1
|
Chang S, Huang F, He HS, Liu K, Krohn J. Impacts of snow cover seasonality on spring land surface phenology of forests in Changbai mountains of Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171965. [PMID: 38547979 DOI: 10.1016/j.scitotenv.2024.171965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Snow cover phenology (SCP) strongly affects forest spring phenology (the start of growing season, SOS), but the underlying mechanism of the relationship varies. In this study, we aimed to analyze the relationship between forest SOS and SCP, and investigate the mechanisms about how changes of SCP affect forest SOS. To do so, we extracted forest SOS and SCP from multiple remote sensing datasets and analyzed the spatio-temporal patterns of both in Changbai Mountains (2001-2020). We assessed the relationships between SCP and forest SOS using partial least squares regression analysis and investigated the potential mechanism of SCP changes affecting on forest SOS using path analysis. We found earlier forest SOS (-0.5 days/year), prolonged snow cover duration (SCD, 0.43 day/year), and earlier snow cover end day (SCED, -0.1 days/year) in the region. The results indicated that SCD showed negative influence while SCED showed positive influence on forest SOS in most of the region. Results revealed that the influence of SCP on forest SOS was mainly through altering spring temperature and the dominant path of SCP influencing forest SOS followed hydrothermal gradients. Our study reveals new insights into the influence of changing SCP on forest SOS, which provides the theoretical basis for including SCP in the phenological models.
Collapse
Affiliation(s)
- Shuai Chang
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| | - Fang Huang
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| | - Hong S He
- School of Natural Resources, University of Missouri, 203 ABNR Bldg, Columbia, MO 65211, USA.
| | - Kai Liu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| | - Justin Krohn
- Center for Applied Research and Engagement Systems, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Skvareninova J, Sitko R, Vido J, Snopková Z, Skvarenina J. Phenological response of European beech ( Fagus sylvatica L.) to climate change in the Western Carpathian climatic-geographical zones. FRONTIERS IN PLANT SCIENCE 2024; 15:1242695. [PMID: 38633456 PMCID: PMC11022973 DOI: 10.3389/fpls.2024.1242695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/20/2024] [Indexed: 04/19/2024]
Abstract
Introduction The paper analyzes the results of 26 years (1996-2021) of phenological observations of the vegetative organs of European beech (Fagus sylvatica L.) in the Western Carpathians. It evaluates the influence of the heterogeneity of this territory, including relief and elevation, based on climatic-geographical types. Methods Phenological stages, including leaf unfolding, full leaves, leaf coloring, and leaf fall, were monitored at 40 phenological stations across eight elevation zones. The study assesses trends in the occurrence of phenological stages, the length of the growing season, and phenological elevation gradients. Results The results indicate a statistically significant earlier onset of spring phenological phases and delay in autumn phases, resulting in an average extension of the beech growing season by 12 days. Our findings confirm that the lengthening of the growing season due to warming, as an expression of climate change, is predominantly attributed to the warming in the spring months. The detected delayed onset of autumn phenophases was not due to warming in the autumn months, but other environmental factors influence it. The trend of elongation of the growing season (p<0.01) is observed in all elevation zones, with a less significant trend observed only in zones around 400 and 600 m a.s.l, signaling changes in environmental conditions across most of the elevation spectrum. Moreover, the heterogeneity of climatic-geographical types within each elevation zone increases the variability in the duration of the growing season for sites with similar elevations. By extending the growing season, it is assumed that the beech area will be changed to locations with optimal environmental conditions, especially in terms of adverse climatic events (late spring frosts, drought) during the growing season. The phenological elevation gradients reveal an earlier onset of 2.2 days per 100 m for spring phenophases and a delay of 1.1-2.9 days per 100 m for autumn phenophases. Discussion These findings highlight the specific environmental conditions of European beech in the Western Carpathians and their potential for anticipating changes in its original area. Additionally, these observations can aid in forecasting the further development of phenological manifestations related to climate change.
Collapse
Affiliation(s)
- Jana Skvareninova
- Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Zvolen, Slovakia
| | - Roman Sitko
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Jaroslav Vido
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Zora Snopková
- Slovak Hydrometeorological Institut, Banská Bystrica, Slovakia
| | | |
Collapse
|
3
|
Li T, Fu B, Lü Y, Du C, Zhao Z, Wang F, Gao G, Wu X. Soil freeze-thaw cycles affect spring phenology by changing phenological sensitivity in the Northern Hemisphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169963. [PMID: 38215850 DOI: 10.1016/j.scitotenv.2024.169963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
The use of frozen soil-vegetation feedback for predictive models is undergoing enormous changes under rapid climate warming. However, the influence of soil freeze-thaw (SFT) cycles on vegetation phenology and the underlying mechanisms remain poorly understood. By synthesizing a variety of satellite-derived data from 2002 to 2021 in the Northern Hemisphere (NH), we demonstrated a widespread positive correlation between soil thawing and the start of the growing season (SOS). Our results also showed that the SFT cycles had a significant impact on vegetation phenology mainly by altering the phenological sensitivities to daytime and nighttime temperatures, solar radiation and precipitation. Moreover, the effects of SFT cycles on the sensitivity of the SOS were more pronounced than those on the sensitivity of the end of the growing season (EOS) and the length of growing season (LOS). Furthermore, due to the degradation of frozen soil, the changes in phenological sensitivity in the grassland and tundra biomes were significantly larger than those in the forest. These findings highlighted the importance of incorporating the SFT as an intermediate process into process-based phenological models.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Bojie Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yihe Lü
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Chenjun Du
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhengyuan Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Fangfang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guangyao Gao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xing Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Vitasse Y, Pohl N, Walde MG, Nadel H, Gossner MM, Baumgarten F. Feasting on the ordinary or starving for the exceptional in a warming climate: Phenological synchrony between spongy moth ( Lymantria dispar) and budburst of six European tree species. Ecol Evol 2024; 14:e10928. [PMID: 38371870 PMCID: PMC10869895 DOI: 10.1002/ece3.10928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/02/2023] [Accepted: 12/05/2023] [Indexed: 02/20/2024] Open
Abstract
Global warming is affecting the phenological cycles of plants and animals, altering the complex synchronization that has co-evolved over thousands of years between interacting species and trophic levels. Here, we examined how warmer winter conditions affect the timing of budburst in six common European trees and the hatching of a generalist leaf-feeding insect, the spongy moth Lymantria dispar, whose fitness depends on the synchrony between egg hatch and leaf emergence of the host tree. We applied four different temperature treatments to L. dispar eggs and twig cuttings, that mimicked warmer winters and reduced chilling temperatures that are necessary for insect diapause and bud dormancy release, using heated open-top chambers (ambient or +3.5°C), and heated greenhouses (maintained at >6°C or >10°C). In addition, we conducted preference and performance tests to determine which tree species the larvae prefer and benefit from the most. Budburst success and twig survival were highest for all tree species at ambient temperature conditions, whereas it declined under elevated winter temperature for Tilia cordata and Acer pseudoplatanus, likely due to a lack of chilling. While L. dispar egg hatch coincided with budburst in most tree species within 10 days under ambient conditions, it coincided with budburst only in Quercus robur, Carpinus betulus, and, to a lesser extent, Ulmus glabra under warmer conditions. With further warming, we, therefore, expect an increasing mismatch in trees with high chilling requirements, such as Fagus sylvatica and A. pseudoplatanus, but still good synchronization with trees having low chilling requirements, such as Q. robur and C. betulus. Surprisingly, first instar larvae preferred and gained weight faster when fed with leaves of F. sylvatica, while Q. robur ranked second. Our results suggest that spongy moth outbreaks are likely to persist in oak and hornbeam forests in western and central Europe.
Collapse
Affiliation(s)
- Yann Vitasse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Nora Pohl
- Southern Swedish Forest Research CentreSwedish University of Agricultural SciencesLommaSweden
| | - Manuel G. Walde
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Hannah Nadel
- United States Department of AgricultureAnimal and Plant Health Inspection Service, Forest Pest Methods LaboratoryBuzzards BayMassachusettsUSA
| | - Martin M. Gossner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Department of Environmental Systems ScienceInstitute of Terrestrial Ecosystems, ETH ZürichZürichSwitzerland
| | - Frederik Baumgarten
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| |
Collapse
|
5
|
Mo Y, Li X, Guo Y, Fu Y. Warming increases the differences among spring phenology models under future climate change. FRONTIERS IN PLANT SCIENCE 2023; 14:1266801. [PMID: 37936933 PMCID: PMC10626552 DOI: 10.3389/fpls.2023.1266801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
Phenological models are built upon an understanding of the influence of environmental factors on plant phenology, and serve as effective tools for predicting plant phenological changes. However, the differences in phenological model predictive performance under different climate change scenarios have been rarely studied. In this study, we parameterized thirteen spring phenology models, including six one-phase models and seven two-phase models, by combining phenological observations and meteorological data. Using climatic data from two Shared Socioeconomic Pathways (SSP) scenarios, namely SSP126 (high mitigation and low emission) and SSP585 (no mitigation and high emission), we predicted spring phenology in Germany from 2021 to 2100, and compared the impacts of dormancy phases and driving factors on model predictive performance. The results showed that the average correlation coefficient between the predicted start of growing season (SOS) by the 13 models and the observed values exceeded 0.72, with the highest reaching 0.80. All models outperformed the NULL model (Mean of SOS), and the M1 model (driven by photoperiod and forcing temperature) performed the best for all the tree species. In the SSP126 scenario, the average SOS advanced initially and then gradually shifted towards a delay starting around 2070. In the SSP585 scenario, the average SOS advanced gradually at a rate of approximately 0.14 days per year. Moreover, the standard deviation of the simulated SOS by the 13 spring phenology models exhibited a significant increase at a rate of 0.04 days per year. On average, two-phase models exhibited larger standard deviations than one-phase models after approximately 2050. Models driven solely by temperature showed larger standard deviations after 2060 compared to models driven by both temperature and photoperiod. Our findings suggest investigating the release mechanisms of endodormancy phase and incorporating new insights into future phenological models to better simulate the changes in plant phenology.
