1
|
Levay E, Nasser H, Zelko M, Penman J, Johns T. Lemming and Vole Cycles: A New Intrinsic Model. Ecol Evol 2024; 14:e70440. [PMID: 39440212 PMCID: PMC11493491 DOI: 10.1002/ece3.70440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
It is 100 years since the first paper described the multiannual cycles in Arctic rodents and lagomorphs. The mechanisms driving population cycles in animals like lemmings and voles are complex, often attributed to extrinsic factors, such as food availability and quality, pathogens, parasites and/or predators. While extrinsic factors provide insights into population cycles, none fully explain the phenomenon. We propose an underlying innate, intrinsic mechanism, based on epigenetic regulation, that drives population cycles under harsh arctic conditions. We propose that epigenetically driven phenotypic changes associated with sexual development, growth and behaviour accumulate over time in offspring, eventually producing a phase change from rising population density to eventual population collapse. Under this hypothesis, and unlike previous hypotheses, extrinsic factors modify population cycles but would not be primary drivers. The interaction between our intrinsic cycle and extrinsic factors explains established phenomena like delayed-density dependence, whereby population growth is controlled by time-dependent negative feedback. We advocate integrating a century of field research with the latest epigenetic analysis to better understand the drivers of population cycles.
Collapse
Affiliation(s)
- Elizabeth A. Levay
- School of Psychology and Public HealthLa Trobe UniversityMelbourneVictoriaAustralia
- Epigenes Australia Pty LtdMelbourneVictoriaAustralia
| | - Helen Nasser
- School of Psychology and Public HealthLa Trobe UniversityMelbourneVictoriaAustralia
- Epigenes Australia Pty LtdMelbourneVictoriaAustralia
| | | | - Jim Penman
- Epigenes Australia Pty LtdMelbourneVictoriaAustralia
| | - Terrance G. Johns
- School of Psychology and Public HealthLa Trobe UniversityMelbourneVictoriaAustralia
- Epigenes Australia Pty LtdMelbourneVictoriaAustralia
| |
Collapse
|
2
|
Gauthier G, Ehrich D, Belke-Brea M, Domine F, Alisauskas R, Clark K, Ecke F, Eide NE, Framstad E, Frandsen J, Gilg O, Henttonen H, Hörnfeldt B, Kataev GD, Menyushina IE, Oksanen L, Oksanen T, Olofsson J, Samelius G, Sittler B, Smith PA, Sokolov AA, Sokolova NA, Schmidt NM. Taking the beat of the Arctic: are lemming population cycles changing due to winter climate? Proc Biol Sci 2024; 291:20232361. [PMID: 38351802 PMCID: PMC10865006 DOI: 10.1098/rspb.2023.2361] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Reports of fading vole and lemming population cycles and persisting low populations in some parts of the Arctic have raised concerns about the spread of these fundamental changes to tundra food web dynamics. By compiling 24 unique time series of lemming population fluctuations across the circumpolar region, we show that virtually all populations displayed alternating periods of cyclic/non-cyclic fluctuations over the past four decades. Cyclic patterns were detected 55% of the time (n = 649 years pooled across sites) with a median periodicity of 3.7 years, and non-cyclic periods were not more frequent in recent years. Overall, there was an indication for a negative effect of warm spells occurring during the snow onset period of the preceding year on lemming abundance. However, winter duration or early winter climatic conditions did not differ on average between cyclic and non-cyclic periods. Analysis of the time series shows that there is presently no Arctic-wide collapse of lemming cycles, even though cycles have been sporadic at most sites during the last decades. Although non-stationary dynamics appears a common feature of lemming populations also in the past, continued warming in early winter may decrease the frequency of periodic irruptions with negative consequences for tundra ecosystems.
Collapse
Affiliation(s)
- Gilles Gauthier
- Department of Biology and Centre d’études nordiques, Université Laval, Québec city, Québec, Canada
| | - Dorothée Ehrich
- Department of Arctic and Marine Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Maria Belke-Brea
- Department of Geography, Takuvik Joint International Laboratory and Centre d’études nordiques, Université Laval, Québec city, Québec, Canada
| | - Florent Domine
- Department of Chemistry, Takuvik Joint International Laboratory and Centre d’études nordiques, Université Laval, Québec city, Québec, Canada
- CNRS-INSU, Paris, France
| | - Ray Alisauskas
- Wildlife Research Division, Environment and Climate Change Canada, Saskatoon, Saskatchewan, Canada
| | - Karin Clark
- Environment and Natural Resources, Government of Northwest Territories, Yellowknife, Northwest Territories, Canada
| | - Frauke Ecke
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Nina E. Eide
- Department of Terrestrial Ecology, Norwegian Institute for Nature Research, Trondheim/Oslo, Norway
| | - Erik Framstad
- Department of Terrestrial Ecology, Norwegian Institute for Nature Research, Trondheim/Oslo, Norway
| | - Jay Frandsen
- Western Arctic Field Unit, Parks Canada, Kingmingya, Inuvik, Northwest Territories, Canada
| | - Olivier Gilg
- UMR 6249 Chrono-Environnement, CNRS, Université de Bourgogne Franche-Comté, Francheville, France
- Groupe de recherche en Écologie Arctique, Francheville, France
| | - Heikki Henttonen
- Terrestrial Population Dynamics, Natural Resources Institute Finland, Helsinki, Finland
| | - Birger Hörnfeldt
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | | | - Lauri Oksanen
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Alta, Norway
- Department of Biology, Section of Ecology, University of Turku, Turku, Finland
| | - Tarja Oksanen
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Alta, Norway
- Department of Biology, Section of Ecology, University of Turku, Turku, Finland
| | - Johan Olofsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | | | - Benoit Sittler
- Groupe de recherche en Écologie Arctique, Francheville, France
- Chair for Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| | - Paul A. Smith
- Wildlife Research Division, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Aleksandr A. Sokolov
- Arctic Research Station of Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Labytnangi, Russia
| | - Natalia A. Sokolova
- Arctic Research Station of Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Labytnangi, Russia
| | - Niels M. Schmidt
- Department of Ecoscience and Arctic Research Centre, Aarhus University, 4000 Roskilde, Denmark
| |
Collapse
|
3
|
Wang YXG, Voutilainen L, Aminikhah M, Helle H, Huitu O, Laakkonen J, Lindén A, Niemimaa J, Sane J, Sironen T, Vapalahti O, Henttonen H, Kallio ER. The impact of wildlife and environmental factors on hantavirus infection in the host and its translation into human risk. Proc Biol Sci 2023; 290:20222470. [PMID: 37040809 PMCID: PMC10089723 DOI: 10.1098/rspb.2022.2470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/13/2023] [Indexed: 04/13/2023] Open
Abstract
Identifying factors that drive infection dynamics in reservoir host populations is essential in understanding human risk from wildlife-originated zoonoses. We studied zoonotic Puumala orthohantavirus (PUUV) in the host, the bank vole (Myodes glareolus), populations in relation to the host population, rodent and predator community and environment-related factors and whether these processes are translated into human infection incidence. We used 5-year rodent trapping and bank vole PUUV serology data collected from 30 sites located in 24 municipalities in Finland. We found that PUUV seroprevalence in the host was negatively associated with the abundance of red foxes, but this process did not translate into human disease incidence, which showed no association with PUUV seroprevalence. The abundance of weasels, the proportion of juvenile bank voles in the host populations and rodent species diversity were negatively associated with the abundance index of PUUV positive bank voles, which, in turn, showed a positive association with human disease incidence. Our results suggest certain predators, a high proportion of young bank vole individuals, and a diverse rodent community, may reduce PUUV risk for humans through their negative impacts on the abundance of infected bank voles.
Collapse
Affiliation(s)
- Yingying X. G. Wang
- Department of Biological and Environmental Science, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Liina Voutilainen
- Department of Health Security, Finnish Institute for Health and Welfare, 00271 Helsinki, Finland
| | - Mahdi Aminikhah
- Department of Ecology and Genetics, University of Oulu, 90014 Oulu, Finland
| | - Heikki Helle
- Department of Biological and Environmental Science, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Otso Huitu
- Wildlife Ecology Group, Natural Resources Institute Finland, 00790 Helsinki, Finland
| | - Juha Laakkonen
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Andreas Lindén
- Wildlife Ecology Group, Natural Resources Institute Finland, 00790 Helsinki, Finland
| | - Jukka Niemimaa
- Research infrastructure services, Natural Resources Institute Finland, 00790 Helsinki, Finland
| | - Jussi Sane
- Department of Health Security, Finnish Institute for Health and Welfare, 00271 Helsinki, Finland
| | - Tarja Sironen
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland
| | - Olli Vapalahti
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland
- Department of Virology, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Heikki Henttonen
- Wildlife Ecology Group, Natural Resources Institute Finland, 00790 Helsinki, Finland
| | - Eva R. Kallio
- Department of Biological and Environmental Science, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| |
Collapse
|
4
|
Emery SE, Klapwijk M, Sigvald R, Bommarco R, Lundin O. Cold winters drive consistent and spatially synchronous 8-year population cycles of cabbage stem flea beetle. J Anim Ecol 2023; 92:594-605. [PMID: 36484622 DOI: 10.1111/1365-2656.13866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Population cycles have been observed in mammals as well as insects, but consistent population cycling has rarely been documented in agroecosystems and never for a beetle. We analysed the long-term population patterns of the cabbage stem flea beetle Psylliodes chrysocephala in winter oilseed rape over 50 years. Psylliodes chrysocephala larval density from 3045 winter oilseed rape fields in southern Sweden showed strong 8-year population cycles in regional mean density. Fluctuations in larval density were synchronous over time across five subregional populations. Subregional mean environmental variables explained 90.6% of the synchrony in P. chrysocephala populations at the 7-11 year time-scale. The number of days below -10°C showed strong anti-phase coherence with larval densities in the 7-11 year time-scale, such that more cold days resulted in low larval densities. High levels of the North Atlantic Oscillation weather system are coherent and anti-phase with cold weather in Scania, Sweden. At the field-scale, later crop planting date and more cold winter days were associated with decreased overwintering larval density. Warmer autumn temperatures, resulting in greater larval accumulated degree days early in the season, increased overwintering larval density. Despite variation in environmental conditions and crop management, 8-year cycles persisted for cabbage stem flea beetle throughout the 50 years of data collection. Moran effects, influenced by the North Atlantic Oscillation weather patterns, are the primary drivers of this cycle and synchronicity. Insect pest data collected in commercial agriculture fields is an abundant source of long-term data. We show that an agricultural pest can have the same periodic population cycles observed in perennial and unmanaged ecosystems. This unexpected finding has implications for sustainable pest management in agriculture and shows the value of long-term pest monitoring projects as an additional source of time-series data to untangle the drivers of population cycles.
