1
|
Ramula S, Mousavi SA, Vesterinen EJ. Root, Nodule and Soil Bacterial Communities Associated With the Invasive Nitrogen-Fixing Lupinus polyphyllus. Ecol Evol 2024; 14:e70669. [PMID: 39650542 PMCID: PMC11620983 DOI: 10.1002/ece3.70669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/08/2024] [Accepted: 11/17/2024] [Indexed: 12/11/2024] Open
Abstract
Plants host microorganisms that can facilitate their success in becoming invasive. Established plant invasions might thus provide useful insights into potential changes in plant-associated microbiomes over the course of the invasion process. Here, we investigated the endophytic bacterial communities of the invasive herbaceous legume Lupinus polyphyllus, which is able to form mutualistic associations with N-fixing bacteria. More specifically, we examined the alpha diversity (observed bacterial taxa richness and Shannon diversity) and composition of bacterial communities in roots and nodules sampled from core and edge locations within 10 established invasion sites (> 10 years old) in southwestern Finland. Moreover, we compared the alpha diversity and structure of bacterial communities in the rhizosphere and bulk soil between core and edge locations within these invasion sites. We found that roots and nodules had distinctive endophytic bacterial communities, with roots having 24% higher bacterial alpha diversity (Shannon diversity) than nodules. In nodules, the dominant bacteria were assigned to the family Bradyrhizobiaceae, which includes N-fixing bacteria. Soil bacterial communities, instead, were shaped by soil type, with bulk soil hosting up to 27% higher alpha diversity (richness and Shannon diversity) than rhizosphere soil; however, there was no apparent difference in their community composition. Soil bacterial communities were only weakly associated with soil chemistry. Endophytic and soil bacterial communities did not differ between core and edge locations within the established invasions. Our findings suggest that L. polyphyllus may not induce dramatic changes in the bacterial communities with which it associates over the course of the local invasion process.
Collapse
Affiliation(s)
- Satu Ramula
- Department of BiologyUniversity of TurkuTurkuFinland
| | | | | |
Collapse
|
2
|
Malinski KH, Elizabeth Moore M, Kingsolver JG. Heat stress and host-parasitoid interactions: lessons and opportunities in a changing climate. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101225. [PMID: 38936473 DOI: 10.1016/j.cois.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Ongoing climate change is increasing the frequency and magnitude of high-temperature events (HTEs), causing heat stress in parasitoids and their hosts. We argue that HTEs and heat stress should be viewed in terms of the intersecting life cycles of host and parasitoid. Recent studies illustrate how the biological consequences of a given HTE may vary dramatically depending on its timing within these lifecycles. The temperature sensitivity of host manipulation by parasitoids, and by viral endosymbionts of many parasitoids, can contribute to differing responses of hosts and parasitoids to HTEs. In some cases, these effects can result in reduced parasitoid success and increased host herbivory and may disrupt the ecological interactions between hosts and parasitoids. Because most studies to date involve endoparasitoids of aphid or lepidopteran hosts in agricultural systems, our understanding of heat responses of host-parasitoid interactions in natural systems is quite limited.
