1
|
Posch BC, Bush SE, Koepke DF, Schuessler A, Anderegg LL, Aparecido LM, Blonder BW, Guo JS, Kerr KL, Moran ME, Cooper HF, Doughty CE, Gehring CA, Whitham TG, Allan GJ, Hultine KR. Intensive leaf cooling promotes tree survival during a record heatwave. Proc Natl Acad Sci U S A 2024; 121:e2408583121. [PMID: 39401366 PMCID: PMC11513916 DOI: 10.1073/pnas.2408583121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/27/2024] [Indexed: 10/30/2024] Open
Abstract
Increasing heatwaves are threatening forest ecosystems globally. Leaf thermal regulation and tolerance are important for plant survival during heatwaves, though the interaction between these processes and water availability is unclear. Genotypes of the widely distributed foundation tree species Populus fremontii were studied in a controlled common garden during a record summer heatwave-where air temperature exceeded 48 °C. When water was not limiting, all genotypes cooled leaves 2 to 5 °C below air temperatures. Homeothermic cooling was disrupted for weeks following a 72-h reduction in soil water, resulting in leaf temperatures rising 3 °C above air temperature and 1.3 °C above leaf thresholds for physiological damage, despite the water stress having little effect on leaf water potentials. Tradeoffs between leaf thermal safety and hydraulic safety emerged but, regardless of water use strategy, all genotypes experienced significant leaf mortality following water stress. Genotypes from warmer climates showed greater leaf cooling and less leaf mortality after water stress in comparison with genotypes from cooler climates. These results illustrate how brief soil water limitation disrupts leaf thermal regulation and potentially compromises plant survival during extreme heatwaves, thus providing insight into future scenarios in which ecosystems will be challenged with extreme heat and unreliable soil water access.
Collapse
Affiliation(s)
- Bradley C. Posch
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ85008
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA94720
| | - Susan E. Bush
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ85008
| | - Dan F. Koepke
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ85008
| | - Alexandra Schuessler
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ85008
| | - Leander L.D. Anderegg
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA93106
| | | | - Benjamin W. Blonder
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA94720
| | - Jessica S. Guo
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ85008
- Arizona Experiment Station, University of Arizona, Tucson, AZ85721
| | - Kelly L. Kerr
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA93106
| | | | - Hillary F. Cooper
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ86011
| | - Christopher E. Doughty
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ86011
| | - Catherine A. Gehring
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ86011
| | - Thomas G. Whitham
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ86011
| | - Gerard J. Allan
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ86011
| | - Kevin R. Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ85008
| |
Collapse
|
2
|
Sánchez-Gómez D, Aranda I. Unveiling intra-population functional variability patterns in a European beech (Fagus sylvatica L.) population from the southern range edge: drought resistance, post-drought recovery and phenotypic plasticity. TREE PHYSIOLOGY 2024; 44:tpae107. [PMID: 39163264 PMCID: PMC11412075 DOI: 10.1093/treephys/tpae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Understanding covariation patterns of drought resistance, post-drought recovery and phenotypic plasticity, and their variability at the intra-population level are crucial for predicting forest vulnerability to increasing aridity. This knowledge is particularly urgent at the trailing range edge since, in these areas, tree species are proximal to their ecological niche boundaries. While this proximity increases their susceptibility, these populations are recognized as valuable genetic reservoirs against environmental stressors. The conservation of this genetic variability is critical for the adaptive capacity of the species in the current context of climate change. Here we examined intra-population patterns of stem basal growth, gas exchange and other leaf functional traits in response to an experimental drought in seedlings of 16 open-pollinated families within a marginal population of European beech (Fagus sylvatica L.) from its southern range edge. We found a high degree of intra-population variation in leaf functional traits, photosynthetic performance, growth patterns and phenotypic plasticity in response to water availability. Low phenotypic plasticity was associated with higher resistance to drought. Both drought resistance and post-drought recovery of photosynthetic performance varied between maternal lines. However, drought resistance and post-drought recovery exhibited independent variation. We also found intra-population variation in stomatal sensitivity to soil drying, but it was not associated with either drought resistance or post-drought recovery. We conclude that an inverse relationship between phenotypic plasticity and drought resistance is not necessarily a sign of maladaptive plasticity, but rather it may reflect stability of functional performance and hence adaptation to withstand drought. The independent variation found between drought resistance and post-drought recovery should facilitate to some extent microevolution and adaption to increasing aridity. The observed variability in stomatal sensitivity to soil drying was consistent with previous findings at other scales (e.g., inter-specific variation, inter-population variation) that challenge the iso-anisohydric concept as a reliable surrogate of drought tolerance.
Collapse
Affiliation(s)
- David Sánchez-Gómez
- Department of Ecology and Forest Genetics, Instituto de Ciencias Forestales (ICIFOR-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Carretera La Coruña Km 7.5, E-28040 Madrid, Spain
| | - Ismael Aranda
- Department of Ecology and Forest Genetics, Instituto de Ciencias Forestales (ICIFOR-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Carretera La Coruña Km 7.5, E-28040 Madrid, Spain
| |
Collapse
|
3
|
Amos CH, Richardson BA, Barga S, Kilkenny FF, Kasten Dumroese R. Annual-perennial lifespan variation in Chaenactis douglasii suggests a drought escape strategy in warm-arid environments. AMERICAN JOURNAL OF BOTANY 2024; 111:e16391. [PMID: 39126164 DOI: 10.1002/ajb2.16391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 08/12/2024]
Abstract
PREMISE Intraspecific variation in drought resistance traits, such as drought escape, appear to be frequent within wild, ruderal forb species. Understanding how these traits are arrayed across the landscape, particularly in association with climate, is critical to developing forbs for wildland restoration programs. Use of forbs is requisite for maintaining biological diversity and ecological services. METHODS Using 6074 greenhouse-grown Chaenactis douglasii seedlings from 95 wild, seed-sourced populations across the western United States, we recorded bolting phenology and estimated genome size using flow cytometry. Mixed-effects regression models were used to assess whether climate of seed origin was predictive for bolting phenology and genome size. RESULTS Variation in bolting, reflecting an annual vs. perennial lifespan in this species, was observed in 8.7% of the plants, with bolting plants disproportionately occurring in locations with warm, arid climates. Populations with increasing heat and aridity were positively correlated with observed bolting (r = 0.61, p < 0.0001). About one-third (22%) of the total (61%) lifespan variation was attributed to seed source climate and annual heat moisture index, a measure of aridity. Genome size had no significant effect on bolting. Projected climate modeling for mid-century (2041-2070) supports an increasing occurrence of annual lifespan. CONCLUSIONS Our analyses support a drought escape, bet-hedging strategy in C. douglasii. Populations exposed to greater aridity exhibited a higher proportion of individuals with an annual lifespan. Drought escape leading to an annual lifespan can affect how seeds are propagated and deployed for climate-informed restoration.
Collapse
Affiliation(s)
- Cameron H Amos
- USDA Forest Service, Rocky Mountain Research Station, Moscow, Idaho
| | | | - Sarah Barga
- USDA Forest Service, Rocky Mountain Research Station, Cedar City, Utah
| | | | | |
Collapse
|
4
|
Chen X, Wang J, Liu W, Zhang Y. Limited life-history plasticity in marginal population of an invasive foundation species: Unraveling the genetic underpinnings and ecological implications. Ecol Evol 2024; 14:e11549. [PMID: 38855313 PMCID: PMC11161825 DOI: 10.1002/ece3.11549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/18/2024] [Accepted: 05/26/2024] [Indexed: 06/11/2024] Open
Abstract
Plant's life history can evolve in response to variation in climate spatio-temporally, but numerous multiple-species studies overlook species-specific (especially a foundation species) ecological effects and genetic underpinnings. For a species to successfully invade a region, likely to become a foundation species, life-history variation of invasive plants exerts considerable ecological and evolutionary impacts on invaded ecosystems. We examined how an invasive foundation plant, Spartina alterniflora, varied in its life history along latitudinal gradient using a common gardens experiment. Two common gardens were located at range boundary in tropical zone and main distribution area of S. alterniflora in temperate zone in China. Within each population/garden, we measured the onset time of three successive phenological stages constituting the reproductive phase and a fitness trait. In the low-latitude garden with higher temperature, we found that reproductive phase was advanced and its length prolonged compared to the high-latitude garden. This could possibly due to lower plasticity of maturity time. Additionally, plasticity in the length of the reproductive phase positively related with fitness in the low-latitude garden. Marginal population from tropic had the lowest plasticity and fitness, and the poor capacity to cope with changing environment may result in reduction of this population. These results reflected genetic divergence in life history of S. alterniflora in China. Our study provided a novel view to test the center-periphery hypothesis by integration across a plant's life history and highlighted the significance in considering evolution. Such insights can help us to understand long-term ecological consequences of life-history variation, with implications for plant fitness, species interaction, and ecosystem functions under climate change.
Collapse
Affiliation(s)
- Xincong Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and Ecology, Xiamen UniversityXiamenFujianChina
| | - Jiayu Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and Ecology, Xiamen UniversityXiamenFujianChina
| | - Wenwen Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and Ecology, Xiamen UniversityXiamenFujianChina
| | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and Ecology, Xiamen UniversityXiamenFujianChina
| |
Collapse
|
5
|
Zettlemoyer MA, Conner RJ, Seaver MM, Waddle E, DeMarche ML. A Long-Lived Alpine Perennial Advances Flowering under Warmer Conditions but Not Enough to Maintain Reproductive Success. Am Nat 2024; 203:E157-E174. [PMID: 38635358 DOI: 10.1086/729438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
AbstractAssessing whether phenological shifts in response to climate change confer a fitness advantage requires investigating the relationships among phenology, fitness, and environmental drivers of selection. Despite widely documented advancements in phenology with warming climate, we lack empirical estimates of how selection on phenology varies in response to continuous climate drivers or how phenological shifts in response to warming conditions affect fitness. We leverage an unusual long-term dataset with repeated, individual measurements of phenology and reproduction in a long-lived alpine plant. We analyze phenotypic plasticity in flowering phenology in relation to two climate drivers, snowmelt timing and growing degree days (GDDs). Plants flower earlier with increased GDDs and earlier snowmelt, and directional selection also favors earlier flowering under these conditions. However, reproduction still declines with warming and early snowmelt, even when flowering is early. Furthermore, the steepness of this reproductive decline increases dramatically with warming conditions, resulting in very little fruit production regardless of flowering time once GDDs exceed approximately 225 degree days or snowmelt occurs before May 15. Even though advancing phenology confers a fitness advantage relative to stasis, these shifts are insufficient to maintain reproduction under warming, highlighting limits to the potential benefits of phenological plasticity under climate change.