Collapse
Affiliation(s)
- Sara E Emery
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Wildlife Fish and Conservation Biology, University of California Davis, Davis, California, USA
| | - Maartje Klapwijk
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Roland Sigvald
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Riccardo Bommarco
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ola Lundin
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
5
|
Sørensen OJ, Moa PF, Hagen BR, Selås V. Possible impact of winter conditions and summer temperature on bank vole ( Myodes glareolus) population fluctuations in Central Norway. ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2022.2120084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ole J. Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Pål F. Moa
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Bjørn-Roar Hagen
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Vidar Selås
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
6
|
Koltz AM, Gough L, McLaren JR. Herbivores in Arctic ecosystems: Effects of climate change and implications for carbon and nutrient cycling. Ann N Y Acad Sci 2022; 1516:28-47. [PMID: 35881516 PMCID: PMC9796801 DOI: 10.1111/nyas.14863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Arctic terrestrial herbivores influence tundra carbon and nutrient dynamics through their consumption of resources, waste production, and habitat-modifying behaviors. The strength of these effects is likely to change spatially and temporally as climate change drives shifts in herbivore abundance, distribution, and activity timing. Here, we review how herbivores influence tundra carbon and nutrient dynamics through their consumptive and nonconsumptive effects. We also present evidence for herbivore responses to climate change and discuss how these responses may alter the spatial and temporal distribution of herbivore impacts. Several current knowledge gaps limit our understanding of the changing functional roles of herbivores; these include limited characterization of the spatial and temporal variability in herbivore impacts and of how herbivore activities influence the cycling of elements beyond carbon. We conclude by highlighting approaches that will promote better understanding of herbivore effects on tundra ecosystems, including their integration into existing biogeochemical models, new applications of remote sensing techniques, and the continued use of distributed experiments.
Collapse
Affiliation(s)
- Amanda M. Koltz
- Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
- The Arctic InstituteCenter for Circumpolar Security StudiesWashingtonDCUSA
- Department of Integrative BiologyUniversity of Texas at AustinAustinTexasUSA
| | - Laura Gough
- Department of Biological SciencesTowson UniversityTowsonMarylandUSA
| | - Jennie R. McLaren
- Department of Biological SciencesUniversity of Texas El PasoEl PasoTexasUSA
| |
Collapse
|
7
|
Kiseleva NV. Long-Term Monitoring of the Numbers of Forest Rodents in Ilmeny Reserve. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Velzen E, Gaedke U, Klauschies T. Quantifying the capacity for contemporary trait changes to drive intermittent predator‐prey cycles. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ellen Velzen
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology University of Potsdam, Maulbeerallee 2 Potsdam Germany
| | - Ursula Gaedke
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology University of Potsdam, Maulbeerallee 2 Potsdam Germany
| | - Toni Klauschies
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology University of Potsdam, Maulbeerallee 2 Potsdam Germany
| |
Collapse
|
9
|
Máca O, Kouba M, Korpimäki E, González-Solís D. Molecular Identification of Sarcocystis sp. (Apicomplexa, Sarcocystidae) in Offspring of Tengmalm's Owls, Aegolius funereus (Aves, Strigidae). Front Vet Sci 2021; 8:804096. [PMID: 35004932 PMCID: PMC8740956 DOI: 10.3389/fvets.2021.804096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Birds act as intermediate or definitive hosts of cyst-forming coccidia parasites of the genus Sarcocystis Lankester, 1882. However, the spectrum of species of Sarcocystis in birds and the role of the latter in the transmission of coccidia are still incomplete for many avian species, including the Tengmalm's owl Aegolius funereus (Linnaeus, 1758). During the research on Tengmalm's owls in Finland, some fledglings were found dead and subsequently parasitologically examined. Therefore, this study is focused on the morphological and molecular description of a Sarcocystis species found in the intestine of the Tengmalm's owl and its possible role as a definitive host. Methods: Eleven fledgling owls in the Kauhava region of west-central Finland were found dead and subsequently were submitted for necropsy and parasitologically examined through the flotation-centrifugation coprological technique for the presence of oocysts/sporocysts of the genus Sarcocystis by light microscopy. Wet mounts were used for the examination of muscle samples (breast, legs, and heart). Polymerase chain reaction (PCR) and nested-PCR were carried out using primers for 18S rRNA, 28S rRNA, ITS1 region, and CO1 genes. Results: All 11 examined owls were parasitized by numerous sporocysts and oocysts in the intestinal mucosa scrapings (prevalence, 100%). Sporulated oocysts and sporocysts measured 16.34-16.96 × 11.47-12.09 μm and 11.85-13.52 × 7.77-9.25 μm, respectively. The skeletal and heart muscles were negative for sarcocysts. Sarcocystis sp. ex Aegolius funereus (hereafter Sarcocystis sp. Af) is closely related to Sarcocystis strixi in the barred owl (Strix varia Barton, 1799) from the USA and Sarcocystis sp. isolate 5 in the European shrew (Sorex araneus Linnaeus, 1758) from the Czech Republic. Phylogenetic analysis allowed determining the relationship of the herein reported Sarcocystis sp. with its congeners. Conclusions: This work provided the first and most comprehensive record on Sarcocystis from owls obtained in Finland, thus highlighting the importance of molecular data in species identification.
Collapse
Affiliation(s)
- Ondřej Máca
- Department of Pathology and Parasitology, State Veterinary Institute Prague, Prague, Czechia
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marek Kouba
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Erkki Korpimäki
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
| | | |
Collapse
|
10
|
Kouba M, Bartoš L, Bartošová J, Hongisto K, Korpimäki E. Long-term trends in the body condition of parents and offspring of Tengmalm's owls under fluctuating food conditions and climate change. Sci Rep 2021; 11:18893. [PMID: 34556766 PMCID: PMC8460639 DOI: 10.1038/s41598-021-98447-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/08/2021] [Indexed: 11/23/2022] Open
Abstract
Physical condition is important for the ability to resist various parasites and diseases as well as in escaping predators thus contributing to reproductive success, over-winter survival and possible declines in wildlife populations. However, in-depth research on trends in body condition is rare because decades-long datasets are not available for a majority of species. We analysed the long-term dataset of offspring covering 34 years, male parents (40 years) and female parents (42 years) to find out whether the decline of Tengmalm's owl population in western Finland is attributable to either decreased adult and/or juvenile body condition in interaction with changing weather conditions and density estimates of main foods. We found that body condition of parent owl males and females declined throughout the 40-year study period whereas the body condition of owlets at the fledging stage very slightly increased. The body condition of parent owls increased with augmenting depth of snow cover in late winter (January to March), and that of offspring improved with increasing precipitation in late spring (May to June). We conclude that the decreasing trend of body condition of parent owl males and females is important factor probably inducing reduced adult survival and reduced reproduction success thus contributing to the long-term decline of the Tengmalm's owl study population. The very slightly increasing trend of body condition of offspring is obviously not able to compensate the overall decline of Tengmalm's owl population, because the number of offspring in turn simultaneously decreased considerably in the long-term. The ongoing climate change appeared to work in opposite ways in this case because declining depth of snow cover will make the situation worse but increased precipitation will improve. We suggest that the main reasons for long-term decline of body condition of parent owls are interactive or additive effects of reduced food resources and increased overall predation risk due to habitat degradation (loss and fragmentation of mature and old-growth forests due to clear-felling) subsequently leading to decline of Tengmalm's owl study population.
Collapse
Affiliation(s)
- Marek Kouba
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland.