Collapse
Affiliation(s)
| | - Megan Elizabeth Moore
- Agricultural Research Service, United States Department of Agriculture, Robert W. Holley Center, 538 Tower Road, Ithaca, NY 14850, USA
| | - Joel G Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Jiménez J, Sadras VO, Espaillat N, Moreno A, Fereres A. Interplay between drought and plant viruses co-infecting melon plants. Sci Rep 2024; 14:15833. [PMID: 38982112 PMCID: PMC11233556 DOI: 10.1038/s41598-024-66344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
Drought affects crops directly, and indirectly by affecting the activity of insect pests and the transmitted pathogens. Here, we established an experiment with well-watered or water-stressed melon plants, later single infected with either cucumber mosaic virus (CMV: non-persistent), or cucurbit aphid-borne yellow virus (CABYV: persistent), or both CMV and CABYV, and mock-inoculated control. We tested whether i) the relation between CMV and CABYV is additive, and ii) the relationship between water stress and virus infection is antagonistic, i.e., water stress primes plants for enhanced tolerance to virus infection. Water stress increased leaf greenness and temperature, and reduced leaf water potential, shoot biomass, stem dimensions, rate of flowering, CABYV symptom severity, and marketable fruit yield. Virus infection reduced leaf water potential transiently in single infected plants and persistently until harvest in double-infected plants. Double-virus infection caused the largest and synergistic reduction of marketable fruit yield. The relationship between water regime and virus treatment was additive in 12 out of 15 traits at harvest, with interactions for leaf water content, leaf:stem ratio, and fruit set. We conclude that both virus-virus relations in double infection and virus-drought relations cannot be generalized because they vary with virus, trait, and plant ontogeny.
Collapse
Affiliation(s)
- J Jiménez
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain.
| | - V O Sadras
- South Australian Research and Development Institute, School of Agriculture, Food and Wine, The University of Adelaide, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - N Espaillat
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| | - A Moreno
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| | - A Fereres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| |
Collapse
|
4
|
Sadras V, Guirao M, Moreno A, Fereres A. Inter-virus relationships in mixed infections and virus-drought relationships in plants: a quantitative review. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1786-1799. [PMID: 37902568 DOI: 10.1111/tpj.16516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/31/2023]
Abstract
Inter-virus relationships in mixed infections and virus-drought relationships are important in agriculture and natural vegetation. In this quantitative review, we sampled published factorial experiments to probe for relationships against the null hypothesis of additivity. Our sample captured antagonistic, additive and synergistic inter-virus relationships in double infections. Virus-drought relationships in our sample were additive or antagonistic, reinforcing the notion that viruses have neutral or positive effects on droughted plants, or that drought enhances plant tolerance to viruses. Both inter-virus and virus-drought relationships vary with virus species, host plant to the level of cultivar or accession, timing of infection, plant age and trait and growing conditions. The trait-dependence of these relationships has implications for resource allocation in plants. Owing to lagging theories, more experimental research in these fields is bound to return phenomenological outcomes. Theoretical work can advance in two complementary directions. First, the effective theory models the behaviour of the system without specifying all the underlying causes that lead to system state change. Second, mechanistic theory based on a nuanced view of the plant phenotype that explicitly considers downward causation; the influence of the plant phenotype on inter-virus relations and vice versa; the impact of timing, intensity and duration of drought interacting with viruses to modulate the plant phenotype; both the soil (moisture) and atmospheric (vapour pressure deficit) aspects of drought. Theories should scale in time, from short term to full growing season, and in levels of organisation up to the relevant traits: crop yield in agriculture and fitness in nature.
Collapse
Affiliation(s)
- Victor Sadras
- South Australian Research and Development Institute, and School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Adelaide, Australia
| | - Maria Guirao
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| | - Aránzazu Moreno
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| | - Alberto Fereres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| |
Collapse
|
5
|
Morrill A, Forbes MR, Vesterinen EJ, Tamminen M, Sääksjärvi IE, Kaunisto KM. Molecular Characterisation of Faecal Bacterial Assemblages Among Four Species of Syntopic Odonates. MICROBIAL ECOLOGY 2023; 87:16. [PMID: 38108886 PMCID: PMC10728244 DOI: 10.1007/s00248-023-02328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Factors such as host species, phylogeny, diet, and both timing and location of sampling are thought to influence the composition of gut-associated bacteria in insects. In this study, we compared the faecal-associated bacterial taxa for three Coenagrion and one Enallagma damselfly species. We expected high overlap in representation of bacterial taxa due to the shared ecology and diet of these species. Using metabarcoding based on the 16S rRNA gene, we identified 1513 sequence variants, representing distinct bacterial 'taxa'. Intriguingly, the damselfly species showed somewhat different magnitudes of richness of ZOTUs, ranging from 480 to 914 ZOTUs. In total, 921 (or 60.8% of the 1513) distinct ZOTUs were non-shared, each found only in one species, and then most often in only a single individual. There was a surfeit of these non-shared incidental ZOTUs in the Enallagma species accounting for it showing the highest bacterial richness and accounting for a sample-wide pattern of more single-species ZOTUs than expected, based on comparisons to the null model. Future studies should address the extent to which faecal bacteria represent non-incidental gut bacteria and whether abundant and shared taxa are true gut symbionts. Pictures of odonates adopted from Norske Art databank under Creative Commons License (CC BY 4.0).
