1
|
Strehle LD, Otto-Dobos LD, Grant CV, Glasper ER, Pyter LM. Microglia contribute to mammary tumor-induced neuroinflammation in a female mouse model. FASEB J 2024; 38:e23419. [PMID: 38236370 PMCID: PMC10832463 DOI: 10.1096/fj.202301580rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/13/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
Following diagnosis but before treatment, up to 30% of breast cancer patients report behavioral side effects (e.g., anxiety, depression, memory impairment). Our rodent mammary tumor model recapitulates aspects of these behavioral sequelae, as well as elevated circulating and brain inflammatory mediators. Neuroinflammation is a proposed mechanism underlying the etiology of mood disorders and cognitive deficits, and therefore may be contributing to tumor-associated behavioral side effects. The cellular mechanisms by which tumor-induced neuroinflammation occurs remain unknown, making targeted treatment approaches inaccessible. Here, we tested the hypotheses that microglia are the primary cells driving tumor-induced neuroinflammation and behavioral side effects. Young adult female BALB/c mice were induced with a 67NR mammary tumor; tumor-free controls underwent a sham surgery. Mammary tumors increased IBA1+ and GFAP+ staining in the amygdala and hippocampus relative to tumor-free controls. However, tumors did not alter gene expression of Percoll-enriched microglia isolated from the whole brain. While cognitive, social, and anhedonia-like behaviors were not altered in tumor-bearing mice, tumors increased central tendency in the open-field test; microglia depletion did not reverse this effect. Brain region RT-qPCR data indicated that microglia depletion attenuated tumor-induced elevations of neuroinflammatory gene expression in a region- and mediator-specific manner. These results indicate a causal role of microglia in tumor-induced neuroinflammation. This research advances our understanding of the cellular mechanisms underlying tumor-induced neuroinflammation in order to understand how brain responses (e.g., behavior) may be altered with subsequent cancer-related immune challenges.
Collapse
Affiliation(s)
- Lindsay D. Strehle
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lauren D. Otto-Dobos
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Corena V. Grant
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Erica R. Glasper
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Leah M. Pyter
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Harper KM, Harp SJ, Moy SS. Prenatal stress unmasks behavioral phenotypes in genetic mouse models of neurodevelopmental disorders. Front Behav Neurosci 2023; 17:1271225. [PMID: 37809038 PMCID: PMC10556231 DOI: 10.3389/fnbeh.2023.1271225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are complex conditions characterized by heterogeneous clinical profiles and symptoms that arise in infancy and childhood. NDDs are often attributed to a complicated interaction between genetic risk and environmental factors, suggesting a need for preclinical models reflecting the combined impact of heritable susceptibility and environmental effects. A notable advantage of "two-hit" models is the power to reveal underlying vulnerability that may not be detected in studies employing only genetic or environmental alterations. In this review, we summarize existing literature that investigates detrimental interactions between prenatal stress (PNS) and genes associated with NDDs, with a focus on behavioral phenotyping approaches in mouse models. A challenge in determining the overall role of PNS exposure in genetic models is the diversity of approaches for inducing stress, variability in developmental timepoints for exposure, and differences in phenotyping regimens across laboratories. Identification of optimal stress protocols and critical windows for developmental effects would greatly improve the use of PNS in gene × environment mouse models of NDDs.