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic.
| | - Luděk Bartoš
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
- Department of Ethology, Institute of Animal Science, Prague, Czech Republic
| | - Jitka Bartošová
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
- Department of Ethology, Institute of Animal Science, Prague, Czech Republic
| | | | - Erkki Korpimäki
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
11
|
Climate variability and density-dependent population dynamics: Lessons from a simple High Arctic ecosystem. Proc Natl Acad Sci U S A 2021; 118:2106635118. [PMID: 34504000 PMCID: PMC8449336 DOI: 10.1073/pnas.2106635118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
Whether the renowned population cycles of small mammals in northern food webs are driven by bottom-up (plant–herbivore) or top-down (predator–prey) interactions is still a debated question but crucial to our understanding of their ecological functions and response to climate change. A long-term study of a graminivorous vole population in an exceptionally simple High Arctic food web allowed us to identify which population dynamics features are present without top-down regulation. Unique features were high-amplitude, noncyclic population fluctuations driven by a combination of stochastic weather events and season-specific density dependence likely arising from plant–herbivore interactions. That such features are not present in more complex food webs points to the importance of top-down regulation in small mammal populations. Ecologists are still puzzled by the diverse population dynamics of herbivorous small mammals that range from high-amplitude, multiannual cycles to stable dynamics. Theory predicts that this diversity results from combinations of climatic seasonality, weather stochasticity, and density-dependent food web interactions. The almost ubiquitous 3- to 5-y cycles in boreal and arctic climates may theoretically result from bottom-up (plant–herbivore) and top-down (predator–prey) interactions. Assessing, empirically, the roles of such interactions and how they are influenced by environmental stochasticity has been hampered by food web complexity. Here, we take advantage of a uniquely simple High Arctic food web, which allowed us to analyze the dynamics of a graminivorous vole population not subjected to top-down regulation. This population exhibited high-amplitude, noncyclic fluctuations—partly driven by weather stochasticity. However, the predominant driver of the dynamics was overcompensatory density dependence in winter that caused the population to frequently crash. Model simulations showed that the seasonal pattern of density dependence would yield regular 2-y cycles in the absence of stochasticity. While such short cycles have not yet been observed in mammals, they are theoretically plausible if graminivorous vole populations are deterministically bottom-up regulated. When incorporating weather stochasticity in the model simulations, cyclicity became disrupted and the amplitude was increased—akin to the observed dynamics. Our findings contrast with the 3- to 5-y population cycles that are typical of graminivorous small mammals in more complex food webs, suggesting that top-down regulation is normally an important component of such dynamics.
Collapse
|
12
|
Aminikhah M, Forsman JT, Koskela E, Mappes T, Sane J, Ollgren J, Kivelä SM, Kallio ER. Rodent host population dynamics drive zoonotic Lyme Borreliosis and Orthohantavirus infections in humans in Northern Europe. Sci Rep 2021; 11:16128. [PMID: 34373474 PMCID: PMC8352996 DOI: 10.1038/s41598-021-95000-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Zoonotic diseases, caused by pathogens transmitted between other vertebrate animals and humans, pose a major risk to human health. Rodents are important reservoir hosts for many zoonotic pathogens, and rodent population dynamics affect the infection dynamics of rodent-borne diseases, such as diseases caused by hantaviruses. However, the role of rodent population dynamics in determining the infection dynamics of rodent-associated tick-borne diseases, such as Lyme borreliosis (LB), caused by Borrelia burgdorferi sensu lato bacteria, have gained limited attention in Northern Europe, despite the multiannual abundance fluctuations, the so-called vole cycles, that characterise rodent population dynamics in the region. Here, we quantify the associations between rodent abundance and LB human cases and Puumala Orthohantavirus (PUUV) infections by using two time series (25-year and 9-year) in Finland. Both bank vole (Myodes glareolus) abundance as well as LB and PUUV infection incidence in humans showed approximately 3-year cycles. Without vector transmitted PUUV infections followed the bank vole host abundance fluctuations with two-month time lag, whereas tick-transmitted LB was associated with bank vole abundance ca. 12 and 24 months earlier. However, the strength of association between LB incidence and bank vole abundance ca. 12 months before varied over the study years. This study highlights that the human risk to acquire rodent-borne pathogens, as well as rodent-associated tick-borne pathogens is associated with the vole cycles in Northern Fennoscandia, yet with complex time lags.
Collapse
Affiliation(s)
- Mahdi Aminikhah
- Department of Ecology and Genetics, University of Oulu, PO Box 3000, 90014, Oulu, Finland.
| | - Jukka T Forsman
- Natural Resources Institute Finland (Luke), University of Oulu, Paavo Havaksen tie 3, 90014, Oulu, Finland
| | - Esa Koskela
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Jussi Sane
- Department of Health Security, National Institute for Health and Welfare, Helsinki, Finland
| | - Jukka Ollgren
- Department of Health Security, National Institute for Health and Welfare, Helsinki, Finland
| | - Sami M Kivelä
- Department of Ecology and Genetics, University of Oulu, PO Box 3000, 90014, Oulu, Finland
| | - Eva R Kallio
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| |
Collapse
|
13
|
Reid N, Brommer JE, Stenseth NC, Marnell F, McDonald RA, Montgomery WI. Regime shift tipping point in hare population collapse associated with climatic and agricultural change during the very early 20th century. GLOBAL CHANGE BIOLOGY 2021; 27:3732-3740. [PMID: 33993582 DOI: 10.1111/gcb.15652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Animal populations at northern latitudes may have cyclical dynamics that are degraded by climate change leading to trophic cascade. Hare populations at more southerly latitudes are characterized by dramatic declines in abundance associated with agricultural intensification. We focus on the impact of historical climatic and agricultural change on a mid-latitude population of mountain hares, Lepus timidus hibernicus. Using game bag records from multiple sites throughout Ireland, the hare population index exhibited a distinct regime shift. Contrary to expectations, there was a dynamical structure typical of northern latitude hare populations from 1853 to 1908, during which numbers were stable but cyclic with a periodicity of 8 years. This regime was replaced by dynamics more typical of southern latitude hare populations from 1909 to 1970, in which cycles were lost and numbers declined dramatically. Destabilization of the autumn North Atlantic Oscillation (NAO) led to the collapse of similar cycles in the hare population, coincident with the onset of agricultural intensification (a shift from small-to-large farms) in the first half of the 20th century. Similar, but more recent regime shifts have been observed in Arctic ecosystems and attributed to anthropogenic climate change. The present study suggests such shifts may have occurred at lower latitudes more than a century ago during the very early 20th century. It seems likely that similar tipping points in the population collapse of other farmland species may have occurred similarly early but went undocumented. As northern systems are increasingly impacted by climate change and probable expansion of agriculture, the interaction of these processes is likely to disrupt the pulsed flow of resources from cyclic populations impacting ecosystem function.
Collapse
Affiliation(s)
- Neil Reid
- Institute of Global Food Security (IGFS), School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Jon E Brommer
- Department of Biology, University of Turku, Turku, Finland
| | - Nils C Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, Oslo, Norway
| | - Ferdia Marnell
- National Parks & Wildlife Service (NPWS), Dublin, Ireland
| | - Robbie A McDonald
- Environment and Sustainability Institute, University of Exeter, Exeter, UK
| | - W Ian Montgomery
- Institute of Global Food Security (IGFS), School of Biological Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
14
|
Vaheri A, Henttonen H, Mustonen J. Hantavirus Research in Finland: Highlights and Perspectives. Viruses 2021; 13:v13081452. [PMID: 34452318 PMCID: PMC8402838 DOI: 10.3390/v13081452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 01/24/2023] Open
Abstract
Finland has the highest incidence of hantavirus infections globally, with a significant impact on public health. The large coverage of boreal forests and the cyclic dynamics of the dominant forest rodent species, the bank vole Myodes glareolus, explain most of this. We review the relationships between Puumala hantavirus (PUUV), its host rodent, and the hantavirus disease, nephropathia epidemica (NE), in Finland. We describe the history of NE and its diagnostic research in Finland, the seasonal and multiannual cyclic dynamics of PUUV in bank voles impacting human epidemiology, and we compare our northern epidemiological patterns with those in temperate Europe. The long survival of PUUV outside the host and the life-long shedding of PUUV by the bank voles are highlighted. In humans, the infection has unique features in pathobiology but rarely long-term consequences. NE is affected by specific host genetics and risk behavior (smoking), and certain biomarkers can predict the outcome. Unlike many other hantaviruses, PUUV causes a relatively mild disease and is rarely fatal. Reinfections do not exist. Antiviral therapy is complicated by the fact that when symptoms appear, the patient already has a generalized infection. Blocking vascular leakage measures counteracting pathobiology, offer a real therapeutic approach.
Collapse
Affiliation(s)
- Antti Vaheri
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland
- Correspondence: ; Tel.: +358-505552884
| | - Heikki Henttonen
- Wildlife Ecology, Natural Resources Institute Finland, 00790 Helsinki, Finland;
| | - Jukka Mustonen
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland;
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| |
Collapse
|
15
|
Andreassen HP, Sundell J, Ecke F, Halle S, Haapakoski M, Henttonen H, Huitu O, Jacob J, Johnsen K, Koskela E, Luque-Larena JJ, Lecomte N, Leirs H, Mariën J, Neby M, Rätti O, Sievert T, Singleton GR, van Cann J, Vanden Broecke B, Ylönen H. Population cycles and outbreaks of small rodents: ten essential questions we still need to solve. Oecologia 2021; 195:601-622. [PMID: 33369695 PMCID: PMC7940343 DOI: 10.1007/s00442-020-04810-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/19/2020] [Indexed: 12/25/2022]
Abstract
Most small rodent populations in the world have fascinating population dynamics. In the northern hemisphere, voles and lemmings tend to show population cycles with regular fluctuations in numbers. In the southern hemisphere, small rodents tend to have large amplitude outbreaks with less regular intervals. In the light of vast research and debate over almost a century, we here discuss the driving forces of these different rodent population dynamics. We highlight ten questions directly related to the various characteristics of relevant populations and ecosystems that still need to be answered. This overview is not intended as a complete list of questions but rather focuses on the most important issues that are essential for understanding the generality of small rodent population dynamics.
