language and movement disorders.
Collapse
Affiliation(s)
- Marta Schiavon
- CORE-Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, 2900 Copenhagen, Denmark
| | - Birgitte K Burton
- CORE-Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, 2900 Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark
| | - Nicoline Hemager
- CORE-Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, 2900 Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark
- Mental Health Center for Child and Adolescent Psychiatry-Research unit, Mental Health Services in the Capital Region of Denmark, 2900 Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, 1357 Copenhagen, Denmark
| | - Aja N Greve
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark
- Psychosis Research Unit, Department of Clinical Medicine, Aarhus University Hospital-Psychiatry, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, 8200 Aarhus University, Aarhus, Denmark
| | - Katrine S Spang
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark
- Mental Health Center for Child and Adolescent Psychiatry-Research unit, Mental Health Services in the Capital Region of Denmark, 2900 Copenhagen, Denmark
| | - Ditte Ellersgaard
- CORE-Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, 2900 Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark
| | - Kerstin Jessica Plessen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark
- Mental Health Center for Child and Adolescent Psychiatry-Research unit, Mental Health Services in the Capital Region of Denmark, 2900 Copenhagen, Denmark
- Department of Psychiatry, Division of Child and Adolescent Psychiatry, Hospital University Lausanne and Lausanne University, 1004 Lausanne, Switzerland
| | - Jens Richardt M Jepsen
- CORE-Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, 2900 Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark
- Mental Health Center for Child and Adolescent Psychiatry-Research unit, Mental Health Services in the Capital Region of Denmark, 2900 Copenhagen, Denmark
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Services in the Capital Region of Denmark, 2600 Glostrup, Denmark
| | - Anne A E Thorup
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark
- Mental Health Center for Child and Adolescent Psychiatry-Research unit, Mental Health Services in the Capital Region of Denmark, 2900 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas Werge
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, 4000 Roskilde, Denmark
| | - Merete Nordentoft
- CORE-Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, 2900 Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark
- Department of Psychology, University of Copenhagen, 1357 Copenhagen, Denmark
| | - Ron Nudel
- CORE-Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, 2900 Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark
- Copenhagen Research Center for Biological and Precision Psychiatry, Mental Health Centre Copenhagen, Copenhagen University Hospital, 2900 Copenhagen, Denmark
| |
Collapse
|
3
|
Keijser R, Åsberg Johnels J, Habbe M, Lichtenstein P, Larsson H, Lundström S, Taylor MJ, Tammimies K. Prevalence and heritability of parental-reported speech and/or language difficulties in a Swedish population-based twin sample. JCPP ADVANCES 2024; 4:e12221. [PMID: 39411473 PMCID: PMC11472810 DOI: 10.1002/jcv2.12221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/22/2023] [Indexed: 10/19/2024] Open
Abstract
Background Research on genetic and environmental influences on speech and/or language difficulties (SaLD) is sparse, with inconsistent heritability estimates. We aimed to estimate the prevalence of parental reported SaLD and the relative contributions of genetic and environmental factors for the phenotype using a Swedish population-based twin sample. We hypothesized that there would be a stronger genetic than environmental effect on SaLD. Methods Data were collected from The Child and Adolescent Twin Study in Sweden. The study sample included 16,774 twin pairs (16,946 males, 16,602 females), of which 5141 were monozygotic, 5861 dizygotic (DZ), and 5772 opposite-sex DZ pairs. The language items in the Autism-Tics, Attention-Deficit Hyperactivity Disorder, and other Comorbidities inventory were used to categorize individuals as having parental-reported SaLD. A classical twin design was used to estimate the relative contribution of genetic and environmental factors to the liability of SaLD. Results The prevalence of SaLD was 7.85% (95% confidence interval (CI) [7.57%-8.15%]) and 7.27% (95% CI [6.99%-7.55%]) when excluding individuals with autism and intellectual disability (ID). We also found that SaLD were significantly more prevalent in males than females with a ratio of 2:1. The heritability was estimated to be 75% (95% CI [67%-83%]) for SaLD. Shared environment played a significant role with an estimated contribution of 22% (95% CI [14%-30%]). The heritability estimate was reduced to 70% but with overlapping CI when excluding individuals with autism and ID. Conclusions We provide evidence that SaLD is common in the population and under strong genetic influence. Future studies should focus on mapping the genetic architecture of SaLD and related disorders.
Collapse
Affiliation(s)
- Rebecka Keijser
- The Center of Neurodevelopmental Disorders (KIND)Centre for Psychiatry ResearchDepartment of Women's and Children's HealthKarolinska Institutet and Child and Adolescent PsychiatryStockholm Health Care ServicesStockholm County CouncilStockholmSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| | - Jakob Åsberg Johnels
- Gillberg Neuropsychiatry CentreInstitute of Neuroscience and PhysiologyUniversity of GothenburgGothenburgSweden
- Speech and Language Pathology UnitInstitute of Neuroscience and PhysiologyUniversity of GothenburgGothenburgSweden
| | - Marika Habbe
- The Center of Neurodevelopmental Disorders (KIND)Centre for Psychiatry ResearchDepartment of Women's and Children's HealthKarolinska Institutet and Child and Adolescent PsychiatryStockholm Health Care ServicesStockholm County CouncilStockholmSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| | - Paul Lichtenstein
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Henrik Larsson
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
- School of Medical SciencesÖrebro UniversityÖrebroSweden
| | - Sebastian Lundström
- Gillberg Neuropsychiatry CentreInstitute of Neuroscience and PhysiologyUniversity of GothenburgGothenburgSweden
| | - Mark J. Taylor
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Kristiina Tammimies
- The Center of Neurodevelopmental Disorders (KIND)Centre for Psychiatry ResearchDepartment of Women's and Children's HealthKarolinska Institutet and Child and Adolescent PsychiatryStockholm Health Care ServicesStockholm County CouncilStockholmSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| |
Collapse
|
4
|
Yousaf A, Hafeez H, Basra MAR, Rice ML, Raza MH, Shabbir MI. Genome-Wide Mapping of Consanguineous Families Confirms Previously Implicated Gene Loci and Suggests New Loci in Specific Language Impairment (SLI). CHILDREN (BASEL, SWITZERLAND) 2024; 11:1063. [PMID: 39334596 PMCID: PMC11429814 DOI: 10.3390/children11091063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Specific language impairment (SLI) is a developmental disorder with substantial genetic contributions. A genome-wide linkage analysis and homozygosity mapping were performed in five consanguineous families from Pakistan. The highest LOD scores of 2.49 at 12p11.22-q11.21 in family PKSLI-31 and 1.92 at 6p in family PKSLI-20 were observed. Homozygosity mapping showed a loss of heterozygosity on 1q25.3-q32.2 and 2q36.3-q37.3 in PKSLI-20. A loss of heterozygosity mapped, in PKSLI-31 and PKSLI-34 flanks, NFXL1 and CNTNAP2, which are genes previously identified in SLI. Our findings report novel SLI loci and corroborate previously reported SLI loci, indicating the utility of a family-based approach.
Collapse
Affiliation(s)
- Adnan Yousaf
- Department of Biological Sciences, International Islamic University, Islamabad 45500, Pakistan
- Speech-Language-Hearing: Sciences & Disorders, University of Kansas, Lawrence, KS 66045-7555, USA
| | - Huma Hafeez
- Centre for Clinical and Nutritional Chemistry, School of Chemistry, University of the Punjab, New Campus Lahore, Lahore 54590, Pakistan
| | - Muhammad Asim Raza Basra
- Centre for Clinical and Nutritional Chemistry, School of Chemistry, University of the Punjab, New Campus Lahore, Lahore 54590, Pakistan
| | - Mabel L Rice
- Speech-Language-Hearing: Sciences & Disorders, University of Kansas, Lawrence, KS 66045-7555, USA
| | - Muhammad Hashim Raza
- Speech-Language-Hearing: Sciences & Disorders, University of Kansas, Lawrence, KS 66045-7555, USA
| | - Muhammad Imran Shabbir
- Department of Biological Sciences, International Islamic University, Islamabad 45500, Pakistan
| |
Collapse
|
5
|
Espinosa-Mojica AA, Varo Varo C. Determining the Linguistic Profile of Children With Rare Genetic Disorders. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:170-186. [PMID: 38085694 DOI: 10.1044/2023_jslhr-23-00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
PURPOSE Language studies on populations with rare genetic disorders are limited. Hence, there is little data on commonly found or expected developmental linguistic traits and cognitive mechanisms that may be impaired. Based on the hypothesis that there is a close connection between language and cognition and the relevance of specific genetic changes in the development of each, our goal was to provide linguistic data on relationships with other executive functioning mechanisms. METHOD This study assessed language skills, communicative behaviors, and executive functions in four children, aged 7-9 years, with rare genetic disorders, using standardized protocols and tests. RESULTS The findings revealed different levels of language impairment and executive functioning problems in each case. The overall executive function index performance for each of the four cases studied was clinically significantly high, indicating executive dysfunction. CONCLUSIONS The cases analyzed illustrate different types of atypical development that affect both language and other cognitive mechanisms and underscore the importance of executive skills and the various ways in which they are involved in diverse levels of language that might be affected to a greater or lesser degree in rare genetic disorders. In conclusion, we found that language dysfunction is a salient feature of the rare genetic disorders included in our study, although this is not necessarily true for all genetic disorders. Along with these conclusive results, we performed a qualitative analysis of the linguistic and cognitive components that enable functional communication in order to allow optimal interpretation of the data we have collected, laying the foundations for a more effective therapeutic approach.
Collapse
|
6
|
Roy B, Amemasor E, Hussain S, Castro K. UBE3A: The Role in Autism Spectrum Disorders (ASDs) and a Potential Candidate for Biomarker Studies and Designing Therapeutic Strategies. Diseases 2023; 12:7. [PMID: 38248358 PMCID: PMC10814747 DOI: 10.3390/diseases12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Published reports from the CDC's Autism and Development Disabilities Monitoring Networks have shown that an average of 1 in every 44 (2.3%) 8-year-old children were estimated to have ASD in 2018. Many of the ASDs exhibiting varying degrees of autism-like phenotypes have chromosomal anomalies in the Chr15q11-q13 region. Numerous potential candidate genes linked with ASD reside in this chromosomal segment. However, several clinical, in vivo, and in vitro studies selected one gene more frequently than others randomly and unbiasedly. This gene codes for UBE3A or Ubiquitin protein ligase E3A [also known as E6AP ubiquitin-protein ligase (E6AP)], an enzyme involved in the cellular degradation of proteins. This gene has been listed as one of the several genes with a high potential of causing ASD in the Autism Database. The gain of function mutations, triplication, or duplication in the UBE3A gene is also associated with ASDs like Angelman Syndrome (AS) and Dup15q Syndrome. The genetic imprinting of UBE3A in the brain and a preference for neuronal maternal-specific expression are the key features of various ASDs. Since the UBE3A gene is involved in two main important diseases associated with autism-like symptoms, there has been widespread research going on in understanding the link between this gene and autism. Additionally, since no universal methodology or mechanism exists for identifying UBE3A-mediated ASD, it continues to be challenging for neurobiologists, neuroscientists, and clinicians to design therapies or diagnostic tools. In this review, we focus on the structure and functional aspects of the UBE3A protein, discuss the primary relevance of the 15q11-q13 region in the cause of ASDs, and highlight the link between UBE3A and ASD. We try to broaden the knowledge of our readers by elaborating on the possible mechanisms underlying UBE3A-mediated ASDs, emphasizing the usage of UBE3A as a prospective biomarker in the preclinical diagnosis of ASDs and discuss the positive outcomes, advanced developments, and the hurdles in the field of therapeutic strategies against UBE3A-mediated ASDs. This review is novel as it lays a very detailed and comprehensive platform for one of the most important genes associated with diseases showing autistic-like symptoms. Additionally, this review also attempts to lay optimistic feedback on the possible steps for the diagnosis, prevention, and therapy of these UBE3A-mediated ASDs in the upcoming years.