Collapse
Affiliation(s)
- A Morrill
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - M R Forbes
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - E J Vesterinen
- Department of Biology, University of Turku, Turku, Finland
| | - M Tamminen
- Department of Biology, University of Turku, Turku, Finland
| | | | - K M Kaunisto
- Biodiversity Unit, University of Turku, Turku, Finland.
| |
Collapse
|
6
|
Becker-Scarpitta A, Antão LH, Schmidt NM, Blanchet FG, Kaarlejärvi E, Raundrup K, Roslin T. Diverging trends and drivers of Arctic flower production in Greenland over space and time. Polar Biol 2023; 46:837-848. [PMID: 37589013 PMCID: PMC10425507 DOI: 10.1007/s00300-023-03164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 08/18/2023]
Abstract
The Arctic is warming at an alarming rate. While changes in plant community composition and phenology have been extensively reported, the effects of climate change on reproduction remain poorly understood. We quantified multidecadal changes in flower density for nine tundra plant species at a low- and a high-Arctic site in Greenland. We found substantial changes in flower density over time, but the temporal trends and drivers of flower density differed both between species and sites. Total flower density increased over time at the low-Arctic site, whereas the high-Arctic site showed no directional change. Within and between sites, the direction and rate of change differed among species, with varying effects of summer temperature, the temperature of the previous autumn and the timing of snowmelt. Finally, all species showed a strong trade-off in flower densities between successive years, suggesting an effective cost of reproduction. Overall, our results reveal region- and taxon-specific variation in the sensitivity and responses of co-occurring species to shared climatic drivers, and a clear cost of reproductive investment among Arctic plants. The ultimate effects of further changes in climate may thus be decoupled between species and across space, with critical knock-on effects on plant species dynamics, food web structure and overall ecosystem functioning. Supplementary Information The online version contains supplementary material available at 10.1007/s00300-023-03164-2.
Collapse
Affiliation(s)
- Antoine Becker-Scarpitta
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Institute of Botany, Czech Academy of Sciences, Brno, Czech Republic
- CIRAD, UMR PVBMT, 97410 Saint Pierre, La Réunion France
| | - Laura H. Antão
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Niels Martin Schmidt
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
| | - F. Guillaume Blanchet
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC Canada
- Département de Mathématiques, Université de Sherbrooke, Sherbrooke, QC Canada
- Département Des Sciences de La Santé Communautaire, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Elina Kaarlejärvi
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Katrine Raundrup
- Department of Environment and Mineral Resources, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Tomas Roslin
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
7
|
Ferguson LV, Adamo SA. From perplexing to predictive: are we ready to forecast insect disease susceptibility in a warming world? J Exp Biol 2023; 226:288412. [PMID: 36825944 DOI: 10.1242/jeb.244911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Insects are critical to our ecosystems, but we do not fully understand their future in our warming world. Rising temperatures are affecting insect physiology in myriad ways, including changes to their immune systems and the ability to fight infection. Whether predicted changes in temperature will contribute to insect mortality or success, and the role of disease in their future survival, remains unclear. Although heat can enhance immunity by activating the integrated defense system (e.g. via the production of protective molecules such as heat-shock proteins) and accelerating enzyme activity, heat can also compromise the immune system through energetic-resource trade-offs and damage. The responses to heat are highly variable among species. The reasons for this variability are poorly known, and we are lagging in our understanding of how and why the immune system responds to changes in temperature. In this Commentary, we highlight the variation in insect immune responses to heat and the likely underlying mechanisms. We suggest that we are currently limited in our ability to predict the effects of rising temperatures on insect immunity and disease susceptibility, largely owing to incomplete information, coupled with a lack of tools for data integration. Moreover, existing data are concentrated on a relatively small number of insect Orders. We provide suggestions for a path towards making more accurate predictions, which will require studies with realistic temperature exposures and housing design, and a greater understanding of both the thermal biology of the immune system and connections between immunity and the physiological responses to heat.