Collapse
Affiliation(s)
- Harry P Andreassen
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, 2480, Koppang, Norway
| | - Janne Sundell
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, 16900, Lammi, Finland
| | - Fraucke Ecke
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, 90183, Umeå, Sweden
| | - Stefan Halle
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Str. 159, 07743, Jena, Germany
| | - Marko Haapakoski
- Department of Biological and Environmental Science, Konnevesi Research Station, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Heikki Henttonen
- Terrestrial Population Dynamics, Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Otso Huitu
- Terrestrial Population Dynamics, Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Jens Jacob
- Federal Research Centre for Cultivated Plants, Vertebrate Research, Julius Kühn-Institut, Toppheideweg 88, 48161, Münster, Germany
| | - Kaja Johnsen
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, 2480, Koppang, Norway
| | - Esa Koskela
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Juan Jose Luque-Larena
- Departamento de Ciencias Agroforestales, Escuela Tecnica Superior de Ingenierıas Agrarias, Universidad de Valladolid, Campus La Yutera, Avenida de Madrid 44, 34004, Palencia, Spain
| | - Nicolas Lecomte
- Canada Research Chair in Polar and Boreal Ecology and Centre D'Études Nordiques, Department of Biology, Université de Moncton, 18 Avenue Antonine-Maillet, Moncton, NB, E1A 3E9, Canada
| | - Herwig Leirs
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitslain 1, 2610, Wilrijk, Belgium
| | - Joachim Mariën
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitslain 1, 2610, Wilrijk, Belgium
| | - Magne Neby
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, 2480, Koppang, Norway
| | - Osmo Rätti
- Arctic Centre, University of Lapland, P.O. Box 122, 96101, Rovaniemi, Finland
| | - Thorbjörn Sievert
- Department of Biological and Environmental Science, Konnevesi Research Station, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Grant R Singleton
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Natural Resources Institute, University of Greenwich, Chatham Marine, Kent, ME4 4TB, UK
| | - Joannes van Cann
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Bram Vanden Broecke
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitslain 1, 2610, Wilrijk, Belgium
| | - Hannu Ylönen
- Department of Biological and Environmental Science, Konnevesi Research Station, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| |
Collapse
|
16
|
|
17
|
Olkkola S, Rossi M, Jaakkonen A, Simola M, Tikkanen J, Hakkinen M, Tuominen P, Huitu O, Niemimaa J, Henttonen H, Kivistö R. Host-Dependent Clustering of Campylobacter Strains From Small Mammals in Finland. Front Microbiol 2021; 11:621490. [PMID: 33584588 PMCID: PMC7873845 DOI: 10.3389/fmicb.2020.621490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/17/2020] [Indexed: 02/02/2023] Open
Abstract
Small mammals are known to carry Campylobacter spp.; however, little is known about the genotypes and their role in human infections. We studied intestinal content from small wild mammals collected in their natural habitats in Finland in 2010-2017, and in close proximity to 40 pig or cattle farms in 2017. The animals were trapped using traditional Finnish metal snap traps. Campylobacter spp. were isolated from the intestinal content using direct plating on mCCDA. A total of 19% of the captured wild animals (n = 577) and 41% of the pooled farm samples (n = 227) were positive for C. jejuni, which was the only Campylobacter species identified. The highest prevalence occurred in yellow-necked mice (Apodemus flavicollis) and bank voles (Myodes glareolus) which carried Campylobacter spp. in 66.3 and 63.9% of the farm samples and 41.5 and 24.4% of individual animals trapped from natural habitats, respectively. Interestingly, all house mouse (Mus musculus) and shrew (Sorex spp.) samples were negative for Campylobacter spp. C. jejuni isolates (n = 145) were further characterized by whole-genome sequencing. Core genome multilocus sequence typing (cgMLST) clustering showed that mouse and vole strains were separated from the rest of the C. jejuni population (636 and 671 allelic differences, 94 and 99% of core loci, respectively). Very little or no alleles were shared with C. jejuni genomes described earlier from livestock or human isolates. FastANI results further indicated that C. jejuni strains from voles are likely to represent a new previously undescribed species or subspecies of Campylobacter. Core-genome phylogeny showed that there was no difference between isolates originating from the farm and wild captured animals. Instead, the phylogeny followed the host species-association. There was some evidence (one strain each) of livestock-associated C. jejuni occurring in a farm-caught A. flavicollis and a brown rat (Rattus norvegicus), indicating that although small mammals may not be the original reservoir of Campylobacter colonizing livestock, they may sporadically carry C. jejuni strains occurring mainly in livestock and be associated with disease in humans.
Collapse
Affiliation(s)
| | - Mirko Rossi
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- European Food Safety Authority (EFSA), Parma, Italy
| | | | | | | | | | | | - Otso Huitu
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Jukka Niemimaa
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | | | - Rauni Kivistö
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Kim WK, Cho S, Lee SH, No JS, Lee GY, Park K, Lee D, Jeong ST, Song JW. Genomic Epidemiology and Active Surveillance to Investigate Outbreaks of Hantaviruses. Front Cell Infect Microbiol 2021; 10:532388. [PMID: 33489927 PMCID: PMC7819890 DOI: 10.3389/fcimb.2020.532388] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Emerging and re-emerging RNA viruses pose significant public health, economic, and societal burdens. Hantaviruses (genus Orthohantavirus, family Hantaviridae, order Bunyavirales) are enveloped, negative-sense, single-stranded, tripartite RNA viruses that are emerging zoonotic pathogens harbored by small mammals such as rodents, bats, moles, and shrews. Orthohantavirus infections cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome in humans (HCPS). Active targeted surveillance has elucidated high-resolution phylogeographic relationships between patient- and rodent-derived orthohantavirus genome sequences and identified the infection source by temporally and spatially tracking viral genomes. Active surveillance of patients with HFRS entails 1) recovering whole-genome sequences of Hantaan virus (HTNV) using amplicon (multiplex PCR-based) next-generation sequencing, 2) tracing the putative infection site of a patient by administering an epidemiological questionnaire, and 3) collecting HTNV-positive rodents using targeted rodent trapping. Moreover, viral genome tracking has been recently performed to rapidly and precisely characterize an outbreak from the emerging virus. Here, we reviewed genomic epidemiological and active surveillance data for determining the emergence of zoonotic RNA viruses based on viral genomic sequences obtained from patients and natural reservoirs. This review highlights the recent studies on tracking viral genomes for identifying and characterizing emerging viral outbreaks worldwide. We believe that active surveillance is an effective method for identifying rodent-borne orthohantavirus infection sites, and this report provides insights into disease mitigation and preparedness for managing emerging viral outbreaks.
Collapse
Affiliation(s)
- Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea.,Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Seungchan Cho
- Department of Microbiology, Korea University College of Medicine, Seoul, South Korea
| | - Seung-Ho Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, South Korea
| | - Jin Sun No
- Department of Microbiology, Korea University College of Medicine, Seoul, South Korea
| | - Geum-Young Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, South Korea
| | - Kyungmin Park
- Department of Microbiology, Korea University College of Medicine, Seoul, South Korea.,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Daesang Lee
- 4th R&D Institute, Agency for Defense Development, Daejeon, South Korea
| | - Seong Tae Jeong
- 4th R&D Institute, Agency for Defense Development, Daejeon, South Korea
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul, South Korea.,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
19
|
Chekashov VN, Zakharov KS, Magerramov SV, Selenina AG, Martsokha KS, Shilov MM, Sludsky AA, Ermakov NM, Korneev MG, Tolokonnikova SI, Tarasov MA, Sonin VK, Romanov RA, Matrosov AN, Popov NV. Ecological Aspects of the Outbreak of Hemorrhagic Fever with Renal Syndrome in the Territory of the Saratov Region. BIOL BULL+ 2020. [DOI: 10.1134/s1062359020100301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Fluctuating Asymmetry and Population Dynamics of the Common Shrew, Sorex araneus, in Central Siberia under Climate Change Conditions. Symmetry (Basel) 2020. [DOI: 10.3390/sym12121960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We examine possible temporal variation in a measure of developmental stability, providing insight into the degree of fluctuating asymmetry of several characters of skull morphology, of the common shrew, Sorex araneus L., 1758, in Central Siberia. The level of fluctuating asymmetry during the study period in the beginning of this century (2002–2013) is not correlated with population abundance, while at the end of the last century it was correlated with population abundance, suggesting that high density was the important negative factor affecting breeding females. The absence of an adverse effect of high abundance on developmental stability in the current situation can be related to both an impact of oscillations in environmental conditions and an increase in habitat carrying capacity due to the climate change. Positive correlation of population abundance with the number of adults born last summer and young specimens born this summer indicates the influence of winter and summer conditions on population size. If in the last century developmental stability was correlated with breeding success, indicating that both parameters were affected by the physiological condition of breeding females, in this century these two parameters vary independently, suggesting that breeding success may be affected by other population and habitat factors. Thus, the situation in the population under study is more similar to the noncyclic dynamics than to the four-year cycles, which were revealed for the population in the last century. The results indicate an importance of monitoring possible changes in developmental stability measure, as another population parameter, under climate change.