Collapse
Affiliation(s)
- Bidisha Roy
- Life Science Centre, Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102, USA; (E.A.); (S.H.); (K.C.)
| | | | | | | |
Collapse
|
7
|
Nudel R, Christensen RV, Kalnak N, Schwinn M, Banasik K, Dinh KM, Erikstrup C, Pedersen OB, Burgdorf KS, Ullum H, Ostrowski SR, Hansen TF, Werge T. Developmental language disorder - a comprehensive study of more than 46,000 individuals. Psychiatry Res 2023; 323:115171. [PMID: 36963307 DOI: 10.1016/j.psychres.2023.115171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/16/2023] [Accepted: 03/14/2023] [Indexed: 03/26/2023]
Abstract
Developmental language disorder (DLD) is characterized by enduring low language abilities with a significant functional impact, in the absence of biomedical conditions in which language impairment is part of a complex of impairments. There is a lack of awareness of DLD even among healthcare professionals. Here we estimated the prevalence of DLD and its links to reading and learning difficulties and physical and mental health in the Danish Blood Donor Study (N = 46,547), where DLD-related information is based on questionnaires (self-report). We compared the questionnaire-derived DLD status with the relevant language-related diagnoses from hospital registers. We also investigated the genetic architecture of DLD in a subset of the cohort (N = 18,380). DLD was significantly associated with reading and learning difficulties and poorer mental and physical health. DLD prevalence was 3.36%-3.70% based on questionnaires, compared with 0.04% in hospital registers. Our genetic analyses identified one genome-wide significant locus, but not a significant heritability estimate. Our study shows that DLD has health-related implications that may last into adulthood, and that DLD may be undiagnosed in general healthcare. Furthermore, DLD is likely more genetically heterogeneous than narrower developmental language phenotypes. Our results emphasize the need to raise awareness of DLD and consider criteria for molecular studies of DLD to reduce case heterogeneity.
Collapse
Affiliation(s)
- Ron Nudel
- CORE - Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark.
| | - Rikke Vang Christensen
- Department of Nordic Studies and Linguistics, University of Copenhagen, Emil Holms Kanal 2, Copenhagen 2300, Denmark.
| | - Nelli Kalnak
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden; Department of Speech-Language Pathology, Helsingborg Hospital, Helsingborg, Sweden.
| | - Michael Schwinn
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Karina Banasik
- Novo Nordisk foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Khoa Manh Dinh
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Birger Pedersen
- Department of Immunology, Næstved Hospital, Næstved, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer Sølvsten Burgdorf
- Department of Immunology, Rigshospitalet, Copenhagen, Denmark; Translational Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Folkmann Hansen
- Novo Nordisk foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Danish Headache Center, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Thomas Werge
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Institute of Biological Psychiatry, Roskilde, Denmark
| |
Collapse
|
8
|
Bonefas KM, Vallianatos CN, Raines B, Tronson NC, Iwase S. Sexually Dimorphic Alterations in the Transcriptome and Behavior with Loss of Histone Demethylase KDM5C. Cells 2023; 12:637. [PMID: 36831303 PMCID: PMC9954040 DOI: 10.3390/cells12040637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Chromatin dysregulation has emerged as a major hallmark of neurodevelopmental disorders such as intellectual disability (ID) and autism spectrum disorders (ASD). The prevalence of ID and ASD is higher in males compared to females, with unknown mechanisms. Intellectual developmental disorder, X-linked syndromic, Claes-Jensen type (MRXSCJ), is caused by loss-of-function mutations of lysine demethylase 5C (KDM5C), a histone H3K4 demethylase gene. KDM5C escapes X-inactivation, thereby presenting at a higher level in females. Initially, MRXSCJ was exclusively reported in males, while it is increasingly evident that females with heterozygous KDM5C mutations can show cognitive deficits. The mouse model of MRXSCJ, male Kdm5c-hemizygous knockout animals, recapitulates key features of human male patients. However, the behavioral and molecular traits of Kdm5c-heterozygous female mice remain incompletely characterized. Here, we report that gene expression and behavioral abnormalities are readily detectable in Kdm5c-heterozygous female mice, demonstrating the requirement for a higher KDM5C dose in females. Furthermore, we found both shared and sex-specific consequences of a reduced KDM5C dose in social behavior, gene expression, and genetic interaction with the counteracting enzyme KMT2A. These observations provide an essential insight into the sex-biased manifestation of neurodevelopmental disorders and sex chromosome evolution.
Collapse
Affiliation(s)
- Katherine M. Bonefas
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christina N. Vallianatos
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Genetics and Genomics Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brynne Raines
- Department of Psychology, College of LS&A, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natalie C. Tronson
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Psychology, College of LS&A, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shigeki Iwase
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Genetics and Genomics Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Cortese S, Solmi M, Michelini G, Bellato A, Blanner C, Canozzi A, Eudave L, Farhat LC, Højlund M, Köhler-Forsberg O, Leffa DT, Rohde C, de Pablo GS, Vita G, Wesselhoeft R, Martin J, Baumeister S, Bozhilova NS, Carlisi CO, Leno VC, Floris DL, Holz NE, Kraaijenvanger EJ, Sacu S, Vainieri I, Ostuzzi G, Barbui C, Correll CU. Candidate diagnostic biomarkers for neurodevelopmental disorders in children and adolescents: a systematic review. World Psychiatry 2023; 22:129-149. [PMID: 36640395 PMCID: PMC9840506 DOI: 10.1002/wps.21037] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 01/15/2023] Open
Abstract
Neurodevelopmental disorders - including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, communication disorders, intellectual disability, motor disorders, specific learning disorders, and tic disorders - manifest themselves early in development. Valid, reliable and broadly usable biomarkers supporting a timely diagnosis of these disorders would be highly relevant from a clinical and public health standpoint. We conducted the first systematic review of studies on candidate diagnostic biomarkers for these disorders in children and adolescents. We searched Medline and Embase + Embase Classic with terms relating to biomarkers until April 6, 2022, and conducted additional targeted searches for genome-wide association studies (GWAS) and neuroimaging or neurophysiological studies carried out by international consortia. We considered a candidate biomarker as promising if it was reported in at least two independent studies providing evidence of sensitivity and specificity of at least 80%. After screening 10,625 references, we retained 780 studies (374 biochemical, 203 neuroimaging, 133 neurophysiological and 65 neuropsychological studies, and five GWAS), including a total of approximately 120,000 cases and 176,000 controls. While the majority of the studies focused simply on associations, we could not find any biomarker for which there was evidence - from two or more studies from independent research groups, with results going into the same direction - of specificity and sensitivity of at least 80%. Other important metrics to assess the validity of a candidate biomarker, such as positive predictive value and negative predictive value, were infrequently reported. Limitations of the currently available studies include mostly small sample size, heterogeneous approaches and candidate biomarker targets, undue focus on single instead of joint biomarker signatures, and incomplete accounting for potential confounding factors. Future multivariable and multi-level approaches may be best suited to find valid candidate biomarkers, which will then need to be validated in external, independent samples and then, importantly, tested in terms of feasibility and cost-effectiveness, before they can be implemented in daily clinical practice.
Collapse
Affiliation(s)
- Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- Solent NHS Trust, Southampton, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Marco Solmi
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
- Department of Mental Health, Ottawa Hospital, Ottawa, ON, Canada
- Ottawa Hospital Research Institute (OHRI) Clinical Epidemiology Program, University of Ottawa, Ottawa, ON, Canada
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Giorgia Michelini
- Department of Biological & Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Alessio Bellato
- School of Psychology, University of Nottingham, Semenyih, Malaysia
| | - Christina Blanner
- Mental Health Center, Glostrup, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
| | - Andrea Canozzi
- Department of Neuroscience, Biomedicine, and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Luis Eudave
- Faculty of Education and Psychology, University of Navarra, Pamplona, Spain
| | - Luis C Farhat
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Mikkel Højlund
- Department of Psychiatry Aabenraa, Mental Health Services in the Region of Southern Denmark, Aabenraa, Denmark
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Ole Köhler-Forsberg
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Douglas Teixeira Leffa
- ADHD Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christopher Rohde
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Affective Disorders, Aarhus University Hospital - Psychiatry, Aarhus, Denmark
| | - Gonzalo Salazar de Pablo
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Child and Adolescent Mental Health Services, South London and Maudsley NHS Foundation Trust, London, UK
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute of Psychiatry and Mental Health, Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón School of Medicine, Universidad Complutense, CIBERSAM, Madrid, Spain
| | - Giovanni Vita
- Department of Neuroscience, Biomedicine, and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Rikke Wesselhoeft
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Child and Adolescent Mental Health Odense, Mental Health Services in the Region of Southern Denmark, Odense, Denmark
| | - Joanna Martin
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Sarah Baumeister
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Natali S Bozhilova
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- School of Psychology, University of Surrey, Guilford, UK
| | - Christina O Carlisi
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Virginia Carter Leno
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Dorothea L Floris
- Department of Psychology, University of Zurich, Zurich, Switzerland
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Nathalie E Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Eline J Kraaijenvanger
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Seda Sacu
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Isabella Vainieri
- Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Giovanni Ostuzzi
- Department of Neuroscience, Biomedicine, and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Corrado Barbui
- Department of Neuroscience, Biomedicine, and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Christoph U Correll
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
- Psychiatry Research, Northwell Health, Zucker Hillside Hospital, New York, NY, USA
- Department of Psychiatry and Molecular Medicine, Zucker School of Medicine, Hempstead, NY, USA
- Center for Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
10
|
Exploring Genetic and Neural Risk of Specific Reading Disability within a Nuclear Twin Family Case Study: A Translational Clinical Application. J Pers Med 2023; 13:jpm13010156. [PMID: 36675818 PMCID: PMC9862148 DOI: 10.3390/jpm13010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Imaging and genetic studies have characterized biological risk factors contributing to specific reading disability (SRD). The current study aimed to apply this literature to a family of twins discordant for SRD and an older sibling with reading difficulty. Intraclass correlations were used to understand the similarity of imaging phenotypes between pairs. Reading-related genes and brain region phenotypes, including asymmetry indices representing the relative size of left compared to right hemispheric structures, were descriptively examined. SNPs that corresponded between the SRD siblings and not the typically developing (TD) siblings were in genes ZNF385D, LPHN3, CNTNAP2, FGF18, NOP9, CMIP, MYO18B, and RBFOX2. Imaging phenotypes were similar among all sibling pairs for grey matter volume and surface area, but cortical thickness in reading-related regions of interest (ROIs) was more similar among the siblings with SRD, followed by the twins, and then the TD twin and older siblings, suggesting cortical thickness may differentiate risk for this family. The siblings with SRD had more symmetry of cortical thickness in the transverse temporal and superior temporal gyri, while the TD sibling had greater rightward asymmetry. The TD sibling had a greater leftward asymmetry of grey matter volume and cortical surface area in the fusiform, supramarginal, and transverse temporal gyrus. This exploratory study demonstrated that reading-related risk factors appeared to correspond with SRD within this family, suggesting that early examination of biological factors may benefit early identification. Future studies may benefit from the use of polygenic risk scores or machine learning to better understand SRD risk.
Collapse
|
11
|
Lachman HM. Use of cerebral organoids to model environmental and gene x environment interactions in the developing fetus and neurodegenerative disorders. PHENOTYPING OF HUMAN IPSC-DERIVED NEURONS 2023:173-200. [DOI: 10.1016/b978-0-12-822277-5.00006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
A family-based study of genetic and epigenetic effects across multiple neurocognitive, motor, social-cognitive and social-behavioral functions. Behav Brain Funct 2022; 18:14. [PMID: 36457050 PMCID: PMC9714039 DOI: 10.1186/s12993-022-00198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
Many psychiatric and neurodevelopmental disorders are known to be heritable, but studies trying to elucidate the genetic architecture of such traits often lag behind studies of somatic traits and diseases. The reasons as to why relatively few genome-wide significant associations have been reported for such traits have to do with the sample sizes needed for the detection of small effects, the difficulty in defining and characterizing the phenotypes, partially due to overlaps in affected underlying domains (which is especially true for cognitive phenotypes), and the complex genetic architectures of the phenotypes, which are not wholly captured in traditional case-control GWAS designs. We aimed to tackle the last two issues by performing GWASs of eight quantitative neurocognitive, motor, social-cognitive and social-behavioral traits, which may be considered endophenotypes for a variety of psychiatric and neurodevelopmental conditions, and for which we employed models capturing both general genetic association and parent-of-origin effects, in a family-based sample comprising 402 children and their parents (mostly family trios). We identified 48 genome-wide significant associations across several traits, of which 3 also survived our strict study-wide quality criteria. We additionally performed a functional annotation of implicated genes, as most of the 48 associations were with variants within protein-coding genes. In total, our study highlighted associations with five genes (TGM3, CACNB4, ANKS1B, CSMD1 and SYNE1) associated with measures of working memory, processing speed and social behavior. Our results thus identify novel associations, including previously unreported parent-of-origin associations with relevant genes, and our top results illustrate new potential gene → endophenotype → disorder pathways.