Collapse
Affiliation(s)
- Kathryn M. Harper
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Samuel J. Harp
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Sheryl S. Moy
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
3
|
Hughes BW, Siemsen BM, Tsvetkov E, Berto S, Kumar J, Cornbrooks RG, Akiki RM, Cho JY, Carter JS, Snyder KK, Assali A, Scofield MD, Cowan CW, Taniguchi M. NPAS4 in the medial prefrontal cortex mediates chronic social defeat stress-induced anhedonia-like behavior and reductions in excitatory synapses. eLife 2023; 12:e75631. [PMID: 36780219 PMCID: PMC9925055 DOI: 10.7554/elife.75631] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/29/2023] [Indexed: 02/14/2023] Open
Abstract
Chronic stress can produce reward system deficits (i.e., anhedonia) and other common symptoms associated with depressive disorders, as well as neural circuit hypofunction in the medial prefrontal cortex (mPFC). However, the molecular mechanisms by which chronic stress promotes depressive-like behavior and hypofrontality remain unclear. We show here that the neuronal activity-regulated transcription factor, NPAS4, in the mPFC is regulated by chronic social defeat stress (CSDS), and it is required in this brain region for CSDS-induced changes in sucrose preference and natural reward motivation in the mice. Interestingly, NPAS4 is not required for CSDS-induced social avoidance or anxiety-like behavior. We also find that mPFC NPAS4 is required for CSDS-induced reductions in pyramidal neuron dendritic spine density, excitatory synaptic transmission, and presynaptic function, revealing a relationship between perturbation in excitatory synaptic transmission and the expression of anhedonia-like behavior in the mice. Finally, analysis of the mice mPFC tissues revealed that NPAS4 regulates the expression of numerous genes linked to glutamatergic synapses and ribosomal function, the expression of upregulated genes in CSDS-susceptible animals, and differentially expressed genes in postmortem human brains of patients with common neuropsychiatric disorders, including depression. Together, our findings position NPAS4 as a key mediator of chronic stress-induced hypofrontal states and anhedonia-like behavior.
Collapse
Affiliation(s)
- Brandon W Hughes
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Benjamin M Siemsen
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
- Department of Anesthesiology, Medical University of South CarolinaCharlestonUnited States
| | - Evgeny Tsvetkov
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Stefano Berto
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Jaswinder Kumar
- Department of Psychiatry, Harvard Medical SchoolBelmontUnited States
- Neuroscience Graduate Program, University of Texas Southwestern Medical CenterDallasUnited States
| | - Rebecca G Cornbrooks
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Rose Marie Akiki
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Jennifer Y Cho
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Jordan S Carter
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Kirsten K Snyder
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Ahlem Assali
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
- Department of Anesthesiology, Medical University of South CarolinaCharlestonUnited States
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
- Department of Psychiatry, Harvard Medical SchoolBelmontUnited States
- Neuroscience Graduate Program, University of Texas Southwestern Medical CenterDallasUnited States
| | - Makoto Taniguchi
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
- Department of Psychiatry, Harvard Medical SchoolBelmontUnited States
| |
Collapse
|
4
|
Arzuaga AL, Edmison DD, Mroczek J, Larson J, Ragozzino ME. Prenatal stress and fluoxetine exposure in mice differentially affect repetitive behaviors and synaptic plasticity in adult male and female offspring. Behav Brain Res 2023; 436:114114. [DOI: 10.1016/j.bbr.2022.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/17/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
|
5
|
Petroni V, Subashi E, Premoli M, Memo M, Lemaire V, Pietropaolo S. Long-term behavioral effects of prenatal stress in the Fmr1-knock-out mouse model for fragile X syndrome. Front Cell Neurosci 2022; 16:917183. [PMID: 36385949 PMCID: PMC9647640 DOI: 10.3389/fncel.2022.917183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
Fragile X syndrome (FXS) is a major neurodevelopmental disorder and the most common monogenic cause of autism spectrum disorder (ASD). FXS is caused by a mutation in the X-linked FMR1 gene leading to the absence of the FMRP protein, inducing several behavioral deficits, including motor, emotional, cognitive, and social abnormalities. Beside its clear genetic origins, FXS can be modulated by environmental factors, e.g., stress exposure: indeed the behavioral phenotype of FXS, as well as of ASD patients can be exacerbated by the repeated experience of stressful events, especially early in life. Here we investigated the long-term effects of prenatal exposure to unpredictable chronic stress on the behavioral phenotype of the Fmr1-knock-out (KO) mouse model for FXS and ASD. Mice were tested for FXS- and ASD-relevant behaviors first at adulthood (3 months) and then at aging (18 months), in order to assess the persistence and the potential time-related progression of the stress effects. Stress induced the selective emergence of behavioral deficits in Fmr1-KO mice that were evident in spatial memory only at aging. Stress also exerted several age-specific behavioral effects in mice of both genotypes: at adulthood it enhanced anxiety levels and reduced social interaction, while at aging it enhanced locomotor activity and reduced the complexity of ultrasonic calls. Our findings underline the relevance of gene-environment interactions in mouse models of neurodevelopmental syndromes and highlight the long-term behavioral impact of prenatal stress in laboratory mice.