Collapse
Affiliation(s)
- Yunhua Mo
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Xiran Li
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
| | - Yahui Guo
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
| | - Yongshuo Fu
- College of Water Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
6
|
He L, Wang J, Ciais P, Ballantyne A, Yu K, Zhang W, Xiao J, Ritter F, Liu Z, Wang X, Li X, Peng S, Ma C, Zhou C, Li ZL, Xie Y, Ye JS. Non-symmetric responses of leaf onset date to natural warming and cooling in northern ecosystems. PNAS NEXUS 2023; 2:pgad308. [PMID: 37780232 PMCID: PMC10538477 DOI: 10.1093/pnasnexus/pgad308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
The northern hemisphere has experienced regional cooling, especially during the global warming hiatus (1998-2012) due to ocean energy redistribution. However, the lack of studies about the natural cooling effects hampers our understanding of vegetation responses to climate change. Using 15,125 ground phenological time series at 3,620 sites since the 1950s and 31-year satellite greenness observations (1982-2012) covering the warming hiatus period, we show a stronger response of leaf onset date (LOD) to natural cooling than to warming, i.e. the delay of LOD caused by 1°C cooling is larger than the advance of LOD with 1°C warming. This might be because cooling leads to larger chilling accumulation and heating requirements for leaf onset, but this non-symmetric LOD response is partially offset by warming-related drying. Moreover, spring greening magnitude, in terms of satellite-based greenness and productivity, is more sensitive to LOD changes in the warming area than in the cooling. These results highlight the importance of considering non-symmetric responses of spring greening to warming and cooling when predicting vegetation-climate feedbacks.
Collapse
Affiliation(s)
- Lei He
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Wang
- Department of Geography, The Ohio State University, Columbus, OH 43210, USA
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l′Environnement, CEA/CNRS/UVSQ/Université Paris Saclay, Gif-sur-Yvette 91191, France
| | - Ashley Ballantyne
- Laboratoire des Sciences du Climat et de l′Environnement, CEA/CNRS/UVSQ/Université Paris Saclay, Gif-sur-Yvette 91191, France
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT 59801, USA
| | - Kailiang Yu
- Laboratoire des Sciences du Climat et de l′Environnement, CEA/CNRS/UVSQ/Université Paris Saclay, Gif-sur-Yvette 91191, France
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Wenxin Zhang
- Department of Physical Geography and Ecosystem Science, Lund University, Lund 22362, Sweden
| | - Jingfeng Xiao
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA
| | - François Ritter
- Laboratoire des Sciences du Climat et de l′Environnement, CEA/CNRS/UVSQ/Université Paris Saclay, Gif-sur-Yvette 91191, France
| | - Zhihua Liu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xufeng Wang
- Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaojun Li
- INRAE, UMR1391 ISPA, Université de Bordeaux, Villenave d′Ornon 33140, France
| | - Shouzhang Peng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Changhui Ma
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chenghu Zhou
- Center for Ocean Remote Sensing of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhao-Liang Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaowen Xie
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), Lanzhou University, Lanzhou 730000, China
| | - Jian-Sheng Ye
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Huang JG, Zhang Y, Wang M, Yu X, Deslauriers A, Fonti P, Liang E, Mäkinen H, Oberhuber W, Rathgeber CBK, Tognetti R, Treml V, Yang B, Zhai L, Zhang JL, Antonucci S, Bergeron Y, Camarero JJ, Campelo F, Čufar K, Cuny HE, De Luis M, Fajstavr M, Giovannelli A, Gričar J, Gruber A, Gryc V, Güney A, Jyske T, Kašpar J, King G, Krause C, Lemay A, Liu F, Lombardi F, Del Castillo EM, Morin H, Nabais C, Nöjd P, Peters RL, Prislan P, Saracino A, Shishov VV, Swidrak I, Vavrčík H, Vieira J, Zeng Q, Liu Y, Rossi S. A critical thermal transition driving spring phenology of Northern Hemisphere conifers. GLOBAL CHANGE BIOLOGY 2023; 29:1606-1617. [PMID: 36451586 DOI: 10.1111/gcb.16543] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/25/2022] [Indexed: 05/28/2023]
Abstract
Despite growing interest in predicting plant phenological shifts, advanced spring phenology by global climate change remains debated. Evidence documenting either small or large advancement of spring phenology to rising temperature over the spatio-temporal scales implies a potential existence of a thermal threshold in the responses of forests to global warming. We collected a unique data set of xylem cell-wall-thickening onset dates in 20 coniferous species covering a broad mean annual temperature (MAT) gradient (-3.05 to 22.9°C) across the Northern Hemisphere (latitudes 23°-66° N). Along the MAT gradient, we identified a threshold temperature (using segmented regression) of 4.9 ± 1.1°C, above which the response of xylem phenology to rising temperatures significantly decline. This threshold separates the Northern Hemisphere conifers into cold and warm thermal niches, with MAT and spring forcing being the primary drivers for the onset dates (estimated by linear and Bayesian mixed-effect models), respectively. The identified thermal threshold should be integrated into the Earth-System-Models for a better understanding of spring phenology in response to global warming and an improved prediction of global climate-carbon feedbacks.
Collapse
Affiliation(s)
- Jian-Guo Huang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yaling Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Minhuang Wang
- Department of Ecology, School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Xiaohan Yu
- School of Engineering and Built Environment, Griffith University, Brisbane, Australia
| | - Annie Deslauriers
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Patrick Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Eryuan Liang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Harri Mäkinen
- Department of Forests, Natural Resources Institute Finland, Espoo, Finland
| | - Walter Oberhuber
- Department of Botany, Leopold-Franzens-University of Innsbruck, Innsbruck, Austria
| | | | - Roberto Tognetti
- Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Campobasso, Italy
| | - Václav Treml
- Department of Physical Geography and Geoecology, Charles University, Prague, Czech Republic
| | - Bao Yang
- Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Beijing, China
| | - Lihong Zhai
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Serena Antonucci
- Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Campobasso, Italy
| | - Yves Bergeron
- Forest Research Institute, Université du Quebec en Abitibi-Témiscamingue, Rouyn-Noranda, Quebec, Canada
| | | | - Filipe Campelo
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Katarina Čufar
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Henri E Cuny
- IGN, Direction Interrégionale NordEst, Champigneulles, France
| | - Martin De Luis
- Department of Geography and Regional Planning, Environmental Science Institute, University of Zaragoza, Zaragoza, Spain
| | - Marek Fajstavr
- Department of Wood Science and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Alessio Giovannelli
- CNR - Istituto di Ricerca sugli Ecosistemi Terrestri, IRET, Sesto Fiorentino, Italy
| | | | - Andreas Gruber
- Department of Botany, Leopold-Franzens-University of Innsbruck, Innsbruck, Austria
| | - Vladimír Gryc
- Department of Wood Science and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Aylin Güney
- Institute of Botany, University of Hohenheim, Stuttgart, Germany
- Izmir Katip Çelebi University, Faculty of Forestry, Izmir, Turkey
| | - Tuula Jyske
- Department of Forests, Natural Resources Institute Finland, Espoo, Finland
| | - Jakub Kašpar
- Department of Physical Geography and Geoecology, Charles University, Prague, Czech Republic
- Department of Forest Ecology, Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Průhonice, Czech Republic
| | - Gregory King
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Department of Sciences, University of Alberta, Camrose, Alberta, Canada
| | - Cornelia Krause
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Audrey Lemay
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Feng Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Fabio Lombardi
- AGRARIA Department, Mediterranean University of Reggio Calabria, Reggio Calabria, Italy
| | - Edurne Martinez Del Castillo
- Department of Geography and Regional Planning, Environmental Science Institute, University of Zaragoza, Zaragoza, Spain
| | - Hubert Morin
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Cristina Nabais
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Pekka Nöjd
- Department of Forests, Natural Resources Institute Finland, Espoo, Finland
| | - Richard L Peters
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Peter Prislan
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Antonio Saracino
- Department of Agricultural Sciences, University of Naples Federico II, Portici-Napoli, Italy
| | - Vladimir V Shishov
- Institute of Economics and Trade, Siberian Federal University, Krasnoyarsk, Russia
| | - Irene Swidrak
- Department of Botany, Leopold-Franzens-University of Innsbruck, Innsbruck, Austria
| | - Hanuš Vavrčík
- Department of Wood Science and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Joana Vieira
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Qiao Zeng
- Key Lab of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangzhou, China
| | - Yu Liu
- The State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Sergio Rossi
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| |
Collapse
|
8
|
Yu P, Meng P, Tong X, Zhang Y, Li J, Zhang J, Liu P. Temperature sensitivity of leaf flushing in 12 common woody species in eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160337. [PMID: 36574556 DOI: 10.1016/j.scitotenv.2022.160337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/27/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Leaf phenology is one of the most reliable indicators of global warming in temperate regions because it is highly sensitive to temperatures. Temperature sensitivity (ST) is defined as the values of changed days of leaf flushing date (LUD) per degree increase in temperatures. Climate warming substantially advanced LUD in the temperate region, but its effect on ST of LUD is still not clear. We used spring phenological records of 12 woody plants in eastern China in the years of 1983-2014 to explore temporal and spatial changes of LUD and ST. Furthermore, we compared the difference of ST and preseason temperatures in two periods (1983-1997 and 2000-2014), and explored the main factors regulating ST. The results showed that the average LUD significantly advanced (-2.7 days per decade). The mean LUD over the period 1983-2014 was in day of the year (DOY) 87 ± 7 across sites and species for the early leaf flushing species (EFS), and mean DOY 102 ± 5 for the late leaf flushing species (LFS). LUD was earlier in low latitude than that in high latitude. ST of Armeniaca vulgaris was the most sensitive to temperature across all sites (-3.66 d °C-1), while Firmiana simplex was the most insensitive (-2.37 d °C-1). LUD of EFS was more sensitive to temperature warming than that of LFS. At the same site, LUD of EFS would advance more obviously than that of LFS under global warming. For all species, ST decreased significantly with shorter preseason length and warmer temperatures at the preseason end. Our results had demonstrated a strong relationship between ST and the preseason length (mean temperature at the preseason end).
