1
|
Gao S, Zhao Y, Zhang L, Li X, Chen H, Qi J, Hu C. Environmental gradient changes shape multi-scale food web structures: Impact on antibiotics trophic transfer in a lake ecosystem. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137965. [PMID: 40120275 DOI: 10.1016/j.jhazmat.2025.137965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Environmental change can alter the multi-scale foodweb structure, thereby impacting the pollutants trophic transfer in aquatic ecosystems. However, a quantitative understanding of how environmental gradient changes affect pollutant trophic transfer in natural lake ecosystems remains limited. This study investigated temporal variations in environment change index (ECi), multi-scale foodweb structure, and trophic transfer of quinolones antibiotics (QNs) in Baiyangdian Lake, Northern China, from 2018 to 2023. Our results demonstrated that the interaction strength (IS) in detritus (DIS) and macrophyte (MIS) in 2023 were significantly lower than those in 2018, and diversity indices exhibited significant temporal differences between 2018 and 2023. ECi was significantly correlated with DIS/MIS between species at the population scale and with diversity indices (DH and H') at the ecosystem scale. The trophic magnification factors (TMFs) of QNs have higher values in 2023 compared to 2018, showing significant temporal differences. Through structural equation model, the results showed ECi directly impacted DIS, which in turn affected SEAc and H', while indirectly influencing TMFs. The TMFs of QNs was mainly regulated by environmental factors. These findings highlighted the influencing mechanism through multi-scale foodweb structures regulate pollutant trophic transfer under environmental change in natural lake.
Collapse
Affiliation(s)
- Sai Gao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; College of Environment Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei Province 050000, China
| | - Yu Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
| | - Lulu Zhang
- College of Environment Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei Province 050000, China.
| | - Xiaoning Li
- College of Environment Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei Province 050000, China
| | - Haoda Chen
- College of Environment Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei Province 050000, China
| | - Jing Qi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China.
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
| |
Collapse
|
2
|
Saboret G, Moccetti C, Wassenaar LI, Matthews B, Aquino NJ, Janssen DJ, Brodersen J, Schubert CJ. Impact of Glaciers on Trophic Dynamics and Polyunsaturated Fat Accumulation in Southern Greenland Fjord Ecosystems. GLOBAL CHANGE BIOLOGY 2025; 31:e70044. [PMID: 39868674 DOI: 10.1111/gcb.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/22/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
The primary production of fjords across the Arctic and Subarctic is undergoing significant transformations due to the climatically driven retreat of glaciers and ice sheets. However, the implications of these changes for upper trophic levels remain largely unknown. In this study, we employ both bulk and compound-specific stable isotope analyses to investigate how shifts at the base of fjord food webs impact the carbon and energy sources of consumers. Focusing on two rapidly changing fjords in Southern Greenland, we used the migratory Arctic char as an indicator species, sampling populations along environmental gradients within the fjords, building upon the assumption that char populations feed primarily close to their natal stream, thereby integrating a dietary gradient. Our analysis of bulk stable isotopes in Arctic char tissue confirmed this premise, revealing a consistent change in resource use from the outer to the inner fjord, which nonetheless served as preferred feeding grounds. Essential amino acid analysis further indicated shifts in carbon and nitrogen sources, consistent with changes in nutrient use near glacier inputs characterized by low turbidity and high iron levels. Notably, these changes in the source of primary production were associated with shifts in trophic positions and the transfer of polyunsaturated fatty acids, with Arctic char in glacier-influenced inner fjords feeding at lower trophic level (size-corrected) and accumulating higher levels of high-quality docosahexaenoic acid (DHA). These findings highlight the usefulness of new analytical tools in revealing that glacial retreat can substantially alter food web dynamics, enhancing both carbon flow and the nutritional quality of fish in fjord ecosystems. The two Southern Greenland fjords studied could represent the future of other fjords, where retreating glaciers become land-terminating and glacial inputs decrease. Our study underscores the critical role of glacier dynamics in affecting high-level consumers, such as salmonids, with implications for fjords globally.
Collapse
Affiliation(s)
- Grégoire Saboret
- Department of Surface Waters-Research and Management, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Coralie Moccetti
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Institute of Ecology and Evolution, Aquatic Ecology, University of Bern, Bern, Switzerland
| | - Leonard I Wassenaar
- WasserCluster Lunz-Biologische Station, Dr. Carl Kupelwieser Promenade 5, Lunz am See, Austria
| | - Blake Matthews
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Institute of Ecology and Evolution, Aquatic Ecology, University of Bern, Bern, Switzerland
| | - Norberto Jr Aquino
- Department of Surface Waters-Research and Management, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - David J Janssen
- Department of Surface Waters-Research and Management, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Jakob Brodersen
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Institute of Ecology and Evolution, Aquatic Ecology, University of Bern, Bern, Switzerland
| | - Carsten J Schubert
- Department of Surface Waters-Research and Management, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Hampton SE, Powers SM, Dugan HA, Knoll LB, McMeans BC, Meyer MF, O'Reilly CM, Ozersky T, Sharma S, Barrett DC, Chandra S, Jansen J, McClure RP, Rautio M, Weyhenmeyer GA, Yang X. Environmental and societal consequences of winter ice loss from lakes. Science 2024; 386:eadl3211. [PMID: 39388548 DOI: 10.1126/science.adl3211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 08/27/2024] [Indexed: 10/12/2024]
Abstract
Climate change is reducing winter ice cover on lakes; yet, the full societal and environmental consequences of this ice loss are poorly understood. The socioeconomic implications of declining ice include diminished access to ice-based cultural activities, safety concerns in traversing ice, changes in fisheries, increases in shoreline erosion, and declines in water storage. Longer ice-free seasons allow more time and capacity for water to warm, threatening water quality and biodiversity. Food webs likely will reorganize, with constrained availability of ice-associated and cold-water niches, and ice loss will affect the nature, magnitude, and timing of greenhouse gas emissions. Examining these rapidly emerging changes will generate more-complete models of lake dynamics, and transdisciplinary collaborations will facilitate translation to effective management and sustainability.