Collapse
Affiliation(s)
- Laura V Ferguson
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
8
|
Nyman T, Wutke S, Koivisto E, Klemola T, Shaw M, Andersson T, Haraldseide H, Hagen SB, Nakadai R, Ruohomäki K. A curated DNA barcode reference library for parasitoids of northern European cyclically outbreaking geometrid moths. Ecol Evol 2022; 12:e9525. [PMID: 36415871 PMCID: PMC9674473 DOI: 10.1002/ece3.9525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/16/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022] Open
Abstract
Large areas of forests are annually damaged or destroyed by outbreaking insect pests. Understanding the factors that trigger and terminate such population eruptions has become crucially important, as plants, plant-feeding insects, and their natural enemies may respond differentially to the ongoing changes in the global climate. In northernmost Europe, climate-driven range expansions of the geometrid moths Epirrita autumnata and Operophtera brumata have resulted in overlapping and increasingly severe outbreaks. Delayed density-dependent responses of parasitoids are a plausible explanation for the 10-year population cycles of these moth species, but the impact of parasitoids on geometrid outbreak dynamics is unclear due to a lack of knowledge on the host ranges and prevalences of parasitoids attacking the moths in nature. To overcome these problems, we reviewed the literature on parasitism in the focal geometrid species in their outbreak range and then constructed a DNA barcode reference library for all relevant parasitoid species based on reared specimens and sequences obtained from public databases. The combined recorded parasitoid community of E. autumnata and O. brumata consists of 32 hymenopteran species, all of which can be reliably identified based on their barcode sequences. The curated barcode library presented here opens up new opportunities for estimating the abundance and community composition of parasitoids across populations and ecosystems based on mass barcoding and metabarcoding approaches. Such information can be used for elucidating the role of parasitoids in moth population control, possibly also for devising methods for reducing the extent, intensity, and duration of outbreaks.
Collapse
Affiliation(s)
- Tommi Nyman
- Department of Ecosystems in the Barents Region, Svanhovd Research StationNorwegian Institute of Bioeconomy ResearchSvanvikNorway
| | - Saskia Wutke
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Elina Koivisto
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Tero Klemola
- Department of BiologyUniversity of TurkuTurkuFinland
| | | | - Tommi Andersson
- Kevo Subarctic Research Institute, Biodiversity UnitUniversity of TurkuTurkuFinland
| | | | - Snorre B. Hagen
- Department of Ecosystems in the Barents Region, Svanhovd Research StationNorwegian Institute of Bioeconomy ResearchSvanvikNorway
| | - Ryosuke Nakadai
- Biodiversity DivisionNational Institute for Environmental StudiesTsukubaJapan
| | - Kai Ruohomäki
- Department of BiologyUniversity of TurkuTurkuFinland
| |
Collapse
|
9
|
Li Y, Lake L, Chauhan YS, Taylor J, Sadras VO. Genetic basis and adaptive implications of temperature-dependent and temperature-independent effects of drought on chickpea reproductive phenology. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4981-4995. [PMID: 35526198 DOI: 10.1093/jxb/erac195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Water deficit often hastens flowering of pulses partially because droughted plants are hotter. Separating temperature-independent and temperature-dependent effects of drought is important to understand, model, and manipulate phenology. We define a new trait, drought effect on phenology (DEP), as the difference in flowering time between irrigated and rainfed crops, and use FST genome scanning to probe for genomic regions under selection for this trait in chickpea (Cicer arietinum). Owing to the negligible variation in daylength in our dataset, variation in phenology with sowing date was attributed to temperature and water; hence, genomic regions overlapping for early- and late-sown crops would associate with temperature-independent effects and non-overlapping genomic regions would associate with temperature-dependent effects. Thermal-time to flowering was shortened with increasing water stress, as quantified with carbon isotope composition. Genomic regions on chromosomes 4-8 were under selection for DEP. An overlapping region for early and late sowing on chromosome 8 revealed a temperature-independent effect with four candidate genes: BAM1, BAM2, HSL2, and ANT. The non-overlapping regions included six candidate genes: EMF1, EMF2, BRC1/TCP18, BZR1, NPGR1, and ERF1. Modelling showed that DEP reduces the likelihood of drought and heat stress at the expense of increased likelihood of cold stress. Accounting for DEP would improve genetic and phenotypic models of phenology.