Collapse
Affiliation(s)
- Peiyang Yu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Ping Meng
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaojuan Tong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Yingjie Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Jun Li
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingru Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Peirong Liu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
9
|
Wang H, Lin S, Dai J, Ge Q. Modeling the effect of adaptation to future climate change on spring phenological trend of European beech (Fagus sylvatica L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157540. [PMID: 35878847 DOI: 10.1016/j.scitotenv.2022.157540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/17/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Temperate trees could cope with climate change through phenotypic plasticity of phenological key events or adaptation in situ via selection on genetic variation. However, the relative contribution of local adaptation and phenotypic plasticity to phenological change is unclear for many ecologically important tree species. Here, we analyzed the leaf-out data of European beech (Fagus sylvatica L.) from 50 provenances planted in 7 trial sites. We first constructed a function between chilling accumulation (CA) and photoperiod-associated heat requirement (PHR) of leaf-out date for each provenance and quantified the relationship between parameters of the CA-PHR function and climatic variables at provenance origins by using the random forest model. Furthermore, we used the provenance-specific CA-PHR function to simulate future leaf-out dates under two climate change scenarios (RCP 4.5 and 8.5) and two assumptions (no adaptation and adaptation). The results showed that both CA, provenance, and their interactions affected the PHR of leaf-out. The provenances from southeastern Europe exhibited a stronger response of PHR to CA and thus flushed earlier than northwestern provenances. The parameters of the CA-PHR function were connected with climatic variables (e.g., mean diurnal temperature range, temperature seasonality) at the originating sites of each provenance. If only considering the phenotypic plasticity, the leaf-out date of European beech in 2070-2099 will advance by 6.8 and 9.0 days on average relative to 1951-2020 under RCP 4.5 and RCP 8.5, respectively. However, if F. sylvatica adapts to future climate change by adopting the current strategy, the advance of the leaf-out date will weaken by 1.4 and 3.4 days under RCP 4.5 and RCP 8.5, respectively. Our results suggest that the European beech could slow down its spring phenological advances and reduce its spring frost risk if it adopts the current strategy to adapt to future climate change.
Collapse
Affiliation(s)
- Huanjiong Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China.
| | - Shaozhi Lin
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, 19A, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Junhu Dai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
| | - Quansheng Ge
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
10
|
Wang S, Wu Z, Gong Y, Wang S, Zhang W, Zhang S, De Boeck HJ, Fu YH. Climate warming shifts the time interval between flowering and leaf unfolding depending on the warming period. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2316-2324. [PMID: 35474153 DOI: 10.1007/s11427-022-2094-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The timing of flowering (FL) and leaf unfolding (LU) determine plants' reproduction and vegetative growth. Global warming has substantially advanced FL and LU of temperate and boreal plants, but their responses to warming differ, which may influence the time interval between FL and LU (∆LU-FL), thereby impacting plant fitness and intraspecific physiological processes. Based on twigs collected from two flowering-first tree species, Populus tomentosa and Amygdalus triloba, we conducted a manipulative experiment to investigate the effects of winter chilling, spring warming and photoperiod on the ∆LU-FL. We found that photoperiod did not affect the ∆LU-FL of Amygdalus triloba, but shortened ∆LU-FL by 5.1 d of Populus tomentosa. Interestingly, spring warming and winter chilling oppositely affected the ∆LU-FL of both species. Specifically, low chilling accumulation extended the ∆LU-FL by 3.8 and 9.4 d for Populus tomentosa and Amygdalus triloba, but spring warming shortened the ∆LU-FL by 4.1 and 0.2 d °C-1. Our results indicate that climate warming will decrease or increase the ∆LU-FL depending on the warming periods, i.e., spring or winter. The shifted time interval between flowering and leaf unfolding may have ecological effects including affecting pollen transfer efficiency and alter the structure and functioning of terrestrial ecosystem.
Collapse
Affiliation(s)
- Shuxin Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100085, China
| | - Zhaofei Wu
- College of Water Sciences, Beijing Normal University, Beijing, 100085, China
| | - Yufeng Gong
- College of Water Sciences, Beijing Normal University, Beijing, 100085, China
| | | | | | | | - Hans J De Boeck
- Plants and Ecosystems, Department of Biology, University of Antwerp, Antwerp, Antwerpen, 2000, Belgium
| | - Yongshuo H Fu
- College of Water Sciences, Beijing Normal University, Beijing, 100085, China.
| |
Collapse
|
11
|
Li S, Dong S, Fu Y, Zhou B, Liu S, Shen H, Xu Y, Gao X, Xiao J, Wu S, Li F. Air or soil temperature matters the responses of alpine plants in biomass accumulation to climate warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157141. [PMID: 35798113 DOI: 10.1016/j.scitotenv.2022.157141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Climate change has substantially affected plant phenology and growth on the Qinghai-Tibetan Plateau (QTP), while it remains unclear how plant phenology and growth impact the plant biomass under climate change. We used long-term data (from 1997 to 2017) for four plants, Stipa purpurea, Artemisia scoparia, Kobresia humilis and Astragalus laxmannii in the alpine meadow to examine the relationships among multiple climate factors, vegetative growth, reproductive growth, intrinsic growth rate and biomass. The order of returning to green determines the growth strategies of different plants, the earliest plants to green (p < 0.05) (e.g., Stipa purpurea and Artemisia scoparia) would choose the strategy of vegetative growth (p < 0.05); the earlier plants (p < 0.05) (e.g., Kobresia humilis) would be regulated by both vegetative growth and reproductive growth (p < 0.05); while the latest plant to green (p < 0.05) such as Astragalus laxmannii, would choose intrinsic growth rate rather than growing season (P < 0.05). Temperature was the most important drivers for key phenological phases and growth patterns of four species, different factors play a role in different stages of the growth period, i.e., in the early and late stage is the soil temperature, while in the middle stage is the average temperature or the maximum temperature, and all the optimum thresholds were >30 day. These findings provide the in-situ evidences of long-term changes in phenology and its associated growth on the biomass of alpine plants on the QTP in the era of climate change.
Collapse
Affiliation(s)
- Shuai Li
- College of Resource and Environment, Shanxi Agricultural University, Taigu 030801, China
| | - Shikui Dong
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| | - Yongshuo Fu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Bingrong Zhou
- Qinghai Institute of Meteorology Sciences, Xining 810001, China
| | - Shiliang Liu
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hao Shen
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Yudan Xu
- College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaoxia Gao
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jiannan Xiao
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shengnan Wu
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Fu Li
- Qinghai Institute of Meteorology Sciences, Xining 810001, China
| |
Collapse
|
12
|
Wang H, Dai J, Peñuelas J, Ge Q, Fu YH, Wu C. Winter warming offsets one half of the spring warming effects on leaf unfolding. GLOBAL CHANGE BIOLOGY 2022; 28:6033-6049. [PMID: 35899626 PMCID: PMC9546158 DOI: 10.1111/gcb.16358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Winter temperature-related chilling and spring temperature-related forcing are two major environmental cues shaping the leaf-out date of temperate species. To what degree insufficient chilling caused by winter warming would slow phenological responses to spring warming remains unclear. Using 27,071 time series of leaf-out dates for 16 tree species in Europe, we constructed a phenological model based on the linear or exponential function between the chilling accumulation (CA) and forcing requirements (FR) of leaf-out. We further used the phenological model to quantify the relative contributions of chilling and forcing on past and future spring phenological change. The results showed that the delaying effect of decreased chilling on the leaf-out date was prevalent in natural conditions, as more than 99% of time series exhibited a negative relationship between CA and FR. The reduction in chilling linked to winter warming from 1951 to 2014 could offset about one half of the spring phenological advance caused by the increase in forcing. In future warming scenarios, if the same model is used and a linear, stable correlation between CA and FR is assumed, declining chilling will continuously offset the advance of leaf-out to a similar degree. Our study stresses the importance of assessing the antagonistic effects of winter and spring warming on leaf-out phenology.