Collapse
Affiliation(s)
- Valeria Petroni
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Enejda Subashi
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Marika Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valerie Lemaire
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Susanna Pietropaolo
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
- *Correspondence: Susanna Pietropaolo,
| |
Collapse
|
6
|
Woodward EM, Coutellier L. Age- and sex-specific effects of stress on parvalbumin interneurons in preclinical models: Relevance to sex differences in clinical neuropsychiatric and neurodevelopmental disorders. Neurosci Biobehav Rev 2021; 131:1228-1242. [PMID: 34718048 PMCID: PMC8642301 DOI: 10.1016/j.neubiorev.2021.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/06/2021] [Accepted: 10/23/2021] [Indexed: 01/06/2023]
Abstract
Stress is a major risk factor for neurodevelopmental and neuropsychiatric disorders, with the capacity to impact susceptibility to disease as well as long-term neurobiological and behavioral outcomes. Parvalbumin (PV) interneurons, the most prominent subtype of GABAergic interneurons in the cortex, are uniquely responsive to stress due to their protracted development throughout the highly plastic neonatal period and into puberty and adolescence. Additionally, PV + interneurons appear to respond to stress in a sex-specific manner. This review aims to discuss existing preclinical studies that support our overall hypothesis that the sex-and age-specific impacts of stress on PV + interneurons contribute to differences in individual vulnerability to stress across the lifespan, particularly in regard to sex differences in the diagnostic rate of neurodevelopmental and neuropsychiatric diseases in clinical populations. We also emphasize the importance of studying sex as a biological variable to fully understand the mechanistic and behavioral differences between males and females in models of neuropsychiatric disease.
Collapse
Affiliation(s)
- Emma M Woodward
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH, 43210, United States
| | - Laurence Coutellier
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH, 43210, United States; Department of Psychology, Ohio State University, 53 Psychology Building, 1835 Neil Avenue, Columbus, OH, 43210, United States.
| |
Collapse
|
7
|
Perlman G, Tanti A, Mechawar N. Parvalbumin interneuron alterations in stress-related mood disorders: A systematic review. Neurobiol Stress 2021; 15:100380. [PMID: 34557569 PMCID: PMC8446799 DOI: 10.1016/j.ynstr.2021.100380] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/23/2022] Open
Abstract
Stress-related psychiatric disorders including depression involve complex cellular and molecular changes in the brain, and GABAergic signaling dysfunction is increasingly implicated in the etiology of mood disorders. Parvalbumin (PV)-expressing neurons are fast-spiking interneurons that, among other roles, coordinate synchronous neuronal firing. Mounting evidence suggests that the PV neuron phenotype is altered by stress and in mood disorders. In this systematic review, we assessed PV interneuron alterations in psychiatric disorders as reported in human postmortem brain studies and animal models of environmental stress. This review aims to 1) comprehensively catalog evidence of PV cell function in mood disorders (humans) and stress models of mood disorders (animals); 2) analyze the strength of evidence of PV interneuron alterations in various brain regions in humans and rodents; 3) determine whether the modulating effect of antidepressant treatment, physical exercise, and environmental enrichment on stress in animals associates with particular effects on PV function; and 4) use this information to guide future research avenues. Its principal findings, derived mainly from rodent studies, are that stress-related changes in PV cells are only reported in a minority of studies, that positive findings are region-, age-, sex-, and stress recency-dependent, and that antidepressants protect from stress-induced apparent PV cell loss. These observations do not currently translate well to humans, although the postmortem literature on the topic remains limited.