Collapse
|
21
|
Kouba M, Bartoš L, Bartošová J, Hongisto K, Korpimäki E. Interactive influences of fluctuations of main food resources and climate change on long-term population decline of Tengmalm's owls in the boreal forest. Sci Rep 2020; 10:20429. [PMID: 33235236 PMCID: PMC7687899 DOI: 10.1038/s41598-020-77531-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/09/2020] [Indexed: 01/19/2023] Open
Abstract
Recent wildlife population declines are usually attributed to multiple sources such as global climate change and habitat loss and degradation inducing decreased food supply. However, interactive effects of fluctuations in abundance of main foods and weather conditions on population densities and reproductive success have been studied rarely. We analysed long-term (1973-2018) data on Tengmalm's owl (Aegolius funereus) and the influence of prey abundance and weather on breeding densities and reproductive success in western Finland. We found that fledgling production per breeding attempt declined and laying date of the owl population delayed during the period between 1973 and 2018. The breeding density of the owl population decreased with increasing temperature in winter (October-March), fledgling production increased with increasing temperature and precipitation in spring (April-June), whereas the initiation of egg-laying was delayed with increasing depth of snow cover in late winter (January-March). The decreasing trend of fledgling production, which was mainly due to starvation of offspring, was an important factor contributing to the long-term decline of the Tengmalm's owl study population. Milder and more humid spring and early summer temperatures due to global warming were not able to compensate for lowered offspring production of owls. The main reason for low productivity is probably loss and degradation of mature and old-growth forests due to clear-felling which results in loss of coverage of prime habitat for main (bank voles) and alternative foods (small birds) of owls inducing lack of food, and refuges against predators of Tengmalm's owls. This interpretation was also supported by the delayed start of egg-laying during the study period although ambient temperatures increased prior to and during the egg-laying period.
Collapse
Affiliation(s)
- Marek Kouba
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland.
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic.
| | - Luděk Bartoš
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
- Department of Ethology, Institute of Animal Science, Prague, Czech Republic
| | - Jitka Bartošová
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
- Department of Ethology, Institute of Animal Science, Prague, Czech Republic
| | | | - Erkki Korpimäki
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
22
|
Reijniers J, Tersago K, Borremans B, Hartemink N, Voutilainen L, Henttonen H, Leirs H. Why Hantavirus Prevalence Does Not Always Increase With Host Density: Modeling the Role of Host Spatial Behavior and Maternal Antibodies. Front Cell Infect Microbiol 2020; 10:536660. [PMID: 33134187 PMCID: PMC7550670 DOI: 10.3389/fcimb.2020.536660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/24/2020] [Indexed: 12/23/2022] Open
Abstract
For wildlife diseases, one often relies on host density to predict host infection prevalence and the subsequent force of infection to humans in the case of zoonoses. Indeed, if transmission is mainly indirect, i.e., by way of the environment, the force of infection is expected to increase with host density, yet the laborious field data supporting this theoretical claim are often absent. Hantaviruses are among those zoonoses that have been studied extensively over the past decades, as they pose a significant threat to humans. In Europe, the most widespread hantavirus is the Puumala virus (PUUV), which is carried by the bank vole and causes nephropathia epidemica (NE) in humans. Extensive field campaigns have been carried out in Central Finland to shed light on this supposed relationship between bank vole density and PUUV prevalence and to identify other drivers for the infection dynamics. This resulted in the surprising observation that the relationship between bank vole density and PUUV prevalence is not purely monotonic on an annual basis, contrary to what previous models predicted: a higher vole density does not necessary result in a higher infection prevalence, nor in an increased number of humans reported having NE. Here, we advance a novel individual-based spatially-explicit model which takes into account the immunity provided by maternal antibodies and which simulates the spatial behavior of the host, both possible causes for this discrepancy that were not accounted for in previous models. We show that the reduced prevalence in peak years can be attributed to transient immunity, and that the density-dependent spatial vole behavior, i.e., the fact that home ranges are smaller in high density years, plays only a minor role. The applicability of the model is not limited to the study and prediction of PUUV (and NE) occurrence in Europe, as it could be easily adapted to model other rodent-borne diseases, either with indirect or direct transmission.
Collapse
Affiliation(s)
- Jonas Reijniers
- Evolutionary Ecology Group, Biology Department, University of Antwerp, Antwerp, Belgium.,Active Perception Lab, Department of Engineering Management, University of Antwerp, Antwerp, Belgium
| | - Katrien Tersago
- Agentschap Zorg en Gezondheid, Government Administration, Brussels, Belgium
| | - Benny Borremans
- Evolutionary Ecology Group, Biology Department, University of Antwerp, Antwerp, Belgium.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt, Belgium
| | - Nienke Hartemink
- Theoretical Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.,Biometris, Wageningen University and Research, Wageningen, Netherlands
| | | | - Heikki Henttonen
- Terrestrial Population Dynamics, Natural Resources Institute Finland, Helsinki, Finland
| | - Herwig Leirs
- Evolutionary Ecology Group, Biology Department, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
23
|
Marková S, Horníková M, Lanier HC, Henttonen H, Searle JB, Weider LJ, Kotlík P. High genomic diversity in the bank vole at the northern apex of a range expansion: The role of multiple colonizations and end-glacial refugia. Mol Ecol 2020; 29:1730-1744. [PMID: 32248595 DOI: 10.1111/mec.15427] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/10/2020] [Accepted: 03/25/2020] [Indexed: 01/08/2023]
Abstract
The history of repeated northern glacial cycling and southern climatic stability has long dominated explanations for how genetic diversity is distributed within temperate species in Eurasia and North America. However, growing evidence indicates the importance of cryptic refugia for northern colonization dynamics. An important geographic region to assess this is Fennoscandia, where recolonization at the end of the last glaciation was restricted to specific routes and temporal windows. We used genomic data to analyse genetic diversity and colonization history of the bank vole (Myodes glareolus) throughout Europe (>800 samples) with Fennoscandia as the northern apex. We inferred that bank voles colonized Fennoscandia multiple times by two different routes; with three separate colonizations via a southern land-bridge route deriving from a "Carpathian" glacial refugium and one via a north-eastern route from an "Eastern" glacial refugium near the Ural Mountains. Clustering of genome-wide SNPs revealed high diversity in Fennoscandia, with eight genomic clusters: three of Carpathian origin and five Eastern. Time estimates revealed that the first of the Carpathian colonizations occurred before the Younger Dryas (YD), meaning that the first colonists survived the YD in Fennoscandia. Results also indicated that introgression between bank and northern red-backed voles (Myodes rutilus) took place in Fennoscandia just after end-glacial colonization. Therefore, multiple colonizations from the same and different cryptic refugia, temporal and spatial separations and interspecific introgression have shaped bank vole genetic variability in Fennoscandia. Together, these processes drive high genetic diversity at the apex of the northern expansion in this emerging model species.
Collapse
Affiliation(s)
- Silvia Marková
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Michaela Horníková
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic.,Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Hayley C Lanier
- Department of Biology, Program in Ecology & Evolutionary Biology, University of Oklahoma, Norman, OK, USA.,Sam Noble Museum, University of Oklahoma, Norman, OK, USA
| | | | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Lawrence J Weider
- Department of Biology, Program in Ecology & Evolutionary Biology, University of Oklahoma, Norman, OK, USA
| | - Petr Kotlík
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| |
Collapse
|
24
|
|
25
|
Shuai LY, Wang LQ, Yang YP, Zhang FS. Effects of density dependence and climatic factors on population dynamics of Cricetulus barabensis: a 25-year field study. J Mammal 2020. [DOI: 10.1093/jmammal/gyaa001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Rodents often act as keystone species in communities and play important roles in shaping structures and functions of many ecosystems. Understanding the underlying mechanisms of population fluctuation in rodents is therefore of great interest. Using the data from a 25-year field survey carried out in Inner Mongolia, China, we explored the effects of density dependence, local climatic factors, and a large-scale climatic perturbation (El Niño–Southern Oscillation) on the population dynamics of the striped hamster (Cricetulus barabensis), a rodent widely distributed in northern China. We detected a strong negative density-dependent effect on the population dynamics of C. barabensis. Rainfall had a significant positive effect on population change with a 1-year lag. The pregnancy rate of C. barabensis was negatively affected by the annual mean temperature in the current year, but positively associated with the population density in the current year and the annual Southern Oscillation Index in the previous year. Moving-window analyses suggested that, with a window length of 12 years, there was a significant interaction between rainfall and density dependence, with increasing rainfall alleviating the negative effect of density dependence. As C. barabensis often causes agricultural damage and can transmit zoonotic diseases to human beings, our results also have implications for pest and disease control.