Collapse
Affiliation(s)
- Stephanie E Hampton
- Biosphere Sciences and Engineering, Carnegie Institution for Science, Pasadena, CA, USA
| | - Stephen M Powers
- Department of Biology, Center for Reservoir and Aquatic System Research, Baylor University, Waco, TX, USA
| | - Hilary A Dugan
- Center for Limnology, University of Wisconsin-Madison, Madison, WI, USA
| | - Lesley B Knoll
- Department of Biology, Miami University, Oxford, OH, USA
| | - Bailey C McMeans
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Michael F Meyer
- Hydrologic Remote Sensing Branch, US Geological Survey, Madison, WI, USA
| | - Catherine M O'Reilly
- Department of Geography, Geology, and the Environment, Illinois State University, Normal, IL, USA
| | - Ted Ozersky
- Large Lakes Observatory, University of Minnesota Duluth, Duluth, MN, USA
| | - Sapna Sharma
- Department of Biology, York University, Toronto, ON, Canada
| | - David C Barrett
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Sudeep Chandra
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Joachim Jansen
- Department of Ecology and Genetics, Limnology, Uppsala University, Uppsala, Sweden
| | - Ryan P McClure
- Biosphere Sciences and Engineering, Carnegie Institution for Science, Pasadena, CA, USA
| | - Milla Rautio
- Group for Interuniversity Research in Limnology and Aquatic Environment and Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Gesa A Weyhenmeyer
- Department of Ecology and Genetics, Limnology, Uppsala University, Uppsala, Sweden
| | - Xiao Yang
- Department of Earth Sciences, Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
4
|
Paltsev A, Bergström AK, Vuorio K, Creed IF, Hessen DO, Kortelainen P, Vuorenmaa J, de Wit HA, Lau DCP, Vrede T, Isles PDF, Jonsson A, Geibrink E, Kahilainen KK, Drakare S. Phytoplankton biomass in northern lakes reveals a complex response to global change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173570. [PMID: 38825201 DOI: 10.1016/j.scitotenv.2024.173570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/25/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024]
Abstract
Global change may introduce fundamental alterations in phytoplankton biomass and community structure that can alter the productivity of northern lakes. In this study, we utilized Swedish and Finnish monitoring data from lakes that are spatially (135 lakes) and temporally (1995-2019, 110 lakes) extensive to assess how phytoplankton biomass (PB) of dominant phytoplankton groups related to changes in water temperature, pH and key nutrients [total phosphorus (TP), total nitrogen (TN), total organic carbon (TOC), iron (Fe)] along spatial (Fennoscandia) and temporal (25 years) gradients. Using a machine learning approach, we found that TP was the most important determinant of total PB and biomass of a specific species of Raphidophyceae - Gonyostomum semen - and Cyanobacteria (both typically with adverse impacts on food-webs and water quality) in spatial analyses, while Fe and pH were second in importance for G. semen and TN and pH were second and third in importance for Cyanobacteria. However, in temporal analyses, decreasing Fe and increasing pH and TOC were associated with a decrease in G. semen and an increase in Cyanobacteria. In addition, in many lakes increasing TOC seemed to have generated browning to an extent that significantly reduced PB. The identified discrepancy between the spatial and temporal results suggests that substitutions of data for space-for-time may not be adequate to characterize long-term effects of global change on phytoplankton. Further, we found that total PB exhibited contrasting temporal trends (increasing in northern- and decreasing in southern Fennoscandia), with the decline in total PB being more pronounced than the increase. Among phytoplankton, G. semen biomass showed the strongest decline, while cyanobacterial biomass showed the strongest increase over 25 years. Our findings suggest that progressing browning and changes in Fe and pH promote significant temporal changes in PB and shifts in phytoplankton community structures in northern lakes.