Collapse
Affiliation(s)
- Huanjiong Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
| | - Junhu Dai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- China–Pakistan Joint Research Center on Earth SciencesChinese Academy of Sciences‐Higher Education Commission of PakistanIslamabadPakistan
| | - Josep Peñuelas
- CSICGlobal Ecology Unit CREAF‐CSIC‐UABBellaterraBarcelonaSpain
- CREAFCerdanyola del VallesBarcelonaSpain
| | - Quansheng Ge
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yongshuo H. Fu
- College of Water SciencesBeijing Normal UniversityBeijingChina
| | - Chaoyang Wu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
| |
Collapse
|
13
|
Wolkovich EM, Chamberlain CJ, Buonaiuto DM, Ettinger AK, Morales-Castilla I. Integrating experiments to predict interactive cue effects on spring phenology with warming. THE NEW PHYTOLOGIST 2022; 235:1719-1728. [PMID: 35599356 DOI: 10.1111/nph.18269] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Climate change has advanced plant phenology globally 4-6 d °C-1 on average. Such shifts are some of the most reported and predictable biological impacts of rising temperatures. Yet as climate change has marched on, phenological shifts have appeared muted over recent decades - failing to match simple predictions of an advancing spring with continued warming. The main hypothesis for these changing trends is that interactions between spring phenological cues - long-documented in laboratory environments - are playing a greater role in natural environments due to climate change. Here, we argue that accurately linking shifts observed in long-term data to underlying phenological cues is slowed by biases in observational studies and limited integration of insights from laboratory studies. We synthesize seven decades of laboratory experiments to quantify how phenological cue-space has been studied and how treatments compare with shifts caused by climate change. Most studies focus on one cue, limiting our ability to make accurate predictions, but some well-studied forest species offer opportunities to advance forecasting. We outline how greater integration of controlled-environment studies with long-term data could drive a new generation of laboratory experiments, built on physiological insights, that would transform our fundamental understanding of phenology and improve predictions.
Collapse
Affiliation(s)
- E M Wolkovich
- Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA, 02131, USA
- Organismic & Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - C J Chamberlain
- Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA, 02131, USA
- Organismic & Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - D M Buonaiuto
- Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA, 02131, USA
- Organismic & Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - A K Ettinger
- The Nature Conservancy, 74 Wall Street, Seattle, WA, 98121, USA
| | - I Morales-Castilla
- Department of Life Sciences, Global Change Ecology and Evolution Group, Universidad de Alcalá, Alcalá de Henares, 28805, Spain
| |
Collapse
|
14
|
Geng X, Zhang Y, Fu YH, Hao F, Janssens IA, Peñuelas J, Piao S, Tang J, Wu Z, Zhang J, Zhang X, Stenseth NC. Contrasting phenology responses to climate warming across the northern extra-tropics. FUNDAMENTAL RESEARCH 2022; 2:708-715. [PMID: 38933126 PMCID: PMC11197709 DOI: 10.1016/j.fmre.2021.11.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/08/2021] [Accepted: 11/03/2021] [Indexed: 11/26/2022] Open
Abstract
Climate warming has substantially advanced the timing of spring leaf-out of woody species at middle and high latitudes, albeit with large differences. Insights in the spatial variation of this climate warming response may therefore help to constrain future trends in leaf-out and its impact on energy, water and carbon balances at global scales. In this study, we used in situ phenology observations of 38 species from 2067 study sites, distributed across the northern hemisphere in China, Europe and the United States, to investigate the latitudinal patterns of spring leaf-out and its sensitivity (ST, advance of leaf-out dates per degree of warming) and correlation (RT, partial correlation coefficient) to temperature during the period 1980-2016. Across all species and sites, we found that ST decreased significantly by 0.15 ± 0.02 d °C-1 °N-1, and RT increased by 0.02 ± 0.001 °N-1 (both at P < 0.001). The latitudinal patterns in RT and ST were explained by the differences in requirements of chilling and thermal forcing that evolved to maximize tree fitness under local climate, particularly climate predictability and summed precipitation during the pre-leaf-out season. Our results thus showed complicated spatial differences in leaf-out responses to ongoing climate warming and indicated that spatial differences in the interactions among environmental cues need to be embedded into large-scale phenology models to improve the simulation accuracy.
Collapse
Affiliation(s)
- Xiaojun Geng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- General Institute of Water Resources and Hydropower Planning and Design (GIWP), Ministry of Water Resources, Beijing 100053, China
| | - Yaru Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yongshuo H. Fu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- Plants and Ecosystems, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Fanghua Hao
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Ivan A. Janssens
- Plants and Ecosystems, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | | | - Jing Tang
- Department of Physical Geography and Ecosystem Science, Lund University, SE, 223 62 Lund, Sweden
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, DK, 2100, Copenhagen, Denmark
- Center for Permafrost (CENPERM), University of Copenhagen, DK, 1350, Copenhagen, Denmark
| | - Zhaofei Wu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jing Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xuan Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Nils Chr. Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| |
Collapse
|
15
|
Spatiotemporal Characteristics and Heterogeneity of Vegetation Phenology in the Yangtze River Delta. REMOTE SENSING 2022. [DOI: 10.3390/rs14132984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vegetation phenology and its spatiotemporal driving factors are essential to reflect global climate change, the surface carbon cycle and regional ecology, and further quantitative studies on spatiotemporal heterogeneity and its two-way driving are needed. Based on MODIS phenology, meteorology, land cover and other data from 2001 to 2019, this paper analyzes the phenology change characteristics of the Yangtze River Delta from three dimensions: time, plane space and elevation. Then, the spatiotemporal heterogeneity of phenology and its driving factors are explored with random forest and geographic detector methods. The results show that (1) the advance of start of season (SOS) is insignificant—with 0.17 days per year; the end of season (EOS) shows a significant delay—0.48 days per year. The preseason temperature has a greater contribution to SOS, while preseason precipitation is main factor in determining EOS. (2) Spatial differences of the phenological index do not strictly obey the change rules of latitude at a provincial scale. The SOS of Jiangsu and Anhui is earlier than that of Zhejiang and Shanghai, and EOS shows an obvious double-clustering phenomenon. In addition, a divergent response of EOS with elevation grades is found; the most significant changes are observed at grades below 100 m. (3) Land cover (LC) type is a major factor of the spatial heterogeneity of phenology, and its change may also be one of the insignificant factors driving the interannual change of phenology. Furthermore, nighttime land surface temperature (NLST) has a relatively larger contribution to the spatial heterogeneity in non-core urban areas, but population density (PD) contributes little. These findings could provide a new perspective on phenology and its complex interactions between natural or anthropogenic factors.
Collapse
|
16
|
Wu Z, Wang S, Fu YH, Gong Y, Lin CF, Zhao YP, Prevéy JS, Zohner C. Spatial Difference of Interactive Effect Between Temperature and Daylength on Ginkgo Budburst. FRONTIERS IN PLANT SCIENCE 2022; 13:887226. [PMID: 35620689 PMCID: PMC9127872 DOI: 10.3389/fpls.2022.887226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Climate warming-induced shifts in spring phenology have substantially affected the structure and function of terrestrial ecosystems and global biogeochemical cycles. Spring phenology is primarily triggered by spring temperature and is also affected by daylength and winter chilling, yet the relative importance of these cues across spatial gradients remains poorly understood. Here, we conducted a manipulative experiment with two daylength and three temperature treatments to investigate spatial differences in the response of ginkgo budburst to temperature and daylength, using twigs collected at three sites across a spatial gradient: a control site at a low latitude and low elevation on Tianmu Mountain (TMlow), a low latitude and high elevation site on Tianmu Mountain (TMhigh), and a high latitude site on Jiufeng mountain (JF). The mechanisms were also tested using in situ phenological observations of ginkgo along latitudes in China. We found that, compared to TMlow individuals, budburst dates occurred 12.6 (JF) and 7.7 (TMhigh) days earlier in high-latitude and high-elevation individuals when exposed to the same temperature and daylength treatments. Importantly, daylength only affected budburst at low latitudes, with long days (16 h) advancing budburst in low-latitude individuals by, on average, 8.1 days relative to short-day (8 h) conditions. This advance was most pronounced in low-elevation/latitude individuals (TMlow = 9.6 days; TMhigh = 6.7 days; JF = 1.6 days). In addition, we found that the temperature sensitivity of budburst decreased from 3.4 to 2.4 days °C-1 along latitude and from 3.4 to 2.5 days °C-1 along elevation, respectively. The field phenological observations verified the experimental results. Our findings provide empirical evidence of spatial differences in the relative effects of spring temperature and daylength on ginkgo budburst, which improved our understanding of spatial difference in phenological changes and the responses of terrestrial ecosystem to climate change.