Collapse
|
6
|
Das Choudhury S, Guadagno CR, Bashyam S, Mazis A, Ewers BE, Samal A, Awada T. Stress phenotyping analysis leveraging autofluorescence image sequences with machine learning. FRONTIERS IN PLANT SCIENCE 2024; 15:1353110. [PMID: 38708393 PMCID: PMC11066247 DOI: 10.3389/fpls.2024.1353110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/14/2024] [Indexed: 05/07/2024]
Abstract
Background Autofluorescence-based imaging has the potential to non-destructively characterize the biochemical and physiological properties of plants regulated by genotypes using optical properties of the tissue. A comparative study of stress tolerant and stress susceptible genotypes of Brassica rapa with respect to newly introduced stress-based phenotypes using machine learning techniques will contribute to the significant advancement of autofluorescence-based plant phenotyping research. Methods Autofluorescence spectral images have been used to design a stress detection classifier with two classes, stressed and non-stressed, using machine learning algorithms. The benchmark dataset consisted of time-series image sequences from three Brassica rapa genotypes (CC, R500, and VT), extreme in their morphological and physiological traits captured at the high-throughput plant phenotyping facility at the University of Nebraska-Lincoln, USA. We developed a set of machine learning-based classification models to detect the percentage of stressed tissue derived from plant images and identified the best classifier. From the analysis of the autofluorescence images, two novel stress-based image phenotypes were computed to determine the temporal variation in stressed tissue under progressive drought across different genotypes, i.e., the average percentage stress and the moving average percentage stress. Results The study demonstrated that both the computed phenotypes consistently discriminated against stressed versus non-stressed tissue, with oilseed type (R500) being less prone to drought stress relative to the other two Brassica rapa genotypes (CC and VT). Conclusion Autofluorescence signals from the 365/400 nm excitation/emission combination were able to segregate genotypic variation during a progressive drought treatment under a controlled greenhouse environment, allowing for the exploration of other meaningful phenotypes using autofluorescence image sequences with significance in the context of plant science.
Collapse
Affiliation(s)
- Sruti Das Choudhury
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, United States
| | | | - Srinidhi Bashyam
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Anastasios Mazis
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Brent E. Ewers
- Department of Botany, University of Wyoming, Laramie, WY, United States
| | - Ashok Samal
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Tala Awada
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, United States
- Agricultural Research Division, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
7
|
Wu T, Song Y, Tissue D, Su W, Luo H, Li X, Yang S, Liu X, Yan J, Huang J, Liu J. Photosynthetic and biochemical responses of four subtropical tree seedlings to reduced dry season and increased wet season precipitation and variable N deposition. TREE PHYSIOLOGY 2024; 44:tpad114. [PMID: 37756634 DOI: 10.1093/treephys/tpad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/27/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Interspecific variations in phenotypic plasticity of trees that are affected by climate change may alter the ecosystem function of forests. Seedlings of four common tree species (Castanopsis fissa, Michelia macclurei, Dalbergia odorifera and Ormosia pinnata) in subtropical plantations of southern China were grown in the field under rainout shelters and subjected to changing precipitation (48 L of water every 4 days in the dry season, 83 L of water every 1 day in the wet season; 4 g m-2 year-1 of nitrogen (N)), low N deposition (48 L of water every 2 days in the dry season, 71 L of water every 1 day in the wet season; 8 g m-2 year-1 N), high N deposition (48 L of water every 2 days in the dry season, 71 L of water every 1 day in the wet season; 10 g m-2 year-1 N) and their interactive effects. We found that the changes in seasonal precipitation reduced the light-saturated photosynthetic rate (Asat) for C. fissa due to declining area-based foliar N concentrations (Na). However, we also found that the interactive effects of changing precipitation and N deposition enhanced Asat for C. fissa by increasing foliar Na concentrations, suggesting that N deposition could alleviate N limitations associated with changing precipitation. Altered precipitation and high N deposition reduced Asat for D. odorifera by decreasing the maximum electron transport rate for RuBP regeneration (Jmax) and maximum rate of carboxylation of Rubisco (Vcmax). Ormosia pinnata under high N deposition exhibited increasing Asat due to higher stomatal conductance and Vcmax. The growth of D. odorifera might be inhibited by changes in seasonal precipitation and N deposition, while O. pinnata may benefit from increasing N deposition in future climates. Our study provides an important insight into the selection of tree species with high capacity to tolerate changing precipitation and N deposition in subtropical plantations.
Collapse
Affiliation(s)
- Ting Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yuting Song
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - David Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Wei Su
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hanyu Luo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xu Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shimin Yang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xujun Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Junhua Yan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Juan Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| |
Collapse
|
8
|
Blumstein M, Oseguera M, Caso-McHugh T, Des Marais DL. Nonstructural carbohydrate dynamics' relationship to leaf development under varying environments. THE NEW PHYTOLOGIST 2024; 241:102-113. [PMID: 37882355 DOI: 10.1111/nph.19333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Leaf-out in temperate forests is a critical transition point each spring and advancing with global change. The mechanism linking phenological variation to external cues is poorly understood. Nonstructural carbohydrate (NSC) availability may be key. Here, we use branch cuttings from northern red oak (Quercus rubra) and measure NSCs throughout bud development in branch tissue. Given genes and environment influence phenology, we placed branches in an arrayed factorial experiment (three temperatures × two photoperiods, eight genotypes) to examine their impact on variation in leaf-out timing and corresponding NSCs. Despite significant differences in leaf-out timing between treatments, NSC patterns were much more consistent, with all treatments and genotypes displaying similar NSC concentrations across phenophases. Notably, the moderate and hot temperature treatments reached the same NSC concentrations and phenophases at the same growing degree days (GDD), but 20 calendar days apart, while the cold treatment achieved only half the GDD of the other two. Our results suggest that NSCs are coordinated with leaf-out and could act as a molecular clock, signaling to cells the passage of time and triggering leaf development to begin. This link between NSCs and budburst is critical for improving predictions of phenological timing.
Collapse
Affiliation(s)
- Meghan Blumstein
- Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St., Cambridge, MA, 02139, USA
| | - Miranda Oseguera
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Philadelphia, PA, 19131, USA
| | - Theresa Caso-McHugh
- Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St., Cambridge, MA, 02139, USA
| | - David L Des Marais
- Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St., Cambridge, MA, 02139, USA
| |
Collapse
|
9
|
Moran ME, Aparecido LMT, Koepke DF, Cooper HF, Doughty CE, Gehring CA, Throop HL, Whitham TG, Allan GJ, Hultine KR. Limits of thermal and hydrological tolerance in a foundation tree species (Populus fremontii) in the desert southwestern United States. THE NEW PHYTOLOGIST 2023; 240:2298-2311. [PMID: 37680030 DOI: 10.1111/nph.19247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/05/2023] [Indexed: 09/09/2023]
Abstract
Populus fremontii is among the most dominant, and ecologically important riparian tree species in the western United States and can thrive in hyper-arid riparian corridors. Yet, P. fremontii forests have rapidly declined over the last decade, particularly in places where temperatures sometimes exceed 50°C. We evaluated high temperature tolerance of leaf metabolism, leaf thermoregulation, and leaf hydraulic function in eight P. fremontii populations spanning a 5.3°C mean annual temperature gradient in a well-watered common garden, and at source locations throughout the lower Colorado River Basin. Two major results emerged. First, despite having an exceptionally high Tcrit (the temperature at which Photosystem II is disrupted) relative to other tree taxa, recent heat waves exceeded Tcrit , requiring evaporative leaf cooling to maintain leaf-to-air thermal safety margins. Second, in midsummer, genotypes from the warmest locations maintained lower midday leaf temperatures, a higher midday stomatal conductance, and maintained turgor pressure at lower water potentials than genotypes from more temperate locations. Taken together, results suggest that under well-watered conditions, P. fremontii can regulate leaf temperature below Tcrit along the warm edge of its distribution. Nevertheless, reduced Colorado River flows threaten to lower water tables below levels needed for evaporative cooling during episodic heat waves.
Collapse
Affiliation(s)
- Madeline E Moran
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Luiza M T Aparecido
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA
| | - Dan F Koepke
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, 85008, USA
| | - Hillary F Cooper
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Christopher E Doughty
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Catherine A Gehring
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Heather L Throop
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA
| | - Thomas G Whitham
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Gerard J Allan
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, 85008, USA
| |
Collapse
|
10
|
Xie Y, Thammavong HT, Berry LG, Huang CH, Park DS. Sex-dependent phenological responses to climate vary across species' ranges. Proc Natl Acad Sci U S A 2023; 120:e2306723120. [PMID: 37956437 PMCID: PMC10691327 DOI: 10.1073/pnas.2306723120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/27/2023] [Indexed: 11/15/2023] Open
Abstract
Anthropogenic climate change has significantly altered the flowering times (i.e., phenology) of plants worldwide, affecting their reproduction, survival, and interactions. Recent studies utilizing herbarium specimens have uncovered significant intra- and inter-specific variation in flowering phenology and its response to changes in climate but have mostly been limited to animal-pollinated species. Thus, despite their economic and ecological importance, variation in phenological responses to climate remain largely unexplored among and within wind-pollinated dioecious species and across their sexes. Using both herbarium specimens and volunteer observations of cottonwood (Populus) species, we examined how phenological sensitivity to climate varies across species, their ranges, sexes, and phenophases. The timing of flowering varied significantly across and within species, as did their sensitivity to spring temperature. In particular, male flowering generally happened earlier in the season and was more sensitive to warming than female flowering. Further, the onset of flowering was more sensitive to changes in temperature than leaf out. Increased temporal gaps between male and female flowering time and between the first open flower date and leaf out date were predicted for the future under two climate change scenarios. These shifts will impact the efficacy of sexual reproduction and gene flow among species. Our study demonstrates significant inter- and intra-specific variation in phenology and its responses to environmental cues, across species' ranges, phenophases, and sex, in wind-pollinated species. These variations need to be considered to predict accurately the effects of climate change and assess their ecological and evolutionary consequences.
Collapse
Affiliation(s)
- Yingying Xie
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN47907
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY41099
| | - Hanna T. Thammavong
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907
| | - Lily G. Berry
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
| | - Chingyan H. Huang
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907
| | - Daniel S. Park
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN47907
| |
Collapse
|
11
|
de la Mata R, Zas R. Plasticity in growth is genetically variable and highly conserved across spatial scales in a Mediterranean pine. THE NEW PHYTOLOGIST 2023; 240:542-554. [PMID: 37491863 DOI: 10.1111/nph.19158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023]
Abstract
Phenotypic plasticity is a main mechanism for sessile organisms to cope with changing environments. Plasticity is genetically based and can evolve under natural selection so that populations within a species show distinct phenotypic responses to environment. An important question that remains elusive is whether the intraspecific variation in plasticity at different spatial scales is independent from each other. To test whether variation in plasticity to macro- and micro-environmental variation is related among each other, we used growth data of 25 Pinus pinaster populations established in seven field common gardens in NW Spain. Phenotypic plasticity to macro-environmental variation was estimated across test sites while plasticity to micro-environmental variation was estimated by using semivariography and kriging for modeling within-site heterogeneity. We provide empirical evidence of among-population variation in the magnitude of plastic responses to both micro- and macro-environmental variation. Importantly, we found that such responses were positively correlated across spatial scales. Selection for plasticity at one scale of environmental variation may impact the expression of plasticity at other scales, having important consequences on the ability of populations to buffer climate change. These results improve our understanding of the ecological drivers underlying the expression of phenotypic plasticity.