Collapse
Affiliation(s)
| | - Arnaud Tanti
- Corresponding author. McGill Group for Suicide Studies, Department of Psychiaty, McGill University, Douglas Mental Health University Institute, 6875 LaSalle blvd, Verdun, Qc, H4H 1R3, Canada
| | - Naguib Mechawar
- Corresponding author. McGill Group for Suicide Studies, Department of Psychiaty, McGill University, Douglas Mental Health University Institute, 6875 LaSalle blvd, Verdun, Qc, H4H 1R3, Canada
| |
Collapse
|
8
|
Roshan-Milani S, Seyyedabadi B, Saboory E, Parsamanesh N, Mehranfard N. Prenatal stress and increased susceptibility to anxiety-like behaviors: role of neuroinflammation and balance between GABAergic and glutamatergic transmission. Stress 2021; 24:481-495. [PMID: 34180763 DOI: 10.1080/10253890.2021.1942828] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Neuroplasticity during the prenatal period allows neurons to regenerate anatomically and functionally for re-programming the brain development. During this critical period of fetal programming, the fetus phenotype can change in accordance with environmental stimuli such as stress exposure. Prenatal stress (PS) can exert important effects on brain development and result in permanent alterations with long-lasting consequences on the physiology and behavior of the offspring later in life. Neuroinflammation, as well as GABAergic and glutamatergic dysfunctions, has been implicated as potential mediators of behavioral consequences of PS. Hyperexcitation, due to enhanced excitatory transmission or reduced inhibitory transmission, can promote anxiety. Alterations of the GABAergic and/or glutamatergic signaling during fetal development lead to a severe excitatory/inhibitory imbalance in neuronal circuits, a condition that may account for PS-precipitated anxiety-like behaviors. This review summarizes experimental evidence linking PS to an elevated risk to anxiety-like behaviors and interprets the role of the neuroinflammation and alterations of the brain GABAergic and glutamatergic transmission in this phenomenon. We hypothesize this is an imbalance in GABAergic and glutamatergic circuits (as a direct or indirect consequence of neuroinflammation), which at least partially contributes to PS-precipitated anxiety-like behaviors and primes the brain to be vulnerable to anxiety disorders. Therefore, pharmacological interventions with anti-inflammatory activities and with regulatory effects on the excitatory/inhibitory balance can be attributed to the novel therapeutic target for anxiety disorders.
Collapse
Affiliation(s)
- Shiva Roshan-Milani
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Ehsan Saboory
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Negin Parsamanesh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nasrin Mehranfard
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
9
|
Alpuche-Lazcano SP, Saliba J, Costa VV, Campolina-Silva GH, Marim FM, Ribeiro LS, Blank V, Mouland AJ, Teixeira MM, Gatignol A. Profound downregulation of neural transcription factor Npas4 and Nr4a family in fetal mice neurons infected with Zika virus. PLoS Negl Trop Dis 2021; 15:e0009425. [PMID: 34048439 PMCID: PMC8191876 DOI: 10.1371/journal.pntd.0009425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 06/10/2021] [Accepted: 04/30/2021] [Indexed: 01/01/2023] Open
Abstract
Zika virus (ZIKV) infection of neurons leads to neurological complications and congenital malformations of the brain of neonates. To date, ZIKV mechanism of infection and pathogenesis is not entirely understood and different studies on gene regulation of ZIKV-infected cells have identified a dysregulation of inflammatory and stem cell maintenance pathways. MicroRNAs (miRNAs) are post-transcriptional regulators of cellular genes and they contribute to cell development in normal function and disease. Previous reports with integrative analyses of messenger RNAs (mRNAs) and miRNAs during ZIKV infection have not identified neurological pathway defects. We hypothesized that dysregulation of pathways involved in neurological functions will be identified by RNA profiling of ZIKV-infected fetal neurons. We therefore used microarrays to analyze gene expression levels following ZIKV infection of fetal murine