Collapse
Affiliation(s)
- Yongle Li
- School of Agriculture, Food and Wine, The University of Adelaide, Australia
| | - Lachlan Lake
- School of Agriculture, Food and Wine, The University of Adelaide, Australia
- South Australian Research and Development Institute, Australia
| | | | - Julian Taylor
- School of Agriculture, Food and Wine, The University of Adelaide, Australia
| | - Victor O Sadras
- School of Agriculture, Food and Wine, The University of Adelaide, Australia
- South Australian Research and Development Institute, Australia
| |
Collapse
|
10
|
Kruckenberg H, Müskens GJDM, Glazov P, Moonen S, Morkunas J, Loshchagina J, Buij R. Severe feather deformation in greater white-fronted goose ( Anser alb. albifrons) goslings during hot summer period on Kolguev Island 2016. EUR J WILDLIFE RES 2022; 68:56. [PMID: 35967093 PMCID: PMC9362333 DOI: 10.1007/s10344-022-01603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 02/02/2023]
Abstract
In summer 2016, we observed premature feather malformation among goslings of greater white-fronted goose (Anser alb. albifrons), between 7 and 10 weeks of age on family gathering areas on Kolguev Island, Russia, the most important breeding island in the Western Palearctic. Rarely reported in wild birds, to our knowledge, this phenomenon has not been recorded in wild geese of this species, despite continuous ringing and marking of thousands of wild geese across Northern Europe and Arctic Siberia. This feather malformations were documented in 36 unfledged goslings showing weak feather basis, deformed or unevenly grown wing feathers or even dead feather buds. Approximately about one-third of all chicks were affected. Feather malformations like this, causing flightless chicks as a result, have never been noticed in any other of our 12 study years since 2006. The lesion was characterised by soft feather buds, weak or incomplete wing feathers and lack of feather development. No other abnormalities were observed in the goslings, so goslings did not differ in weight or body sizes. Affected fledglings never became airworthy and were killed in large numbers by predators or at latest perished during the Arctic winter. Supplementary Information The online version contains supplementary material available at 10.1007/s10344-022-01603-9.