Collapse
|
13
|
Anijs M, Devanna P, Vernes SC. ARHGEF39, a Gene Implicated in Developmental Language Disorder, Activates RHOA and Is Involved in Cell De-Adhesion and Neural Progenitor Cell Proliferation. Front Mol Neurosci 2022; 15:941494. [PMID: 35959104 PMCID: PMC9359124 DOI: 10.3389/fnmol.2022.941494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
ARHGEF39 was previously implicated in developmental language disorder (DLD) via a functional polymorphism that can disrupt post-transcriptional regulation by microRNAs. ARHGEF39 is part of the family of Rho guanine nucleotide exchange factors (RhoGEFs) that activate small Rho GTPases to regulate a wide variety of cellular processes. However, little is known about the function of ARHGEF39, or how its function might contribute to neurodevelopment or related disorders. Here, we explore the molecular function of ARHGEF39 and show that it activates the Rho GTPase RHOA and that high ARHGEF39 expression in cell cultures leads to an increase of detached cells. To explore its role in neurodevelopment, we analyse published single cell RNA-sequencing data and demonstrate that ARHGEF39 is a marker gene for proliferating neural progenitor cells and that it is co-expressed with genes involved in cell division. This suggests a role for ARHGEF39 in neurogenesis in the developing brain. The co-expression of ARHGEF39 with other RHOA-regulating genes supports RHOA as substrate of ARHGEF39 in neural cells, and the involvement of RHOA in neuropsychiatric disorders highlights a potential link between ARHGEF39 and neurodevelopment and disorder. Understanding the GTPase substrate, co-expression network, and processes downstream of ARHGEF39 provide new avenues for exploring the mechanisms by which altered expression levels of ARHGEF39 may contribute to neurodevelopment and associated disorders.
Collapse
|
14
|
Mishra A, Prabha PK, Singla R, Kaur G, Sharma AR, Joshi R, Suroy B, Medhi B. Epigenetic Interface of Autism Spectrum Disorders (ASDs): Implications of Chromosome 15q11-q13 Segment. ACS Chem Neurosci 2022; 13:1684-1696. [PMID: 35635007 DOI: 10.1021/acschemneuro.2c00060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorders (ASDs) are multifactorial in nature and include both genetic and environmental factors. The increasing evidence advocates an important role of epigenetics in ASD etiology. One of the most common forms of epigenetic changes observed in the case of neurodevelopmental disorders is imprinting which is tightly regulated by developmental and tissue-specific mechanisms. Interestingly, many of these disorders that demonstrate autism-like phenotypes at varying degrees have found involvement of chromosome 15q11-q13 segment. Numerous studies demonstrate occurrence of ASD in the presence of chromosomal abnormalities located mainly in Chr15q11-q13 region. Several plausible candidate genes associated with ASD are in this chromosomal segment, including gamma aminobutyric acid A (GABAA) receptor genes GABRB3, GABRA5 and GABRG3, UBE3A, ATP 10A, MKRN3, ZNF, MAGEL2, Necdin (NDN), and SNRPN. The main objective of this review is to highlight the contribution of epigenetic modulations in chromosome 15q11-q13 segment toward the genetic etiology and pathophysiology of ASD. The present review reports the abnormalities in epigenetic regulation on genes and genomic regions located on chromosome 15 in relation to either syndromic (15q11-q13 maternal duplication) or nonsyndromic forms of ASD. Furthermore, studies reviewed in this article demonstrate conditions in which epigenetic dysregulation has been found to be a pathological factor for ASD development, thereby supporting a role for epigenetics in the multifactorial etiologies of ASD. Also, on the basis of the evidence found so far, we strongly emphasize the need to develop future therapeutic strategies as well as screening procedures for ASD that target mechanisms involving genes located on the chromosomal 15q11-q13 segment.
Collapse
Affiliation(s)
- Abhishek Mishra
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Praisy K Prabha
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Rubal Singla
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Gurjeet Kaur
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Amit Raj Sharma
- Dept. of Neurology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Rupa Joshi
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Benjamin Suroy
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Bikash Medhi
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
15
|
Kong YF, Li MK, Yuan YX, Yang ZY, Yu WY, Zhao PZ, Zhou JY. Detection of Parent-of-Origin Effects for the Variants Associated With Behavioral Disinhibition in the MCTFR Data. Front Genet 2022; 13:831685. [PMID: 35559008 PMCID: PMC9086303 DOI: 10.3389/fgene.2022.831685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Behavioral disinhibition is one of the important characteristics of many mental diseases. It has been reported in literature that serious behavioral disinhibition will affect people's health and greatly reduce people's quality of life. Meanwhile, behavioral disinhibition can easily lead to illegal drug abuse and violent crimes, etc., which will bring great harm to the society. At present, large-scale genome-wide association analysis has identified many loci associated with behavioral disinhibition. However, these studies have not incorporated the parent-of-origin effects (POE) into analysis, which may ignore or underestimate the genetic effects of loci on behavioral disinhibition. Therefore, in this article, we analyzed the five phenotypes related to behavioral disinhibition in the Minnesota Center for Twin and Family Research data (nicotine, alcohol consumption, alcohol dependence, illicit drugs, and non-substance use related behavioral disinhibition), to further explore the POE of variants on behavioral disinhibition. We applied a linear mixed model to test for the POE at a genome-wide scale on five transformed phenotypes, and found nine SNPs with statistically significant POE at the significance level of 5 × 10-8. Among them, SNPs rs4141854, rs9394515, and rs4711553 have been reported to be associated with two neurological disorders (restless legs syndrome and Tourette's syndrome) which are related to behavioral disinhibition; SNPs rs12960235 and rs715351 have been found to be associated with head and neck squamous cell carcinoma, skin cancer and type I diabetes, while both SNPs have not been identified to be related to behavioral disinhibition in literature; SNPs rs704833, rs6837925, rs1863548, and rs11067062 are novel loci identified in this article, and their function annotations have not been reported in literature. Follow-up study in molecular genetics is needed to verify whether they are surely related to behavioral disinhibition.
Collapse
Affiliation(s)
- Yi-Fan Kong
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Hong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | - Meng-Kai Li
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Hong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | - Yu-Xin Yuan
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zi-Ying Yang
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wen-Yi Yu
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Pei-Zhen Zhao
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ji-Yuan Zhou
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Hong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| |
Collapse
|
16
|
Mountford HS, Braden R, Newbury DF, Morgan AT. The Genetic and Molecular Basis of Developmental Language Disorder: A Review. CHILDREN (BASEL, SWITZERLAND) 2022; 9:586. [PMID: 35626763 PMCID: PMC9139417 DOI: 10.3390/children9050586] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 01/05/2023]
Abstract
Language disorders are highly heritable and are influenced by complex interactions between genetic and environmental factors. Despite more than twenty years of research, we still lack critical understanding of the biological underpinnings of language. This review provides an overview of the genetic landscape of developmental language disorders (DLD), with an emphasis on the importance of defining the specific features (the phenotype) of DLD to inform gene discovery. We review the specific phenotype of DLD in the genetic literature, and the influence of historic variation in diagnostic inclusion criteria on researchers' ability to compare and replicate genotype-phenotype studies. This review provides an overview of the recently identified gene pathways in populations with DLD and explores current state-of-the-art approaches to genetic analysis based on the hypothesised architecture of DLD. We will show how recent global efforts to unify diagnostic criteria have vastly increased sample size and allow for large multi-cohort metanalyses, leading the identification of a growing number of contributory loci. We emphasise the important role of estimating the genetic architecture of DLD to decipher underlying genetic associations. Finally, we explore the potential for epigenetics and environmental interactions to further unravel the biological basis of language disorders.
Collapse
Affiliation(s)
- Hayley S. Mountford
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (H.S.M.); (D.F.N.)
| | - Ruth Braden
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne 3052, Australia;
| | - Dianne F. Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (H.S.M.); (D.F.N.)
| | - Angela T. Morgan
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne 3052, Australia;
| |
Collapse
|
17
|
Schmitz J, Zheng M, Lui KFH, McBride C, Ho CSH, Paracchini S. Quantitative multidimensional phenotypes improve genetic analysis of laterality traits. Transl Psychiatry 2022; 12:68. [PMID: 35184143 PMCID: PMC8858319 DOI: 10.1038/s41398-022-01834-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 01/10/2023] Open
Abstract
Handedness is the most commonly investigated lateralised phenotype and is usually measured as a binary left/right category. Its links with psychiatric and neurodevelopmental disorders prompted studies aimed at understanding the underlying genetics, while other measures and side preferences have been less studied. We investigated the heritability of hand, as well as foot, and eye preference by assessing parental effects (n ≤ 5028 family trios) and SNP-based heritability (SNP-h2, n ≤ 5931 children) in the Avon Longitudinal Study of Parents and Children (ALSPAC). An independent twin cohort from Hong Kong (n = 358) was used to replicate results from structural equation modelling (SEM). Parental left-side preference increased the chance of an individual to be left-sided for the same trait, with stronger maternal than paternal effects for footedness. By regressing out the effects of sex, age, and ancestry, we transformed laterality categories into quantitative measures. The SNP-h2 for quantitative handedness and footedness was 0.21 and 0.23, respectively, which is higher than the SNP-h2 reported in larger genetic studies using binary handedness measures. The heritability of the quantitative measure of handedness increased (0.45) compared to a binary measure for writing hand (0.27) in the Hong Kong twins. Genomic and behavioural SEM identified a shared genetic factor contributing to handedness, footedness, and eyedness, but no independent effects on individual phenotypes. Our analysis demonstrates how quantitative multidimensional laterality phenotypes are better suited to capture the underlying genetics than binary traits.
Collapse
Affiliation(s)
- Judith Schmitz
- School of Medicine, University of St Andrews, St Andrews, Scotland
| | - Mo Zheng
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Kelvin F H Lui
- Wofoo Joseph Lee Consulting and Counselling Psychology Research Centre, Lingnan University, Hong Kong, China
| | - Catherine McBride
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Connie S-H Ho
- Psychology Department, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
18
|
Andres EM, Earnest KK, Zhong C, Rice ML, Raza MH. Family-Based Whole-Exome Analysis of Specific Language Impairment (SLI) Identifies Rare Variants in BUD13, a Component of the Retention and Splicing (RES) Complex. Brain Sci 2021; 12:47. [PMID: 35053791 PMCID: PMC8773923 DOI: 10.3390/brainsci12010047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Specific language impairment (SLI) is a common neurodevelopmental disorder (NDD) that displays high heritability estimates. Genetic studies have identified several loci, but the molecular basis of SLI remains unclear. With the aim to better understand the genetic architecture of SLI, we performed whole-exome sequencing (WES) in a single family (ID: 489; n = 11). We identified co-segregating rare variants in three new genes: BUD13, APLP2, and NDRG2. To determine the significance of these genes in SLI, we Sanger sequenced all coding regions of each gene in unrelated individuals with SLI (n = 175). We observed 13 additional rare variants in 18 unrelated individuals. Variants in BUD13 reached genome-wide significance (p-value < 0.01) upon comparison with similar variants in the 1000 Genomes Project, providing gene level evidence that BUD13 is involved in SLI. Additionally, five BUD13 variants showed cohesive variant level evidence of likely pathogenicity. Bud13 is a component of the retention and splicing (RES) complex. Additional supportive evidence from studies of an animal model (loss-of-function mutations in BUD13 caused a profound neural phenotype) and individuals with an NDD phenotype (carrying a CNV spanning BUD13), indicates BUD13 could be a target for investigation of the neural basis of language.
Collapse
Affiliation(s)
- Erin M. Andres
- Child Language Doctoral Program, University of Kansas, Lawrence, KS 66045, USA; (E.M.A.); (M.L.R.)
| | | | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS 66045, USA;
| | - Mabel L. Rice
- Child Language Doctoral Program, University of Kansas, Lawrence, KS 66045, USA; (E.M.A.); (M.L.R.)
- Language Acquisition Studies Lab, University of Kansas, Lawrence, KS 66045, USA;
| | - Muhammad Hashim Raza
- Child Language Doctoral Program, University of Kansas, Lawrence, KS 66045, USA; (E.M.A.); (M.L.R.)
| |
Collapse
|
19
|
Nudel R, Appadurai V, Buil A, Nordentoft M, Werge T. Pleiotropy between language impairment and broader behavioral disorders-an investigation of both common and rare genetic variants. J Neurodev Disord 2021; 13:54. [PMID: 34773992 PMCID: PMC8590378 DOI: 10.1186/s11689-021-09403-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Language plays a major role in human behavior. For this reason, neurodevelopmental and psychiatric disorders in which linguistic ability is impaired could have a big impact on the individual's social interaction and general wellbeing. Such disorders tend to have a strong genetic component, but most past studies examined mostly the linguistic overlaps across these disorders; investigations into their genetic overlaps are limited. The aim of this study was to assess the potential genetic overlap between language impairment and broader behavioral disorders employing methods capturing both common and rare genetic variants. METHODS We employ polygenic risk scores (PRS) trained on specific language impairment (SLI) to evaluate genetic overlap across several disorders in a large case-cohort sample comprising ~13,000 autism spectrum disorder (ASD) cases, including cases of childhood autism and Asperger's syndrome, ~15,000 attention deficit/hyperactivity disorder (ADHD) cases, ~3000 schizophrenia cases, and ~21,000 population controls. We also examine rare variants in SLI/language-related genes in a subset of the sample that was exome-sequenced using the SKAT-O method. RESULTS We find that there is little evidence for genetic overlap between SLI and ADHD, schizophrenia, and ASD, the latter being in line with results of linguistic analyses in past studies. However, we observe a small, significant genetic overlap between SLI and childhood autism specifically, which we do not observe for SLI and Asperger's syndrome. Moreover, we observe that childhood autism cases have significantly higher SLI-trained PRS compared to Asperger's syndrome cases; these results correspond well to the linguistic profiles of both disorders. Our rare variant analyses provide suggestive evidence of association for specific genes with ASD, childhood autism, and schizophrenia. CONCLUSIONS Our study provides, for the first time, to our knowledge, genetic evidence for ASD subtypes based on risk variants for language impairment.