Collapse
Affiliation(s)
- Aleksey Paltsev
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.
| | | | | | - Irena F Creed
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Dag Olav Hessen
- Centre of Biogeochemistry in the Anthropocene and Department of Bioscience, University of Oslo, Oslo, Norway
| | | | | | - Heleen A de Wit
- Centre of Biogeochemistry in the Anthropocene and Department of Bioscience, University of Oslo, Oslo, Norway; Norwegian Institute for Water Research, Oslo, Norway
| | - Danny C P Lau
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tobias Vrede
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Peter D F Isles
- Watershed Management Division, Vermont Department of Environmental Conservation, Montpelier, VT, USA
| | - Anders Jonsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Erik Geibrink
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | | | - Stina Drakare
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
5
|
Luo Y, Wang Y, Guo F, Kainz MJ, You J, Li F, Gao W, Shen X, Tao J, Zhang Y. Sources and fate of omega-3 polyunsaturated fatty acids in a highly eutrophic lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172879. [PMID: 38697529 DOI: 10.1016/j.scitotenv.2024.172879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Omega-3 polyunsaturated fatty acids (ω3-PUFA) are central to the growth and reproduction of aquatic consumers. Dissolved nutrients in aquatic ecosystems strongly affect algal taxonomic composition and thus the production and transfer of specific ω3-PUFA to consumers at higher trophic levels. However, most studies were conducted in nutrient-poor, oligotrophic lakes, leading to an insufficient understanding of how water nutrients affect algal ω3-PUFA and their trophic transfer in consumers in highly eutrophic lakes. We conducted a field investigation in a highly eutrophic lake and collected basal food sources (phytoplankton, periphyton and macrophytes) and aquatic consumers (invertebrates, zooplankton and fish), and measured their fatty acid (FA) composition. Our results showed that periphyton and phytoplankton were both important sources of ω3-PUFA supporting the highly eutrophic lake food web. High water nutrient levels led to low ω3-PUFA levels in phytoplankton and periphyton, resulting in decreased nutritional quality. Consequently, ω3-PUFA of invertebrates and zooplankton reflected variations in ω3-PUFA of phytoplankton and periphyton, respectively. The ω3-PUFA levels of fish decreased as phytoplankton and periphyton ω3-PUFA decreased. Among fish, the Redfin Culter (Cultrichthys erythropterus) and Bar Cheek Goby (Rhinogobius giurinus) exhibited significantly higher levels of EPA and DHA compared to the Pond Loach (Misgurnus anguillicaudatus), which may have been caused by their different feeding modes. Decreases in the ω3-PUFA levels of basal food sources may be one of the causes leading to the reduction of trophic links in aquatic food webs. Our study elucidated the sources and fate of ω3-PUFA in highly eutrophic lakes, complemented previous studies in oligo- and mesotrophic lakes, and emphasized the role of high-quality food sources. Our results offer new perspectives for the conservation and management of highly eutrophic lake ecosystems.
Collapse
Affiliation(s)
- Yiduo Luo
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fen Guo
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Martin J Kainz
- WasserCluster Lunz - Biologische Station, Lunz am See, Austria; Danube University Krems, Research Lab of Aquatic Ecosystem Research and -Health, Krems, Austria
| | - Jiaqi You
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Feilong Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Wei Gao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaomei Shen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Juan Tao
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Yuan Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Yan K, Guo F, Kainz MJ, Bunn SE, Li F, Gao W, Ouyang X, Zhang Y. Increasing water nutrient reduces the availability of high-quality food resources for aquatic consumers and consequently simplifies river food webs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172706. [PMID: 38657799 DOI: 10.1016/j.scitotenv.2024.172706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/01/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
While eutrophication has led to serious habitat degradation and biotic shifts in freshwater ecosystems, most current studies have focused on changes in community assemblages, with few considering the effect of eutrophication on food webs. We conducted a field study in subtropical headwater streams with a gradient of water nutrient levels to examine the effect of increasing water nutrients on food webs by using the long-chain polyunsaturated fatty acid eicosapentaenoic acid (EPA) as a measure of the nutritional quality of food. Basal food resources (macrophytes, submerged leaf litter, and periphyton), and aquatic consumers (macroinvertebrates and fish) were collected, and their fatty acid (FA) profiles were analyzed. Our results showed that periphyton was the dominant source of EPA for macroinvertebrates and fish, and a high-quality resource for consumers. As water nutrient concentrations increased, nutritional quality of periphyton significantly decreased and, in turn, the correlation between FA profiles of periphyton and macroinvertebrates declined. However, periphyton FA profiles did not account for the variability of fish FA, which may be induced by the increasing proportions of omnivorous fish in eutrophic streams that derived EPA from other sources. Further, the reduced periphyton EPA was associated with decreased trophic links and simplified stream food webs. Our study highlights the importance of high-quality food resources for aquatic food webs as water nutrients increased in stream ecosystems and provides a nutritional perspective to understand the mechanisms how eutrophication affects aquatic ecosystems.