Collapse
Affiliation(s)
- Zhaofei Wu
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Shuxin Wang
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Yongshuo H. Fu
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Yufeng Gong
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Chen-Feng Lin
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yun-Peng Zhao
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Janet S. Prevéy
- WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
| | - Constantin Zohner
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| |
Collapse
|
17
|
Büntgen U, Piermattei A, Krusic PJ, Esper J, Sparks T, Crivellaro A. Plants in the UK flower a month earlier under recent warming. Proc Biol Sci 2022; 289:20212456. [PMID: 35105239 PMCID: PMC8808087 DOI: 10.1098/rspb.2021.2456] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Global temperatures are rising at an unprecedented rate, but environmental responses are often difficult to recognize and quantify. Long-term observations of plant phenology, the annually recurring sequence of plant developmental stages, can provide sensitive measures of climate change and important information for ecosystem services. Here, we present 419 354 recordings of the first flowering date from 406 plant species in the UK between 1753 and 2019 CE. Community-wide first flowering advanced by almost one month on average when comparing all observations before and after 1986 (p < 0.0001). The mean first flowering time is 6 days earlier in southern than northern sites, 5 days earlier under urban than rural settings, and 1 day earlier at lower than higher elevations. Compared to trees and shrubs, the largest lifeform-specific phenological shift of 32 days is found in herbs, which are generally characterized by fast turnover rates and potentially high levels of genetic adaptation. Correlated with January–April maximum temperatures at −0.81 from 1952–2019 (p < 0.0001), the observed trends (5.4 days per decade) and extremes (66 days between the earliest and latest annual mean) in the UK's first flowering dataset can affect the functioning and productivity of ecosystems and agriculture.
Collapse
Affiliation(s)
- Ulf Büntgen
- Department of Geography, University of Cambridge, Cambridge CB2 3EN, UK.,Swiss Federal Research Institute (WSL), 8903 Birmensdorf, Switzerland.,Global Change Research Institute of the Czech Academy of Sciences (CzechGlobe), 60300 Brno, Czech Republic.,Department of Geography, Faculty of Science, Masaryk University, 61300 Brno, Czech Republic
| | - Alma Piermattei
- Department of Geography, University of Cambridge, Cambridge CB2 3EN, UK
| | - Paul J Krusic
- Department of Geography, University of Cambridge, Cambridge CB2 3EN, UK.,Department of Physical Geography, Stockholm University, 10691 Stockholm, Sweden
| | - Jan Esper
- Global Change Research Institute of the Czech Academy of Sciences (CzechGlobe), 60300 Brno, Czech Republic.,Department of Geography, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Tim Sparks
- Museum of Zoology University of Cambridge, Cambridge CB2 3EN, UK.,Department of Zoology, Poznań University of Life Sciences, 60-625 Poznań, Poland
| | - Alan Crivellaro
- Department of Geography, University of Cambridge, Cambridge CB2 3EN, UK.,Forest Biometrics Laboratory, Faculty of Forestry, 'Stefan cel Mare' University of Suceava. Str. Universitatii 13, Suceava 720229, Romania
| |
Collapse
|
18
|
Response of Vegetation Photosynthetic Phenology to Urbanization in Dongting Lake Basin, China. REMOTE SENSING 2021. [DOI: 10.3390/rs13183722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Urbanization can induce environmental changes such as the urban heat island effect, which in turn influence the terrestrial ecosystem. However, the effect of urbanization on the phenology of subtropical vegetation remains relatively unexplored. This study analyzed the changing trend of vegetation photosynthetic phenology in Dongting Lake basin, China, and its response to urbanization using nighttime light and chlorophyll fluorescence datasets. Our results indicated the start of the growing season (SOS) of vegetation in the study area was significantly advanced by 0.70 days per year, whereas the end of the growing season (EOS) was delayed by 0.24 days per year during 2000–2017. We found that urbanization promoted the SOS advance and EOS delay. With increasing urbanization intensity, the sensitivity of SOS to urbanization firstly increased then decreased, while the sensitivity of EOS to urbanization decreased with urbanization intensity. The climate sensitivity of vegetation phenology varied with urbanization intensity; urbanization induced an earlier SOS by increasing preseason minimum temperatures and a later EOS by increasing preseason precipitation. These findings improve our understanding of the vegetation phenology response to urbanization in subtropical regions and highlight the need to integrate human activities into future vegetation phenology models.
Collapse
|
19
|
Chen W, Wang L, Wang J, Joshi S, Xiang S, Tariq A, Liu X, Liao Y, Wu Y. Divergent Responses of Floral Traits of Lonicera nervosa to Altitudinal Gradients at the Eastern Margin of Hengduan Mountains. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.719838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding phenotypic responses is crucial for predicting and managing the effects of environmental change on native species. Color and display size are typically used to evaluate the utilization value of ornamental plants, which are also important ornamental characters of Lonicera nervosa Maxim. (L. nervosa). However, there is limited documentation of its floral environmental adaptation. The environmental conditions for the development of an organism changes with altitudinal variation. The aim of this research was to find flower trait variability maintenance and the tradeoff among the organs in five different populations of L. nervosa growing at distinct altitudes. We investigated the distribution patterns of floral color, floral display, and biomass tradeoff along a 700-m altitude gradient from 2,950 to 3,650 m. One-way ANOVA analysis was performed to assess the variability of flower traits and floral color across different altitudes. Moreover, correlations and tradeoffs between flowers and vegetative organs were also observed at different altitude ranges. The results indicated that L. nervosa flowers had a strong adaptability along the elevation and divergent altitude-range-specific patterns, which was divided by an altitude breakpoint at around 3,300 m. Below 3,300 m, petal lightness (petal L) decreased, but total floral display area (TFDA), individual floral dry mass (IFDM), and total floral dry mass (TFDM) increased with an increase in altitude. Whereas, above 3,300 m no significant difference was observed in petal L, TFDA, IFDM, and TFDM decreased slightly with an increase in altitude. The responsibility for the selection on floral color at a lower altitude was stronger than that at a higher altitude, while the selection agents on floral biomass had significant effects within the entire altitude range. However, the effects on floral biomass were opposite on both sides of 3,300 m. Thus, floral trait and floral color can be useful indicators for the domestication of horticultural plants and help to evaluate and initiate management and conservation actions.
Collapse
|
20
|
Dox I, Prislan P, Gričar J, Mariën B, Delpierre N, Flores O, Leys S, Rathgeber CBK, Fonti P, Campioli M. Drought elicits contrasting responses on the autumn dynamics of wood formation in late successional deciduous tree species. TREE PHYSIOLOGY 2021; 41:1171-1185. [PMID: 33616191 DOI: 10.1093/treephys/tpaa175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 05/12/2023]
Abstract
Research on wood phenology has mainly focused on reactivation of the cambium in spring. In this study we investigated if summer drought advances cessation of wood formation and if it has any influence on wood structure in late successional forest trees of the temperate zone. The end of xylogenesis was monitored between August and November in stands of European beech and pedunculate oak in Belgium for two consecutive years, 2017 and 2018, with the latter year having experienced an exceptional summer drought. Wood formation in oak was affected by the drought, with oak trees ceasing cambial activity and wood maturation about 3 weeks earlier in 2018 compared with 2017. Beech ceased wood formation before oak, but its wood phenology did not differ between years. Furthermore, between the 2 years, no significant difference was found in ring width, percentage of mature fibers in the late season, vessel size and density. In 2018, beech did show thinner fiber walls, whereas oak showed thicker walls. In this paper, we showed that summer drought can have an important impact on late season wood phenology xylem development. This will help to better understand forest ecosystems and improve forest models.