Collapse
Affiliation(s)
- Ron Nudel
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- CORE - Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Vivek Appadurai
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Alfonso Buil
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- CORE - Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark.
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
20
|
Ansari M, Petrykey K, Rezgui MA, Del Vecchio V, Cortyl J, Ameur M, Nava T, Beaulieu P, St-Onge P, Mlakar SJ, Uppugunduri CRS, Théoret Y, Bartelink IH, Boelens JJ, Bredius RGM, Dalle JH, Lewis V, Kangarloo BS, Corbacioglu S, Sinnett D, Bittencourt H, Krajinovic M. Genetic susceptibility to acute graft versus host disease in pediatric patients undergoing HSCT. Bone Marrow Transplant 2021; 56:2697-2704. [PMID: 34215854 DOI: 10.1038/s41409-021-01386-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/28/2021] [Accepted: 06/21/2021] [Indexed: 11/09/2022]
Abstract
The most frequent complication of allogeneic hematopoietic stem cell transplantation is acute Graft versus Host Disease (aGVHD). Proliferation and differentiation of donor T cells initiate inflammatory response affecting the skin, liver, and gastrointestinal tract. Besides recipient-donor HLA disparities, disease type, and the conditioning regimen, variability in the non-HLA genotype have an impact on aGVHD onset, and genetic variability of key cytokines and chemokines was associated with increased risk of aGVHD. To get further insight into the recipient genetic component of aGVHD grades 2-4 in pediatric patients, we performed an exome-wide association study in a discovery cohort (n = 87). Nine loci sustained correction for multiple testing and were analyzed in a validation group (n = 168). Significant associations were replicated for ERC1 rs1046473, PLEK rs3816281, NOP9 rs2332320 and SPRED1 rs11634702 variants through the interaction with non-genetic factors. The ERC1 variant was significant among patients that received the transplant from HLA-matched related individuals (p = 0.03), bone marrow stem cells recipients (p = 0.007), and serotherapy-negative patients (p = 0.004). NOP9, PLEK, and SPRED1 effects were modulated by stem cell source, and serotherapy (p < 0.05). Furthermore, ERC1 and PLEK SNPs correlated with aGVHD 3-4 independently of non-genetic covariates (p = 0.02 and p = 0.003). This study provides additional insight into the genetic component of moderate to severe aGVHD.
Collapse
Affiliation(s)
- Marc Ansari
- Cansearch research platform for paediatric oncology and haematology, Department of Paediatrics, Gynaecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Women, Child and Adolescent, Onco-Hematology Unit, Geneva University Hospital, Geneva, Switzerland
| | - Kateryna Petrykey
- Charles-Bruneau Cancer Center, Sainte-Justine University Health Center (SJUHC), Montreal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Mohamed Aziz Rezgui
- Charles-Bruneau Cancer Center, Sainte-Justine University Health Center (SJUHC), Montreal, QC, Canada
| | - Veronica Del Vecchio
- Charles-Bruneau Cancer Center, Sainte-Justine University Health Center (SJUHC), Montreal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Jacques Cortyl
- Charles-Bruneau Cancer Center, Sainte-Justine University Health Center (SJUHC), Montreal, QC, Canada
| | - Milad Ameur
- Charles-Bruneau Cancer Center, Sainte-Justine University Health Center (SJUHC), Montreal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Tiago Nava
- Cansearch research platform for paediatric oncology and haematology, Department of Paediatrics, Gynaecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Women, Child and Adolescent, Onco-Hematology Unit, Geneva University Hospital, Geneva, Switzerland
| | - Patrick Beaulieu
- Charles-Bruneau Cancer Center, Sainte-Justine University Health Center (SJUHC), Montreal, QC, Canada
| | - Pascal St-Onge
- Charles-Bruneau Cancer Center, Sainte-Justine University Health Center (SJUHC), Montreal, QC, Canada
| | - Simona Jurkovic Mlakar
- Cansearch research platform for paediatric oncology and haematology, Department of Paediatrics, Gynaecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Women, Child and Adolescent, Onco-Hematology Unit, Geneva University Hospital, Geneva, Switzerland
| | - Chakradhara Rao S Uppugunduri
- Cansearch research platform for paediatric oncology and haematology, Department of Paediatrics, Gynaecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Women, Child and Adolescent, Onco-Hematology Unit, Geneva University Hospital, Geneva, Switzerland
| | - Yves Théoret
- Charles-Bruneau Cancer Center, Sainte-Justine University Health Center (SJUHC), Montreal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada.,Clinical Pharmacology Unit, Sainte-Justine University Health Center (SJUHC), Montreal, QC, Canada
| | - Imke H Bartelink
- Pediatric Blood and Marrow Transplantation Program, University Medical Center Utrecht, Utrecht, The Netherlands.,Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Pharmacology and Pharmacy, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Jaap-Jan Boelens
- Pediatric Blood and Marrow Transplantation Program, University Medical Center Utrecht, Utrecht, The Netherlands.,Stem cell transplantation and cellular therapy program, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robbert G M Bredius
- Department of Pediatrics, Division of Immunology, Infectious Diseases and SCT, Leiden University Medical Center, Leiden, The Netherlands
| | - Jean-Hugues Dalle
- Pediatric Hematology Department, Robert Debré Hospital, Assistance Publique, Hôpitaux de Paris and Paris-Diderot University, Paris, France
| | - Victor Lewis
- Department of Oncology, Alberta Children's Hospital, Calgary, AB, Canada
| | - Bill S Kangarloo
- Department of Oncology, Alberta Children's Hospital, Calgary, AB, Canada
| | - Selim Corbacioglu
- Department of Hematology, Oncology, and Stem Cell Transplantation University Children's Hospital Regensburg, Regensburg, Germany
| | - Daniel Sinnett
- Charles-Bruneau Cancer Center, Sainte-Justine University Health Center (SJUHC), Montreal, QC, Canada.,Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Henrique Bittencourt
- Charles-Bruneau Cancer Center, Sainte-Justine University Health Center (SJUHC), Montreal, QC, Canada.,Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Maja Krajinovic
- Charles-Bruneau Cancer Center, Sainte-Justine University Health Center (SJUHC), Montreal, QC, Canada. .,Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada. .,Clinical Pharmacology Unit, Sainte-Justine University Health Center (SJUHC), Montreal, QC, Canada. .,Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
21
|
Martinelli A, Rice ML, Talcott JB, Diaz R, Smith S, Raza MH, Snowling MJ, Hulme C, Stein J, Hayiou-Thomas ME, Hawi Z, Kent L, Pitt SJ, Newbury DF, Paracchini S. A rare missense variant in the ATP2C2 gene is associated with language impairment and related measures. Hum Mol Genet 2021; 30:1160-1171. [PMID: 33864365 PMCID: PMC8188402 DOI: 10.1093/hmg/ddab111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/02/2023] Open
Abstract
At least 5% of children present unexpected difficulties in expressing and understanding spoken language. This condition is highly heritable and often co-occurs with other neurodevelopmental disorders such as dyslexia and ADHD. Through an exome sequencing analysis, we identified a rare missense variant (chr16:84405221, GRCh38.p12) in the ATP2C2 gene. ATP2C2 was implicated in language disorders by linkage and association studies, and exactly the same variant was reported previously in a different exome sequencing study for language impairment (LI). We followed up this finding by genotyping the mutation in cohorts selected for LI and comorbid disorders. We found that the variant had a higher frequency in LI cases (1.8%, N = 360) compared with cohorts selected for dyslexia (0.8%, N = 520) and ADHD (0.7%, N = 150), which presented frequencies comparable to reference databases (0.9%, N = 24 046 gnomAD controls). Additionally, we observed that carriers of the rare variant identified from a general population cohort (N = 42, ALSPAC cohort) presented, as a group, lower scores on a range of reading and language-related measures compared to controls (N = 1825; minimum P = 0.002 for non-word reading). ATP2C2 encodes for an ATPase (SPCA2) that transports calcium and manganese ions into the Golgi lumen. Our functional characterization suggested that the rare variant influences the ATPase activity of SPCA2. Thus, our results further support the role of ATP2C2 locus in language-related phenotypes and pinpoint the possible effects of a specific rare variant at molecular level.
Collapse
Affiliation(s)
| | - Mabel L Rice
- Child Language Doctoral Program, University of Kansas, Lawrence, KS, USA
| | - Joel B Talcott
- Aston Brain Centre, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Rebeca Diaz
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Shelley Smith
- Department of Neurological Sciences, University of Nebraska Medical Center, Lincoln, NE, USA
| | | | - Margaret J Snowling
- Department of Experimental Psychology and St John's College, University of Oxford, Oxford, UK
| | - Charles Hulme
- Department of Education, University of Oxford, Oxford, UK
| | - John Stein
- Department of Physiology, University of Oxford, Oxford, UK
| | | | - Ziarih Hawi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Lindsey Kent
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Samantha J Pitt
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Dianne F Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | | |
Collapse
|
22
|
Andres EM, Earnest KK, Smith SD, Rice ML, Raza MH. Pedigree-Based Gene Mapping Supports Previous Loci and Reveals Novel Suggestive Loci in Specific Language Impairment. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:4046-4061. [PMID: 33186502 PMCID: PMC8608229 DOI: 10.1044/2020_jslhr-20-00102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Purpose Specific language impairment (SLI) is characterized by a delay in language acquisition despite a lack of other developmental delays or hearing loss. Genetics of SLI is poorly understood. The purpose of this study is to identify SLI genetic loci through family-based linkage mapping. Method We performed genome-wide parametric linkage analysis in six families segregating with SLI. An age-appropriate standardized omnibus language measure was used to categorically define the SLI phenotype. Results A suggestive linkage region replicated a previous region of interest with the highest logarithm of odds (LOD) score of 2.40 at 14q11.2-q13.3 in Family 489. A paternal parent-of-origin effect associated with SLI and language phenotypes on a nonsynonymous single nucleotide polymorphism (SNP) in NOP9 (14q12) was reported previously. Linkage analysis identified a new SLI locus at 15q24.3-25.3 with the highest parametric LOD score of 3.06 in Family 315 under a recessive mode of inheritance. Suggestive evidence of linkage was also revealed at 4q31.23-q35.2 in Family 300, with the highest LOD score of 2.41. Genetic linkage was not identified in the other three families included in parametric linkage analysis. Conclusions These results are the first to report genome-wide suggestive linkage with a total language standard score on an age-appropriate omnibus language measure across a wide age range. Our findings confirm previous reports of a language-associated locus on chromosome 14q, report new SLI loci, and validate the pedigree-based parametric linkage analysis approach to mapping genes for SLI. Supplemental Material https://doi.org/10.23641/asha.13203218.
Collapse
Affiliation(s)
- Erin M. Andres
- Child Language Doctoral Program, University of Kansas, Lawrence
| | | | - Shelley D. Smith
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha
| | - Mabel L. Rice
- Child Language Doctoral Program, University of Kansas, Lawrence
| | | |
Collapse
|
23
|
Thompson PA, Bishop DVM, Eising E, Fisher SE, Newbury DF. Generalized Structured Component Analysis in candidate gene association studies: applications and limitations. Wellcome Open Res 2020; 4:142. [PMID: 33521327 PMCID: PMC7818107 DOI: 10.12688/wellcomeopenres.15396.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 12/04/2022] Open
Abstract
Background: Generalized Structured Component Analysis (GSCA) is a component-based alternative to traditional covariance-based structural equation modelling. This method has previously been applied to test for association between candidate genes and clinical phenotypes, contrasting with traditional genetic association analyses that adopt univariate testing of many individual single nucleotide polymorphisms (SNPs) with correction for multiple testing. Methods: We first evaluate the ability of the GSCA method to replicate two previous findings from a genetics association study of developmental language disorders. We then present the results of a simulation study to test the validity of the GSCA method under more restrictive data conditions, using smaller sample sizes and larger numbers of SNPs than have previously been investigated. Finally, we compare GSCA performance against univariate association analysis conducted using PLINK v1.9. Results: Results from simulations show that power to detect effects depends not just on sample size, but also on the ratio of SNPs with effect to number of SNPs tested within a gene. Inclusion of many SNPs in a model dilutes true effects. Conclusions: We propose that GSCA is a useful method for replication studies, when candidate SNPs have been identified, but should not be used for exploratory analysis.