Collapse
Affiliation(s)
- Keheng Yan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangzhou 510006, China
| | - Fen Guo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangzhou 510006, China.
| | - Martin J Kainz
- WasserCluster Lunz - Biologische Station, Lunz am See, Austria; Danube University Krems, Aquatic Ecosystem Research and -Health, 3500 Krems, Austria
| | - Stuart E Bunn
- Australian Rivers Institute, Griffith University, Nathan, Qld, Australia
| | - Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangzhou 510006, China
| | - Wei Gao
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangzhou 510006, China
| | - Xiaoguang Ouyang
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yuan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangzhou 510006, China
| |
Collapse
|
7
|
Bergström AK, Creed IF, Paltsev A, de Wit HA, Lau DCP, Drakare S, Vrede T, Isles PDF, Jonsson A, Geibrink E, Kortelainen P, Vuorenmaa J, Vuorio K, Kahilainen KK, Hessen DO. Declining calcium concentration drives shifts toward smaller and less nutritious zooplankton in northern lakes. GLOBAL CHANGE BIOLOGY 2024; 30:e17220. [PMID: 38433333 DOI: 10.1111/gcb.17220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Zooplankton community composition of northern lakes is changing due to the interactive effects of climate change and recovery from acidification, yet limited data are available to assess these changes combined. Here, we built a database using archives of temperature, water chemistry and zooplankton data from 60 Scandinavian lakes that represent broad spatial and temporal gradients in key parameters: temperature, calcium (Ca), total phosphorus (TP), total organic carbon (TOC), and pH. Using machine learning techniques, we found that Ca was the most important determinant of the relative abundance of all zooplankton groups studied, while pH was second, and TOC third in importance. Further, we found that Ca is declining in almost all lakes, and we detected a critical Ca threshold in lake water of 1.3 mg L-1 , below which the relative abundance of zooplankton shifts toward dominance of Holopedium gibberum and small cladocerans at the expense of Daphnia and copepods. Our findings suggest that low Ca concentrations may shape zooplankton communities, and that current trajectories of Ca decline could promote widespread changes in pelagic food webs as zooplankton are important trophic links from phytoplankton to fish and different zooplankton species play different roles in this context.
Collapse
Affiliation(s)
| | - Irena F Creed
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Aleksey Paltsev
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Heleen A de Wit
- Centre of Biogeochemistry in the Anthropocene and Department of Bioscience, University of Oslo, Oslo, Norway
- Norwegian Institute for Water Research, Oslo, Norway
| | - Danny C P Lau
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Stina Drakare
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tobias Vrede
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Peter D F Isles
- Watershed Management Division, Vermont Department of Environmental Conservation, Montpelier, Vermont, USA
| | - Anders Jonsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Erik Geibrink
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | | | | | | | | | - Dag Olav Hessen
- Centre of Biogeochemistry in the Anthropocene and Department of Bioscience, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Huang J, Guo F, Burford MA, Kainz M, Li F, Gao W, Ouyang X, Zhang Y. How do small dams alter river food webs? A food quality perspective along the aquatic food web continuum. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120501. [PMID: 38437746 DOI: 10.1016/j.jenvman.2024.120501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
Damming of rivers poses a significant threat to freshwater ecosystems. Previous studies about the impact of damming on river ecosystems have mostly focused on large dams, with the impact of small dams largely unknown. Further, while the impacts of dams on aquatic communities have been widely studied, the effect on energy flow across river food webs remains unclear. In recent years, long-chain polyunsaturated fatty acid analysis (LC-PUFA) has emerged as a promising technique for assessing food quality and trophic interactions. In this study, LC-PUFA was applied to explore the nutritional effects of small dams on river food webs. A field investigation was conducted at upstream and downstream areas of three small dams in the headwaters of Dongjiang River, China, to evaluate the impact of small dams on the nutritional quality of basal food sources, and their consequent impacts on aquatic consumers and trophic links. Basal food sources (i.e., submerged leaves, macrophytes and periphyton) and aquatic consumers (i.e., macroinvertebrates and fish) were collected, and their fatty acid (FA) composition was measured. Our results showed that periphyton, rather than submerged leaves and macrophytes, was the primary high-quality food source for aquatic consumers, providing them with LC-PUFA, irrespective of whether sites were upstream or downstream. Damming the streams induced changes in aqueous nutrient concentrations (TP, PO4-P, DIN, and TN) from upstream to downstream of the dams, leading to significant variation in periphyton FA content. Compared with periphyton collected at downstream sites, periphyton at upstream sites contained higher LC-PUFA, but lower short-chain PUFA. Differences in periphyton LC-PUFA between the upstream and downstream areas of dams were reflected in the FA profiles of invertebrate grazers and filterers, and further transferred to fish. Furthermore, decreased periphyton nutritional quality at the downstream of the dams was one of the reasons for the simplification of stream food webs. Our results indicated that small dams negatively affected food webs, emphasizing the importance of high-quality food sources for stream ecosystems. We suggest that the trophic integrity of river food webs hinges on the dietary availability of periphyton supplying physiologically highly required nutrients for consumers and must thus not be compromised by damming of streams or other alterations.