Collapse
Affiliation(s)
- Raul de la Mata
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (EBD-CSIC), Sevilla, Andalucía, 41092, Spain
| | - Rafael Zas
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (MBG-CSIC), Apdo 28, Pontevedra, 36080, Spain
| |
Collapse
|
12
|
Leites L, Benito Garzón M. Forest tree species adaptation to climate across biomes: Building on the legacy of ecological genetics to anticipate responses to climate change. GLOBAL CHANGE BIOLOGY 2023; 29:4711-4730. [PMID: 37029765 DOI: 10.1111/gcb.16711] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/30/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Intraspecific variation plays a critical role in extant and future forest responses to climate change. Forest tree species with wide climatic niches rely on the intraspecific variation resulting from genetic adaptation and phenotypic plasticity to accommodate spatial and temporal climate variability. A centuries-old legacy of forest ecological genetics and provenance trials has provided a strong foundation upon which to continue building on this knowledge, which is critical to maintain climate-adapted forests. Our overall objective is to understand forest trees intraspecific responses to climate across species and biomes, while our specific objectives are to describe ecological genetics models used to build our foundational knowledge, summarize modeling approaches that have expanded the traditional toolset, and extensively review the literature from 1994 to 2021 to highlight the main contributions of this legacy and the new analyzes of provenance trials. We reviewed 103 studies comprising at least three common gardens, which covered 58 forest tree species, 28 of them with range-wide studies. Although studies using provenance trial data cover mostly commercially important forest tree species from temperate and boreal biomes, this synthesis provides a global overview of forest tree species adaptation to climate. We found that evidence for genetic adaptation to local climate is commonly present in the species studied (79%), being more common in conifers (87.5%) than in broadleaf species (67%). In 57% of the species, clines in fitness-related traits were associated with temperature variables, in 14% of the species with precipitation, and in 25% of the species with both. Evidence of adaptation lags was found in 50% of the species with range-wide studies. We conclude that ecological genetics models and analysis of provenance trial data provide excellent insights on intraspecific genetic variation, whereas the role and limits of phenotypic plasticity, which will likely determine the fate of extant forests, is vastly understudied.
Collapse
Affiliation(s)
- Laura Leites
- Department of Ecosystem Science and Management, Penn State University, University Park, Pennsylvania, USA
| | | |
Collapse
|
13
|
Kuo HC, Yao CT, Liao BY, Weng MP, Dong F, Hsu YC, Hung CM. Weak gene-gene interaction facilitates the evolution of gene expression plasticity. BMC Biol 2023; 21:57. [PMID: 36941675 PMCID: PMC10029303 DOI: 10.1186/s12915-023-01558-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Individual organisms may exhibit phenotypic plasticity when they acclimate to different conditions. Such plastic responses may facilitate or constrain the adaptation of their descendant populations to new environments, complicating their evolutionary trajectories beyond the genetic blueprint. Intriguingly, phenotypic plasticity itself can evolve in terms of its direction and magnitude during adaptation. However, we know little about what determines the evolution of phenotypic plasticity, including gene expression plasticity. Recent laboratory-based studies suggest dominance of reversing gene expression plasticity-plastic responses that move the levels of gene expression away from the new optima. Nevertheless, evidence from natural populations is still limited. RESULTS Here, we studied gene expression plasticity and its evolution in the montane and lowland populations of an elevationally widespread songbird-the Rufous-capped Babbler (Cyanoderma ruficeps)-with reciprocal transplant experiments and transcriptomic analyses; we set common gardens at altitudes close to these populations' native ranges. We confirmed the prevalence of reversing plasticity in genes associated with altitudinal adaptation. Interestingly, we found a positive relationship between magnitude and degree of evolution in gene expression plasticity, which was pertinent to not only adaptation-associated genes but also the whole transcriptomes from multiple tissues. Furthermore, we revealed that genes with weaker expressional interactions with other genes tended to exhibit stronger plasticity and higher degree of plasticity evolution, which explains the positive magnitude-evolution relationship. CONCLUSIONS Our experimental evidence demonstrates that species may initiate their adaptation to new habitats with genes exhibiting strong expression plasticity. We also highlight the role of expression interdependence among genes in regulating the magnitude and evolution of expression plasticity. This study illuminates how the evolution of phenotypic plasticity in gene expression facilitates the adaptation of species to challenging environments in nature.
Collapse
Affiliation(s)
- Hao-Chih Kuo
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Cheng-Te Yao
- Division of Zoology, Endemic Species Research Institute, Nantou, 55244, Taiwan
| | - Ben-Yang Liao
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Meng-Pin Weng
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Feng Dong
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Yu-Cheng Hsu
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, 97401, Taiwan
| | - Chih-Ming Hung
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
14
|
Eisenring M, Lindroth RL, Flansburg A, Giezendanner N, Mock KE, Kruger EL. Genotypic variation rather than ploidy level determines functional trait expression in a foundation tree species in the presence and absence of environmental stress. ANNALS OF BOTANY 2023; 131:229-242. [PMID: 35641114 PMCID: PMC9904343 DOI: 10.1093/aob/mcac071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/28/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS At the population level, genetic diversity is a key determinant of a tree species' capacity to cope with stress. However, little is known about the relative importance of the different components of genetic diversity for tree stress responses. We compared how two sources of genetic diversity, genotype and cytotype (i.e. differences in ploidy levels), influence growth, phytochemical and physiological traits of Populus tremuloides in the presence and absence of environmental stress. METHODS In a series of field studies, we first assessed variation in traits across diploid and triploid aspen genotypes from Utah and Wisconsin under non-stressed conditions. In two follow-up experiments, we exposed diploid and triploid aspen genotypes from Wisconsin to individual and interactive drought stress and defoliation treatments and quantified trait variations under stress. KEY RESULTS We found that (1) tree growth and associated traits did not differ significantly between ploidy levels under non-stressed conditions. Instead, variation in tree growth and most other traits was driven by genotypic and population differences. (2) Genotypic differences were critical for explaining variation of most functional traits and their responses to stress. (3) Ploidy level played a subtle role in shaping traits and trait stress responses, as its influence was typically obscured by genotypic differences. (4) As an exception to the third conclusion, we showed that triploid trees expressed 17 % higher foliar defence (tremulacin) levels, 11 % higher photosynthesis levels and 23 % higher rubisco activity under well-watered conditions. Moreover, triploid trees displayed greater drought resilience than diploids as they produced 35 % more new tissue than diploids when recovering from drought stress. CONCLUSION Although ploidy level can strongly influence the ecology of tree species, those effects may be relatively small in contrast to the effects of genotypic variation in highly diverse species.
Collapse
Affiliation(s)
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI, USA
| | - Amy Flansburg
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WIUSA
| | - Noreen Giezendanner
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI, USA
| | - Karen E Mock
- Department of Wildland Resources and Ecology Center, 5230 Old Main Hill, Utah State University, Logan, UT, USA
| | - Eric L Kruger
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WIUSA
| |
Collapse
|
15
|
Palmquist EC, Ogle K, Whitham TG, Allan GJ, Shafroth PB, Butterfield BJ. Provenance, genotype, and flooding influence growth and resource acquisition characteristics in a clonal, riparian shrub. AMERICAN JOURNAL OF BOTANY 2023; 110:e16115. [PMID: 36462152 DOI: 10.1002/ajb2.16115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
PREMISE Riparian plants can exhibit intraspecific phenotypic variability across the landscape related to temperature and flooding gradients. Phenotypes that vary across a climate gradient are often partly genetically determined and may differ in their response to inundation. Changes to inundation patterns across a climate gradient could thus result in site-specific inundation responses. Phenotypic variability is more often studied in riparian trees, yet riparian shrubs are key elements of riparian systems and may differ from trees in phenotypic variability and environmental responses. METHODS We tested whether individuals of a clonal, riparian shrub, Pluchea sericea, collected from provenances spanning a temperature gradient differed in their phenotypes and responses to inundation and to what degree any differences were related to genotype. Plants were subjected to different inundation depths and a subset genotyped. Variables related to growth and resource acquisition were measured and analyzed using hierarchical, multivariate Bayesian linear regressions. RESULTS Individuals from different provenances differed in their phenotypes, but not in their response to inundation. Phenotypes were not related to provenance temperature but were partially governed by genotype. Growth was more strongly influenced by inundation, while resource acquisition was more strongly controlled by genotype. CONCLUSIONS Growth and resource acquisition responses in a clonal, riparian shrub are affected by changes to inundation and plant demographics in unique ways. Shrubs appear to differ from trees in their responses to environmental change. Understanding environmental effects on shrubs separately from those of trees will be a key part of evaluating impacts of environmental change on riparian ecosystems.