Collapse
Affiliation(s)
- Paul A. Thompson
- Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Dorothy V. M. Bishop
- Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Else Eising
- Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen, 6525 XD, The Netherlands
| | - Simon E. Fisher
- Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen, 6525 XD, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Montessorilaan 3, Nijmegen, 6525 HR, The Netherlands
| | - Dianne F. Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK
| |
Collapse
|
24
|
Kalnak N, Löwgren K, Hansson K. Past-tense inflection of non-verbs: a potential clinical marker of developmental language disorder in Swedish children. LOGOP PHONIATR VOCO 2020; 47:10-17. [PMID: 32894034 DOI: 10.1080/14015439.2020.1810311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIM In this paper, we explore the performance of past-tense inflection of non-verbs (NVI) in children with developmental language disorder (DLD) and in typically developing controls, to investigate its accuracy as a clinical marker for Swedish-speaking children with DLD. Further, we investigate the relationship between NVI, nonword-repetition, and family history. METHODS The sample consists of 36 children with DLD (mean age 9;5 years) and 60 controls (mean age 9;2 years). RESULTS The DLD group performed significantly lower than the controls on the NVI task, with a large effect size of the difference (d = 1.52). Analysis of the clinical accuracy of NVI resulted in 80.6% sensitivity and 76.6% specificity. NVI was significantly and moderately associated with nonword-repetition in the controls, but not in the DLD group. A positive family history, 80.6% in the DLD group and 6.9% in the controls, was associated with lower performance on NVI. When controlling for group (DLD and controls), a non-significant association between family history and performance on the NVI task was found. CONCLUSIONS NVI is a potential clinical marker of DLD in Swedish school-aged children, but the current NVI task does not reach the level of being acceptable. Further development of the NVI task is warranted to improve its accuracy.
Collapse
Affiliation(s)
- Nelli Kalnak
- Department of Women's and Children's Health, Center of Neurodevelopmental Disorders, Karolinska Institutet, Solna, Sweden.,Department of Clinical Sciences Lund, Child and Adolescent Psychiatry Unit, Lund University, Lund, Sweden
| | - Karolina Löwgren
- Department of Clinical Sciences, BMC F12, Lund University, Lund, Sweden
| | - Kristina Hansson
- Department of Clinical Sciences, Logopedics, Phoniatrics and Audiology, Lund University, Lund, Sweden
| |
Collapse
|
25
|
Zhang J, Teramoto T, Qiu C, Wine RN, Gonzalez LE, Baserga SJ, Tanaka Hall TM. Nop9 recognizes structured and single-stranded RNA elements of preribosomal RNA. RNA (NEW YORK, N.Y.) 2020; 26:1049-1059. [PMID: 32371454 PMCID: PMC7373996 DOI: 10.1261/rna.075416.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/29/2020] [Indexed: 05/04/2023]
Abstract
Nop9 is an essential factor in the processing of preribosomal RNA. Its absence in yeast is lethal, and defects in the human ortholog are associated with breast cancer, autoimmunity, and learning/language impairment. PUF family RNA-binding proteins are best known for sequence-specific RNA recognition, and most contain eight α-helical repeats that bind to the RNA bases of single-stranded RNA. Nop9 is an unusual member of this family in that it contains eleven repeats and recognizes both RNA structure and sequence. Here we report a crystal structure of Saccharomyces cerevisiae Nop9 in complex with its target RNA within the 20S preribosomal RNA. This structure reveals that Nop9 brings together a carboxy-terminal module recognizing the 5' single-stranded region of the RNA and a bifunctional amino-terminal module recognizing the central double-stranded stem region. We further show that the 3' single-stranded region of the 20S target RNA adds sequence-independent binding energy to the RNA-Nop9 interaction. Both the amino- and carboxy-terminal modules retain the characteristic sequence-specific recognition of PUF proteins, but the amino-terminal module has also evolved a distinct interface, which allows Nop9 to recognize either single-stranded RNA sequences or RNAs with a combination of single-stranded and structured elements.
Collapse
Affiliation(s)
- Jun Zhang
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Takamasa Teramoto
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Chen Qiu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Robert N Wine
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Lauren E Gonzalez
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Susan J Baserga
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
26
|
Nudel R, Christiani CAJ, Ohland J, Uddin MJ, Hemager N, Ellersgaard D, Spang KS, Burton BK, Greve AN, Gantriis DL, Bybjerg-Grauholm J, Jepsen JRM, Thorup AAE, Mors O, Werge T, Nordentoft M. Quantitative genome-wide association analyses of receptive language in the Danish High Risk and Resilience Study. BMC Neurosci 2020; 21:30. [PMID: 32635940 PMCID: PMC7341668 DOI: 10.1186/s12868-020-00581-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/28/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND One of the most basic human traits is language. Linguistic ability, and disability, have been shown to have a strong genetic component in family and twin studies, but molecular genetic studies of language phenotypes are scarce, relative to studies of other cognitive traits and neurodevelopmental phenotypes. Moreover, most genetic studies examining such phenotypes do not incorporate parent-of-origin effects, which could account for some of the heritability of the investigated trait. We performed a genome-wide association study of receptive language, examining both child genetic effects and parent-of-origin effects. RESULTS Using a family-based cohort with 400 children with receptive language scores, we found a genome-wide significant paternal parent-of-origin effect with a SNP, rs11787922, on chromosome 9q21.31, whereby the T allele reduced the mean receptive language score by ~ 23, constituting a reduction of more than 1.5 times the population SD (P = 1.04 × 10-8). We further confirmed that this association was not driven by broader neurodevelopmental diagnoses in the child or a family history of psychiatric diagnoses by incorporating covariates for the above and repeating the analysis. CONCLUSIONS Our study reports a genome-wide significant association for receptive language skills; to our knowledge, this is the first documented genome-wide significant association for this phenotype. Furthermore, our study illustrates the importance of considering parent-of-origin effects in association studies, particularly in the case of cognitive or neurodevelopmental traits, in which parental genetic data are not always incorporated.
Collapse
Affiliation(s)
- Ron Nudel
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Camilla A J Christiani
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark
| | - Jessica Ohland
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark
| | - Md Jamal Uddin
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark
- Section for Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Nicoline Hemager
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark
| | - Ditte Ellersgaard
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark
| | - Katrine S Spang
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre for Child and Adolescent Psychiatry-Research unit, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
| | - Birgitte K Burton
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre for Child and Adolescent Psychiatry-Research unit, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
| | - Aja N Greve
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Psychosis Research Unit, Aarhus University Hospital-Psychiatry, Aarhus, Denmark
| | - Ditte L Gantriis
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Psychosis Research Unit, Aarhus University Hospital-Psychiatry, Aarhus, Denmark
| | - Jonas Bybjerg-Grauholm
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Jens Richardt M Jepsen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark
- Mental Health Centre for Child and Adolescent Psychiatry-Research unit, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
| | - Anne A E Thorup
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre for Child and Adolescent Psychiatry-Research unit, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
| | - Ole Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Psychosis Research Unit, Aarhus University Hospital-Psychiatry, Aarhus, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark.
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Merete Nordentoft
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark.
- Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
27
|
Perrino PA, Talbot L, Kirkland R, Hill A, Rendall AR, Mountford HS, Taylor J, Buscarello AN, Lahiri N, Saggar A, Fitch RH, Newbury DF. Multi-level evidence of an allelic hierarchy of USH2A variants in hearing, auditory processing and speech/language outcomes. Commun Biol 2020; 3:180. [PMID: 32313182 PMCID: PMC7170883 DOI: 10.1038/s42003-020-0885-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/11/2020] [Indexed: 11/30/2022] Open
Abstract
Language development builds upon a complex network of interacting subservient systems. It therefore follows that variations in, and subclinical disruptions of, these systems may have secondary effects on emergent language. In this paper, we consider the relationship between genetic variants, hearing, auditory processing and language development. We employ whole genome sequencing in a discovery family to target association and gene x environment interaction analyses in two large population cohorts; the Avon Longitudinal Study of Parents and Children (ALSPAC) and UK10K. These investigations indicate that USH2A variants are associated with altered low-frequency sound perception which, in turn, increases the risk of developmental language disorder. We further show that Ush2a heterozygote mice have low-level hearing impairments, persistent higher-order acoustic processing deficits and altered vocalizations. These findings provide new insights into the complexity of genetic mechanisms serving language development and disorders and the relationships between developmental auditory and neural systems.
Collapse
Affiliation(s)
- Peter A Perrino
- Department of Psychological Science/Behavioral Neuroscience, University of Connecticut, Storrs, CT, USA
- UConn Institute of Brain and Cognitive Sciences; UConn Murine Behavioral Neurogenetics Facility, Storrs, CT, USA
| | - Lidiya Talbot
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Rose Kirkland
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| | - Amanda Hill
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Amanda R Rendall
- Department of Psychological Science/Behavioral Neuroscience, University of Connecticut, Storrs, CT, USA
- UConn Institute of Brain and Cognitive Sciences; UConn Murine Behavioral Neurogenetics Facility, Storrs, CT, USA
| | - Hayley S Mountford
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Jenny Taylor
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
- NIHR Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
| | - Alexzandrea N Buscarello
- Department of Psychological Science/Behavioral Neuroscience, University of Connecticut, Storrs, CT, USA
- UConn Institute of Brain and Cognitive Sciences; UConn Murine Behavioral Neurogenetics Facility, Storrs, CT, USA
| | - Nayana Lahiri
- Institute of Molecular and Clinical Sciences, St George's, University of London & St George's University Hospitals NHS Foundation Trust, London, UK
| | - Anand Saggar
- Institute of Molecular and Clinical Sciences, St George's, University of London & St George's University Hospitals NHS Foundation Trust, London, UK
| | - R Holly Fitch
- Department of Psychological Science/Behavioral Neuroscience, University of Connecticut, Storrs, CT, USA.
- UConn Institute of Brain and Cognitive Sciences; UConn Murine Behavioral Neurogenetics Facility, Storrs, CT, USA.
| | - Dianne F Newbury
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| |
Collapse
|
28
|
Hitchcock TJ, Paracchini S, Gardner A. Genomic Imprinting As a Window into Human Language Evolution. Bioessays 2020; 41:e1800212. [PMID: 31132171 DOI: 10.1002/bies.201800212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/22/2019] [Indexed: 01/20/2023]
Abstract
Humans spend large portions of their time and energy talking to one another, yet it remains unclear whether this activity is primarily selfish or altruistic. Here, it is shown how parent-of-origin specific gene expression-or "genomic imprinting"-may provide an answer to this question. First, it is shown why, regarding language, only altruistic or selfish scenarios are expected. Second, it is pointed out that an individual's maternal-origin and paternal-origin genes may have different evolutionary interests regarding investment into language, and that this intragenomic conflict may drive genomic imprinting which-as the direction of imprint depends upon whether investment into language is relatively selfish or altruistic-may be used to discriminate between these two possibilities. Third, predictions concerning the impact of various mutations and epimutations at imprinted loci on language pathologies are derived. In doing so, a framework is developed that highlights avenues for using intragenomic conflicts to investigate the evolutionary drivers of language.
Collapse
Affiliation(s)
- Thomas J Hitchcock
- School of Biology, University of St Andrews, Dyers Brae, St Andrews, KY16 9TH, UK
| | - Silvia Paracchini
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK
| | - Andy Gardner
- School of Biology, University of St Andrews, Dyers Brae, St Andrews, KY16 9TH, UK
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW To better understand the shared basis of language and mental health, this review examines the behavioral and neurobiological features of aberrant language in five major neuropsychiatric conditions. Special attention is paid to genes implicated in both language and neuropsychiatric disorders, as they reveal biological domains likely to underpin the processes controlling both. RECENT FINDINGS Abnormal language and communication are common manifestations of neuropsychiatric conditions, and children with impaired language are more likely to develop psychiatric disorders than their peers. Major themes in the genetics of both language and psychiatry include master transcriptional regulators, like FOXP2; key developmental regulators, like AUTS2; and mediators of neurotransmission, like GRIN2A and CACNA1C.