Collapse
Affiliation(s)
- Juan Huang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Macao Greater Bay Area (GBA), School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fen Guo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Macao Greater Bay Area (GBA), School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Michele A Burford
- Australian Rivers Institute, Griffith University, Nathan, Qld, 4109, Australia
| | - Martin Kainz
- WasserCluster Lunz - Inter-University Centre for Aquatic Ecosystem Research, 3293 Lunz am See, Austria; Research lab for Aquatic Ecosystem Research and -Health, Danube University Krems, 3500 Krems an der Donau, Austria
| | - Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Macao Greater Bay Area (GBA), School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wei Gao
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Macao Greater Bay Area (GBA), School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaoguang Ouyang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yuan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Macao Greater Bay Area (GBA), School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
9
|
Yan K, Guo F, Kainz MJ, Li F, Gao W, Bunn SE, Zhang Y. The importance of omega-3 polyunsaturated fatty acids as high-quality food in freshwater ecosystems with implications of global change. Biol Rev Camb Philos Soc 2024; 99:200-218. [PMID: 37724488 DOI: 10.1111/brv.13017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
Traditionally, trophic ecology research on aquatic ecosystems has focused more on the quantity of dietary energy flow within food webs rather than food quality and its effects on organisms at various trophic levels. Recent studies emphasize that food quality is central to consumer growth and reproduction, and the importance of food quality for aquatic ecosystems has become increasingly well recognized. It is timely to synthesise these findings and identify potential future research directions. We conducted a systematic review of omega-3 polyunsaturated fatty acids (ω3-PUFAs) as a crucial component of high-quality food sources in freshwater ecosystems to evaluate their impact on a variety of consumers, and explore the effects of global change on these high-quality food sources and their transfer to higher trophic consumers within and across ecosystems. In freshwater ecosystems, algae rich in ω3 long-chain PUFAs, such as diatoms, dinoflagellates and cryptophytes, represent important high-quality food sources for consumers, whereas cyanobacteria, green algae, terrestrial vascular plants and macrophytes low in ω3 long-chain PUFAs are low-quality food sources. High-quality ω3-PUFA-containing food sources usually lead to increased growth and reproduction of aquatic consumers, e.g. benthic invertebrates, zooplankton and fish, and also provide ω3 long-chain PUFAs to riparian terrestrial consumers via emergent aquatic insects. Consumers feeding on high-quality ω3-PUFA-containing foods in turn represent high-quality food for their own predators. However, the ω3-PUFA content of food sources is sensitive to global environmental changes. Warming, eutrophication, increased light intensity (e.g. from loss of riparian shading), and pollutants potentially inhibit the synthesis of algal ω3-PUFAs while at the same time promoting the growth of lower-quality foods, such as cyanobacteria and green algae. These factors combined could lead to a significant reduction in the availability of ω3-PUFAs for consumers and constrain their overall fitness. Although the effect of individual environmental factors on high-quality ω3-PUFA-containing food sources has been investigated, multiple environmental factors (e.g. climate change, human activities, pollution) will act in combination and any synergistic effects on aquatic food webs remain unclear. Identifying the sources and fate of ω3-PUFAs within and across ecosystems could represent an important approach to understand the impact of multiple environmental factors on trophic relationships and the implications for populations of freshwater and riparian consumers. Maintaining the availability of high-quality ω3-PUFA-containing food sources may also be key to mitigating freshwater biodiversity loss due to global change.
Collapse
Affiliation(s)
- Keheng Yan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fen Guo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Martin J Kainz
- WasserCluster Lunz - Biologische Station, Lunz am See, 3293, Austria
- Danube University Krems, Research Lab for Aquatic Ecosystems and Health, Krems, 3500, Austria
| | - Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wei Gao
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Stuart E Bunn
- Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia
| | - Yuan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
10
|
Han W, Zhang E, Sun W, Lin Q, Meng X, Ni Z, Ning D, Shen J. Anthropogenic activities altering the ecosystem in Lake Yamzhog Yumco, southern Qinghai-Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166715. [PMID: 37666338 DOI: 10.1016/j.scitotenv.2023.166715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Lakes on the Qinghai-Tibet Plateau (QTP) have been subject to multiple environmental pressures from rapid climate change and intensified human activity in recent decades. However, their ecological effects on the lake ecosystem remain largely unclear due to the lack of long-term monitoring data. This study presented the environmental and ecological changes of the lake Yamzhog Yumco (Southern QTP) over the past three decades based on multi-proxy analysis (geochemistry and sedaDNA) on a high-time resolution sediment core. The result showed that the lake exhibited a continuous eutrophication process from 2004 CE, which has accelerated since 2014 CE. The nutrient enrichment was mainly attributed to anthropogenic emissions from the catchment. The sedimentary ancient DNA (sedaDNA) metabarcoding data registered a sensitive response of aquatic communities to the additional nutrient supply. Eukaryotic algae and aquatic invertebrate communities exhibited similar temporal dynamics, characterized by the increase in eutrophic taxa and the decrease in oligotrophic taxa. Change points analysis suggested that lake ecosystems underwent a slight ecological shift in 2003 CE and an abrupt shift in 2012 CE driven by nutrient enrichment. Quantitative analysis revealed that nutrients and human activity accounted for 27.9 % and 21.7 % of the temporal variation in aquatic communities, whereas climate change only explained 6.9 % of the total variation. From a paleolimnological view, our study supported that regional human activity could distinctly alter the nutrient level and aquatic community structure of lake ecosystems in the QTP. Considering that anthropogenic disturbance will continuously increase, it is crucial to strengthen the field monitoring of the lakes on the plateau and make effective management measures to avoid irreversible ecological consequences.