Collapse
Affiliation(s)
- Inge Dox
- Research Group of Plants and Ecosystems, PLECO, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Peter Prislan
- Department of Forest Yield and Silviculture & Department for Forest Technique and Economics, Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| | - Jožica Gričar
- Department of Forest Yield and Silviculture & Department for Forest Technique and Economics, Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| | - Bertold Mariën
- Research Group of Plants and Ecosystems, PLECO, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Nicolas Delpierre
- Ecologie Systématique et Evolution, Université Paris-Saclay, CNRS, AgroParisTech, rue du Doyen André Guinier 362, 91405, Orsay Cedex, France
- Institut Universitaire de France (IUF), rue Descartes 1, 75231 Paris, France
| | - Omar Flores
- Research Group of Plants and Ecosystems, PLECO, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Sebastien Leys
- Research Group of Plants and Ecosystems, PLECO, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Cyrille B K Rathgeber
- SILVA, Université de Lorraine, AgroParisTech, INRAE, Cours Léopold 34, 54000 Nancy, France
| | - Patrick Fonti
- Dendrosciences group, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Matteo Campioli
- Research Group of Plants and Ecosystems, PLECO, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
21
|
Zettlemoyer MA, Peterson ML. Does Phenological Plasticity Help or Hinder Range Shifts Under Climate Change? Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.689192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Climate warming is predicted to shift species’ ranges as previously uninhabitable environments just beyond the leading range edges become suitable habitat and trailing range edges become increasingly unsuitable. Understanding which aspects of the environment and species traits mediate these range shifts is critical for understanding species’ possible redistributions under global change, yet we have a limited understanding of the ecological and evolutionary responses underlying population spread or extinction at species’ range edges. Within plant populations, shifts in flowering phenology have been one of the strongest and most consistent responses to climate change, and are likely to play an important role in mediating population dynamics within and beyond species’ ranges. However, the role of phenological shifts, and particularly phenological plasticity, in species’ range shifts remains relatively unstudied. Here, we synthesize literature on phenology, plasticity, and adaptation to suggest ways in which phenological responses to climate may vary across species’ ranges and review the empirical evidence for and against these hypotheses. We then outline how phenological plasticity could facilitate or hinder persistence and potential consequences of phenological plasticity in range expansions, including phenological cues, shifts in correlated traits, altered species interactions, and effects on gene flow. Finally, we suggest future avenues for research, such as characterizing reaction norms for phenology across a species’ range and in beyond-the-range transplant experiments. Given the prevalence and magnitude of phenological shifts, future work should carefully dissect its costs and benefits for population persistence, and incorporate phenological plasticity into models predicting species’ persistence and geographic range shifts under climate change.
Collapse
|
22
|
Ettinger AK, Buonaiuto DM, Chamberlain CJ, Morales-Castilla I, Wolkovich EM. Spatial and temporal shifts in photoperiod with climate change. THE NEW PHYTOLOGIST 2021; 230:462-474. [PMID: 33421152 DOI: 10.1111/nph.17172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/08/2020] [Indexed: 05/28/2023]
Abstract
Climate change causes both temporal (e.g. advancing spring phenology) and geographic (e.g. range expansion poleward) species shifts, which affect the photoperiod experienced at critical developmental stages ('experienced photoperiod'). As photoperiod is a common trigger of seasonal biological responses - affecting woody plant spring phenology in 87% of reviewed studies that manipulated photoperiod - shifts in experienced photoperiod may have important implications for future plant distributions and fitness. However, photoperiod has not been a focus of climate change forecasting to date, especially for early-season ('spring') events, often assumed to be driven by temperature. Synthesizing published studies, we find that impacts on experienced photoperiod from temporal shifts could be orders of magnitude larger than from spatial shifts (1.6 h of change for expected temporal vs 1 min for latitudinal shifts). Incorporating these effects into forecasts is possible by leveraging existing experimental data; we show that results from growth chamber experiments on woody plants often have data relevant for climate change impacts, and suggest that shifts in experienced photoperiod may increasingly constrain responses to additional warming. Further, combining modeling approaches and empirical work on when, where and how much photoperiod affects phenology could rapidly advance our understanding and predictions of future spatio-temporal shifts from climate change.
Collapse
Affiliation(s)
- A K Ettinger
- The Nature Conservancy, Washington Field Office, Seattle, WA, 98121, USA
- Arnold Arboretum of Harvard University, Boston, MA, 02130, USA
| | - D M Buonaiuto
- Arnold Arboretum of Harvard University, Boston, MA, 02130, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - C J Chamberlain
- Arnold Arboretum of Harvard University, Boston, MA, 02130, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - I Morales-Castilla
- Arnold Arboretum of Harvard University, Boston, MA, 02130, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Global Change Ecology and Evolution (GloCEE) Research Group, Department of Life Sciences, University of Alcalá, Alcalá de Henares, MA, 28805, Spain
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, 22030, USA
| | - E M Wolkovich
- Arnold Arboretum of Harvard University, Boston, MA, 02130, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
23
|
Chilling and Heat Accumulation of Fruit and Nut Trees and Flower Bud Vulnerability to Early Spring Low Temperatures in New Mexico: Meteorological Approach. SUSTAINABILITY 2021. [DOI: 10.3390/su13052524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fruit and nut trees production is an important activity across the southwest United States and this production is greatly impacted by the local climate. Temperature is the main environmental factor influencing the growth and the productivity of the fruit and nut trees as it affects the trees’ physiology and the vulnerability of flower bud, flowers, and young fruit and nut to the low temperatures or spring frost. The objective of the present study is to estimate the chilling and heat accumulation of fruit and nut trees across New Mexico. Three study sites as Fabian Garcia, Los Lunas, and Farmington were considered and climate variables were collected at hourly time step. The Utah model and the Dynamic model were used to estimate the accumulated chilling while the Forcing model was used for the heat accumulation. The possible fruit and nut trees endodormancy and ecodormancy periods were also determined at the study sites. The results obtained chilling hours of 715 ± 86.60 h at Fabian Garcia, 729.53 ± 41.71 h at Los Lunas, and 828.95 ± 83.73 h at Farmington using the Utah model. The accumulated chill portions during trees’ endodormancy was 3.12 ± 3.05 CP at Fabian Garcia, 42.23 ± 5.08 CP at Los Lunas, and 56.14 ± 1.84 CP at Farmington. The accumulated heat was 8735.52 ± 1650.91 GDH at Fabian Garcia, 7695.43 ± 212.90 GDH at Los Lunas, and 5984.69 ± 2353.20 GDH at Farmington. The fruit and nut trees are at no risk of bud flowers vulnerability at Fabian Garcia while they are under high risk of bud flowers and or young fruit and nut vulnerability to low temperatures early spring as hourly temperature can still drop below 0 °C in April at the end of ecodormancy and flower blooming and young fruits and nuts development stage at Los Lunas and Farmington. Severe weather, especially frost conditions during winter and early spring, can be a significant threat to sustainable nut and fruit production in the northern New Mexico while high chilling requirement fruit and nut trees might not meet chill requirements in the southern New Mexico.
Collapse
|
24
|
Geng X, Fu YH, Hao F, Zhou X, Zhang X, Yin G, Vitasse Y, Piao S, Niu K, De Boeck HJ, Menzel A, Peñuelas J. Climate warming increases spring phenological differences among temperate trees. GLOBAL CHANGE BIOLOGY 2020; 26:5979-5987. [PMID: 32757456 DOI: 10.1111/gcb.15301] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Climate warming has substantially advanced spring leaf flushing, but winter chilling and photoperiod co-determine the leaf flushing process in ways that vary among species. As a result, the interspecific differences in spring phenology (IDSP) are expected to change with climate warming, which may, in turn, induce negative or positive ecological consequences. However, the temporal change of IDSP at large spatiotemporal scales remains unclear. In this study, we analyzed long-term in-situ observations (1951-2016) of six, coexisting temperate tree species from 305 sites across Central Europe and found that phenological ranking did not change when comparing the rapidly warming period 1984-2016 to the marginally warming period 1951-1983. However, the advance of leaf flushing was significantly larger in early-flushing species EFS (6.7 ± 0.3 days) than in late-flushing species LFS (5.9 ± 0.2 days) between the two periods, indicating extended IDSP. This IDSP extension could not be explained by differences in temperature sensitivity between EFS and LFS; however, climatic warming-induced heat accumulation effects on leaf flushing, which were linked to a greater heat requirement and higher photoperiod sensitivity in LFS, drove the shifts in IDSP. Continued climate warming is expected to further extend IDSP across temperate trees, with associated implications for ecosystem function.
Collapse
Affiliation(s)
- Xiaojun Geng
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Yongshuo H Fu
- College of Water Sciences, Beijing Normal University, Beijing, China
- Plants and Ecosystems, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Fanghua Hao
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Xuancheng Zhou
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Xuan Zhang
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Guodong Yin
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Yann Vitasse
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Shilong Piao
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Peking University, Beijing, China
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing, China
| | - Kechang Niu
- School of Life Science, Nanjing University, Nanjing, China
| | - Hans J De Boeck
- Plants and Ecosystems, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Annette Menzel
- TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, Freising, Germany
| | - Josep Peñuelas
- CREAF, Barcelona, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
| |
Collapse
|
25
|
Song Z, Fu YH, Du Y, Li L, Ouyang X, Ye W, Huang Z. Flowering phenology of a widespread perennial herb shows contrasting responses to global warming between humid and non‐humid regions. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13634] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhuqiu Song
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization South China Botanical Garden Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Yongshuo H. Fu
- College of Water Sciences Beijing Normal University Beijing China
| | - Yanjun Du
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education) College of Forestry Hainan University Haikou China
| | - Lin Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization South China Botanical Garden Chinese Academy of Sciences Guangzhou China
| | - Xuejun Ouyang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization South China Botanical Garden Chinese Academy of Sciences Guangzhou China
| | - Wanhui Ye
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization South China Botanical Garden Chinese Academy of Sciences Guangzhou China
| | - Zhongliang Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization South China Botanical Garden Chinese Academy of Sciences Guangzhou China
| |
Collapse
|
26
|
Yang Y, Wu Z, Guo L, He HS, Ling Y, Wang L, Zong S, Na R, Du H, Li MH. Effects of winter chilling vs. spring forcing on the spring phenology of trees in a cold region and a warmer reference region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138323. [PMID: 32298892 DOI: 10.1016/j.scitotenv.2020.138323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/18/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Regions at high latitudes and high altitudes are undergoing a more pronounced winter warming than spring warming, and such asymmetric warming will affect chilling and forcing processes and thus the spring phenology of plants. We analyzed winter chilling and spring forcing accumulation in relation to the spring phenology of three tree species (Ulmus pumila, Populus simonii, and Syringa oblata) growing in a cold region (CR) compared with trees in a warmer reference region (WR), using the Dynamic Model and the Growing Degree Hour (GDH) model. We tested that forcing rather than chilling affects the spring phenology of trees in CR (hypothesis I), and that trees in CR have both lower mean chilling and forcing temperature and thus longer accumulation periods than trees in WR (hypothesis II). The modeling results confirmed that chilling and forcing occur simultaneously during the early spring when temperature gradually increases. In line with our hypotheses, forcing played a crucial role in spring phenology in CR, but chilling and forcing combined to determine spring phenology in WR. The temperature during the chilling and forcing periods was lower and the accumulation period started earlier and ended later in CR than in WR. Moreover, the chilling accumulation was broken into two periods by the low deep winter temperature in CR, and that interruption will be removed by future strong winter warming. Future asymmetric warming, with a stronger temperature increase in winter than in spring, could decrease the forcing accumulation effects and increase the chilling effects on the spring phenology of plants in CR. This change in the balance between chilling and forcing will lead to a shift in plant phenology, which will further have major impacts on biogeochemical cycles and on ecosystem functions and services.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland
| | - Zhengfang Wu
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China.