Collapse
Affiliation(s)
- H. Kruckenberg
- Institute for Wetlands and Waterbird Research IWWR e.V, Am Steigbügel 3, D-27283 Verden, Germany
| | | | - P. Glazov
- grid.14476.300000 0001 2342 9668Institute for Geography, Moscow University, Moscow, Russia
| | - S. Moonen
- grid.4818.50000 0001 0791 5666Alterra-WUR, Wageningen University, Wageningen, Netherlands
| | - J. Morkunas
- grid.14329.3d0000 0001 1011 2418Marine Research Institute, Klaipeda University, Klaipeda, Lithuania
| | - J. Loshchagina
- grid.14476.300000 0001 2342 9668Institute for Geography, Moscow University, Moscow, Russia
| | - R. Buij
- grid.4818.50000 0001 0791 5666Alterra-WUR, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
11
|
Yang LH, Postema EG, Hayes TE, Lippey MK, MacArthur-Waltz DJ. The complexity of global change and its effects on insects. CURRENT OPINION IN INSECT SCIENCE 2021; 47:90-102. [PMID: 34004376 DOI: 10.1016/j.cois.2021.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Global change includes multiple overlapping and interacting drivers: 1) climate change, 2) land use change, 3) novel chemicals, and 4) the increased global transport of organisms. Recent studies have documented the complex and counterintuitive effects of these drivers on the behavior, life histories, distributions, and abundances of insects. This complexity arises from the indeterminacy of indirect, non-additive and combined effects. While there is wide consensus that global change is reorganizing communities, the available data are limited. As the pace of anthropogenic changes outstrips our ability to document its impacts, ongoing change may lead to increasingly unpredictable outcomes. This complexity and uncertainty argue for renewed efforts to address the fundamental drivers of global change.
Collapse
Affiliation(s)
- Louie H Yang
- Department of Entomology and Nematology, University of California, Davis, CA 95616 USA.
| | - Elizabeth G Postema
- Department of Entomology and Nematology, University of California, Davis, CA 95616 USA; Animal Behavior Graduate Group, University of California, Davis, CA 95616, USA
| | - Tracie E Hayes
- Department of Entomology and Nematology, University of California, Davis, CA 95616 USA; Population Biology Graduate Group, University of California, Davis, CA 95616, USA
| | - Mia K Lippey
- Department of Entomology and Nematology, University of California, Davis, CA 95616 USA; Entomology Graduate Group, University of California, Davis, CA 95616, USA
| | - Dylan J MacArthur-Waltz
- Department of Entomology and Nematology, University of California, Davis, CA 95616 USA; Population Biology Graduate Group, University of California, Davis, CA 95616, USA
| |
Collapse
|
12
|
St Leger RJ. Insects and their pathogens in a changing climate. J Invertebr Pathol 2021; 184:107644. [PMID: 34237297 DOI: 10.1016/j.jip.2021.107644] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 01/02/2021] [Accepted: 06/28/2021] [Indexed: 11/19/2022]
Abstract
The complex nature of climate change-mediated multitrophic interaction is an underexplored area, but has the potential to dramatically shift transmission and distribution of many insects and their pathogens, placing some populations closer to the brink of extinction. However, for individual insect-pathogen interactions climate change will have complicated hard-to-anticipate impacts. Thus, both pathogen virulence and insect host immunity are intrinsically linked with generalized stress responses, and in both pathogen and host have extensive trade-offs with nutrition (e.g., host plant quality), growth and reproduction. Potentially alleviating or exasperating these impacts, some pathogens and hosts respond genetically and rapidly to environmental shifts. This review identifies many areas for future research including a particular need to identify how altered global warming interacts with other environmental changes and stressors, and how consistent these impacts are across pathogens and hosts. With that achieved we would be closer to producing an overarching framework to integrate knowledge on all environmental interplay and infectious disease events.