Collapse
Affiliation(s)
- Emily C Palmquist
- U.S. Geological Survey, Southwest Biological Science Center, Grand Canyon Monitoring and Research Center, 2255 N Gemini Dr, Flagstaff, AZ, 86001, USA
- Department of Biological Sciences, Northern Arizona University, Box 5640, Flagstaff, AZ, 86011, USA
| | - Kiona Ogle
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Box 5693, Flagstaff, AZ, 86011, USA
| | - Thomas G Whitham
- Department of Biological Sciences, Northern Arizona University, Box 5640, Flagstaff, AZ, 86011, USA
- Center for Adaptable Western Landscapes (CAWL), Northern Arizona University, Box 5640, Flagstaff, AZ, 86011, USA
| | - Gerard J Allan
- Department of Biological Sciences, Northern Arizona University, Box 5640, Flagstaff, AZ, 86011, USA
- Center for Adaptable Western Landscapes (CAWL), Northern Arizona University, Box 5640, Flagstaff, AZ, 86011, USA
| | - Patrick B Shafroth
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Ave., Bldg C, Fort Collins, CO, 80526, USA
| | - Bradley J Butterfield
- Department of Biological Sciences, Northern Arizona University, Box 5640, Flagstaff, AZ, 86011, USA
| |
Collapse
|
16
|
Thompson LM, Thurman LL, Cook CN, Beever EA, Sgrò CM, Battles A, Botero CA, Gross JE, Hall KR, Hendry AP, Hoffmann AA, Hoving C, LeDee OE, Mengelt C, Nicotra AB, Niver RA, Pérez‐Jvostov F, Quiñones RM, Schuurman GW, Schwartz MK, Szymanski J, Whiteley A. Connecting research and practice to enhance the evolutionary potential of species under climate change. CONSERVATION SCIENCE AND PRACTICE 2023. [DOI: 10.1111/csp2.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Laura M. Thompson
- U.S. Geological Survey (USGS), National Climate Adaptation Science Center and the University of Tennessee Knoxville Tennessee USA
| | | | - Carly N. Cook
- School of Biological Sciences Monash University Melbourne Australia
| | - Erik A. Beever
- USGS, Northern Rocky Mountain Science Center and Montana State University Bozeman Montana USA
| | - Carla M. Sgrò
- School of Biological Sciences Monash University Melbourne Australia
| | | | | | - John E. Gross
- National Park Service (NPS) Climate Change Response Program Fort Collins Colorado USA
| | | | | | | | | | - Olivia E. LeDee
- USGS, Midwest Climate Adaptation Science Center Saint Paul Minnesota USA
| | | | | | - Robyn A. Niver
- U.S. Fish and Wildlife Service (USFWS), Branch of Listing and Policy Support Bailey's Crossroads Virginia USA
| | | | - Rebecca M. Quiñones
- Massachusetts Division of Fisheries and Wildlife Westborough Massachusetts USA
| | - Gregor W. Schuurman
- National Park Service (NPS) Climate Change Response Program Fort Collins Colorado USA
| | - Michael K. Schwartz
- U.S. Forest Service, National Genomics Center for Wildlife and Fish Conservation Missoula Montana USA
| | - Jennifer Szymanski
- USFWS, Branch of SSA Science Support, Division of Endangered Species Onalaska Wisconsin USA
| | | |
Collapse
|
17
|
de la Mata R, Zas R, Bustingorri G, Sampedro L, Rust M, Hernandez‐Serrano A, Sala A. Drivers of population differentiation in phenotypic plasticity in a temperate conifer: A 27-year study. Evol Appl 2022; 15:1945-1962. [PMID: 36426125 PMCID: PMC9679231 DOI: 10.1111/eva.13492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022] Open
Abstract
Phenotypic plasticity is a main mechanism for organisms to cope with changing environments and broaden their ecological range. Plasticity is genetically based and can evolve under natural selection, such that populations within a species show distinct phenotypic responses to the environment if evolved under different conditions. Understanding how intraspecific variation in phenotypic plasticity arises is critical to assess potential adaptation to ongoing climate change. Theory predicts that plasticity is favored in more favorable but variable environments. Yet, many theoretical predictions about benefits, costs, and selection on plasticity remain untested. To test these predictions, we took advantage of three genetic trials in the northern Rocky Mountains, USA, which assessed 23 closely located Pinus ponderosa populations over 27 years. Mean environmental conditions and their spatial patterns of variation at the seed source populations were characterized based on six basic climate parameters. Despite the small area of origin, there was significant genetic variation in phenotypic plasticity for tree growth among populations. We found a significant negative correlation between phenotypic plasticity and the patch size of environmental heterogeneity at the seed source populations, but not with total environmental spatial variance. These results show that populations exposed to high microhabitat heterogeneity have evolved higher phenotypic plasticity and that the trigger was the grain rather than the total magnitude of spatial heterogeneity. Contrary to theoretical predictions, we also found a positive relationship between population plasticity and summer drought at the seed source, indicating that drought can act as a trigger of plasticity. Finally, we found a negative correlation between the quantitative genetic variance within populations and their phenotypic plasticity, suggesting compensatory adaptive mechanisms for the lack of genetic diversity. These results improve our understanding of the microevolutionary drivers of phenotypic plasticity, a critical process for resilience of long-lived species under climate change, and support decision-making in tree genetic improvement programs and seed transfer strategies.
Collapse
Affiliation(s)
- Raul de la Mata
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
- Estación Biológica de DoñanaConsejo Superior de Investigaciones Científicas (EBD‐CSIC)SevillaSpain
| | - Rafael Zas
- Misión Biológica de GaliciaConsejo Superior de Investigaciones Científicas (MBG‐CSIC)PontevedraSpain
| | - Gloria Bustingorri
- Misión Biológica de GaliciaConsejo Superior de Investigaciones Científicas (MBG‐CSIC)PontevedraSpain
| | - Luis Sampedro
- Misión Biológica de GaliciaConsejo Superior de Investigaciones Científicas (MBG‐CSIC)PontevedraSpain
| | - Marc Rust
- Inland Empire Tree Improvement CooperativeUniversity of IdahoMoscowIdahoUSA
| | - Ana Hernandez‐Serrano
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF)Cerdanyola del VallèsSpain
| | - Anna Sala
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
| |
Collapse
|
18
|
Climate-Driven Adaptive Differentiation in Melia azedarach: Evidence from a Common Garden Experiment. Genes (Basel) 2022; 13:genes13111924. [DOI: 10.3390/genes13111924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/04/2022] Open
Abstract
Studies of local adaptation in populations of chinaberry (Melia azedarach L.) are important for clarifying patterns in the population differentiation of this species across its natural range. M. azedarach is an economically important timber species, and its phenotype is highly variable across its range in China. Here, we collected M. azedarach seeds from 31 populations across its range and conducted a common garden experiment. We studied patterns of genetic differentiation among populations using molecular markers (simple sequence repeats) and data on phenotypic variation in six traits collected over five years. Our sampled populations could be subdivided into two groups based on genetic analyses, as well as patterns of isolation by distance and isolation by environment. Significant differentiation in growth traits was observed among provenances and families within provenances. Geographic distance was significantly correlated with the quantitative genetic differentiation (QST) in height (HEIT) and crown breadth. Climate factors were significantly correlated with the QST for each trait. A total of 23 climatic factors were examined. There was a significant effect of temperature on all traits, and minimum relative humidity had a significant effect on the survival rate over four years. By comparing the neutral genetic differentiation (FST) with the QST, the mode of selection acting on survival rate varied, whereas HEIT and the straightness of the main trunk were subject to the same mode of selection. The variation in survival rate was consistent with the variation in genetic differentiation among populations, which was indicative of local adaptation. Overall, our findings provide new insights into the responses of the phenological traits of M. azedarach to changes in the climate conditions of China.
Collapse
|
19
|
Cooper HF, Best RJ, Andrews LV, Corbin JPM, Garthwaite I, Grady KC, Gehring CA, Hultine KR, Whitham TG, Allan GJ. Evidence of climate-driven selection on tree traits and trait plasticity across the climatic range of a riparian foundation species. Mol Ecol 2022; 31:5024-5040. [PMID: 35947510 DOI: 10.1111/mec.16645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
Selection on quantitative traits by heterogeneous climatic conditions can lead to substantial trait variation across a species range. In the context of rapidly changing environments, however, it is equally important to understand selection on trait plasticity. To evaluate the role of selection in driving divergences in traits and their associated plasticities within a widespread species, we compared molecular and quantitative trait variation in Populus fremontii (Fremont cottonwood), a foundation riparian distributed throughout Arizona. Using SNP data and genotypes from 16 populations reciprocally planted in three common gardens, we first performed QST -FST analyses to detect selection on traits and trait plasticity. We then explored the environmental drivers of selection using trait-climate and plasticity-climate regressions. Three major findings emerged: 1) There was significant genetic variation in traits expressed in each of the common gardens and in the phenotypic plasticity of traits across gardens, both of which were heritable. 2) Based on QST -FST comparisons, there was evidence of selection in all traits measured; however, this result varied from no effect in one garden to highly significant in another, indicating that detection of past selection is environmentally dependent. We also found strong evidence of divergent selection on plasticity across environments for two traits. 3) Traits and/or their plasticity were often correlated with population source climate (R2 up to 0.77 and 0.66, respectively). These results suggest that steep climate gradients across the Southwest have played a major role in shaping the evolution of divergent phenotypic responses in populations and genotypes now experiencing climate change.
Collapse
Affiliation(s)
- Hillary F Cooper
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
| | - Rebecca J Best
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, USA
| | - Lela V Andrews
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA
| | - Jaclyn P M Corbin
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
| | - Iris Garthwaite
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, USA
| | - Kevin C Grady
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Catherine A Gehring
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
| | - Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, USA
| | - Thomas G Whitham
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
| | - Gerard J Allan
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
20
|
Eisenring M, Best RJ, Zierden MR, Cooper HF, Norstrem MA, Whitham TG, Grady K, Allan GJ, Lindroth RL. Genetic divergence along a climate gradient shapes chemical plasticity of a foundation tree species to both changing climate and herbivore damage. GLOBAL CHANGE BIOLOGY 2022; 28:4684-4700. [PMID: 35596651 DOI: 10.1111/gcb.16275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Climate change is threatening the persistence of many tree species via independent and interactive effects on abiotic and biotic conditions. In addition, changes in temperature, precipitation, and insect attacks can alter the traits of these trees, disrupting communities and ecosystems. For foundation species such as Populus, phytochemical traits are key mechanisms linking trees with their environment and are likely jointly determined by interactive effects of genetic divergence and variable environments throughout their geographic range. Using reciprocal Fremont cottonwood (Populus fremontii) common gardens along a steep climatic gradient, we explored how environment (garden climate and simulated herbivore damage) and genetics (tree provenance and genotype) affect both foliar chemical traits and the plasticity of these traits. We found that (1) Constitutive and plastic chemical responses to changes in garden climate and damage varied among defense compounds, structural compounds, and leaf nitrogen. (2) For both defense and structural compounds, plastic responses to different garden climates depended on the climate in which a population or genotype originated. Specifically, trees originating from cool provenances showed higher defense plasticity in response to climate changes than trees from warmer provenances. (3) Trees from cool provenances growing in cool garden conditions expressed the lowest constitutive defense levels but the strongest induced (plastic) defenses in response to damage. (4) The combination of hot garden conditions and simulated herbivory switched the strategy used by these genotypes, increasing constitutive defenses but erasing the capacity for induction after damage. Because Fremont cottonwood chemistry plays a major role in shaping riparian communities and ecosystems, the effects of changes in phytochemical traits can be wide reaching. As the southwestern US is confronted with warming temperatures and insect outbreaks, these results improve our capacity to predict ecosystem consequences of climate change and inform selection of tree genotypes for conservation and restoration purposes.
Collapse
Affiliation(s)
- Michael Eisenring
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Forest Entomology, Swiss Federal Research Institute for Forest, Snow, and Landscape Research WSL, Zurich, Switzerland
| | - Rebecca J Best
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, USA
| | - Mark R Zierden
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hillary F Cooper
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, USA
| | - Madelyn A Norstrem
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, USA
| | - Thomas G Whitham
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Kevin Grady
- School of Forestry, Northern Arizona University, Flagstaff, Arizona, USA
| | - Gerard J Allan
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
21
|
Blasini DE, Koepke DF, Bush SE, Allan GJ, Gehring CA, Whitham TG, Day TA, Hultine KR. Tradeoffs between leaf cooling and hydraulic safety in a dominant arid land riparian tree species. PLANT, CELL & ENVIRONMENT 2022; 45:1664-1681. [PMID: 35147232 DOI: 10.1111/pce.14292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Leaf carbon gain optimization in hot environments requires balancing leaf thermoregulation with avoiding excessive water loss via transpiration and hydraulic failure. The tradeoffs between leaf thermoregulation and transpirational water loss can determine the ecological consequences of heat waves that are increasing in frequency and intensity. We evaluated leaf thermoregulation strategies in warm- (>40°C maximum summer temperature) and cool-adapted (<40°C maximum summer temperature) genotypes of the foundation tree species, Populus fremontii, using a common garden near the mid-elevational point of its distribution. We measured leaf temperatures and assessed three modes of leaf thermoregulation: leaf morphology, midday canopy stomatal conductance and stomatal sensitivity to vapour pressure deficit. Data were used to parameterize a leaf energy balance model to estimate contrasts in midday leaf temperature in warm- and cool-adapted genotypes. Warm-adapted genotypes had 39% smaller leaves and 38% higher midday stomatal conductance, reflecting a 3.8°C cooler mean leaf temperature than cool-adapted genotypes. Leaf temperatures modelled over the warmest months were on average 1.1°C cooler in warm- relative to cool-adapted genotypes. Results show that plants adapted to warm environments are predisposed to tightly regulate leaf temperatures during heat waves, potentially at an increased risk of hydraulic failure.