| | - Liang Guo
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Hong S He
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Yuheng Ling
- UMR CNRS 6240, Universite de Corse Pascal Paoli, Corti 20250, France
| | - Lei Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Shengwei Zong
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| | - Risu Na
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| | - Haibo Du
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China.
| | - Mai-He Li
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland; Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
27
|
Wenden B, Mariadassou M, Chmielewski FM, Vitasse Y. Shifts in the temperature-sensitive periods for spring phenology in European beech and pedunculate oak clones across latitudes and over recent decades. GLOBAL CHANGE BIOLOGY 2020; 26:1808-1819. [PMID: 31724292 DOI: 10.1111/gcb.14918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Spring phenology of temperate trees has advanced worldwide in response to global warming. However, increasing temperatures may not necessarily lead to further phenological advance, especially in the warmer latitudes because of insufficient chilling and/or shorter day length. Determining the start of the forcing phase, that is, when buds are able to respond to warmer temperatures in spring, is therefore crucial to predict how phenology will change in the future. In this study, we used 4,056 leaf-out date observations during the period 1969-2017 for clones of European beech (Fagus sylvatica L.) and pedunculate oak (Quercus robur L.) planted in 63 sites covering a large latitudinal gradient (from Portugal ~41°N to Norway ~63°N) at the International Phenological Gardens in order to (a) evaluate how the sensitivity periods to forcing and chilling have changed with climate warming, and (b) test whether consistent patterns occur along biogeographical gradients, that is, from colder to warmer environments. Partial least squares regressions suggest that the length of the forcing period has been extended over the recent decades with climate warming in the colder latitudes but has been shortened in the warmer latitudes for both species, with a more pronounced shift for beech. We attribute the lengthening of the forcing period in the colder latitudes to earlier opportunities with temperatures that can promote bud development. In contrast, at warmer or oceanic climates, the beginning of the forcing period has been delayed, possibly due to insufficient chilling. However, in spite of a later beginning of the forcing period, spring phenology has continued to advance at these areas due to a faster satisfaction of heat requirements induced by climate warming. Overall, our results support that ongoing climate warming will have different effects on the spring phenology of forest trees across latitudes due to the interactions between chilling, forcing and photoperiod.
Collapse
Affiliation(s)
| | | | - Frank-M Chmielewski
- Faculty of Life Sciences, Thaer Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Berlin, Germany
| | - Yann Vitasse
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- SwissForestLab, Birmensdorf, Switzerland
| |
Collapse
|
28
|
Wang H, Wang H, Ge Q, Dai J. The Interactive Effects of Chilling, Photoperiod, and Forcing Temperature on Flowering Phenology of Temperate Woody Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:443. [PMID: 32373144 PMCID: PMC7176907 DOI: 10.3389/fpls.2020.00443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/25/2020] [Indexed: 05/05/2023]
Abstract
The effects of winter chilling, spring forcing temperature, and photoperiod on spring phenology are well known for many European and North American species, but the environmental cues that regulate the spring phenology of East Asian species have not yet been thoroughly investigated. Here, we conducted a growth chamber experiment to test the effects of chilling (controlled by different lengths of exposure to natural chilling conditions), forcing temperature (12, 15, or 18°C) and photoperiod (14 or 10 h) on first flowering date (FFD) of six woody species (three shrubs and three trees) native to East Asia. The three-way analysis of variance (ANOVA) separately for each species showed that the effects of chilling and forcing temperature were significant for almost all species (P < 0.05). Averaged over all chilling and photoperiod treatments, the number of days until FFD decreased by 2.3-36.1 days when the forcing temperature increased by 3°C. More chilling days reduced the time to FFD by 0.7-26 days, when averaged over forcing and photoperiod treatments. A longer photoperiod could advance the FFD by 1.0-5.6 days, on average, but its effect was only significant for two species (including one tree and one shrub). The effects of forcing temperature and photoperiod interacted with chilling for half of the studied species, being stronger in the low chilling than high chilling treatment. These results could be explained by the theory and model of growing degree-days (GDD). Increased exposure to chilling coupled to a longer photoperiod reduced the GDD requirement for FFD, especially when plants grew under low chilling conditions. However, shrubs (except Viburnum dilatatum) had lower chilling and heat requirements than trees, suggesting that, by leafing out sooner, they engage in a more opportunistic life strategy to maximize their growing season, especially before canopy closure from trees' foliage. Our results confirmed the varying effects of these three cues on the flowering phenology of woody species native to East Asia. In future climate change scenarios, spring warming is likely to advance the spring phenology of those woody species, although the reduced chilling and shorter photoperiod may partly offset this spring warming effect.
Collapse
Affiliation(s)
| | - Hui Wang
- *Correspondence: Huanjiong Wang, ; Hui Wang,
| | | | | |
Collapse
|
29
|
Fu YH, Geng X, Hao F, Vitasse Y, Zohner CM, Zhang X, Zhou X, Yin G, Peñuelas J, Piao S, Janssens IA. Shortened temperature-relevant period of spring leaf-out in temperate-zone trees. GLOBAL CHANGE BIOLOGY 2019; 25:4282-4290. [PMID: 31368203 DOI: 10.1111/gcb.14782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Temperature during a particular period prior to spring leaf-out, the temperature-relevant period (TRP), is a strong determinant of the leaf-out date in temperate-zone trees. Climatic warming has substantially advanced leaf-out dates in temperate biomes worldwide, but its effect on the beginning and length of the TRP has not yet been explored, despite its direct relevance for phenology modeling. Using 1,551 species-site combinations of long-term (1951-2016) in situ observations on six tree species (namely, Aesculus hippocastanum, Alnus glutinosa, Betula pendula, Fagus sylvatica, Fraxinus excelsior, and Quercus robur) in central Europe, we found that the advancing leaf-out was accompanied by a shortening of the TRP. On average across all species and sites, the length of the TRP significantly decreased by 23% (p < .05), from 60 ± 4 days during 1951-1965 to 47 ± 4 days during 2002-2016. Importantly, the average start date of the TRP did not vary significantly over the study period (March 2-5, DOY = 61-64), which could be explained by sufficient chilling over the study period in the regions considered. The advanced leaf-out date with unchanged beginning of the TRP can be explained by the faster accumulation of the required heat due to climatic warming, which overcompensated for the retarding effect of shortening daylength on bud development. This study shows that climate warming has not yet affected the mean TRP starting date in the study region, implying that phenology modules in global land surface models might be reliable assuming a fixed TRP starting date at least for the temperate central Europe. Field warming experiments do, however, remain necessary to test to what extent the length of TRP will continue to shorten and whether the starting date will remain stable under future climate conditions.