Collapse
Affiliation(s)
- Raymond J St Leger
- Department of Entomology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
13
|
Sadras V, Vázquez C, Garzo E, Moreno A, Medina S, Taylor J, Fereres A. The role of plant labile carbohydrates and nitrogen on wheat-aphid relations. Sci Rep 2021; 11:12529. [PMID: 34131178 PMCID: PMC8206072 DOI: 10.1038/s41598-021-91424-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/24/2021] [Indexed: 01/08/2023] Open
Abstract
Interactions between plants and herbivores are key drivers of evolution and ecosystem complexity. We investigated the role of plant labile carbohydrates and nitrogen on wheat-aphid relations in a 22 factorial combining [CO2] and nitrogen supply. We measured life history traits (assay 1) and feeding behaviour (assay 2) of bird-cherry oat aphid (Rhopalosiphum padi L.) and English grain aphid (Sitobion avenae F.) forced to feed on single leaf laminae, and reproduction of R. padi in a setting where insects moved freely along the plant (assay 3). Experimental setting impacted aphid traits. Where aphids were constrained to single leaf, high nitrogen reduced their fitness and discouraged phloem feeding. Where aphids could move throughout the plant, high nitrogen enhanced their reproduction. Aphid responses to the interaction between nitrogen and [CO2] varied with experimental setting. The number of R. padi adults varied tenfold with plant growing conditions and correlated negatively with molar concentration of sugars in stem (assay 3). This finding has two implications. First, the common interpretation that high nitrogen favours insect fitness because protein-rich animal bodies have to build from nitrogen-poor plant food needs expanding to account for the conspicuous association between low nitrogen and high concentration of labile carbohydrates in plant, which can cause osmotic stress in aphids. Second, the function of labile carbohydrates buffering grain growth needs expanding to account for the osmotic role of carbohydrates in plant resistance to aphids.
Collapse
Affiliation(s)
- Victor Sadras
- South Australian Research and Development Institute, Adelaide, Australia. .,School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia.
| | - Carolina Vázquez
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| | - Elisa Garzo
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| | - Aránzazu Moreno
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| | - Sonia Medina
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Julian Taylor
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| | - Alberto Fereres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| |
Collapse
|
14
|
A dearth of data: fitting parasitoids into ecological networks. Trends Parasitol 2021; 37:863-874. [PMID: 34030983 DOI: 10.1016/j.pt.2021.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/22/2022]
Abstract
Studying parasitoids can provide insights into global diversity estimates, climate change impacts, and agroecosystem service provision. However, this potential remains largely untapped due to a lack of data on how parasitoids interact with other organisms. Ecological networks are a useful tool for studying and exploiting the impacts of parasitoids, but their construction is hindered by the magnitude of undescribed parasitoid species, a sparse knowledge of host ranges, and an under-representation of parasitoids within DNA-barcode databases (we estimate <5% have a barcode). Here, we advocate the use of DNA metabarcoding to construct the host-parasitoid component of multilayer networks. While the incorporation of parasitoids into network-based analyses has far ranging applications, we focus on its potential for assessing ecosystem service provision within agroecosystems.
Collapse
|
15
|
Høye TT, Loboda S, Koltz AM, Gillespie MAK, Bowden JJ, Schmidt NM. Nonlinear trends in abundance and diversity and complex responses to climate change in Arctic arthropods. Proc Natl Acad Sci U S A 2021; 118:e2002557117. [PMID: 33431570 PMCID: PMC7812779 DOI: 10.1073/pnas.2002557117] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Time series data on arthropod populations are critical for understanding the magnitude, direction, and drivers of change. However, most arthropod monitoring programs are short-lived and restricted in taxonomic resolution. Monitoring data from the Arctic are especially underrepresented, yet critical to uncovering and understanding some of the earliest biological responses to rapid environmental change. Clear imprints of climate on the behavior and life history of some Arctic arthropods have been demonstrated, but a synthesis of population-level abundance changes across taxa is lacking. We utilized 24 y of abundance data from Zackenberg in High-Arctic Greenland to assess trends in abundance and diversity and identify potential climatic drivers of abundance changes. Unlike findings from temperate systems, we found a nonlinear pattern, with total arthropod abundance gradually declining during 1996 to 2014, followed by a sharp increase. Family-level diversity showed the opposite pattern, suggesting increasing dominance of a small number of taxa. Total abundance masked more complicated trajectories of family-level abundance, which also frequently varied among habitats. Contrary to expectation in this extreme polar environment, winter and fall conditions and positive density-dependent feedbacks were more common determinants of arthropod dynamics than summer temperature. Together, these data highlight the complexity of characterizing climate change responses even in relatively simple Arctic food webs. Our results underscore the need for data reporting beyond overall trends in biomass or abundance and for including basic research on life history and ecology to achieve a more nuanced understanding of the sensitivity of Arctic and other arthropods to global changes.