neurons. We observed that the expression levels of transcription factors such as neural PAS domain protein 4 (Npas4) and of three members of the orphan nuclear receptor 4 (Nr4a) were severely decreased after viral infection. We confirmed that their downregulation was at both the mRNA level and at the protein level. The dysregulation of these transcription factors has been previously linked to aberrant neural functions and development. We next examined the miRNA expression profile in infected primary murine neurons by microarray and found that various miRNAs were dysregulated upon ZIKV infection. An integrative analysis of the differentially expressed miRNAs and mRNAs indicated that miR-7013-5p targets Nr4a3 gene. Using miRmimics, we corroborated that miR-7013-5p downregulates Nr4a3 mRNA and protein levels. Our data identify a profound dysregulation of neural transcription factors with an overexpression of miR-7013-5p that results in decreased Nr4a3 expression, likely a main contributor to ZIKV-induced neuronal dysfunction. Zika virus (ZIKV) is an emerging virus transmitted horizontally between humans through mosquito bites, and sexual intercourse generally inducing a mild disease. ZIKV is also transmitted vertically from mother-to-child producing congenital ZIKV syndrome (CZVS) in neonates. CZVS leads to severe microcephaly associated with neurological, ocular, musculoskeletal, genitourinary disorders and other disabilities. Although numerous studies have been performed on ZIKV infection of brain cells, we are still far from understanding how ZIKV infection leads to dysregulation of host genes, virus-induced cytopathicity and consequent pathology. Micro (mi)RNAs are small noncoding RNAs encoded and processed by the host cell. They regulate gene expression at the post-transcriptional level in a process called RNA interference (RNAi). Here, we evaluated the relationship between ZIKV infection and the level of mRNAs and miRNAs expressed in the cell. ZIKV infection of mouse embryo neurons downregulated several neural immediate-early genes (IEG). Moreover, we revealed that ZIKV infection led to aberrant regulation of several miRNAs, and identified one whose cognate target was a neural IEG. Our work identifies novel genes and miRNAs that are modulated upon ZIKV infection of fetal murine neurons, therefore linking neuronal dysfunction to transcription and the RNA interference pathway.
Collapse
Affiliation(s)
- Sergio P. Alpuche-Lazcano
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, Canada
- RNA Trafficking Laboratory, Lady Davis Institute for Medical Research, Montréal, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Canada
| | - James Saliba
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Canada
- Lady Davis Institute for Medical Research, Montréal, Canada
| | - Vivian V. Costa
- Departamento de Bioquimica e Imunologia do Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Morfologia do Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel H. Campolina-Silva
- Departamento de Bioquimica e Imunologia do Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda M. Marim
- Departamento de Bioquimica e Imunologia do Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas S. Ribeiro
- Departamento de Bioquimica e Imunologia do Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Volker Blank
- Lady Davis Institute for Medical Research, Montréal, Canada
- Department of Medicine, Montréal, Canada
- Department of Physiology, McGill University, Montréal, Canada
| | - Andrew J. Mouland
- RNA Trafficking Laboratory, Lady Davis Institute for Medical Research, Montréal, Canada
- Department of Medicine, Montréal, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Canada
| | - Mauro M. Teixeira
- Departamento de Bioquimica e Imunologia do Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anne Gatignol
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, Canada
- Department of Medicine, Montréal, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Canada
- * E-mail:
| |
Collapse
|
10
|
Tiwari P, Fanibunda SE, Kapri D, Vasaya S, Pati S, Vaidya VA. GPCR signaling: role in mediating the effects of early adversity in psychiatric disorders. FEBS J 2021; 288:2602-2621. [DOI: 10.1111/febs.15738] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Praachi Tiwari