Collapse
Affiliation(s)
- Wu Han
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Enlou Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, 210008, China.
| | - Weiwei Sun
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, 210008, China
| | - Qi Lin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, 210008, China
| | - Xianqiang Meng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, 210008, China
| | - Zhenyu Ni
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, 210008, China
| | - Dongliang Ning
- School of Geography Sciences, Nantong University, Nantong, 226007, China
| | - Ji Shen
- School of Geography and Oceanography Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
11
|
Calderini ML, Kahilainen KK, Estlander S, Peltomaa E, Piro AJ, Rigaud C, Ruuhijärvi J, Salmi P, Vesterinen J, Vuorio K, Taipale SJ. Eutrophication effect on production and transfer of omega-3 fatty acids in boreal lake food webs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166674. [PMID: 37647960 DOI: 10.1016/j.scitotenv.2023.166674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Eutrophication, i.e. increasing level of nutrients and primary production, is a central environmental change of lakes globally with wide effects on food webs. However, how eutrophication affects the synthesis of physiologically essential biomolecules (omega-3 fatty acids) and their transfer to higher trophic levels at the whole food web level is not well understood. We assessed food web (phytoplankton, zooplankton, and fish) biomass, community structure and fatty acid content (eicosapentaenoic acid [EPA], and docosahexaenoic acid [DHA]), together with fatty acid specific primary production in 12 Finnish boreal lakes covering the total nutrient gradient from oligotrophic to highly eutrophic lakes (4-140 μg TP l-1; 413-1814 μg TN l-1). Production was measured as the incorporation of 13C-NaHCO3 into phytoplankton fatty acids and differentiated into volumetric production (production per litre of water) and productivity (production per phytoplankton biomass). Increases in nutrients led to higher biomass of phytoplankton, zooplankton and fish communities while also affecting community composition. Eutrophication negatively influenced the contribution of phytoplankton biomass preferentially grazed by zooplankton (<35 μm). Total volumetric production saturated at high phytoplankton biomass while EPA volumetric production presented a logarithmic relationship with nutrient increase. Meanwhile, total and EPA productivity had unimodal responses to this change in nutrients. DHA volumetric production and productivity presented large variation with increases in total phosphorus, but a unimodal model best described DHA changes with eutrophication. Results showed that eutrophication impaired the transfer of EPA and DHA into zooplankton and fish, showing a clear negative impact in some species (e.g. perch) while having no effect in other species (e.g. roach, ruffe). Results show non-linear trends in fatty acid production and productivity peaking at nutrient concentrations 22-35 μg l-1 TP followed by a gradual decrease.
Collapse
Affiliation(s)
- Marco L Calderini
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
| | | | - Satu Estlander
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Elina Peltomaa
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | | | - Cyril Rigaud
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | | | - Pauliina Salmi
- Spectral Imaging Laboratory, Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
| | - Jussi Vesterinen
- The Association for Water and Environment of Western Uusimaa, Lohja, Finland
| | - Kristiina Vuorio
- Finnish Environment Institute Syke, Nature Solutions, Helsinki, Finland
| | - Sami J Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
12
|
Lau DCP, Brua RB, Goedkoop W, Culp JM. Fatty-acid based assessment of benthic food-web responses to multiple stressors in a large river system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122598. [PMID: 37741544 DOI: 10.1016/j.envpol.2023.122598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Rivers are often exposed to multiple stressors, such as nutrients and contaminants, whose impacts on the river food webs may not be distinguished by sole assessment of biological community structures. We examined the benthic algal assemblages and the fatty acids (FA) of benthic macroinvertebrates in the lower Athabasca River in Canada, aiming to assess the changes in algal support and nutritional quality of the benthic food web in response to cumulative exposure to natural bitumen, municipal sewage discharge (hereafter, "sewage"), and oil sands mining ("mining"). Data show that the decline in water quality (increases in nutrient concentrations and total suspended solids) was associated with decreases in benthic diatom abundance, and was driven mainly by sewage-induced nutrient enrichment. Responses in nutritional quality of benthic macroinvertebrates, indicated by their polyunsaturated FA (PUFA) concentrations, were taxon- and stressor-specific. Nutritional quality of the larval dragonfly predator, Ophiogomphus, decreased nonlinearly with decreasing benthic diatom abundance and was lowest at the sewage-affected sites, although exposure to natural bitumen also resulted in reduced Ophiogomphus PUFA concentrations. In contrast, the PUFA concentrations of mayfly grazers/collector-gatherers were not affected by natural bitumen exposure, and were higher at the sewage and sewage+mining sites. The PUFA concentrations of the shredder Pteronarcys larvae did not change with cumulative exposure to the stressors. Sediment metal and polycyclic aromatic compound concentrations were not associated with the macroinvertebrate FA changes. Overall, we provide evidence that sewage induced reduction in trophic support by PUFA-rich diatoms, and was the predominant driver of the observed changes in FA composition and nutritional quality of the benthic macroinvertebrates. Fatty-acid metrics are useful to untangle effects of concurrent stressors, but the assessment outcomes depend on the functional feeding guilds used. A food-web perspective using multiple trophic levels and feeding guilds supports a more holistic assessment of the stressor impacts.