Collapse
Affiliation(s)
- Davis E Blasini
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Dan F Koepke
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, Arizona, USA
| | - Susan E Bush
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, Arizona, USA
| | - Gerard J Allan
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Catherine A Gehring
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Thomas G Whitham
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Thomas A Day
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, Arizona, USA
| |
Collapse
|
22
|
Perry A, Wachowiak W, Beaton J, Iason G, Cottrell J, Cavers S. Identifying and testing marker-trait associations for growth and phenology in three pine species: Implications for genomic prediction. Evol Appl 2022; 15:330-348. [PMID: 35233251 PMCID: PMC8867712 DOI: 10.1111/eva.13345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/02/2022] Open
Abstract
In tree species, genomic prediction offers the potential to forecast mature trait values in early growth stages, if robust marker-trait associations can be identified. Here we apply a novel multispecies approach using genotypes from a new genotyping array, based on 20,795 single nucleotide polymorphisms (SNPs) from three closely related pine species (Pinus sylvestris, Pinus uncinata and Pinus mugo), to test for associations with growth and phenology data from a common garden study. Predictive models constructed using significantly associated SNPs were then tested and applied to an independent multisite field trial of P. sylvestris and the capability to predict trait values was evaluated. One hundred and eighteen SNPs showed significant associations with the traits in the pine species. Common SNPs (MAF > 0.05) associated with bud set were only found in genes putatively involved in growth and development, whereas those associated with growth and budburst were also located in genes putatively involved in response to environment and, to a lesser extent, reproduction. At one of the two independent sites, the model we developed produced highly significant correlations between predicted values and observed height data (YA, height 2020: r = 0.376, p < 0.001). Predicted values estimated with our budburst model were weakly but positively correlated with duration of budburst at one of the sites (GS, 2015: r = 0.204, p = 0.034; 2018: r = 0.205, p = 0.034-0.037) and negatively associated with budburst timing at the other (YA: r = -0.202, p = 0.046). Genomic prediction resulted in the selection of sets of trees whose mean height was taller than the average for each site. Our results provide tentative support for the capability of prediction models to forecast trait values in trees, while highlighting the need for caution in applying them to trees grown in different environments.
Collapse
Affiliation(s)
- Annika Perry
- UK Centre for Ecology & Hydrology EdinburghPenicuikUK
| | - Witold Wachowiak
- Institute of Environmental BiologyFaculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | | | | | | | | |
Collapse
|
23
|
North American tree migration paced by climate in the West, lagging in the East. Proc Natl Acad Sci U S A 2022; 119:2116691118. [PMID: 34983867 PMCID: PMC8784119 DOI: 10.1073/pnas.2116691118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 01/16/2023] Open
Abstract
Suitable habitats for forest trees may be shifting fast with recent climate change. Studies tracking the shift in suitable habitat for forests have been inconclusive, in part because responses in tree fecundity and seedling establishment can diverge. Analysis of both components at a continental scale reveals a poleward migration of northern species that is in progress now. Recruitment and fecundity both contribute to poleward spread in the West, while fecundity limits spread in the East, despite a fecundity hotspot in the Southeast. Fecundity limitation on population spread can confront conservation and management efforts with persistent disequilibrium between forest diversity and rapid climate change. Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread. By contrast, seedling success is highest in the West and North, serving to partially offset limited seed production near poleward frontiers. The evidence of fecundity and recruitment control on tree migration can inform conservation planning for the expected long-term disequilibrium between climate and forest distribution.
Collapse
|
24
|
Singleton AL, Liu MH, Votzke S, Yammine A, Gibert JP. Increasing temperature weakens the positive effect of genetic diversity on population growth. Ecol Evol 2021; 11:17810-17816. [PMID: 35003641 PMCID: PMC8717318 DOI: 10.1002/ece3.8335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/02/2022] Open
Abstract
Genetic diversity and temperature increases associated with global climate change are known to independently influence population growth and extinction risk. Whether increasing temperature may influence the effect of genetic diversity on population growth, however, is not known. We address this issue in the model protist system Tetrahymena thermophila. We test the hypothesis that at temperatures closer to the species' thermal optimum (i.e., the temperature at which population growth is maximal, or T opt), genetic diversity should have a weaker effect on population growth compared to temperatures away from the thermal optimum. To do so, we grew populations of T. thermophila with varying levels of genetic diversity at increasingly warmer temperatures and quantified their intrinsic population growth rate, r. We found that genetic diversity increases population growth at cooler temperatures, but that as temperature increases, this effect weakens. We also show that a combination of changes in the amount of expressed genetic diversity (G) in r, plastic changes in population growth across temperatures (E), and strong G × E interactions underlie this temperature effect. Our results uncover important but largely overlooked temperature effects that have implications for the management of small populations with depauperate genetic stocks in an increasingly warming world.
Collapse
Affiliation(s)
| | - Megan H. Liu
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| | | | - Andrea Yammine
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| | - Jean P. Gibert
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
25
|
Iler AM, CaraDonna PJ, Forrest JR, Post E. Demographic Consequences of Phenological Shifts in Response to Climate Change. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-011921-032939] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
When a phenological shift affects a demographic vital rate such as survival or reproduction, the altered vital rate may or may not have population-level consequences. We review the evidence that climate change affects populations by shifting species’ phenologies, emphasizing the importance of demographic life-history theory. We find many examples of phenological shifts having both positive and negative consequences for vital rates. Yet, few studies link phenological shifts to changes in vital rates known to drive population dynamics, especially in plants. When this link is made, results are largely consistent with life-history theory: Phenological shifts have population-level consequences when they affect survival in longer-lived organisms and reproduction in shorter-lived organisms. However, there are just as many cases in which demographic mechanisms buffer population growth from phenologically induced changes in vital rates. We provide recommendations for future research aiming to understand the complex relationships among climate, phenology, and demography, which will help to elucidate the extent to which phenological shifts actually alter population persistence.
Collapse
Affiliation(s)
- Amy M. Iler
- Negaunee Institute for Plant Science Conservation and Action, Chicago Botanic Garden, Glencoe, Illinois 60022, USA
| | - Paul J. CaraDonna
- Negaunee Institute for Plant Science Conservation and Action, Chicago Botanic Garden, Glencoe, Illinois 60022, USA
| | | | - Eric Post
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, California 95616, USA
| |
Collapse
|
26
|
Ramírez-Valiente JA, Solé-Medina A, Pyhäjärvi T, Savolainen O, Heer K, Opgenoorth L, Danusevicius D, Robledo-Arnuncio JJ. Adaptive responses to temperature and precipitation variation at the early-life stages of Pinus sylvestris. THE NEW PHYTOLOGIST 2021; 232:1632-1647. [PMID: 34388269 DOI: 10.1111/nph.17678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Early-stage fitness variation has been seldom evaluated at broad scales in forest tree species, despite the long tradition of studying climate-driven intraspecific genetic variation. In this study, we evaluated the role of climate in driving patterns of population differentiation at early-life stages in Pinus sylvestris and explored the fitness and growth consequences of seed transfer within the species range. We monitored seedling emergence, survival and growth over a 2-yr period in a multi-site common garden experiment which included 18 European populations and spanned 25° in latitude and 1700 m in elevation. Climate-fitness functions showed that populations exhibited higher seedling survival and growth at temperatures similar to their home environment, which is consistent with local adaptation. Northern populations experienced lower survival and growth at warmer sites, contrary to previous studies on later life stages. Seed mass was higher in populations from warmer areas and was positively associated with survival and growth at more southern sites. Finally, we did not detect a survival-growth trade-off; on the contrary, bigger seedlings exhibited higher survival probabilities under most climatic conditions. In conclusion, our results reveal that contrasting temperature regimes have played an important role in driving the divergent evolution of P. sylvestris populations at early-life stages.
Collapse
Affiliation(s)
- José Alberto Ramírez-Valiente
- Department of Forest Ecology & Genetics, Forest Research Centre (INIA, CSIC), Ctra. de la Coruña km 7.5, Madrid, 28040, Spain
- Ecological and Forestry Applications Research Centre, CREAF, Campus de Bellaterra (UAB) Edifici C 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Aida Solé-Medina
- Department of Forest Ecology & Genetics, Forest Research Centre (INIA, CSIC), Ctra. de la Coruña km 7.5, Madrid, 28040, Spain
- Escuela Internacional de Doctorado, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933, Spain
| | - Tanja Pyhäjärvi
- Department of Ecology and Genetics, University of Oulu, Oulu, FI-90014, Finland
- Department of Forest Sciences, University of Helsinki, Helsinki, FI-00014, Finland
| | - Outi Savolainen
- Conservation Biology, Philipps Universität Marburg, Karl-von-Frisch Strasse 8, Marburg, 35043, Germany
| | - Katrin Heer
- Plant Ecology and Geobotany, Philipps Universität Marburg, Karl-von-Frisch Strasse 8, Marburg, 35043, Germany
| | - Lars Opgenoorth
- Plant Ecology and Geobotany, Philipps Universität Marburg, Karl-von-Frisch Strasse 8, Marburg, 35043, Germany
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Darius Danusevicius
- Faculty of Forest Science and Evology, Vytautas Magnus University, Studentu str. 11, Akademija, Kaunas, LT-53361, Lithuania
| | - Juan José Robledo-Arnuncio
- Department of Forest Ecology & Genetics, Forest Research Centre (INIA, CSIC), Ctra. de la Coruña km 7.5, Madrid, 28040, Spain
| |
Collapse
|
27
|
Palmquist EC, Allan GJ, Ogle K, Whitham TG, Butterfield BJ, Shafroth PB. Riverine complexity and life history inform restoration in riparian environments in the southwestern United States. Restor Ecol 2021. [DOI: 10.1111/rec.13418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Emily C. Palmquist
- Grand Canyon Monitoring and Research Center U.S. Geological Survey, Southwest Biological Science Center 2255 North Gemini Drive Flagstaff AZ 86001 U.S.A
- Department of Biological Sciences Northern Arizona University Flagstaff AZ 86011 U.S.A
| | - Gerard J. Allan
- Department of Biological Sciences Northern Arizona University Flagstaff AZ 86011 U.S.A
- Center for Adaptable Western Landscapes Northern Arizona University Box 5640 Flagstaff AZ 86011 U.S.A
| | - Kiona Ogle
- School of Informatics, Computing and Cyber Systems Northern Arizona University Box 5693 Flagstaff AZ 86011 U.S.A
| | - Thomas G. Whitham
- Department of Biological Sciences Northern Arizona University Flagstaff AZ 86011 U.S.A
- Center for Adaptable Western Landscapes Northern Arizona University Box 5640 Flagstaff AZ 86011 U.S.A
| | - Bradley J. Butterfield
- Center for Ecosystem Science and Society Northern Arizona University Box 5640 Flagstaff AZ 86011 U.S.A
| | - Patrick B. Shafroth
- Fort Collins Science Center U.S. Geological Survey 2150 Centre Avenue, Building C Fort Collins CO 80526 U.S.A
| |
Collapse
|
28
|
Postolache D, Oddou-Muratorio S, Vajana E, Bagnoli F, Guichoux E, Hampe A, Le Provost G, Lesur I, Popescu F, Scotti I, Piotti A, Vendramin GG. Genetic signatures of divergent selection in European beech (Fagus sylvatica L.) are associated with the variation in temperature and precipitation across its distribution range. Mol Ecol 2021; 30:5029-5047. [PMID: 34383353 DOI: 10.1111/mec.16115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
High genetic variation and extensive gene flow may help forest trees with adapting to ongoing climate change, yet the genetic bases underlying their adaptive potential remain largely unknown. We investigated range-wide patterns of potentially adaptive genetic variation in 64 populations of European beech (Fagus sylvatica L.) using 270 SNPs from 139 candidate genes involved either in phenology or in stress responses. We inferred neutral genetic structure and processes (drift and gene flow) and performed differentiation outlier analyses and gene-environment association (GEA) analyses to detect signatures of divergent selection. Beech range-wide genetic structure was consistent with the species' previously identified postglacial expansion scenario and recolonization routes. Populations showed high diversity and low differentiation along the major expansion routes. A total of 52 loci were found to be putatively under selection and 15 of them turned up in multiple GEA analyses. Temperature and precipitation related variables were equally represented in significant genotype-climate associations. Signatures of divergent selection were detected in the same proportion for stress response and phenology-related genes. The range-wide adaptive genetic structure of beech appears highly integrated, suggesting a balanced contribution of phenology and stress-related genes to local adaptation, and of temperature and precipitation regimes to genetic clines. Our results imply a best-case scenario for the maintenance of high genetic diversity during range shifts in beech (and putatively other forest trees) with a combination of gene flow maintaining within-population neutral diversity and selection maintaining between-population adaptive differentiation.