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Sashaina E. Fanibunda
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
- Medical Research Centre Kasturba Health Society Mumbai India
| | - Darshana Kapri
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Shweta Vasaya
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Sthitapranjya Pati
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Vidita A. Vaidya
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| |
Collapse
|
11
|
Fu J, Guo O, Zhen Z, Zhen J. Essential Functions of the Transcription Factor Npas4 in Neural Circuit Development, Plasticity, and Diseases. Front Neurosci 2020; 14:603373. [PMID: 33335473 PMCID: PMC7736240 DOI: 10.3389/fnins.2020.603373] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Signaling from the synapse to nucleus is mediated by the integration and propagation of both membrane potential changes (postsynaptic potentials) and intracellular second messenger cascades. The electrical propagation of postsynaptic potentials allows for rapid neural information processing, while propagating second messenger pathways link synaptic activity to the transcription of genes required for neuronal survival and adaptive changes (plasticity) underlying circuit formation and learning. The propagation of activity-induced calcium signals to the cell nucleus is a major synapse-to-nucleus communication pathway. Neuronal PAS domain protein 4 (Npas4) is a recently discovered calcium-dependent transcription factor that regulates the activation of genes involved in the homeostatic regulation of excitatory–inhibitory balance, which is critical for neural circuit formation, function, and ongoing plasticity, as well as for defense against diseases such as epilepsy. Here, we summarize recent findings on the neuroprotective functions of Npas4 and the potential of Npas4 as a therapeutic target for the treatment of acute and chronic diseases of the central nervous system.
Collapse
Affiliation(s)
- Jian Fu
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ouyang Guo
- Department of Biology, Boston University, Boston, MA, United States
| | - Zhihang Zhen
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junli Zhen
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Ike KG, de Boer SF, Buwalda B, Kas MJ. Social withdrawal: An initially adaptive behavior that becomes maladaptive when expressed excessively. Neurosci Biobehav Rev 2020; 116:251-267. [DOI: 10.1016/j.neubiorev.2020.06.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/28/2020] [Accepted: 06/24/2020] [Indexed: 12/29/2022]
|
13
|
Sharma N, Pollina EA, Nagy MA, Yap EL, DiBiase FA, Hrvatin S, Hu L, Lin C, Greenberg ME. ARNT2 Tunes Activity-Dependent Gene Expression through NCoR2-Mediated Repression and NPAS4-Mediated Activation. Neuron 2019; 102:390-406.e9. [PMID: 30846309 DOI: 10.1016/j.neuron.2019.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/20/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022]
Abstract
Neuronal activity-dependent transcription is tuned to ensure precise gene induction during periods of heightened synaptic activity, allowing for appropriate responses of activated neurons within neural circuits. The consequences of aberrant induction of activity-dependent genes on neuronal physiology are not yet clear. Here, we demonstrate that, in the absence of synaptic excitation, the basic-helix-loop-helix (bHLH)-PAS family transcription factor ARNT2 recruits the NCoR2 co-repressor complex to suppress neuronal activity-dependent regulatory elements and maintain low basal levels of inducible genes. This restricts inhibition of excitatory neurons, maintaining them in a state that is receptive to future sensory stimuli. By contrast, in response to heightened neuronal activity, ARNT2 recruits the neuronal-specific bHLH-PAS factor NPAS4 to activity-dependent regulatory elements to induce transcription and thereby increase somatic inhibitory input. Thus, the interplay of bHLH-PAS complexes at activity-dependent regulatory elements maintains temporal control of activity-dependent gene expression and scales somatic inhibition with circuit activity.