Collapse
Affiliation(s)
- Danny C P Lau
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Robert B Brua
- Environment and Climate Change Canada, National Hydrology Research Centre, Saskatoon, SK, Canada
| | - Willem Goedkoop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Joseph M Culp
- Cold Regions Research Centre, Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| |
Collapse
|
13
|
Xie J, Wu Q, Tao L, Wu F, Tu S, Chen D, Lin T, Li T. Essential and non-essential elements in tuna and billfish around the world: Distribution patterns and influencing factors. MARINE POLLUTION BULLETIN 2023; 196:115587. [PMID: 37797540 DOI: 10.1016/j.marpolbul.2023.115587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023]
Abstract
Tuna and billfish are widely distributed in oceans worldwide. Their survival is relied on a decent share of essential and non-essential elements. We conducted a comprehensive evaluation of essential and non-essential elements in livers of tuna and billfish collected from global oceans. The individual element consistently shown similar orders of magnitude in both tuna and billfish, with essential elements generally being 1-3 orders of magnitude higher than non-essential elements. Various physicochemical properties and behaviors contributed to four distinct clusters of these elements. Also, element distribution pattern indicated the presence of four sample groups based on regions and categories. Nine elements served as characteristic indicators. Among them, fish category was the most important influencing factor. Hg, Fe, Tl, Co, and Se were influenced by body size, trophic level, and feeding habits. Ni was influenced by sampling regions, while Mg, Mn and As were influenced by body size and local primary production.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Qiang Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Ling Tao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Feng Wu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China.
| | - Shuyi Tu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Duofu Chen
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Tiejun Li
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China.
| |
Collapse
|
14
|
Kozak N, Kahilainen KK, Pakkanen HK, Hayden B, Østbye K, Taipale SJ. Mercury and amino acid content relations in northern pike (Esox lucius) in subarctic lakes along a climate-productivity gradient. ENVIRONMENTAL RESEARCH 2023; 233:116511. [PMID: 37369304 DOI: 10.1016/j.envres.2023.116511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
Mercury is a highly toxic element for consumers, but its relation to amino acids and physiology of wild fish is not well known. The main aim of this study was to evaluate how total mercury content (THg) of northern pike (Esox lucius) is related to amino acids and potentially important environmental and biological factors along a climate-productivity gradient of ten subarctic lakes. Linear regression between THg and sixteen amino acids content [nmol mg-1 dry weight] from white dorsal muscle of pike from these lakes were tested. Lastly, a general linear model (GLM) for age-corrected THg was used to test which factors are significantly related to mercury content of pike. There was a positive relationship between THg and proline. Seven out of sixteen analysed amino acids (histidine, threonine, arginine, serine, glutamic acid, glycine, and aspartic acid) were significantly negatively related to warmer and more productive lakes, while THg showed a positive relationship. GLM model indicated higher THg was found in higher trophic level pike with lower cysteine content and inhabiting warmer and more productive lakes with larger catchment containing substantial proportion of peatland area. In general, THg was not only related to the biological and environmental variables but also to amino acid content.
Collapse
Affiliation(s)
- Natalia Kozak
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, Anne Evenstad Veg 80, NO-2480, Koppang, Norway.
| | - Kimmo K Kahilainen
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, FI-16900, Lammi, Finland; Kilpisjärvi Biological Station, University of Helsinki, Käsivarrentie 14622, FI-99490, Kilpisjärvi, Finland
| | - Hannu K Pakkanen
- Department of Biological and Environmental Science, University of Jyväskylä, P.O.Box 35 (YA), FI-40014, Jyväskylä, Finland
| | - Brian Hayden
- Biology Department, Canadian Rivers Institute, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Kjartan Østbye
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, Anne Evenstad Veg 80, NO-2480, Koppang, Norway; Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O.Box 1066, Blindern, NO-0316, Oslo, Norway
| | - Sami J Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, P.O.Box 35 (YA), FI-40014, Jyväskylä, Finland
| |
Collapse
|
15
|
Fujibayashi M, Nitta M, Aomori S, Sakamaki T, Okano K, Sugiyama H, Miyata N. Exploring the use of fish as indicators of eicosapentaenoic and docosahexaenoic supply in lake ecosystems. Oecologia 2023; 202:743-755. [PMID: 37568056 DOI: 10.1007/s00442-023-05433-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
An adequate supply of food sources with high levels (i.e., weight proportion of total fatty acids) and contents (i.e., absolute amount per mass) of long chain polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are important for ecosystems. Therefore, the supply of EPA and DHA from basal food sources is a useful indicator of ecosystem health. To determine whether EPA and DHA levels and contents in fish can be used as indicators of EPA and DHA supply in lakes, five dominant species of fish and basal food sources (seston and sediment) were collected monthly from June to November from 2016 to 2021 from Lake Hachiro, Japan. Seston and Hypomesus nipponensis were collected from 12 lakes (one collection per lake) with varying seston contents in EPA and DHA. The trends of EPA and DHA in all fish species were similar to those of the basal food sources. Correlation analysis showed that the EPA levels were strongly correlated between fish and seston; moreover, the correlation coefficient increased when a 1- or 2-month moving average was applied to the basal food sources, suggesting that fish represent a time-integrated supply of EPA and DHA. EPA levels of H. nipponensis had the highest correlation coefficients with seston among all fish species. EPA levels of H. nipponensis were significantly correlated with those of seston among lakes. The results of this study suggest that H. nipponensis is a useful indicator of EPA and DHA supplies in lake ecosystems.