Collapse
Affiliation(s)
- D Postolache
- National Institute for Research and Development in Forestry "Marin Drăcea", Romania
| | - S Oddou-Muratorio
- INRAE, URFM, Avignon, France.,ECOBIOP Université de Pau et des Pays de l'Adour, INRAE, ECOBIOP, E2S UPPA, Saint-Pée-sur-Nivelle, France
| | - E Vajana
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - F Bagnoli
- Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino (Firenze), Italy
| | - E Guichoux
- Université de Bordeaux, INRAE, BIOGECO, Cestas, France
| | - A Hampe
- Université de Bordeaux, INRAE, BIOGECO, Cestas, France
| | - G Le Provost
- Université de Bordeaux, INRAE, BIOGECO, Cestas, France
| | - I Lesur
- Université de Bordeaux, INRAE, BIOGECO, Cestas, France.,HelixVenture, Mérignac, France
| | - F Popescu
- National Institute for Research and Development in Forestry "Marin Drăcea", Romania
| | | | - A Piotti
- Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino (Firenze), Italy
| | - G G Vendramin
- Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
29
|
Stuble KL, Des Roches S, Ambrose A, Brown KC, Cooper H, Hilton T, Sinervo B, Fox LR. Regional Networks of Biological Field Stations to Study Climate Change. Bioscience 2021. [DOI: 10.1093/biosci/biab048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Field stations are platforms for documenting patterns and processes in ecosystems and are critical for understanding how anthropogenic climate change reshapes nature. Although networks of field stations have been used to identify patterns at continental to global scales, these broad, sparsely distributed networks miss variation in climate change at local and regional scales. We propose that regional-scale research networks are essential for addressing the myriad of ecological and evolutionary challenges—including management and mitigation options—that cannot be answered by more broadly distributed networks or by individual field sites. We discuss our experiences leveraging natural areas throughout California at the Institute for the Study of Ecological and Evolutionary Climate Impacts. We then explore benefits and challenges of networking research at spatial scales congruent with regional patterns of climate variation and climate change, the challenges of sustained infrastructure and research support, and opportunities for future regional-scale research networks.
Collapse
Affiliation(s)
| | | | - Anthony Ambrose
- Forest ecologist, University of California, Berkeley, Berkeley, California, and serves as executive director of the Marmot Society, in McKinleyville, California, United States
| | - Kevin C Brown
- University of California, Santa Barbara, Santa Barbara, California, United States
| | - Helen Cooper
- Monterey Bay Aquarium, Monterey, California, United States
| | - Timothy Hilton
- University of California, Santa Cruz, Santa Cruz, California, United States
| | - Barry Sinervo
- University of California, Santa Cruz, Santa Cruz, California, United States
| | | |
Collapse
|
30
|
Jeplawy JR, Cooper HF, Marks J, Lindroth RL, Andrews MI, Compson ZG, Gehring C, Hultine KR, Grady K, Whitham TG, Allan GJ, Best RJ. Plastic responses to hot temperatures homogenize riparian leaf litter, speed decomposition, and reduce detritivores. Ecology 2021; 102:e03461. [PMID: 34236702 DOI: 10.1002/ecy.3461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/12/2021] [Accepted: 05/13/2021] [Indexed: 01/10/2023]
Abstract
Efforts to maintain the function of critical ecosystems under climate change often begin with foundation species. In the southwestern United States, cottonwood trees support diverse communities in riparian ecosystems that are threatened by rising temperatures. Genetic variation within cottonwoods shapes communities and ecosystems, but these effects may be modified by phenotypic plasticity, where genotype traits change in response to environmental conditions. Here, we investigated plasticity in Fremont cottonwood (Populus fremontii) leaf litter traits as well as the consequences of plasticity for riparian ecosystems. We used three common gardens each planted with genotypes from six genetically divergent populations spanning a 12°C temperature gradient, and a decomposition experiment in a common stream environment. We found that leaf litter area, specific leaf area, and carbon to nitrogen ratio (C:N) were determined by interactions between genetics and growing environment, as was the subsequent rate of litter decomposition. Most of the genetic variation in leaf litter traits appeared among rather than within source populations with distinct climate histories. Source populations from hotter climates generally produced litter that decomposed more quickly, but plasticity varied the magnitude of this effect. We also found that hotter growing conditions reduced the variation in litter traits produced across genotypes, homogenizing the litter inputs to riparian ecosystems. All genotypes in the hottest garden produced comparatively small leaves that decomposed quickly and supported lower abundances of aquatic invertebrates, whereas the same genotypes in the coldest garden produced litter with distinct morphologies and decomposition rates. Our results suggest that plastic responses to climate stress may constrict the expression of genetic variation in predictable ways that impact communities and ecosystems. Understanding these interactions between genetic and environmental variation is critical to our ability to plan for the role of foundation species when managing and restoring riparian ecosystems in a warming world.
Collapse
Affiliation(s)
- Joann R Jeplawy
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, 86011, USA.,Tetra Tech, Inc., Denver, Colorado, 80202, USA
| | - Hillary F Cooper
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, 86011, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Jane Marks
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA.,Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Morgan I Andrews
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Zacchaeus G Compson
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas, 76203, USA
| | - Catherine Gehring
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, Arizona, 85008, USA
| | - Kevin Grady
- Department of Forestry, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Thomas G Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Gerard J Allan
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Rebecca J Best
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| |
Collapse
|
31
|
Zettlemoyer MA, Peterson ML. Does Phenological Plasticity Help or Hinder Range Shifts Under Climate Change? Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.689192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Climate warming is predicted to shift species’ ranges as previously uninhabitable environments just beyond the leading range edges become suitable habitat and trailing range edges become increasingly unsuitable. Understanding which aspects of the environment and species traits mediate these range shifts is critical for understanding species’ possible redistributions under global change, yet we have a limited understanding of the ecological and evolutionary responses underlying population spread or extinction at species’ range edges. Within plant populations, shifts in flowering phenology have been one of the strongest and most consistent responses to climate change, and are likely to play an important role in mediating population dynamics within and beyond species’ ranges. However, the role of phenological shifts, and particularly phenological plasticity, in species’ range shifts remains relatively unstudied. Here, we synthesize literature on phenology, plasticity, and adaptation to suggest ways in which phenological responses to climate may vary across species’ ranges and review the empirical evidence for and against these hypotheses. We then outline how phenological plasticity could facilitate or hinder persistence and potential consequences of phenological plasticity in range expansions, including phenological cues, shifts in correlated traits, altered species interactions, and effects on gene flow. Finally, we suggest future avenues for research, such as characterizing reaction norms for phenology across a species’ range and in beyond-the-range transplant experiments. Given the prevalence and magnitude of phenological shifts, future work should carefully dissect its costs and benefits for population persistence, and incorporate phenological plasticity into models predicting species’ persistence and geographic range shifts under climate change.
Collapse
|
32
|
Barbour MA, Gibert JP. Genetic and plastic rewiring of food webs under climate change. J Anim Ecol 2021; 90:1814-1830. [PMID: 34028791 PMCID: PMC8453762 DOI: 10.1111/1365-2656.13541] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022]
Abstract
Climate change is altering ecological and evolutionary processes across biological scales. These simultaneous effects of climate change pose a major challenge for predicting the future state of populations, communities and ecosystems. This challenge is further exacerbated by the current lack of integration of research focused on these different scales. We propose that integrating the fields of quantitative genetics and food web ecology will reveal new insights on how climate change may reorganize biodiversity across levels of organization. This is because quantitative genetics links the genotypes of individuals to population‐level phenotypic variation due to genetic (G), environmental (E) and gene‐by‐environment (G × E) factors. Food web ecology, on the other hand, links population‐level phenotypes to the structure and dynamics of communities and ecosystems. We synthesize data and theory across these fields and find evidence that genetic (G) and plastic (E and G × E) phenotypic variation within populations will change in magnitude under new climates in predictable ways. We then show how changes in these sources of phenotypic variation can rewire food webs by altering the number and strength of species interactions, with consequences for ecosystem resilience. We also find evidence suggesting there are predictable asymmetries in genetic and plastic trait variation across trophic levels, which set the pace for phenotypic change and food web responses to climate change. Advances in genomics now make it possible to partition G, E and G × E phenotypic variation in natural populations, allowing tests of the hypotheses we propose. By synthesizing advances in quantitative genetics and food web ecology, we provide testable predictions for how the structure and dynamics of biodiversity will respond to climate change.