Collapse
Affiliation(s)
- Ling-Ying Shuai
- School of Life Sciences, Huaibei Normal University, Huaibei, People’s Republic of China
| | - Li-Qing Wang
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, People’s Republic of China
| | - Yu-Ping Yang
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, People’s Republic of China
| | - Fu-Shun Zhang
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, People’s Republic of China
| |
Collapse
|
26
|
Erdakov LN, Panov VV, Litvinov YN. The Cyclicity in the Dynamics of Different Populations of the Common Shrew. RUSS J ECOL+ 2019. [DOI: 10.1134/s1067413619060043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Van Cann J, Koskela E, Mappes T, Mikkonen A, Mokkonen M, Watts PC. Early life of fathers affects offspring fitness in a wild rodent. J Evol Biol 2019; 32:1141-1151. [DOI: 10.1111/jeb.13516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Joannes Van Cann
- Department of Biological and Environmental Science University of Jyväskylä Jyvaskyla Finland
| | - Esa Koskela
- Department of Biological and Environmental Science University of Jyväskylä Jyvaskyla Finland
| | - Tapio Mappes
- Department of Biological and Environmental Science University of Jyväskylä Jyvaskyla Finland
| | - Anne‐Mari Mikkonen
- Department of Biological and Environmental Science University of Jyväskylä Jyvaskyla Finland
| | - Mikael Mokkonen
- Department of Biological and Environmental Science University of Jyväskylä Jyvaskyla Finland
- Department of Biological Sciences Simon Fraser University Burnaby British Columbia Canada
| | - Phillip C. Watts
- Department of Biological and Environmental Science University of Jyväskylä Jyvaskyla Finland
- Department of Biological Sciences Simon Fraser University Burnaby British Columbia Canada
- Ecology and Genetics Unit University of Oulu Oulu Finland
| |
Collapse
|
28
|
Van Cann J, Koskela E, Mappes T, Sims A, Watts PC. Intergenerational fitness effects of the early life environment in a wild rodent. J Anim Ecol 2019; 88:1355-1365. [PMID: 31162628 DOI: 10.1111/1365-2656.13039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 05/16/2019] [Indexed: 12/01/2022]
Abstract
The early life environment can have profound, long-lasting effects on an individual's fitness. For example, early life quality might (a) positively associate with fitness (a silver spoon effect), (b) stimulate a predictive adaptive response (by adjusting the phenotype to the quality of the environment to maximize fitness) or (c) be obscured by subsequent plasticity. Potentially, the effects of the early life environment can persist beyond one generation, though the intergenerational plasticity on fitness traits of a subsequent generation is unclear. To study both intra- and intergenerational effects of the early life environment, we exposed a first generation of bank voles to two early life stimuli (variation in food and social environment) in a controlled environment. To assess possible intra-generational effects, the reproductive success of female individuals was investigated by placing them in large outdoor enclosures in two different, ecologically relevant environments (population densities). Resulting offspring were raised in the same population densities where they were conceived and their growth was recorded. When adult, half of the offspring were transferred to opposite population densities to evaluate their winter survival, a crucial fitness trait for bank voles. Our setup allowed us to assess: (a) do early life population density cues elicit an intra-generational adaptive response, that is a higher reproductive success when the density matches the early life cues and (b) can early life stimuli of one generation elicit an intergenerational adaptive response in their offspring, that is a higher growth and winter survival when the density matches the early life cues of their mother. Our results show that the early life environment directly affects the phenotype and reproductive success of the focal generation, but adaptive responses are only evident in the offspring. Growth of the offspring is maintained only when the environment matches their mother's early life environment. Furthermore, winter survival of offspring also tended to be higher in high population densities if their mothers experienced an competitive early life. These results show that the early life environment can contribute to maintain high fitness in challenging environments, but not necessarily in the generation experiencing the early life cues.
Collapse
Affiliation(s)
- Joannes Van Cann
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Esa Koskela
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Angela Sims
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Phillip C Watts
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.,Ecology and Genetics, University of Oulu, Oulu, Finland
| |
Collapse
|
29
|
Myers JH. Population cycles: generalities, exceptions and remaining mysteries. Proc Biol Sci 2019; 285:rspb.2017.2841. [PMID: 29563267 DOI: 10.1098/rspb.2017.2841] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/28/2018] [Indexed: 01/17/2023] Open
Abstract
Population cycles are one of nature's great mysteries. For almost a hundred years, innumerable studies have probed the causes of cyclic dynamics in snowshoe hares, voles and lemmings, forest Lepidoptera and grouse. Even though cyclic species have very different life histories, similarities in mechanisms related to their dynamics are apparent. In addition to high reproductive rates and density-related mortality from predators, pathogens or parasitoids, other characteristics include transgenerational reduced reproduction and dispersal with increasing-peak densities, and genetic similarity among populations. Experiments to stop cyclic dynamics and comparisons of cyclic and noncyclic populations provide some understanding but both reproduction and mortality must be considered. What determines variation in amplitude and periodicity of population outbreaks remains a mystery.
Collapse
Affiliation(s)
- Judith H Myers
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
30
|
Selås V, Framstad E, Sonerud GA, Wegge P, Wiig Ø. Voles and climate in Norway: Is the abundance of herbivorous species inversely related to summer temperature? ACTA OECOLOGICA 2019. [DOI: 10.1016/j.actao.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Popova ON, Haritonov AY, Erdakov LN. Cyclicity of Long-Term Population Dynamics in Dragonflies of the Genus Sympetrum (Odonata, Anisoptera) in the Basin of Lake Chany. CONTEMP PROBL ECOL+ 2018. [DOI: 10.1134/s1995425518060082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Johnsen K, Devineau O, Andreassen HP. The Effects of Winter Climate and Intrinsic Factors on Survival of Cyclic Vole Populations in Southeastern Norway. ANN ZOOL FENN 2018. [DOI: 10.5735/086.055.0604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Kaja Johnsen
- Inland Norway University of Applied Sciences, Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Evenstad, NO-2480 Koppang, Norway
| | - Olivier Devineau
- Inland Norway University of Applied Sciences, Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Evenstad, NO-2480 Koppang, Norway
| | - Harry P. Andreassen
- Inland Norway University of Applied Sciences, Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Evenstad, NO-2480 Koppang, Norway
| |
Collapse
|
33
|
|
34
|
Rotejanaprasert C, Lawson A, Rossow H, Sane J, Huitu O, Henttonen H, Del Rio Vilas VJ. Towards integrated surveillance of zoonoses: spatiotemporal joint modeling of rodent population data and human tularemia cases in Finland. BMC Med Res Methodol 2018; 18:72. [PMID: 29976146 PMCID: PMC6034302 DOI: 10.1186/s12874-018-0532-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 06/27/2018] [Indexed: 12/02/2022] Open
Abstract
Background There are an increasing number of geo-coded information streams available which could improve public health surveillance accuracy and efficiency when properly integrated. Specifically, for zoonotic diseases, knowledge of spatial and temporal patterns of animal host distribution can be used to raise awareness of human risk and enhance early prediction accuracy of human incidence. Methods To this end, we develop a spatiotemporal joint modeling framework to integrate human case data and animal host data to offer a modeling alternative for combining multiple surveillance data streams in a novel way. A case study is provided of spatiotemporal modeling of human tularemia incidence and rodent population data from Finnish health care districts during years 1995–2012. Results Spatial and temporal information of rodent abundance was shown to be useful in predicting human cases and in improving tularemia risk estimates in 40 and 75% of health care districts, respectively. The human relative risk estimates’ standard deviation with rodent’s information incorporated are smaller than those from the model that has only human incidence. Conclusions These results support the integration of rodent population variables to reduce the uncertainty of tularemia risk estimates. However, more information on several covariates such as environmental, behavioral, and socio-economic factors can be investigated further to deeper understand the zoonotic relationship.
Collapse
Affiliation(s)
- C Rotejanaprasert
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand.
| | - A Lawson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - H Rossow
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - J Sane
- National Institute for Health and Welfare, Helsinki, Finland
| | - O Huitu
- Natural Resources Institute Finland, Helsinki, Finland
| | - H Henttonen
- Natural Resources Institute Finland, Helsinki, Finland
| | | |
Collapse
|
35
|
Barros MI, Brito JC, Campos JC, Mappes T, Qninba A, Sousa FV, Boratyński Z. The effect of rainfall on population dynamics in Sahara-Sahel rodents. MAMMAL RES 2018. [DOI: 10.1007/s13364-018-0377-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Dell'Agnello F, Barfknecht R, Bertolino S, Capizzi D, Martini M, Mazza V, Riga F, Zaccaroni M. Consistent demographic trends in Savi's pine vole between two distant areas in central Italy. FOLIA ZOOLOGICA 2018. [DOI: 10.25225/fozo.v67.i1.a3.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Filippo Dell'Agnello
- University of Florence, Department of Biology, Via Madonna del Piano 6, 50019 Sesto Fiorentino (FI), Italy
| | - Ralf Barfknecht
- Bayer CropScience, Alfred-Nobel Str. 50, D-40789 Monheim, Germany
| | - Sandro Bertolino
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Dario Capizzi
- Latium Region - Regional Parks Agency, Biodiversity and Geodiversity Area, Via del Pescaccio 96, 00166 Rome, Italy
| | - Matilde Martini
- University of Pisa, Department of Biology, Via Alessandro Volta 6, 56126 Pisa, Italy
| | - Valeria Mazza
- University of Potsdam, Department of Biochemistry and Biology, Maulbeerallee 2, D-14469 Potsdam, Germany
| | - Francesco Riga
- ISPRA, Institute for Environmental Protection and Research, Via V. Brancati 48, 00144 Rome, Italy
| | - Marco Zaccaroni
- University of Florence, Department of Biology, Via Madonna del Piano 6, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
37
|
Hantaviruses and a neglected environmental determinant. One Health 2018; 5:27-33. [PMID: 29911161 PMCID: PMC6000911 DOI: 10.1016/j.onehlt.2017.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/06/2017] [Accepted: 12/30/2017] [Indexed: 12/16/2022] Open
Abstract
Most human pathogenic hantaviruses cause severe hemorrhagic fevers with a high rate of fatalities, such as occurs due to the genotypes causing hantavirus cardiopulmonary syndrome carried by the New World Sigmodontinae and Neotominae rodents. An increasing number of outbreaks and the possibility of cases spreading over international borders have led to greater interest in these viruses and the environmental determinants that facilitate their transmission. Rodents, shrews, moles and bats act as reservoir hosts of hantaviruses, and within the hantavirus transmission flow, the prevalence and distribution of infection in reservoir hosts is influenced by a range of factors. Climate change and landscape alteration affect hantavirus transmission, but the outcomes can differ among different hantaviruses and for the same virus in differentbiomes. However, it is evident that the underlying mechanisms that mediate hantavirus transmission are largely unknown, so that much work remains to be done regarding the transmission dynamics of hantaviruses. Overall, our review highlights the importance of examining interactions over several trophic levels and the underlying mechanisms (density and trait-mediated indirect effects) linking predation risk and hantavirus transmission, to develop an ecological framework to understand disease in natural, preserved and degraded systems.