Collapse
Affiliation(s)
- Yongshuo H Fu
- College of Water Sciences, Beijing Normal University, Beijing, China
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Xiaojun Geng
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Fanghua Hao
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Yann Vitasse
- SwissForestLab, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Constantin M Zohner
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Xuan Zhang
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Xuancheng Zhou
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Guodong Yin
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Josep Peñuelas
- CREAF, Barcelona, Catalonia, Spain
- Global Ecology Unit CREAF-CSIC-UAB, CSIC, Barcelona, Catalonia, Spain
| | - Shilong Piao
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Peking University, Beijing, China
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing, China
| | - Ivan A Janssens
- Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
30
|
Forest Phenology Dynamics to Climate Change and Topography in a Geographic and Climate Transition Zone: The Qinling Mountains in Central China. FORESTS 2019. [DOI: 10.3390/f10111007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Forest ecosystems in an ecotone and their dynamics to climate change are growing ecological and environmental concerns. Phenology is one of the most critical biological indicators of climate change impacts on forest dynamics. In this study, we estimated and visualized the spatiotemporal patterns of forest phenology from 2001 to 2017 in the Qinling Mountains (QMs) based on the enhanced vegetation index (EVI) from MODerate-resolution Imaging Spectroradiometer (MODIS). We further analyzed this data to reveal the impacts of climate change and topography on the start of the growing season (SOS), end of the growing season (EOS), and the length of growing season (LOS). Our results showed that forest phenology metrics were very sensitive to changes in elevation, with a 2.4 days delayed SOS, 1.4 days advanced EOS, and 3.8 days shortened LOS for every 100 m increase in altitude. During the study period, on average, SOS advanced by 0.13 days year−1, EOS was delayed by 0.22 days year−1, and LOS increased by 0.35 day year−1. The phenological advanced and delayed speed across different elevation is not consistent. The speed of elevation-induced advanced SOS increased slightly with elevation, and the speed of elevation-induced delayed EOS shift reached a maximum value of 1500 m from 2001 to 2017. The sensitivity of SOS and EOS to preseason temperature displays that an increase of 1 °C in the regionally averaged preseason temperature would advance the average SOS by 1.23 days and delay the average EOS by 0.72 days, respectively. This study improved our understanding of the recent variability of forest phenology in mountain ecotones and explored the correlation between forest phenology and climate variables in the context of the ongoing climate warming.
Collapse
|
31
|
Vitasse Y, Bottero A, Cailleret M, Bigler C, Fonti P, Gessler A, Lévesque M, Rohner B, Weber P, Rigling A, Wohlgemuth T. Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. GLOBAL CHANGE BIOLOGY 2019; 25:3781-3792. [PMID: 31436853 DOI: 10.1111/gcb.14803] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/04/2019] [Accepted: 08/01/2019] [Indexed: 05/23/2023]
Abstract
Extreme climate events (ECEs) such as severe droughts, heat waves, and late spring frosts are rare but exert a paramount role in shaping tree species distributions. The frequency of such ECEs is expected to increase with climate warming, threatening the sustainability of temperate forests. Here, we analyzed 2,844 tree-ring width series of five dominant European tree species from 104 Swiss sites ranging from 400 to 2,200 m a.s.l. for the period 1930-2016. We found that (a) the broadleaved oak and beech are sensitive to late frosts that strongly reduce current year growth; however, tree growth is highly resilient and fully recovers within 2 years; (b) radial growth of the conifers larch and spruce is strongly and enduringly reduced by spring droughts-these species are the least resistant and resilient to droughts; (c) oak, silver fir, and to a lower extent beech, show higher resistance and resilience to spring droughts and seem therefore better adapted to the future climate. Our results allow a robust comparison of the tree growth responses to drought and spring frost across large climatic gradients and provide striking evidence that the growth of some of the most abundant and economically important European tree species will be increasingly limited by climate warming. These results could serve for supporting species selection to maintain the sustainability of forest ecosystem services under the expected increase in ECEs.
Collapse
Affiliation(s)
- Yann Vitasse
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- SwissForestLab, Birmensdorf, Switzerland
| | - Alessandra Bottero
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- SwissForestLab, Birmensdorf, Switzerland
| | - Maxime Cailleret
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- SwissForestLab, Birmensdorf, Switzerland
- UMR RECOVER, Aix Marseille Univ, IRSTEA, Aix-en-Provence, France
| | - Christof Bigler
- SwissForestLab, Birmensdorf, Switzerland
- Forest Ecology, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Patrick Fonti
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- SwissForestLab, Birmensdorf, Switzerland
| | - Arthur Gessler
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- SwissForestLab, Birmensdorf, Switzerland
- Institute of Terrestrial Ecology, ETH Zürich, Zürich, Switzerland
| | - Mathieu Lévesque
- SwissForestLab, Birmensdorf, Switzerland
- Forest Ecology, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Brigitte Rohner
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- SwissForestLab, Birmensdorf, Switzerland
| | - Pascale Weber
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Andreas Rigling
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- SwissForestLab, Birmensdorf, Switzerland
- Institute of Terrestrial Ecology, ETH Zürich, Zürich, Switzerland
| | - Thomas Wohlgemuth
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- SwissForestLab, Birmensdorf, Switzerland
| |
Collapse
|
32
|
Fu YH, Piao S, Delpierre N, Hao F, Hänninen H, Geng X, Peñuelas J, Zhang X, Janssens IA, Campioli M. Nutrient availability alters the correlation between spring leaf-out and autumn leaf senescence dates. TREE PHYSIOLOGY 2019; 39:1277-1284. [PMID: 30989235 DOI: 10.1093/treephys/tpz041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Leaf senescence (LS) affects tree fitness, species distribution and ecosystem structure and functioning. The drivers of LS and the processes underlying it have been studied, but the studies have mainly focused on environmental cues and have mainly been based on statistical analyses using in situ data sets. Experimental investigation and field verification of the processes and drivers are thus urgently needed. We conducted a nutrient-addition experiment after a spring-warming experiment in which an ~40-day range of leaf-out (LO) dates was induced in horse chestnut (Aesculus hippocastanum) and beech (Fagus sylvatica) saplings. We found that both increased nutrient supply and advanced LO date significantly affected the timing of LS, but their effects were opposite, as the former delayed and the latter advanced the senescence. The effects of nutrient supply and LO interacted species specifically. In chestnut, the delay of senescence caused by fertilization increased with the delay of LO and was thus stronger for individuals that flushed late in the spring. On the contrary, in beech the delay of senescence caused by fertilization decreased with the delay of LO and was insignificant for individuals with the latest LO. The experimental findings for beech were confirmed with mature trees at a regional scale. The interactive effect between nutrients and LO on senescence may be associated with variable sensitivity to photoperiod, growth sink limitation and/or direct effect of foliar nutrition on the timing of senescence. Our novel results show that the interactive effects of LO and nutrient supply on the timing of LS should be further addressed experimentally in forthcoming studies. It would also be interesting to consider our results in the further development of phenological models used in assessing the effects of climatic change. The differences found in the present study between horse chestnut and beech suggest that the results found for one species cannot necessarily be generalized to other species, so studies with different temperate tree species are called for.
Collapse
Affiliation(s)
- Yongshuo H Fu
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, China
- Centre of Excellence Plants and Ecosystems, Department of Biology, University of Antwerp, Antwerp, BE, Belgium
| | - Shilong Piao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing, China
| | - Nicolas Delpierre
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Fanghua Hao
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, China
| | - Heikki Hänninen
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xiaojun Geng
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, China
| | - Josep Peñuelas
- CREAF, Edifici C, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Xuan Zhang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, China
| | - Ivan A Janssens
- Centre of Excellence Plants and Ecosystems, Department of Biology, University of Antwerp, Antwerp, BE, Belgium
| | - Matteo Campioli
- Centre of Excellence Plants and Ecosystems, Department of Biology, University of Antwerp, Antwerp, BE, Belgium
| |
Collapse
|
33
|
Fu YH, Zhang X, Piao S, Hao F, Geng X, Vitasse Y, Zohner C, Peñuelas J, Janssens IA. Daylength helps temperate deciduous trees to leaf-out at the optimal time. GLOBAL CHANGE BIOLOGY 2019; 25:2410-2418. [PMID: 30927554 DOI: 10.1111/gcb.14633] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/17/2019] [Accepted: 03/26/2019] [Indexed: 05/21/2023]
Abstract
Global warming has led to substantially earlier spring leaf-out in temperate-zone deciduous trees. The interactive effects of temperature and daylength underlying this warming response remain unclear. However, they need to be accurately represented by earth system models to improve projections of the carbon and energy balances of temperate forests and the associated feedbacks to the Earth's climate system. We studied the control of leaf-out by daylength and temperature using data from six tree species across 2,377 European phenological network (www.pep725.eu), each with at least 30 years of observations. We found that, in addition to and independent of the known effect of chilling, daylength correlates negatively with the heat requirement for leaf-out in all studied species. In warm springs when leaf-out is early, days are short and the heat requirement is higher than in an average spring, which mitigates the warming-induced advancement of leaf-out and protects the tree against precocious leaf-out and the associated risks of late frosts. In contrast, longer-than-average daylength (in cold springs when leaf-out is late) reduces the heat requirement for leaf-out, ensuring that trees do not leaf-out too late and miss out on large amounts of solar energy. These results provide the first large-scale empirical evidence of a widespread daylength effect on the temperature sensitivity of leaf-out phenology in temperate deciduous trees.
Collapse
Affiliation(s)
- Yongshuo H Fu
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, China
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Xuan Zhang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, China
| | - Shilong Piao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing, China
| | - Fanghua Hao
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, China
| | - Xiaojun Geng
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, China
| | - Yann Vitasse
- Forest Dynamics Unit, Swiss Federal Institute for Forest, Snow and Landscape Research, WSL, Birmensdorf, Switzerland
| | - Constantin Zohner
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Josep Peñuelas
- CREAF, Barcelona, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
| | - Ivan A Janssens
- Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|