Collapse
|
30
|
Rakhlin N, Landi N, Lee M, Magnuson JS, Naumova OY, Ovchinnikova IV, Grigorenko EL. Cohesion of Cortical Language Networks During Word Processing Is Predicted by a Common Polymorphism in the
SETBP1
Gene. New Dir Child Adolesc Dev 2020; 2020:131-155. [DOI: 10.1002/cad.20331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | | | | | | | - Elena L. Grigorenko
- Haskins Laboratories
- Yale University
- University of Houston
- Saint-Petersburg State University
- Moscow State University for Psychology and Education
| |
Collapse
|
31
|
Nudel R, Christiani CAJ, Ohland J, Uddin MJ, Hemager N, Ellersgaard DV, Spang KS, Burton BK, Greve AN, Gantriis DL, Bybjerg-Grauholm J, Jepsen JRM, Thorup AAE, Mors O, Nordentoft M, Werge T. Language deficits in specific language impairment, attention deficit/hyperactivity disorder, and autism spectrum disorder: An analysis of polygenic risk. Autism Res 2019; 13:369-381. [PMID: 31577390 PMCID: PMC7078922 DOI: 10.1002/aur.2211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/04/2019] [Indexed: 12/27/2022]
Abstract
Language is one of the cognitive domains often impaired across many neurodevelopmental disorders. While for some disorders the linguistic deficit is the primary impairment (e.g., specific language impairment, SLI), for others it may accompany broader behavioral problems (e.g., autism). The precise nature of this phenotypic overlap has been the subject of debate. Moreover, several studies have found genetic overlaps across neurodevelopmental disorders. This raises the question of whether these genetic overlaps may correlate with phenotypic overlaps and, if so, in what manner. Here, we apply a genome‐wide approach to the study of the linguistic deficit in SLI, autism spectrum disorder (ASD), and attention deficit/hyperactivity disorder (ADHD). Using a discovery genome‐wide association study of SLI, we generate polygenic risk scores (PRS) in an independent sample which includes children with language impairment, SLI, ASD or ADHD and age‐matched controls and perform regression analyses across groups. The SLI‐trained PRS significantly predicted risk in the SLI case–control group (adjusted R2 = 6.24%; P = 0.024) but not in the ASD or ADHD case‐control groups (adjusted R2 = 0.0004%, 0.01%; P = 0.984, 0.889, respectively) nor for height, used as a negative control (R2 = 0.2%; P = 0.452). Additionally, there was a significant difference in the normalized PRS between children with SLI and children with ASD (common language effect size = 0.66; P = 0.044). Our study suggests no additive common‐variant genetic overlap between SLI and ASD and ADHD. This is discussed in the context of phenotypic studies of SLI and related disorders. Autism Res 2020, 13: 369–381. © 2019 The Authors. Autism Research published by International Society for Autism Research published by Wiley Periodicals, Inc. Lay Summary Language deficits are characteristic of specific language impairment (SLI), but may also be found in other neurodevelopmental disorders, such as autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). Many studies examined the overlaps and differences across the language deficits in these disorders, but few studies have examined the genetic aspect thereof. In this study, we use a genome‐wide approach to evaluate whether common genetic variants increasing risk of SLI may also be associated with ASD and ADHD in the same manner. Our results suggest that this is not the case, and we discuss this finding in the context of theories concerning the etiologies of these disorders.
Collapse
Affiliation(s)
- Ron Nudel
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark.,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Camilla A J Christiani
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark
| | - Jessica Ohland
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark
| | - Md Jamal Uddin
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark.,Section for Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Nicoline Hemager
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark
| | - Ditte V Ellersgaard
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark
| | - Katrine S Spang
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Mental Health Centre for Child and Adolescent Psychiatry - Research Unit, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
| | - Birgitte K Burton
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Mental Health Centre for Child and Adolescent Psychiatry - Research Unit, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
| | - Aja N Greve
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Ditte L Gantriis
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Jonas Bybjerg-Grauholm
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Jens Richardt M Jepsen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark.,Mental Health Centre for Child and Adolescent Psychiatry - Research Unit, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark.,Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
| | - Anne A E Thorup
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Mental Health Centre for Child and Adolescent Psychiatry - Research Unit, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
| | - Ole Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Merete Nordentoft
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark.,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Thompson PA, Bishop DVM, Eising E, Fisher SE, Newbury DF. Generalized Structured Component Analysis in candidate gene association studies: applications and limitations. Wellcome Open Res 2019; 4:142. [PMID: 33521327 PMCID: PMC7818107 DOI: 10.12688/wellcomeopenres.15396.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2019] [Indexed: 02/15/2024] Open
Abstract
Background: Generalized Structured Component Analysis (GSCA) is a component-based alternative to traditional covariance-based structural equation modelling. This method has previously been applied to test for association between candidate genes and clinical phenotypes, contrasting with traditional genetic association analyses that adopt univariate testing of many individual single nucleotide polymorphisms (SNPs) with correction for multiple testing. Methods: We first evaluate the ability of the GSCA method to replicate two previous findings from a genetics association study of developmental language disorders. We then present the results of a simulation study to test the validity of the GSCA method under more restrictive data conditions, using smaller sample sizes and larger numbers of SNPs than have previously been investigated. Finally, we compare GSCA performance against univariate association analysis conducted using PLINK v1.9. Results: Results from simulations show that power to detect effects depends not just on sample size, but also on the ratio of SNPs with effect to number of SNPs tested within a gene. Inclusion of many SNPs in a model dilutes true effects. Conclusions: We propose that GSCA is a useful method for replication studies, when candidate SNPs have been identified, but should not be used for exploratory analysis.
Collapse
Affiliation(s)
- Paul A. Thompson
- Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Dorothy V. M. Bishop
- Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Else Eising
- Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen, 6525 XD, The Netherlands
| | - Simon E. Fisher
- Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen, 6525 XD, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Montessorilaan 3, Nijmegen, 6525 HR, The Netherlands
| | - Dianne F. Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK
| |
Collapse
|
33
|
Andres EM, Hafeez H, Yousaf A, Riazuddin S, Rice ML, Basra MAR, Raza MH. A genome-wide analysis in consanguineous families reveals new chromosomal loci in specific language impairment (SLI). Eur J Hum Genet 2019; 27:1274-1285. [PMID: 30976110 DOI: 10.1038/s41431-019-0398-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Language is a uniquely human ability, and failure to attain this ability can have a life-long impact on the affected individuals. This is particularly true for individuals with specific language impairment (SLI), which is defined as an impairment in normal language development in the absence of any other developmental disability. Although SLI displays high heritability, family-based linkage studies have been hampered by an unclear mode of Mendelian segregation, variable disease penetrance, and heterogeneity of diagnostic criteria. We performed genome-wide parametric linkage analysis and homozygosity mapping in 14 consanguineous families from Pakistan segregating SLI. Linkage analysis revealed a multipoint LOD score of 4.18 at chromosome 2q in family PKSLI05 under a recessive mode of inheritance. A second linkage score of 3.85 was observed in family PKSLI12 at a non-overlapping locus on chromosome 2q. Two other suggestive linkage loci were found in family PKSLI05 on 14q and 22q with LOD scores of 2.37 and 2.23, respectively, that were also identified in homozygosity mapping. Reduction to homozygosity was observed on chromosomes 2q, 5p, 8q, 14q, 17q, and 22q. Each homozygosity region occurred in multiple PKSLI families. We report new SLI loci on chromosomes 2 and 8 and confirm suggestive SLI linkage loci on chromosomes 5, 14, 17, and 22 reported previously in the population of Robinson Crusoe Island. These findings indicate that linkage and homozygosity mapping in consanguineous families can improve genetic analyses in SLI and suggest the involvement of additional genes in the causation of this disorder.
Collapse
Affiliation(s)
- Erin M Andres
- Child Language Doctoral Program (CLDP), University of Kansas, Lawrence, KS, USA
| | - Huma Hafeez
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Adnan Yousaf
- Child Language Doctoral Program (CLDP), University of Kansas, Lawrence, KS, USA.,Department of Biotechnology, International Islamic University, Islamabad, Pakistan
| | | | - Mabel L Rice
- Child Language Doctoral Program (CLDP), University of Kansas, Lawrence, KS, USA
| | | | - Muhammad Hashim Raza
- Child Language Doctoral Program (CLDP), University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
34
|
|
35
|
|
36
|
Kincaid-Smith J, Picard MAL, Cosseau C, Boissier J, Severac D, Grunau C, Toulza E. Parent-of-Origin-Dependent Gene Expression in Male and Female Schistosome Parasites. Genome Biol Evol 2018; 10:840-856. [PMID: 29447366 PMCID: PMC5861417 DOI: 10.1093/gbe/evy037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2018] [Indexed: 12/16/2022] Open
Abstract
Schistosomes are the causative agents of schistosomiasis, a neglected tropical disease affecting over 230 million people worldwide. Additionally to their major impact on human health, they are also models of choice in evolutionary biology. These parasitic flatworms are unique among the common hermaphroditic trematodes as they have separate sexes. This so-called “evolutionary scandal” displays a female heterogametic genetic sex-determination system (ZZ males and ZW females), as well as a pronounced adult sexual dimorphism. These phenotypic differences are determined by a shared set of genes in both sexes, potentially leading to intralocus sexual conflicts. To resolve these conflicts in sexually selected traits, molecular mechanisms such as sex-biased gene expression could occur, but parent-of-origin gene expression also provides an alternative. In this work we investigated the latter mechanism, that is, genes expressed preferentially from either the maternal or the paternal allele, in Schistosoma mansoni species. To this end, transcriptomes from male and female hybrid adults obtained by strain crosses were sequenced. Strain-specific single nucleotide polymorphism (SNP) markers allowed us to discriminate the parental origin, while reciprocal crosses helped to differentiate parental expression from strain-specific expression. We identified genes containing SNPs expressed in a parent-of-origin manner consistent with paternal and maternal imprints. Although the majority of the SNPs was identified in mitochondrial and Z-specific loci, the remaining SNPs found in male and female transcriptomes were situated in genes that have the potential to explain sexual differences in schistosome parasites. Furthermore, we identified and validated four new Z-specific scaffolds.
Collapse
Affiliation(s)
- Julien Kincaid-Smith
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia, Perpignan, France
| | - Marion A L Picard
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Céline Cosseau
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia, Perpignan, France
| | - Jérôme Boissier
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia, Perpignan, France
| | - Dany Severac
- MGX, BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, France
| | - Christoph Grunau
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia, Perpignan, France
| | - Eve Toulza
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
37
|
Devanna P, Chen XS, Ho J, Gajewski D, Smith SD, Gialluisi A, Francks C, Fisher SE, Newbury DF, Vernes SC. Next-gen sequencing identifies non-coding variation disrupting miRNA-binding sites in neurological disorders. Mol Psychiatry 2018; 23:1375-1384. [PMID: 28289279 PMCID: PMC5474318 DOI: 10.1038/mp.2017.30] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/17/2016] [Accepted: 01/12/2017] [Indexed: 12/26/2022]
Abstract
Understanding the genetic factors underlying neurodevelopmental and neuropsychiatric disorders is a major challenge given their prevalence and potential severity for quality of life. While large-scale genomic screens have made major advances in this area, for many disorders the genetic underpinnings are complex and poorly understood. To date the field has focused predominantly on protein coding variation, but given the importance of tightly controlled gene expression for normal brain development and disorder, variation that affects non-coding regulatory regions of the genome is likely to play an important role in these phenotypes. Herein we show the importance of 3 prime untranslated region (3'UTR) non-coding regulatory variants across neurodevelopmental and neuropsychiatric disorders. We devised a pipeline for identifying and functionally validating putatively pathogenic variants from next generation sequencing (NGS) data. We applied this pipeline to a cohort of children with severe specific language impairment (SLI) and identified a functional, SLI-associated variant affecting gene regulation in cells and post-mortem human brain. This variant and the affected gene (ARHGEF39) represent new putative risk factors for SLI. Furthermore, we identified 3'UTR regulatory variants across autism, schizophrenia and bipolar disorder NGS cohorts demonstrating their impact on neurodevelopmental and neuropsychiatric disorders. Our findings show the importance of investigating non-coding regulatory variants when determining risk factors contributing to neurodevelopmental and neuropsychiatric disorders. In the future, integration of such regulatory variation with protein coding changes will be essential for uncovering the genetic causes of complex neurological disorders and the fundamental mechanisms underlying health and disease.