Collapse
Affiliation(s)
- Matthew A Barbour
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jean P Gibert
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
33
|
Salmela MJ. Patterns of genetic diversity vary among shoot and root functional traits in Norway spruce
Picea abies
along a latitudinal gradient. OIKOS 2021. [DOI: 10.1111/oik.08203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Bucharova A, Lampei C, Conrady M, May E, Matheja J, Meyer M, Ott D. Plant provenance affects pollinator network: Implications for ecological restoration. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Anna Bucharova
- Institute of Landscape Ecology University of Münster Münster Germany
| | - Christian Lampei
- Institute of Landscape Ecology University of Münster Münster Germany
| | - Malte Conrady
- Institute of Landscape Ecology University of Münster Münster Germany
| | - Emilia May
- Institute of Landscape Ecology University of Münster Münster Germany
| | - Janis Matheja
- Institute of Landscape Ecology University of Münster Münster Germany
| | - Michael Meyer
- Institute of Landscape Ecology University of Münster Münster Germany
- Centre for Biodiversity Monitoring Zoological Research Museum Alexander Koenig Bonn Germany
| | - David Ott
- Institute of Landscape Ecology University of Münster Münster Germany
- Centre for Biodiversity Monitoring Zoological Research Museum Alexander Koenig Bonn Germany
| |
Collapse
|
35
|
Bothwell HM, Evans LM, Hersch-Green EI, Woolbright SA, Allan GJ, Whitham TG. Genetic data improves niche model discrimination and alters the direction and magnitude of climate change forecasts. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02254. [PMID: 33159398 DOI: 10.1002/eap.2254] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/17/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Ecological niche models (ENMs) have classically operated under the simplifying assumptions that there are no barriers to gene flow, species are genetically homogeneous (i.e., no population-specific local adaptation), and all individuals share the same niche. Yet, these assumptions are violated for most broadly distributed species. Here, we incorporate genetic data from the widespread riparian tree species narrowleaf cottonwood (Populus angustifolia) to examine whether including intraspecific genetic variation can alter model performance and predictions of climate change impacts. We found that (1) P. angustifolia is differentiated into six genetic groups across its range from México to Canada and (2) different populations occupy distinct climate niches representing unique ecotypes. Comparing model discriminatory power, (3) all genetically informed ecological niche models (gENMs) outperformed the standard species-level ENM (3-14% increase in AUC; 1-23% increase in pROC). Furthermore, (4) gENMs predicted large differences among ecotypes in both the direction and magnitude of responses to climate change and (5) revealed evidence of niche divergence, particularly for the Eastern Rocky Mountain ecotype. (6) Models also predicted progressively increasing fragmentation and decreasing overlap between ecotypes. Contact zones are often hotspots of diversity that are critical for supporting species' capacity to respond to present and future climate change, thus predicted reductions in connectivity among ecotypes is of conservation concern. We further examined the generality of our findings by comparing our model developed for a higher elevation Rocky Mountain species with a related desert riparian cottonwood, P. fremontii. Together our results suggest that incorporating intraspecific genetic information can improve model performance by addressing this important source of variance. gENMs bring an evolutionary perspective to niche modeling and provide a truly "adaptive management" approach to support conservation genetic management of species facing global change.
Collapse
Affiliation(s)
- Helen M Bothwell
- Environmental Genetics & Genomics Facility, Department of Biological Sciences, Northern Arizona University, 617 South Beaver Street, PO Box 5640, Flagstaff, Arizona, 86011, USA
| | - Luke M Evans
- Environmental Genetics & Genomics Facility, Department of Biological Sciences, Northern Arizona University, 617 South Beaver Street, PO Box 5640, Flagstaff, Arizona, 86011, USA
| | - Erika I Hersch-Green
- Environmental Genetics & Genomics Facility, Department of Biological Sciences, Northern Arizona University, 617 South Beaver Street, PO Box 5640, Flagstaff, Arizona, 86011, USA
| | - Scott A Woolbright
- Environmental Genetics & Genomics Facility, Department of Biological Sciences, Northern Arizona University, 617 South Beaver Street, PO Box 5640, Flagstaff, Arizona, 86011, USA
| | - Gerard J Allan
- Environmental Genetics & Genomics Facility, Department of Biological Sciences, Northern Arizona University, 617 South Beaver Street, PO Box 5640, Flagstaff, Arizona, 86011, USA
- Merriam-Powell Center for Environmental Research, Northern Arizona University, 800 South Beaver Street, PO Box 6077, Flagstaff, Arizona, 86011, USA
| | - Thomas G Whitham
- Environmental Genetics & Genomics Facility, Department of Biological Sciences, Northern Arizona University, 617 South Beaver Street, PO Box 5640, Flagstaff, Arizona, 86011, USA
- Merriam-Powell Center for Environmental Research, Northern Arizona University, 800 South Beaver Street, PO Box 6077, Flagstaff, Arizona, 86011, USA
| |
Collapse
|
36
|
Ibañez VN, Masuelli RW, Marfil CF. Environmentally induced phenotypic plasticity and DNA methylation changes in a wild potato growing in two contrasting Andean experimental gardens. Heredity (Edinb) 2021; 126:50-62. [PMID: 32801346 PMCID: PMC7853039 DOI: 10.1038/s41437-020-00355-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 11/08/2022] Open
Abstract
DNA methylation can be environmentally modulated and plays a role in phenotypic plasticity. To understand the role of environmentally induced epigenetic variation and its dynamics in natural populations and ecosystems, it is relevant to place studies in a real-world context. Our experimental model is the wild potato Solanum kurtzianum, a close relative of the cultivated potato S. tuberosum. It was evaluated in its natural habitat, an arid Andean region in Argentina characterised by spatial and temporal environmental fluctuations. The dynamics of phenotypic and epigenetic variability (with Methyl Sensitive Amplified Polymorphism markers, MSAP) were assayed in three genotypes across three growing seasons. These genotypes were cultivated permanently and also reciprocally transplanted between experimental gardens (EG) differing in ca. 1000 m of altitude. In two seasons, the genotypes presented differential methylation patterns associated to the EG. In the reciprocal transplants, a rapid epigenomic remodelling occurred according to the growing season. Phenotypic plasticity, both spatial (between EGs within season) and temporal (between seasons), was detected. The epigenetic and phenotypic variability was positively correlated. The lack of an evident mitotic epigenetic memory would be a common response to short-term environmental fluctuations. Thus, the environmentally induced phenotypic and epigenetic variation could contribute to populations persistence through time. These results have implications for understanding the great ecological diversity of wild potatoes.
Collapse
Affiliation(s)
- Verónica Noé Ibañez
- IBAM (Instituto de Biología Agrícola de Mendoza), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Ricardo Williams Masuelli
- IBAM (Instituto de Biología Agrícola de Mendoza), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Carlos Federico Marfil
- IBAM (Instituto de Biología Agrícola de Mendoza), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
| |
Collapse
|
37
|
Akman M, Carlson JE, Latimer AM. Climate explains population divergence in drought-induced plasticity of functional traits and gene expression in a South African Protea. Mol Ecol 2020; 30:255-273. [PMID: 33098695 DOI: 10.1111/mec.15705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022]
Abstract
Long-term environmental variation often drives local adaptation and leads to trait differentiation across populations. Additionally, when traits change in an environment-dependent way through phenotypic plasticity, the genetic variation underlying plasticity will also be under selection. These processes could create a landscape of differentiation across populations in traits and their plasticity. Here, we performed a dry-down experiment under controlled conditions to measure responses in seedlings of a shrub species from the Cape Floristic Region, the common sugarbush (Protea repens). We measured morphological and physiological traits, and sequenced whole transcriptomes of leaf tissues from eight populations that represent both the climatic and the geographical distribution of this species. We found that there is substantial variation in how populations respond to drought, but we also observed common patterns such as reduced leaf size and leaf thickness, and up-regulation of stress-related and down-regulation of growth-related gene groups. Both high environmental heterogeneity and milder source site climates were associated with higher plasticity in various traits and co-expression gene networks. Associations between traits, trait plasticity, gene networks and the source site climate suggest that temperature may play a greater role in shaping these patterns when compared to precipitation, in line with recent changes in the region due to climate change. We also found that traits respond to climatic variation in an environment-dependent manner: some associations between traits and climate were apparent only under certain growing conditions. Together, our results uncover common responses of P. repens populations to drought, and climatic drivers of population differentiation in functional traits, gene expression and their plasticity.
Collapse
Affiliation(s)
- Melis Akman
- Department of Plant Sciences, UC Davis, Davis, CA, USA.,Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
| | - Jane E Carlson
- Department of Biology, Nicholls State University, Thibodaux, LA, USA.,Gulf Coast Network Inventory and Monitoring Program, National Park Services, Washington, DC, USA
| | | |
Collapse
|
38
|
Whitham TG, Allan GJ, Cooper HF, Shuster SM. Intraspecific Genetic Variation and Species Interactions Contribute to Community Evolution. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-123655] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evolution has been viewed as occurring primarily through selection among individuals. We present a framework based on multilevel selection for evaluating evolutionary change from individuals to communities, with supporting empirical evidence. Essential to this evaluation is the role that interspecific indirect genetic effects play in shaping community organization, in generating variation among community phenotypes, and in creating community heritability. If communities vary in phenotype, and those phenotypes are heritable and subject to selection at multiple levels, then a community view of evolution must be merged with mainstream evolutionary theory. Rapid environmental change during the Anthropocene will require a better understanding of these evolutionary processes, especially selection acting at the community level, which has the potential to eliminate whole communities while favoring others.
Collapse
Affiliation(s)
- Thomas G. Whitham
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | - Gerard J. Allan
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | - Hillary F. Cooper
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | - Stephen M. Shuster
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| |
Collapse
|
39
|
Hultine KR, Allan GJ, Blasini D, Bothwell HM, Cadmus A, Cooper HF, Doughty CE, Gehring CA, Gitlin AR, Grady KC, Hull JB, Keith AR, Koepke DF, Markovchick L, Corbin Parker JM, Sankey TT, Whitham TG. Adaptive capacity in the foundation tree species Populus fremontii: implications for resilience to climate change and non-native species invasion in the American Southwest. CONSERVATION PHYSIOLOGY 2020; 8:coaa061. [PMID: 32685164 PMCID: PMC7359000 DOI: 10.1093/conphys/coaa061] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/28/2020] [Accepted: 06/14/2020] [Indexed: 05/29/2023]
Abstract
Populus fremontii (Fremont cottonwood) is recognized as one of the most important foundation tree species in the southwestern USA and northern Mexico because of its ability to structure communities across multiple trophic levels, drive ecosystem processes and influence biodiversity via genetic-based functional trait variation. However, the areal extent of P. fremontii cover has declined dramatically over the last century due to the effects of surface water diversions, non-native species invasions and more recently climate change. Consequently, P. fremontii gallery forests are considered amongst the most threatened forest types in North America. In this paper, we unify four conceptual areas of genes to ecosystems research related to P. fremontii's capacity to survive or even thrive under current and future environmental conditions: (i) hydraulic function related to canopy thermal regulation during heat waves; (ii) mycorrhizal mutualists in relation to resiliency to climate change and invasion by the non-native tree/shrub, Tamarix; (iii) phenotypic plasticity as a mechanism for coping with rapid changes in climate; and (iv) hybridization between P. fremontii and other closely related Populus species where enhanced vigour of hybrids may preserve the foundational capacity of Populus in the face of environmental change. We also discuss opportunities to scale these conceptual areas from genes to the ecosystem level via remote sensing. We anticipate that the exploration of these conceptual areas of research will facilitate solutions to climate change with a foundation species that is recognized as being critically important for biodiversity conservation and could serve as a model for adaptive management of arid regions in the southwestern USA and around the world.