Collapse
|
38
|
Schmidt JH, Rexstad EA, Roland CA, McIntyre CL, MacCluskie MC, Flamme MJ. Weather-driven change in primary productivity explains variation in the amplitude of two herbivore population cycles in a boreal system. Oecologia 2017; 186:435-446. [PMID: 29170821 DOI: 10.1007/s00442-017-4004-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/06/2017] [Indexed: 11/29/2022]
Abstract
Vertebrate populations throughout the circumpolar north often exhibit cyclic dynamics, and predation is generally considered to be a primary driver of these cycles in a variety of herbivore species. However, weather and climate play a role in entraining cycles over broad landscapes and may alter cyclic dynamics, although the mechanism by which these processes operate is uncertain. Experimental and observational work has suggested that weather influences primary productivity over multi-year time periods, suggesting a pathway through which weather and climate may influence cyclic herbivore dynamics. Using long-term monitoring data, we investigated the relationships among multi-year weather conditions, measures of primary productivity, and the abundance of two cyclic herbivore species: snowshoe hare and northern red-backed vole. We found that precipitation (rain and snow) and growing season temperatures were strongly associated with variation in primary productivity over multi-year time horizons. In turn, fourfold variation in the amplitude of both the hare and vole cycles observed in our study area corresponded to long-term changes in primary productivity. The congruence of our results for these two species suggests a general mechanism by which weather and climate might influence cyclic herbivore population dynamics. Our findings also suggested that the association between climate warming and the disappearance of cycles might be initiated by changes in primary productivity. This work provides an explanation for observed influences of weather and climate on primary productivity and population cycles and will help our collective understanding of how future climate warming may influence these ecological phenomena in the future.
Collapse
Affiliation(s)
- Joshua H Schmidt
- US National Park Service, Central Alaska Network, 4175 Geist Road, Fairbanks, AK, 99709, USA.
| | - Eric A Rexstad
- Research Unit for Wildlife Population Assessment, Centre for Research into Ecological and Environmental Modelling, University of St. Andrews, St Andrews, KY16 9LZ, UK
| | - Carl A Roland
- US National Park Service, Central Alaska Network, 4175 Geist Road, Fairbanks, AK, 99709, USA.,US National Park Service, Denali National Park and Preserve, 4175 Geist Road, Fairbanks, AK, 99709, USA
| | - Carol L McIntyre
- US National Park Service, Denali National Park and Preserve, 4175 Geist Road, Fairbanks, AK, 99709, USA
| | - Margaret C MacCluskie
- US National Park Service, Central Alaska Network, 4175 Geist Road, Fairbanks, AK, 99709, USA
| | - Melanie J Flamme
- US National Park Service, Yukon-Charley Rivers Preserve and Gates of the Arctic National Park and Preserve, 4175 Geist Road, Fairbanks, AK, 99709, USA
| |
Collapse
|
39
|
Row JR, Fedy BC. Spatial and temporal variation in the range-wide cyclic dynamics of greater sage-grouse. Oecologia 2017; 185:687-698. [PMID: 29052009 DOI: 10.1007/s00442-017-3970-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 09/27/2017] [Indexed: 01/17/2023]
Abstract
Periodic changes in abundance, or population cycles, are common in a variety of species and is one of the most widely studied ecological phenomena. The strength of, and synchrony between population cycles can vary across time and space and understanding these patterns can provide insight into the mechanisms generating population cycles and their variability within and among species. Here, we used wavelet and spectral analysis on a range-wide dataset of abundance for the greater sage-grouse (Centrocercus urophasianus) to test for regional differences in temporal cyclicity. Overall, we found that most populations (11 of 15) were cyclic at some point in a 50-year time series (1965-2015), but the patterns varied over both time and space. Several peripheral populations demonstrated amplitude dampening or loss of cyclicity following population lows in the mid-1990s. Populations through the core of the range in the Great and Wyoming Basins had more consistent cyclic dynamics, but period length appeared to shorten from 10-12 to 6-8 years. In one time period, where cyclicity was greatest overall, increased pairwise population synchrony was correlated with cycle intensity. Our work represents a comprehensive range-wide assessment of cyclic dynamics and revealed substantial variation in temporal and spatial trends of cyclic dynamics across populations.
Collapse
Affiliation(s)
- Jeffrey R Row
- School of Environment, Resources and Sustainability, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada.
| | - Bradley C Fedy
- School of Environment, Resources and Sustainability, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
40
|
Interannual cycles of Hantaan virus outbreaks at the human-animal interface in Central China are controlled by temperature and rainfall. Proc Natl Acad Sci U S A 2017; 114:8041-8046. [PMID: 28696305 DOI: 10.1073/pnas.1701777114] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hantavirus, a rodent-borne zoonotic pathogen, has a global distribution with 200,000 human infections diagnosed annually. In recent decades, repeated outbreaks of hantavirus infections have been reported in Eurasia and America. These outbreaks have led to public concern and an interest in understanding the underlying biological mechanisms. Here, we propose a climate-animal-Hantaan virus (HTNV) infection model to address this issue, using a unique dataset spanning a 54-y period (1960-2013). This dataset comes from Central China, a focal point for natural HTNV infection, and includes both field surveillance and an epidemiological record. We reveal that the 8-y cycle of HTNV outbreaks is driven by the confluence of the cyclic dynamics of striped field mouse (Apodemus agrarius) populations and climate variability, at both seasonal and interannual cycles. Two climatic variables play key roles in the ecology of the HTNV system: temperature and rainfall. These variables account for the dynamics in the host reservoir system and markedly affect both the rate of transmission and the potential risk of outbreaks. Our results suggest that outbreaks of HTNV infection occur only when climatic conditions are favorable for both rodent population growth and virus transmission. These findings improve our understanding of how climate drives the periodic reemergence of zoonotic disease outbreaks over long timescales.
Collapse
|
41
|
Ecke F, Angeler DG, Magnusson M, Khalil H, Hörnfeldt B. Dampening of population cycles in voles affects small mammal community structure, decreases diversity, and increases prevalence of a zoonotic disease. Ecol Evol 2017; 7:5331-5342. [PMID: 28770071 PMCID: PMC5528244 DOI: 10.1002/ece3.3074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/23/2017] [Accepted: 04/26/2017] [Indexed: 12/17/2022] Open
Abstract
Long-term decline and depression of density in cyclic small rodents is a recent widespread phenomenon. These observed changes at the population level might have cascading effects at the ecosystem level. Here, we assessed relationships between changing boreal landscapes and biodiversity changes of small mammal communities. We also inferred potential effects of observed community changes for increased transmission risk of Puumala virus (PUUV) spread, causing the zoonotic disease nephropatica epidemica in humans. Analyses were based on long-term (1971-2013) monitoring data of shrews and voles representing 58 time series in northern Sweden. We calculated richness, diversity, and evenness at alpha, beta, and gamma level, partitioned beta diversity into turnover (species replacement) and nestedness (species addition/removal), used similarity percentages (SIMPER) analysis to assess community structure, and calculated the cumulated number of PUUV-infected bank voles and average PUUV prevalence (percentage of infected bank voles) per vole cycle. Alpha, beta, and gamma richness and diversity of voles, but not shrews, showed long-term trends that varied spatially. The observed patterns were associated with an increase in community contribution of bank vole (Myodes glareolus), a decrease of gray-sided vole (M. rufocanus) and field vole (Microtus agrestis) and a hump-shaped variation in contribution of common shrew (Sorex araneus). Long-term biodiversity changes were largely related to changes in forest landscape structure. Number of PUUV-infected bank voles in spring was negatively related to beta and gamma diversity, and positively related to turnover of shrews (replaced by voles) and to community contribution of bank voles. The latter was also positively related to average PUUV prevalence in spring. We showed that long-term changes in the boreal landscape contributed to explain the decrease in biodiversity and the change in structure of small mammal communities. In addition, our results suggest decrease in small mammal diversity to have knock-on effects on dynamics of infectious diseases among small mammals with potential implications for disease transmission to humans.