Collapse
Affiliation(s)
- P Devanna
- Neurogenetics of Vocal Communication
Group, Max Planck Institute for Psycholinguistics, Nijmegen,
The Netherlands
| | - X S Chen
- Language and Genetics Department, Max
Planck Institute for Psycholinguistics, Nijmegen, The
Netherlands
| | - J Ho
- Neurogenetics of Vocal Communication
Group, Max Planck Institute for Psycholinguistics, Nijmegen,
The Netherlands
- Language and Genetics Department, Max
Planck Institute for Psycholinguistics, Nijmegen, The
Netherlands
| | - D Gajewski
- Neurogenetics of Vocal Communication
Group, Max Planck Institute for Psycholinguistics, Nijmegen,
The Netherlands
| | - S D Smith
- Department of Developmental Neuroscience,
Munroe Meyer Institute, University of Nebraska Medical Center,
Omaha, NE, USA
| | - A Gialluisi
- Language and Genetics Department, Max
Planck Institute for Psycholinguistics, Nijmegen, The
Netherlands
- Department of Translational Research in
Psychiatry, Max Planck Institute of Psychiatry, Munich,
Germany
| | - C Francks
- Language and Genetics Department, Max
Planck Institute for Psycholinguistics, Nijmegen, The
Netherlands
- Donders Institute for Brain, Cognition
and Behaviour, Nijmegen, The Netherlands
| | - S E Fisher
- Language and Genetics Department, Max
Planck Institute for Psycholinguistics, Nijmegen, The
Netherlands
- Donders Institute for Brain, Cognition
and Behaviour, Nijmegen, The Netherlands
| | - D F Newbury
- Wellcome Trust Centre for Human Genetics,
University of Oxford, Oxford, UK
- Department of Biological and Medical
Sciences, Faculty of Health and Life Sciences, Oxford Brookes University,
Oxford, UK
| | - S C Vernes
- Neurogenetics of Vocal Communication
Group, Max Planck Institute for Psycholinguistics, Nijmegen,
The Netherlands
- Donders Institute for Brain, Cognition
and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
38
|
Deriziotis P, Fisher SE. Speech and Language: Translating the Genome. Trends Genet 2017; 33:642-656. [DOI: 10.1016/j.tig.2017.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 01/30/2023]
|
39
|
Carrion-Castillo A, van Bergen E, Vino A, van Zuijen T, de Jong PF, Francks C, Fisher SE. Evaluation of results from genome-wide studies of language and reading in a novel independent dataset. GENES BRAIN AND BEHAVIOR 2017; 15:531-41. [PMID: 27198479 DOI: 10.1111/gbb.12299] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 01/05/2023]
Abstract
Recent genome-wide association scans (GWAS) for reading and language abilities have pin-pointed promising new candidate loci. However, the potential contributions of these loci remain to be validated. In this study, we tested 17 of the most significantly associated single nucleotide polymorphisms (SNPs) from these GWAS studies (P < 10(-6) in the original studies) in a new independent population dataset from the Netherlands: known as Familial Influences on Literacy Abilities. This dataset comprised 483 children from 307 nuclear families and 505 adults (including parents of participating children), and provided adequate statistical power to detect the effects that were previously reported. The following measures of reading and language performance were collected: word reading fluency, nonword reading fluency, phonological awareness and rapid automatized naming. Two SNPs (rs12636438 and rs7187223) were associated with performance in multivariate and univariate testing, but these did not remain significant after correction for multiple testing. Another SNP (rs482700) was only nominally associated in the multivariate test. For the rest of the SNPs, we did not find supportive evidence of association. The findings may reflect differences between our study and the previous investigations with respect to the language of testing, the exact tests used and the recruitment criteria. Alternatively, most of the prior reported associations may have been false positives. A larger scale GWAS meta-analysis than those previously performed will likely be required to obtain robust insights into the genomic architecture underlying reading and language.
Collapse
Affiliation(s)
- A Carrion-Castillo
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - E van Bergen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - A Vino
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - T van Zuijen
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, the Netherlands
| | - P F de Jong
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, the Netherlands
| | - C Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - S E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
40
|
Chen X, Long F, Cai B, Chen X, Chen G. A novel relationship for schizophrenia, bipolar and major depressive disorder Part 5: a hint from chromosome 5 high density association screen. Am J Transl Res 2017; 9:2473-2491. [PMID: 28559998 PMCID: PMC5446530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/31/2017] [Indexed: 06/07/2023]
Abstract
Familial clustering of schizophrenia (SCZ), bipolar disorder (BPD), and major depressive disorder (MDD) was systematically reported (Aukes, M. F. Genet Med 2012, 14, 338-341) and any two or even three of these disorders could co-exist in some families. In addition, evidence from symptomatology and psychopharmacology also imply that there are intrinsic connections between these three major disorders. A total of 56,569 single nucleotide polymorphism (SNPs) on chromosome 5 were genotyped by Affymetrix Genome-Wide Human SNP array 6.0 on 119 SCZ, 253 BPD (type-I), 177 MDD patients and 1000 controls. Associated SNPs and flanking genes was screen out systematically, and cadherin pathway genes (CDH6, CDH9, CDH10, CDH12, and CDH18) belong to outstanding genes. Unexpectedly, nearly all flanking genes of the associated SNPs distinctive for BPD and MDD were replicated in an enlarged cohort of 986 SCZ patients (P ≤ 9.9E-8). Considering multiple bits of evidence, our chromosome 5 analyses implicated that bipolar and major depressive disorder might be subtypes of schizophrenia rather than two independent disease entities. Also, cadherin pathway genes play important roles in the pathogenesis of the three major mental disorders.
Collapse
Affiliation(s)
- Xing Chen
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences18877 Jingshi Road, Jinan 250062, Shandong, People’s Republic of China
| | - Feng Long
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences18877 Jingshi Road, Jinan 250062, Shandong, People’s Republic of China
| | - Bin Cai
- Capital Bio Corporation18 Life Science Parkway, Changping District, Beijing 102206, People’s Republic of China
| | - Xiaohong Chen
- Capital Bio Corporation18 Life Science Parkway, Changping District, Beijing 102206, People’s Republic of China
| | - Gang Chen
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences18877 Jingshi Road, Jinan 250062, Shandong, People’s Republic of China
| |
Collapse
|
41
|
Chen XS, Reader RH, Hoischen A, Veltman JA, Simpson NH, Francks C, Newbury DF, Fisher SE. Next-generation DNA sequencing identifies novel gene variants and pathways involved in specific language impairment. Sci Rep 2017; 7:46105. [PMID: 28440294 PMCID: PMC5404330 DOI: 10.1038/srep46105] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/08/2017] [Indexed: 12/22/2022] Open
Abstract
A significant proportion of children have unexplained problems acquiring proficient linguistic skills despite adequate intelligence and opportunity. Developmental language disorders are highly heritable with substantial societal impact. Molecular studies have begun to identify candidate loci, but much of the underlying genetic architecture remains undetermined. We performed whole-exome sequencing of 43 unrelated probands affected by severe specific language impairment, followed by independent validations with Sanger sequencing, and analyses of segregation patterns in parents and siblings, to shed new light on aetiology. By first focusing on a pre-defined set of known candidates from the literature, we identified potentially pathogenic variants in genes already implicated in diverse language-related syndromes, including ERC1, GRIN2A, and SRPX2. Complementary analyses suggested novel putative candidates carrying validated variants which were predicted to have functional effects, such as OXR1, SCN9A and KMT2D. We also searched for potential "multiple-hit" cases; one proband carried a rare AUTS2 variant in combination with a rare inherited haplotype affecting STARD9, while another carried a novel nonsynonymous variant in SEMA6D together with a rare stop-gain in SYNPR. On broadening scope to all rare and novel variants throughout the exomes, we identified biological themes that were enriched for such variants, including microtubule transport and cytoskeletal regulation.
Collapse
Affiliation(s)
- Xiaowei Sylvia Chen
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Rose H. Reader
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joris A. Veltman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Clinical Genetics, University of Maastricht, Maastricht, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Nuala H. Simpson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Dianne F. Newbury
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Simon E. Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
42
|
Muntané G, Santpere G, Verendeev A, Seeley WW, Jacobs B, Hopkins WD, Navarro A, Sherwood CC. Interhemispheric gene expression differences in the cerebral cortex of humans and macaque monkeys. Brain Struct Funct 2017; 222:3241-3254. [PMID: 28317062 DOI: 10.1007/s00429-017-1401-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/05/2017] [Indexed: 11/25/2022]
Abstract
Handedness and language are two well-studied examples of asymmetrical brain function in humans. Approximately 90% of humans exhibit a right-hand preference, and the vast majority shows left-hemisphere dominance for language function. Although genetic models of human handedness and language have been proposed, the actual gene expression differences between cerebral hemispheres in humans remain to be fully defined. In the present study, gene expression profiles were examined in both hemispheres of three cortical regions involved in handedness and language in humans and their homologues in rhesus macaques: ventrolateral prefrontal cortex, posterior superior temporal cortex (STC), and primary motor cortex. Although the overall pattern of gene expression was very similar between hemispheres in both humans and macaques, weighted gene correlation network analysis revealed gene co-expression modules associated with hemisphere, which are different among the three cortical regions examined. Notably, a receptor-enriched gene module in STC was particularly associated with hemisphere and showed different expression levels between hemispheres only in humans.
Collapse
Affiliation(s)
- Gerard Muntané
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, 20052, USA.
- Institut Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, 08003, Barcelona, Spain.
| | - Gabriel Santpere
- Institut Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, 08003, Barcelona, Spain
| | - Andrey Verendeev
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, 20052, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, 94158, USA
| | - Bob Jacobs
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, CO, 80903, USA
| | - William D Hopkins
- Neuroscience Institute and the Language Research Center, Georgia State University, Atlanta, GA, 30302, USA
| | - Arcadi Navarro
- Institut Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, 08003, Barcelona, Spain
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
43
|
Connolly S, Anney R, Gallagher L, Heron EA. A genome-wide investigation into parent-of-origin effects in autism spectrum disorder identifies previously associated genes including SHANK3. Eur J Hum Genet 2017; 25:234-239. [PMID: 27876814 PMCID: PMC5255953 DOI: 10.1038/ejhg.2016.153] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 09/28/2016] [Accepted: 10/07/2016] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is known to be a heritable neurodevelopmental disorder affecting more than 1% of the population but in the majority of ASD cases, the genetic cause has not been identified. Parent-of-origin effects have been highlighted as an important mechanism in the pathology of neurodevelopmental disorders such as Prader-Willi and Angelman syndrome, with individuals with these syndromes often exhibiting ASD symptoms. Consequently, systematic investigation of these effects in ASD is clearly an important line of investigation in elucidating the underlying genetic mechanisms. Using estimation of maternal, imprinting and interaction effects using multinomial modelling (EMIM), we simultaneously investigated imprinting, maternal genetic effects and associations in the Autism Genome Project and Simons Simplex Consortium genome-wide association data sets. To avoid using the overly stringent genome-wide association study significance level, we used a Bayesian threshold that takes into account the sample size, allele frequency and any available prior knowledge. Between the two data sets, we identified a total of 18 imprinting effects and 68 maternal genetic effects that met this Bayesian threshold criteria, but none met the threshold in both data sets. We identified imprinting and maternal genetic effects for regions that have previously shown evidence for parent-of-origin effects in ASD. Together with these findings, we have identified maternal genetic effects not previously identified in ASD at a locus in SHANK3 on chromosome 22 and a locus in WBSCR17 on chromosome 7 (associated with Williams syndrome). Both genes have previously been associated with ASD.
Collapse
Affiliation(s)
- Siobhan Connolly
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Trinity Centre for Health Sciences, Dublin, Ireland
| | - Richard Anney
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Trinity Centre for Health Sciences, Dublin, Ireland
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Hadyn Ellis Building, Cathays, Cardiff, UK
| | - Louise Gallagher
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Trinity Centre for Health Sciences, Dublin, Ireland
| | - Elizabeth A Heron
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Trinity Centre for Health Sciences, Dublin, Ireland
| |
Collapse
|
44
|
Zhang J, McCann KL, Qiu C, Gonzalez LE, Baserga SJ, Hall TMT. Nop9 is a PUF-like protein that prevents premature cleavage to correctly process pre-18S rRNA. Nat Commun 2016; 7:13085. [PMID: 27725644 PMCID: PMC5062617 DOI: 10.1038/ncomms13085] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 09/01/2016] [Indexed: 12/16/2022] Open
Abstract
Numerous factors direct eukaryotic ribosome biogenesis, and defects in a single ribosome assembly factor may be lethal or produce tissue-specific human ribosomopathies. Pre-ribosomal RNAs (pre-rRNAs) must be processed stepwise and at the correct subcellular locations to produce the mature rRNAs. Nop9 is a conserved small ribosomal subunit biogenesis factor, essential in yeast. Here we report a 2.1-Å crystal structure of Nop9 and a small-angle X-ray-scattering model of a Nop9:RNA complex that reveals a ‘C'-shaped fold formed from 11 Pumilio repeats. We show that Nop9 recognizes sequence and structural features of the 20S pre-rRNA near the cleavage site of the nuclease, Nob1. We further demonstrate that Nop9 inhibits Nob1 cleavage, the final processing step to produce mature small ribosomal subunit 18S rRNA. Together, our results suggest that Nop9 is critical for timely cleavage of the 20S pre-rRNA. Moreover, the Nop9 structure exemplifies a new class of Pumilio repeat proteins. Nop9 is a conserved small ribosomal subunit biogenesis factor. Here, Zhang et al. show that Nop9, in complex with RNA, adopts a C-shaped fold formed from 11 Pumillo repeats and propose that Nop9 inhibits premature cleavage of 20S pre-rRNA by inhibiting the Nob1 nuclease.