Collapse
Affiliation(s)
- Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, 1201 North Galvin Parkway, Phoenix, AZ 85008, USA
| | - Gerard J Allan
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 South Beaver Drive, Flagstaff, AZ 86011, USA
| | - Davis Blasini
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85281, USA
| | - Helen M Bothwell
- Research School of Biology, Australian National University, 134 Linnaeus Way, Canberra ACT2601, Australia
| | - Abraham Cadmus
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 South Beaver Drive, Flagstaff, AZ 86011, USA
| | - Hillary F Cooper
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 South Beaver Drive, Flagstaff, AZ 86011, USA
| | - Chris E Doughty
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, 1295 South Knoles Drive, Flagstaff, AZ 86011, USA
| | - Catherine A Gehring
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 South Beaver Drive, Flagstaff, AZ 86011, USA
| | - Alicyn R Gitlin
- Sierra Club – Grand Canyon Chapter, 514 West Roosevelt Street, Phoenix, AZ 85003, USA
| | - Kevin C Grady
- School of Forestry, Northern Arizona University, East Pine Knoll Drive, Flagstaff, AZ 86011, USA
| | - Julia B Hull
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 South Beaver Drive, Flagstaff, AZ 86011, USA
| | - Arthur R Keith
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 South Beaver Drive, Flagstaff, AZ 86011, USA
| | - Dan F Koepke
- Department of Research, Conservation and Collections, Desert Botanical Garden, 1201 North Galvin Parkway, Phoenix, AZ 85008, USA
| | - Lisa Markovchick
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 South Beaver Drive, Flagstaff, AZ 86011, USA
| | - Jackie M Corbin Parker
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 South Beaver Drive, Flagstaff, AZ 86011, USA
| | - Temuulen T Sankey
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, 1295 South Knoles Drive, Flagstaff, AZ 86011, USA
| | - Thomas G Whitham
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, 617 South Beaver Drive, Flagstaff, AZ 86011, USA
| |
Collapse
|
40
|
Kelly M. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180176. [PMID: 30966963 DOI: 10.1098/rstb.2018.0176] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Theory suggests that evolutionary changes in phenotypic plasticity could either hinder or facilitate evolutionary rescue in a changing climate. Nevertheless, the actual role of evolving plasticity in the responses of natural populations to climate change remains unresolved. Direct observations of evolutionary change in nature are rare, making it difficult to assess the relative contributions of changes in trait means versus changes in plasticity to climate change responses. To address this gap, this review explores several proxies that can be used to understand evolving plasticity in the context of climate change, including space for time substitutions, experimental evolution and tests for genomic divergence at environmentally responsive loci. Comparisons among populations indicate a prominent role for divergence in environmentally responsive traits in local adaptation to climatic gradients. Moreover, genomic comparisons among such populations have identified pervasive divergence in the regulatory regions of environmentally responsive loci. Taken together, these lines of evidence suggest that divergence in plasticity plays a prominent role in adaptation to climatic gradients over space, indicating that evolving plasticity is also likely to play a key role in adaptive responses to climate change through time. This suggests that genetic variation in plastic responses to the environment (G × E) might be an important predictor of species' vulnerabilities to climate-driven decline or extinction. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Morgan Kelly
- Biological Sciences, Louisiana State University , Baton Rouge, LA 70808 , USA
| |
Collapse
|
41
|
Abstract
Climate change leads to global drought-induced stress and increased plant mortality. Tree species living in rapidly changing climate conditions are exposed to danger and must adapt to new climate conditions to survive. Trees respond to changes in the environment in numerous ways. Physiological modulation at the seed stage, germination strategy and further development are influenced by many different factors. We review forest abiotic threats (such as drought and heat), including biochemical responses of plants to stress, and biotic threats (pathogens and insects) related to global warming. We then discus the varied adaptations of tree species to changing climate conditions such as seed resistance to environmental stress, improved by an increase in temperature, affinity to specific fungal symbionts, a wide range of tolerance to abiotic environmental conditions in the offspring of populations occurring in continental climate, and germination strategies closely linked to the ecological niche of the species. The existing studies do not clearly indicate whether tree adaptations are shaped by epigenetics or phenology and do not define the role of phenotypic plasticity in tree development. We have created a juxtaposition of literature that is useful in identifying the factors that play key roles in these processes. We compare scientific evidence that species distribution and survival are possible due to phenotypic plasticity and thermal memory with studies that testify that trees’ phenology depends on phylogenesis, but this issue is still open. It is possible that studies in the near future will bring us closer to understanding the mechanisms through which trees adapt to stressful conditions, especially in the context of epigenetic memory in long-lived organisms, and allow us to minimize the harmful effects of climatic events by predicting tree species’ responses or by developing solutions such as assisted migration to mitigate the consequences of these phenomena.
Collapse
|
42
|
Faticov M, Ekholm A, Roslin T, Tack AJM. Climate and host genotype jointly shape tree phenology, disease levels and insect attacks. OIKOS 2019. [DOI: 10.1111/oik.06707] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Maria Faticov
- Dept of Ecology, Environment and Plant Sciences, Stockholm Univ. Stockholm Sweden
| | - Adam Ekholm
- Dept of Ecology, Swedish Univ. of Agricultural Sciences Uppsala Sweden
| | - Tomas Roslin
- Dept of Ecology, Swedish Univ. of Agricultural Sciences Uppsala Sweden
| | - Ayco J. M. Tack
- Dept of Ecology, Environment and Plant Sciences, Stockholm Univ. Stockholm Sweden
| |
Collapse
|
43
|
Catullo RA, Llewelyn J, Phillips BL, Moritz CC. The Potential for Rapid Evolution under Anthropogenic Climate Change. Curr Biol 2019; 29:R996-R1007. [DOI: 10.1016/j.cub.2019.08.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Brelsford CC, Nybakken L, Kotilainen TK, Robson TM. The influence of spectral composition on spring and autumn phenology in trees. TREE PHYSIOLOGY 2019; 39:925-950. [PMID: 30901060 DOI: 10.1093/treephys/tpz026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 01/25/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
Several recent reviews highlight the molecular mechanisms that underpin phenological responses to temperature and photoperiod; however, these have mostly overlooked the influence of solar radiation and its spectral composition on these processes. For instance, solar radiation in the blue and ultraviolet (UV) regions of the spectrum, as well as the red/far-red (R:FR) ratio, can influence spring and autumn phenology. Solar radiation reaching the Earth changes diurnally and seasonally; however, rising global temperatures, latitudinal range shifts and light pollution are likely to produce novel combinations of phenological cues for tree species. Here, we review the literature on phenological responses to spectral composition. Our objective was to explore the natural variation in spectral composition using radiative transfer models and to reveal any species-specific or ecotype-specific responses relating to latitudinal origin. These responses are likely to be most pronounced at high latitudes where spectral composition varies most throughout the year. For instance, trees from high latitudes tend to be more sensitive to changes in R:FR than those from low latitudes. The effects of blue light and UV radiation on phenology have not been studied as much as those of R:FR, but the limited results available suggest both could be candidate cues affecting autumn leaf colouration and senescence. Failure of more-southern species and ecotypes to adapt and use spectral cues during northwards range shifts could result in mistimed phenology, potentially resulting in frost damage, reduced fitness and limited range expansion. Future areas for research should look to establish how consistently different functional types of tree respond to spectral cues and identify photoreceptor-mediated mechanisms that allow plants to combine information from multiple light cues to coordinate the timing of phenological events. It should then be feasible to consider the synchronous or sequential action of light cues within a hierarchy of environmental factors regulating phenology.
Collapse
Affiliation(s)
- Craig C Brelsford
- Organismal and Evolutionary Biology, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Line Nybakken
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Titta K Kotilainen
- Organismal and Evolutionary Biology, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland, Turku, Finland
| | - T Matthew Robson
- Organismal and Evolutionary Biology, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
45
|
Stone AC, Gehring CA, Cobb NS, Whitham TG. Genetic-Based Susceptibility of a Foundation Tree to Herbivory Interacts With Climate to Influence Arthropod Community Composition, Diversity, and Resilience. FRONTIERS IN PLANT SCIENCE 2018; 9:1831. [PMID: 30619404 PMCID: PMC6298196 DOI: 10.3389/fpls.2018.01831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Understanding how genetic-based traits of plants interact with climate to affect associated communities will help improve predictions of climate change impacts on biodiversity. However, few community-level studies have addressed such interactions. Pinyon pine (Pinus edulis) in the southwestern U.S. shows genetic-based resistance and susceptibility to pinyon needle scale (Matsucoccus acalyptus). We sought to determine if susceptibility to scale herbivory influenced the diversity and composition of the extended community of 250+ arthropod species, and if this influence would be consistent across consecutive years, an extreme drought year followed by a moderate drought year. Because scale insects alter the architecture of susceptible trees, it is difficult to separate the direct influences of susceptibility on arthropod communities from the indirect influences of scale-altered tree architecture. To separate these influences, scales were experimentally excluded from susceptible trees for 15 years creating susceptible trees with the architecture of resistant trees, hereafter referred to as scale-excluded trees. Five patterns emerged. (1) In both years, arthropod abundance was 3-4X lower on susceptible trees compared to resistant and scale-excluded trees. (2) Species accumulation curves show that alpha and gamma diversity were 2-3X lower on susceptible trees compared to resistant and scale-excluded trees. (3) Reaction norms of arthropod richness and abundance on individual tree genotypes across years showed genotypic variation in the community response to changes in climate. (4) The genetic-based influence of susceptibility on arthropod community composition is climate dependent. During extreme drought, community composition on scale-excluded trees resembled susceptible trees indicating composition was strongly influenced by tree genetics independent of tree architecture. However, under moderate drought, community composition on scale-excluded trees resembled resistant trees indicating traits associated with tree architecture became more important. (5) One year after extreme drought, the arthropod community rebounded sharply. However, there was a much greater rebound in richness and abundance on resistant compared to susceptible trees suggesting that reduced resiliency in the arthropod community is associated with susceptibility. These results argue that individual genetic-based plant-herbivore interactions can directly and indirectly impact community-level diversity, which is modulated by climate. Understanding such interactions is important for assessing the impacts of climate change on biodiversity.
Collapse
Affiliation(s)
- Adrian C. Stone
- Department of Biology, Metropolitan State University, Denver, CO, United States
| | - Catherine A. Gehring
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
- Merriam-Powell Center for Environmental Research, Flagstaff, AZ, United States
| | - Neil S. Cobb
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
- Merriam-Powell Center for Environmental Research, Flagstaff, AZ, United States
| | - Thomas G. Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
- Merriam-Powell Center for Environmental Research, Flagstaff, AZ, United States
| |
Collapse
|