Collapse
Affiliation(s)
- Nikhil Sharma
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - M Aurel Nagy
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ee-Lynn Yap
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Florence A DiBiase
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sinisa Hrvatin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Linda Hu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Cindy Lin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
14
|
Downregulation of Npas4 in parvalbumin interneurons and cognitive deficits after neonatal NMDA receptor blockade: relevance for schizophrenia. Transl Psychiatry 2019; 9:99. [PMID: 30792384 PMCID: PMC6385315 DOI: 10.1038/s41398-019-0436-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/29/2019] [Accepted: 02/12/2019] [Indexed: 12/17/2022] Open
Abstract
Dysfunction of prefrontal parvalbumin (PV+) interneurons has been linked with severe cognitive deficits as observed in several neurodevelopmental disorders including schizophrenia. However, whether a specific aspect of PV+ neurons deregulation, or a specific molecular mechanism within PV+ neurons is responsible for cognitive deficits and other behavioral impairments remain to be determined. Here, we induced cognitive deficits and altered the prefrontal PV system in mice by exposing them neonatally to the NMDA receptor antagonist ketamine. We observed that the cognitive deficits and hyperactivity induced by neonatal ketamine were associated with a downregulation of Npas4 expression specifically in PV+ neurons. To determine whether Npas4 downregulation-induced dysfunction of PV+ neurons could be a molecular contributor to the cognitive and behavioral impairments reported after neonatal ketamine, we used a transgenic Cre-Lox approach. Reduced Npas4 expression within PV+ neurons replicates deficits in short-term memory observed after neonatal ketamine, but does not reproduce disturbances in general activity. Our data show for the first time that the brain-specific transcription factor Npas4 may be an important contributor to PV+ neurons dysfunction in neurodevelopmental disorders, and thereby could contribute to the cognitive deficits observed in diseases characterized by abnormal functioning of PV+ neurons such as schizophrenia. These findings provide a potential novel therapeutic target to rescue the cognitive impairments of schizophrenia that remain to date unresponsive to treatments.
Collapse
|
15
|
Abbott PW, Gumusoglu SB, Bittle J, Beversdorf DQ, Stevens HE. Prenatal stress and genetic risk: How prenatal stress interacts with genetics to alter risk for psychiatric illness. Psychoneuroendocrinology 2018; 90:9-21. [PMID: 29407514 DOI: 10.1016/j.psyneuen.2018.01.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/20/2018] [Accepted: 01/21/2018] [Indexed: 02/07/2023]
Abstract
Risk for neuropsychiatric disorders is complex and includes an individual's internal genetic endowment and their environmental experiences and exposures. Embryonic development captures a particularly complex period, in which genetic and environmental factors can interact to contribute to risk. These environmental factors are incorporated differently into the embryonic brain than postnatal one. Here, we comprehensively review the human and animal model literature for studies that assess the interaction between genetic risks and one particular environmental exposure with strong and complex associations with neuropsychiatric outcomes-prenatal maternal stress. Gene-environment interaction has been demonstrated for stress occurring during childhood, adolescence, and adulthood. Additional work demonstrates that prenatal stress risk may be similarly complex. Animal model studies have begun to address some underlying mechanisms, including particular maternal or fetal genetic susceptibilities that interact with stress exposure and those that do not. More specifically, the genetic underpinnings of serotonin and dopamine signaling and stress physiology mechanisms have been shown to be particularly relevant to social, attentional, and internalizing behavioral changes, while other genetic factors have not, including some growth factor and hormone-related genes. Interactions have reflected both the diathesis-stress and differential susceptibility models. Maternal genetic factors have received less attention than those in offspring, but strongly modulate impacts of prenatal stress. Priorities for future research are investigating maternal response to distinct forms of stress and developing whole-genome methods to examine the contributions of genetic variants of both mothers and offspring, particularly including genes involved in neurodevelopment. This is a burgeoning field of research that will ultimately contribute not only to a broad understanding of psychiatric pathophysiology but also to efforts for personalized medicine.
Collapse
Affiliation(s)
- Parker W Abbott
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA.
| | - Serena B Gumusoglu
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, 52242, USA.
| | - Jada Bittle
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, 52242, USA.
| | - David Q Beversdorf
- Interdisciplinary Neuroscience Program, Interdisciplinary Intercampus Research Program, Thompson Center for Autism and Neurodevelopment Disorders, Departments of Radiology, Neurology and Psychological Sciences, University of Missouri, Columbia, MO, USA.
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, 2312 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA.
| |
Collapse
|