Collapse
Affiliation(s)
- Jun Zhang
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, MD F3-05, Research Triangle Park, North Carolina 27709, USA
| | - Kathleen L McCann
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, MD F3-05, Research Triangle Park, North Carolina 27709, USA.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Chen Qiu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, MD F3-05, Research Triangle Park, North Carolina 27709, USA
| | - Lauren E Gonzalez
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, MD F3-05, Research Triangle Park, North Carolina 27709, USA
| | - Susan J Baserga
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, MD F3-05, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
45
|
Kornilov SA, Lebedeva TV, Zhukova MA, Prikhoda NA, Korotaeva IV, Koposov RA, Hart L, Reich J, Grigorenko EL. Language development in rural and urban Russian-speaking children with and without developmental language disorder. LEARNING AND INDIVIDUAL DIFFERENCES 2016; 46:45-53. [PMID: 27346924 DOI: 10.1016/j.lindif.2015.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Using a newly developed Assessment of the Development of Russian Language (ORRIA), we investigated differences in language development between rural vs. urban Russian-speaking children (n = 100 with a mean age of 6.75) subdivided into groups with and without developmental language disorders. Using classical test theory and item response theory approaches, we found that while ORRIA displayed overall satisfactory psychometric properties, several of its items showed differential item functioning favoring rural children, and several others favoring urban children. After the removal of these items, rural children significantly underperformed on ORRIA compared to urban children. The urbanization factor did not significantly interact with language group. We discuss the latter finding in the context of the multiple additive risk factors for language development and emphasize the need for future studies of the mechanisms that underlie these influences and the implications of these findings for our understanding of the etiological architecture of children's language development.
Collapse
Affiliation(s)
- Sergey A Kornilov
- Yale University, New Haven, CT, USA; Haskins Laboratories, New Haven, CT, USA; Saint-Petersburg State University, Saint-Petersburg, Russia; Moscow State University, Moscow, Russia
| | - Tatiana V Lebedeva
- City Center for Psychological, Medical, and Social Services, Moscow, Russia; Moscow City University for Psychology and Education, Moscow, Russia
| | | | | | | | | | | | - Jodi Reich
- Yale University, New Haven, CT, USA; Temple University, Philadelphia, PA, USA
| | - Elena L Grigorenko
- Yale University, New Haven, CT, USA; Haskins Laboratories, New Haven, CT, USA; Saint-Petersburg State University, Saint-Petersburg, Russia; Moscow City University for Psychology and Education, Moscow, Russia
| |
Collapse
|
46
|
Pettigrew KA, Frinton E, Nudel R, Chan MTM, Thompson P, Hayiou-Thomas ME, Talcott JB, Stein J, Monaco AP, Hulme C, Snowling MJ, Newbury DF, Paracchini S. Further evidence for a parent-of-origin effect at the NOP9 locus on language-related phenotypes. J Neurodev Disord 2016; 8:24. [PMID: 27307794 PMCID: PMC4908686 DOI: 10.1186/s11689-016-9157-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Specific language impairment (SLI) is a common neurodevelopmental disorder, observed in 5-10 % of children. Family and twin studies suggest a strong genetic component, but relatively few candidate genes have been reported to date. A recent genome-wide association study (GWAS) described the first statistically significant association specifically for a SLI cohort between a missense variant (rs4280164) in the NOP9 gene and language-related phenotypes under a parent-of-origin model. Replications of these findings are particularly challenging because the availability of parental DNA is required. METHODS We used two independent family-based cohorts characterised with reading- and language-related traits: a longitudinal cohort (n = 106 informative families) including children with language and reading difficulties and a nuclear family cohort (n = 264 families) selected for dyslexia. RESULTS We observed association with language-related measures when modelling for parent-of-origin effects at the NOP9 locus in both cohorts: minimum P = 0.001 for phonological awareness with a paternal effect in the first cohort and minimum P = 0.0004 for irregular word reading with a maternal effect in the second cohort. Allelic and parental trends were not consistent when compared to the original study. CONCLUSIONS A parent-of-origin effect at this locus was detected in both cohorts, albeit with different trends. These findings contribute in interpreting the original GWAS report and support further investigations of the NOP9 locus and its role in language-related traits. A systematic evaluation of parent-of-origin effects in genetic association studies has the potential to reveal novel mechanisms underlying complex traits.
Collapse
Affiliation(s)
| | - Emily Frinton
- />School of Medicine, University of St Andrews, St Andrews, KY16 9TF UK
| | - Ron Nudel
- />Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - May T. M. Chan
- />Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
- />Worcester College, University of Oxford, Oxford, OX1 2HB UK
| | - Paul Thompson
- />Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3PT UK
| | | | - Joel B. Talcott
- />School of Life and Health Sciences, Aston University, Birmingham, B4 7ET UK
| | - John Stein
- />Department of Physiology, University of Oxford, Parks Road, Oxford, OX1 3PT UK
| | - Anthony P. Monaco
- />Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - Charles Hulme
- />Division of Psychology and Language Sciences, University College London, London, WC1 3PG UK
| | - Margaret J. Snowling
- />Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3PT UK
- />St John’s College, University of Oxford, Oxford, OX1 3JP UK
| | - Dianne F. Newbury
- />Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - Silvia Paracchini
- />School of Medicine, University of St Andrews, St Andrews, KY16 9TF UK
| |
Collapse
|
47
|
Mueller KL, Murray JC, Michaelson JJ, Christiansen MH, Reilly S, Tomblin JB. Common Genetic Variants in FOXP2 Are Not Associated with Individual Differences in Language Development. PLoS One 2016; 11:e0152576. [PMID: 27064276 PMCID: PMC4827837 DOI: 10.1371/journal.pone.0152576] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/16/2016] [Indexed: 02/07/2023] Open
Abstract
Much of our current knowledge regarding the association of FOXP2 with speech and language development comes from singleton and small family studies where a small number of rare variants have been identified. However, neither genome-wide nor gene-specific studies have provided evidence that common polymorphisms in the gene contribute to individual differences in language development in the general population. One explanation for this inconsistency is that previous studies have been limited to relatively small samples of individuals with low language abilities, using low density gene coverage. The current study examined the association between common variants in FOXP2 and a quantitative measure of language ability in a population-based cohort of European decent (n = 812). No significant associations were found for a panel of 13 SNPs that covered the coding region of FOXP2 and extended into the promoter region. Power analyses indicated we should have been able to detect a QTL variance of 0.02 for an associated allele with MAF of 0.2 or greater with 80% power. This suggests that, if a common variant associated with language ability in this gene does exist, it is likely of small effect. Our findings lead us to conclude that while genetic variants in FOXP2 may be significant for rare forms of language impairment, they do not contribute appreciably to individual variation in the normal range as found in the general population.
Collapse
Affiliation(s)
- Kathryn L. Mueller
- Hearing, Language and Literacy, Murdoch Childrens Institute, Melbourne, Australia
- Dept. of Communication Sciences and Disorders, The University of Iowa, Iowa City, United States of America
| | - Jeffrey C. Murray
- Dept. of Pediatrics, The University of Iowa, Iowa City, United States of America
| | - Jacob J. Michaelson
- Dept. of Psychiatry, The University of Iowa, Iowa City, United States of America
| | | | | | - J. Bruce Tomblin
- Dept. of Communication Sciences and Disorders, The University of Iowa, Iowa City, United States of America
| |
Collapse
|
48
|
Kornilov SA, Rakhlin N, Koposov R, Lee M, Yrigollen C, Caglayan AO, Magnuson JS, Mane S, Chang JT, Grigorenko EL. Genome-Wide Association and Exome Sequencing Study of Language Disorder in an Isolated Population. Pediatrics 2016; 137:peds.2015-2469. [PMID: 27016271 PMCID: PMC4811310 DOI: 10.1542/peds.2015-2469] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Developmental language disorder (DLD) is a highly prevalent neurodevelopmental disorder associated with negative outcomes in different domains; the etiology of DLD is unknown. To investigate the genetic underpinnings of DLD, we performed genome-wide association and whole exome sequencing studies in a geographically isolated population with a substantially elevated prevalence of the disorder (ie, the AZ sample). METHODS DNA samples were collected from 359 individuals for the genome-wide association study and from 12 severely affected individuals for whole exome sequencing. Multifaceted phenotypes, representing major domains of expressive language functioning, were derived from collected speech samples. RESULTS Gene-based analyses revealed a significant association between SETBP1 and complexity of linguistic output (P = 5.47 × 10(-7)). The analysis of exome variants revealed coding sequence variants in 14 genes, most of which play a role in neural development. Targeted enrichment analysis implicated myocyte enhancer factor-2 (MEF2)-regulated genes in DLD in the AZ population. The main findings were successfully replicated in an independent cohort of children at risk for related disorders (n = 372). CONCLUSIONS MEF2-regulated pathways were identified as potential candidate pathways in the etiology of DLD. Several genes (including the candidate SETBP1 and other MEF2-related genes) seem to jointly influence certain, but not all, facets of the DLD phenotype. Even when genetic and environmental diversity is reduced, DLD is best conceptualized as etiologically complex. Future research should establish whether the signals detected in the AZ population can be replicated in other samples and languages and provide further characterization of the identified pathway.
Collapse
Affiliation(s)
- Sergey A. Kornilov
- Child Study Center, School of Medicine, Yale University, New Haven, Connecticut;,Department of Psychology, University of Connecticut, Storrs, Connecticut;,Haskins Laboratories, New Haven, Connecticut;,Department of Psychology, Moscow State University, Moscow, Russia;,Department of Psychology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Natalia Rakhlin
- Child Study Center, School of Medicine, Yale University, New Haven, Connecticut;,Department of Communication Sciences and Disorders, Wayne State University, Detroit, Michigan
| | - Roman Koposov
- Regional Centre for Child and Youth Mental Health and Child Welfare, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maria Lee
- Child Study Center, School of Medicine, Yale University, New Haven, Connecticut
| | - Carolyn Yrigollen
- The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ahmet Okay Caglayan
- Child Study Center, School of Medicine, Yale University, New Haven, Connecticut;,Department of Medical Genetics, Istanbul Bilim University, Istanbul, Turkey; and
| | - James S. Magnuson
- Department of Psychology, University of Connecticut, Storrs, Connecticut;,Haskins Laboratories, New Haven, Connecticut
| | - Shrikant Mane
- Child Study Center, School of Medicine, Yale University, New Haven, Connecticut
| | - Joseph T. Chang
- Child Study Center, School of Medicine, Yale University, New Haven, Connecticut
| | - Elena L. Grigorenko
- Child Study Center, School of Medicine, Yale University, New Haven, Connecticut;,Haskins Laboratories, New Haven, Connecticut;,Department of Psychology, Saint Petersburg State University, Saint Petersburg, Russia;,Moscow State University for Psychology and Education, Moscow, Russia
| |
Collapse
|
49
|
Lee JC, Mueller KL, Tomblin JB. Examining Procedural Learning and Corticostriatal Pathways for Individual Differences in Language: Testing Endophenotypes of DRD2/ANKK1. LANGUAGE, COGNITION AND NEUROSCIENCE 2016; 31:1098-1114. [PMID: 31768398 PMCID: PMC6876848 DOI: 10.1080/23273798.2015.1089359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The aim of the study was to explore whether genetic variation in the dopaminergic system is associated with procedural learning and the corticostriatal pathways in individuals with developmental language impairment (DLI). We viewed these two systems as endophenotypes and hypothesized that they would be more sensitive indicators of genetic effects than the language phenotype itself. Thus, we genotyped two SNPs in the DRD2/ANKK1 gene complex, and tested for their associations to the phenotype of DLI and the two endophenotypes. Results showed that individuals with DLI revealed poor procedural learning abilities and abnormal structures of the basal ganglia. Genetic variation in DRD2/ANKK1 was associated with procedural learning abilities and with microstructural differences of the caudate nucleus. The association of the language phenotype with these DRD2/ANKK1 polymorphisms was not significant, but the phenotype was significantly associated with the two endophenotypes. We suggest that procedural learning and the corticostriatal pathways could be used as effective endophenotypes to aid molecular genetic studies searching for genes predisposing to DLI.
Collapse
Affiliation(s)
- Joanna C. Lee
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA
| | - Kathryn L. Mueller
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA
| | - J. Bruce Tomblin
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
50
|
Paracchini S, Diaz R, Stein J. Advances in Dyslexia Genetics—New Insights Into the Role of Brain Asymmetries. ADVANCES IN GENETICS 2016; 96:53-97. [DOI: 10.1016/bs.adgen.2016.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|