Collapse
Affiliation(s)
- Toke T Høye
- Arctic Research Centre, Aarhus University, DK-8410 Rønde, Denmark;
- Department of Bioscience, Aarhus University, DK-8410 Rønde, Denmark
| | - Sarah Loboda
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Amanda M Koltz
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
- The Arctic Institute, Washington, DC 20009
| | - Mark A K Gillespie
- Department of Environmental Sciences, Western Norway University of Applied Sciences, 6851 Sogndal, Norway
| | - Joseph J Bowden
- Atlantic Forestry Centre, Canadian Forest Service, Natural Resources Canada, Corner Brook, NL A2H 5G4, Canada
| | - Niels M Schmidt
- Arctic Research Centre, Aarhus University, DK-4000 Roskilde, Denmark
- Department of Bioscience, Aarhus University, DK-4000 Roskilde, Denmark
| |
Collapse
|
16
|
Monticelli LS, Bishop J, Desneux N, Gurr GM, Jaworski CC, McLean AH, Thomine E, Vanbergen AJ. Multiple global change impacts on parasitism and biocontrol services in future agricultural landscapes. ADV ECOL RES 2021. [DOI: 10.1016/bs.aecr.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Kankaanpää T, Abrego N, Vesterinen E, Roslin T. Microclimate structures communities, predation and herbivory in the High Arctic. J Anim Ecol 2020; 90:859-874. [PMID: 33368254 PMCID: PMC8049004 DOI: 10.1111/1365-2656.13415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 12/14/2020] [Indexed: 01/26/2023]
Abstract
In a warming world, changes in climate may result in species‐level responses as well as changes in community structure through knock‐on effects on ecological interactions such as predation and herbivory. Yet, the links between these responses at different levels are still inadequately understood. Assessing how microclimatic conditions affect each of them at local scales provides information essential for understanding the consequences of macroclimatic changes projected in the future. Focusing on the rapidly changing High Arctic, we examine how a community based on a common resource species (avens, Dryas spp.), a specialist insect herbivore (Sympistis zetterstedtii) and natural enemies of lepidopteran herbivores (parasitoids) varies along a multidimensional microclimatic gradient. We ask (a) how parasitoid community composition varies with local abiotic conditions, (b) how the community‐level response of parasitoids is linked to species‐specific traits (koino‐ or idiobiont life cycle strategy and phenology) and (c) whether the effects of varying abiotic conditions extend to interaction outcomes (parasitism rates on the focal herbivore and realized herbivory rates). We recorded the local communities of parasitoids, herbivory rates on Dryas flowers and parasitism rates in Sympistis larvae at 20 sites along a mountain slope. For linking community‐level responses to microclimatic conditions with parasitoid traits, we used joint species distribution modelling. We then assessed whether the same abiotic variables also affect parasitism and herbivory rates, by applying generalized linear and additive mixed models. We find that parasitism strategy and phenology explain local variation in parasitoid community structure. Parasitoids with a koinobiont strategy preferred high‐elevation sites with higher summer temperatures or sites with earlier snowmelt and lower humidity. Species of earlier phenology occurred with higher incidence at sites with cooler summer temperatures or later snowmelt. Microclimatic effects also extend to parasitism and herbivory, with an increase in the parasitism rates of the main herbivore S. zetterstedtii with higher temperature and lower humidity, and a matching increase in herbivory rates. Our results show that microclimatic variation is a strong driver of local community structure, species interactions and interaction outcomes in Arctic ecosystems. In view of ongoing climate change, these results predict that macroclimatic changes will profoundly affect arctic communities.
Collapse
Affiliation(s)
- Tuomas Kankaanpää
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Nerea Abrego
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Eero Vesterinen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland.,Biodiversity Unit, University of Turku, Turku, Finland
| | - Tomas Roslin
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland.,Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|