Collapse
Affiliation(s)
- Frauke Ecke
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden
| | - David G. Angeler
- Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Magnus Magnusson
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden
| | - Hussein Khalil
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden
| | - Birger Hörnfeldt
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden
| |
Collapse
|
42
|
Barraquand F, Louca S, Abbott KC, Cobbold CA, Cordoleani F, DeAngelis DL, Elderd BD, Fox JW, Greenwood P, Hilker FM, Murray DL, Stieha CR, Taylor RA, Vitense K, Wolkowicz GS, Tyson RC. Moving forward in circles: challenges and opportunities in modelling population cycles. Ecol Lett 2017. [DOI: 10.1111/ele.12789] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Frédéric Barraquand
- Department of Arctic and Marine Biology University of Tromsø Tromsø Norway
- Integrative and Theoretical Ecology Chair, LabEx COTE University of Bordeaux Pessac France
| | - Stilianos Louca
- Institute of Applied Mathematics University of British Columbia Vancouver BC Canada
| | - Karen C. Abbott
- Department of Biology Case Western Reserve University Cleveland OH USA
| | | | - Flora Cordoleani
- Institute of Marine Science University of California Santa Cruz Santa Cruz CA USA
- Southwest Fisheries Science Center Santa Cruz CA USA
| | | | - Bret D. Elderd
- Department of Biological Sciences Lousiana State University Baton Rouge LA USA
| | - Jeremy W. Fox
- Department of Biological Sciences University of Calgary Calgary ABCanada
| | | | - Frank M. Hilker
- Institute of Environmental Systems Research, School of Mathematics/Computer Science Osnabrück University Osnabrück Germany
| | - Dennis L. Murray
- Integrative Wildlife Conservation Lab Trent University Peterborough ONCanada
| | - Christopher R. Stieha
- Department of Biology Case Western Reserve University Cleveland OH USA
- Department of Entomology Cornell University Ithaca NY USA
| | - Rachel A. Taylor
- Department of Integrative Biology University of South Florida Tampa FLUSA
| | - Kelsey Vitense
- Department of Fisheries, Wildlife, and Conservation Biology University of Minnesota Saint Paul MN USA
| | - Gail S.K. Wolkowicz
- Department of Mathematics and Statistics McMaster University Hamilton ON Canada
| | - Rebecca C. Tyson
- Department of Mathematics and Statistics University of British Columbia Okanagan Kelowna BC Canada
| |
Collapse
|
43
|
Main determinants of rodent population fluctuations in managed Central European temperate lowland forests. MAMMAL RES 2017. [DOI: 10.1007/s13364-017-0316-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Joutsen S, Laukkanen-Ninios R, Henttonen H, Niemimaa J, Voutilainen L, Kallio ER, Helle H, Korkeala H, Fredriksson-Ahomaa M. Yersiniaspp. in Wild Rodents and Shrews in Finland. Vector Borne Zoonotic Dis 2017; 17:303-311. [DOI: 10.1089/vbz.2016.2025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Suvi Joutsen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Riikka Laukkanen-Ninios
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | | | - Liina Voutilainen
- Natural Resources Institute Finland, Vantaa, Finland
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Eva R. Kallio
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Heikki Helle
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Maria Fredriksson-Ahomaa
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
45
|
Terraube J, Villers A, Poudré L, Varjonen R, Korpimäki E. Increased autumn rainfall disrupts predator-prey interactions in fragmented boreal forests. GLOBAL CHANGE BIOLOGY 2017; 23:1361-1373. [PMID: 27371812 DOI: 10.1111/gcb.13408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
There is a pressing need to understand how changing climate interacts with land-use change to affect predator-prey interactions in fragmented landscapes. This is particularly true in boreal ecosystems facing fast climate change and intensification in forestry practices. Here, we investigated the relative influence of autumn climate and habitat quality on the food-storing behaviour of a generalist predator, the pygmy owl, using a unique data set of 15 850 prey items recorded in western Finland over 12 years. Our results highlighted strong effects of autumn climate (number of days with rainfall and with temperature <0 °C) on food-store composition. Increasing frequency of days with precipitation in autumn triggered a decrease in (i) total prey biomass stored, (ii) the number of bank voles (main prey) stored, and (iii) the scaled mass index of pygmy owls. Increasing proportions of old spruce forests strengthened the functional response of owls to variations in vole abundance and were more prone to switch from main prey to alternative prey (passerine birds) depending on local climate conditions. High-quality habitat may allow pygmy owls to buffer negative effects of inclement weather and cyclic variation in vole abundance. Additionally, our results evidenced sex-specific trends in body condition, as the scaled mass index of smaller males increased while the scaled mass index of larger females decreased over the study period, probably due to sex-specific foraging strategies and energy requirements. Long-term temporal stability in local vole abundance refutes the hypothesis of climate-driven change in vole abundance and suggests that rainier autumns could reduce the vulnerability of small mammals to predation by pygmy owls. As small rodents are key prey species for many predators in northern ecosystems, our findings raise concern about the impact of global change on boreal food webs through changes in main prey vulnerability.
Collapse
Affiliation(s)
- Julien Terraube
- Section of Ecology, Department of Biology, University of Turku, FI-20014, Turku, Finland
| | - Alexandre Villers
- Section of Ecology, Department of Biology, University of Turku, FI-20014, Turku, Finland
- Centre d'Etudes Biologiques de Chizé, UMR7372, CNRS - Université de la Rochelle, FR79360, Villiers-en-Bois, France
| | - Léo Poudré
- Parc Naturel Régional du Haut-Jura, Maison du Parc du Haut-Jura., 39310, Lajoux, France
| | - Rauno Varjonen
- Section of Ecology, Department of Biology, University of Turku, FI-20014, Turku, Finland
| | - Erkki Korpimäki
- Section of Ecology, Department of Biology, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
46
|
DISTRIBUTION AND SEASONAL VARIATION OF LJUNGAN VIRUS IN BANK VOLES (MYODES GLAREOLUS) IN FENNOSCANDIA. J Wildl Dis 2017; 53:552-560. [PMID: 28192046 DOI: 10.7589/2016-06-145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ljungan virus (LV) is a picornavirus originally isolated from Swedish bank voles ( Myodes glareolus ) in 1998. The association of LV with human disease has been debated ever since, but fundamental data on the ecology of the virus are still lacking. Here we present results of the first intensive study on the prevalence of LV in bank voles trapped in Fennoscandia (Sweden and Finland) from 2009-12 as determined by PCR. Using an LV-specific real-time reverse transcriptase PCR, LV was detected in the liver of 73 out of 452 (16.2%) individuals and in 13 out of 17 sampling sites across Sweden and Finland (mean per site prevalence 16%, SE 3%, range 0-50%). We found more infected animals in autumn compared to spring, and lighter and heavier individuals had a higher prevalence than those with intermediate body masses. The result that LV prevalence is also lower in heavier (i.e., older) animals suggests for the first time that LV infection is not persistent in rodents.
Collapse
|
47
|
SANE J, OLLGREN J, MAKARY P, VAPALAHTI O, KUUSI M, LYYTIKÄINEN O. Regional differences in long-term cycles and seasonality of Puumala virus infections, Finland, 1995-2014. Epidemiol Infect 2016; 144:2883-8. [PMID: 27113030 PMCID: PMC9150413 DOI: 10.1017/s0950268816000765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/09/2016] [Accepted: 03/31/2016] [Indexed: 02/07/2023] Open
Abstract
Puumala hantavirus (PUUV) causes haemorrhagic fever with renal syndrome in humans, an endemic disease in Finland. We aimed to study recent trends in PUUV infections in Finland, to evaluate whether there are regional differences in seasonality and long-term cycles and whether the patterns have changed over time. We analysed serologically confirmed acute PUUV infections reported to the National Infectious Disease Register from 1 April 1995 to 31 March 2014. A total of 30 942 cases of PUUV infections were identified during the study period. The average annual incidence was 31 cases/100 000 person-years with the highest in Eastern Finland and the lowest in Southwestern Finland. Throughout Finland there was not an increasing trend in incidence but changes in incidence, seasonality and long-term cycles differed regionally. Long-term cycles supported by high Bayesian posterior probabilities (73-100%) differed between the south and the north, shifting from 3 to 4 years, respectively. Temporal changes in seasonality were most prominent in Southwestern Finland. The pattern of human PUUV infection epidemiology probably primarily reflects the spatio-temporal interaction between bank-vole population dynamics and climate.
Collapse
Affiliation(s)
- J. SANE
- Department of Infectious Diseases, Infectious Disease Control Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - J. OLLGREN
- Department of Infectious Diseases, Infectious Disease Control Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - P. MAKARY
- Department of Infectious Diseases, Infectious Disease Control Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - O. VAPALAHTI
- Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- HUSLAB, Department of Virology and Immunology, Hospital District of Helsinki and Uusimaa, Helsinki, Finland
| | - M. KUUSI
- Department of Infectious Diseases, Infectious Disease Control Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - O. LYYTIKÄINEN
- Department of Infectious Diseases, Infectious Disease Control Unit, National Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
48
|
Pöysä H, Jalava K, Paasivaara A. Generalist predator, cyclic voles and cavity nests: testing the alternative prey hypothesis. Oecologia 2016; 182:1083-1093. [PMID: 27665542 DOI: 10.1007/s00442-016-3728-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 09/08/2016] [Indexed: 10/21/2022]
Abstract
The alternative prey hypothesis (APH) states that when the density of the main prey declines, generalist predators switch to alternative prey and vice versa, meaning that predation pressure on the alternative prey should be negatively correlated with the density of the main prey. We tested the APH in a system comprising one generalist predator (pine marten, Martes martes), cyclic main prey (microtine voles, Microtus agrestis and Myodes glareolus) and alternative prey (cavity nests of common goldeneye, Bucephala clangula); pine marten is an important predator of both voles and common goldeneye nests. Specifically, we studied whether annual predation rate of real common goldeneye nests and experimental nests is negatively associated with fluctuation in the density of voles in four study areas in southern Finland in 2000-2011. Both vole density and nest predation rate varied considerably between years in all study areas. However, we did not find support for the hypothesis that vole dynamics indirectly affects predation rate of cavity nests in the way predicted by the APH. On the contrary, the probability of predation increased with vole spring abundance for both real and experimental nests. Furthermore, a crash in vole abundance from previous autumn to spring did not increase the probability of predation of real nests, although it increased that of experimental nests. We suggest that learned predation by pine marten individuals, coupled with efficient search image for cavities, overrides possible indirect positive effects of high vole density on the alternative prey in our study system.
Collapse
Affiliation(s)
- Hannu Pöysä
- Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Yliopistokatu 6, FI-80100, Joensuu, Finland.
| | - Kaisa Jalava
- Department of Biology, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Antti Paasivaara
- Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Paavo Havaksentie 3, FI-90570, Oulu, Finland
| |
Collapse
|
49
|
SELÅS V. Seventy-five years of masting and rodent population peaks in Norway: Why do wood mice not follow the rules? Integr Zool 2016; 11:388-402. [DOI: 10.1111/1749-4877.12203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vidar SELÅS
- Department of Ecology and Natural Resource Management; Norwegian University of Life Sciences; Ås Norway
| |
Collapse
|
50
|
Solonen T, Karhunen J, Kekkonen JA, Kolunen H, Pietiäinen H. Tawny owl prey remains indicate differences in the dynamics of coastal and inland vole populations in southern Finland. POPUL ECOL 2016. [DOI: 10.1007/s10144-016-0556-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|