Collapse
Affiliation(s)
- Megumu Fujibayashi
- Faculty of Engineering, Kyushu University, 774, Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438, Kaido-Bata Nishi, Shimoshinjo-Nakano, Akita, 010-0195, Japan.
| | - Mayumi Nitta
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438, Kaido-Bata Nishi, Shimoshinjo-Nakano, Akita, 010-0195, Japan
| | - Sota Aomori
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438, Kaido-Bata Nishi, Shimoshinjo-Nakano, Akita, 010-0195, Japan
| | - Takashi Sakamaki
- School of Engineering, Tohoku University, 6-6-06, Aramaki-Aoba, Aoba, Sendai, Miyagi, 980-8579, Japan
| | - Kunihiro Okano
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438, Kaido-Bata Nishi, Shimoshinjo-Nakano, Akita, 010-0195, Japan
| | - Hideki Sugiyama
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438, Kaido-Bata Nishi, Shimoshinjo-Nakano, Akita, 010-0195, Japan
| | - Naoyuki Miyata
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438, Kaido-Bata Nishi, Shimoshinjo-Nakano, Akita, 010-0195, Japan
| |
Collapse
|
16
|
Calderini ML, Pääkkönen S, Salmi P, Peltomaa E, Taipale SJ. Temperature, phosphorus and species composition will all influence phytoplankton production and content of polyunsaturated fatty acids. JOURNAL OF PLANKTON RESEARCH 2023; 45:625-635. [PMID: 37483907 PMCID: PMC10361808 DOI: 10.1093/plankt/fbad026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/08/2023] [Indexed: 07/25/2023]
Abstract
Temperature increases driven by climate change are expected to decrease the availability of polyunsaturated fatty acids in lakes worldwide. Nevertheless, a comprehensive understanding of the joint effects of lake trophic status, nutrient dynamics and warming on the availability of these biomolecules is lacking. Here, we conducted a laboratory experiment to study how warming (18-23°C) interacts with phosphorus (0.65-2.58 μM) to affect phytoplankton growth and their production of polyunsaturated fatty acids. We included 10 species belonging to the groups diatoms, golden algae, cyanobacteria, green algae, cryptophytes and dinoflagellates. Our results show that both temperature and phosphorus will boost phytoplankton growth, especially stimulating certain cyanobacteria species (Microcystis sp.). Temperature and phosphorus had opposing effects on polyunsaturated fatty acid proportion, but responses are largely dependent on species. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) synthesizing species did not clearly support the idea that warming decreases the production or content of these essential polyunsaturated fatty acids. Our results suggest that warming may have different effects on the polyunsaturated fatty acid availability in lakes with different nutrient levels, and that different species within the same phytoplankton group can have contrasting responses to warming. Therefore, we conclude that future production of EPA and DHA is mainly determined by species composition.
Collapse
Affiliation(s)
| | - Salli Pääkkönen
- Spectral Imaging Laboratory, Faculty of Information Technology, University of Jyväskylä, P.O. BOX 35 FI-40014, Jyväskylä Finland
| | - Pauliina Salmi
- Spectral Imaging Laboratory, Faculty of Information Technology, University of Jyväskylä, P.O. BOX 35 FI-40014, Jyväskylä Finland
| | - Elina Peltomaa
- Department of Forest Sciences, University of Helsinki, P.O. Box 27 FI-00014, Helsinki, Finland
| | - Sami J Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. BOX 35 FI-40014, Jyväskylä, Finland
| |
Collapse
|
17
|
Závorka L, Blanco A, Chaguaceda F, Cucherousset J, Killen SS, Liénart C, Mathieu-Resuge M, Němec P, Pilecky M, Scharnweber K, Twining CW, Kainz MJ. The role of vital dietary biomolecules in eco-evo-devo dynamics. Trends Ecol Evol 2023; 38:72-84. [PMID: 36182405 DOI: 10.1016/j.tree.2022.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 12/30/2022]
Abstract
The physiological dependence of animals on dietary intake of vitamins, amino acids, and fatty acids is ubiquitous. Sharp differences in the availability of these vital dietary biomolecules among different resources mean that consumers must adopt a range of strategies to meet their physiological needs. We review the emerging work on omega-3 long-chain polyunsaturated fatty acids, focusing predominantly on predator-prey interactions, to illustrate that trade-off between capacities to consume resources rich in vital biomolecules and internal synthesis capacity drives differences in phenotype and fitness of consumers. This can then feedback to impact ecosystem functioning. We outline how focus on vital dietary biomolecules in eco-eco-devo dynamics can improve our understanding of anthropogenic changes across multiple levels of biological organization.
Collapse
Affiliation(s)
- Libor Závorka
- WasserCluster Lunz - Biologische Station, Inter-university Centre for Aquatic Ecosystem Research, A-3293 Lunz am See, Austria.
| | - Andreu Blanco
- Centro de Investigación Mariña, Universidade de Vigo, EcoCost, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain
| | - Fernando Chaguaceda
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 750 07 Uppsala, Sweden
| | - Julien Cucherousset
- Laboratoire Evolution et Diversité Biologique (UMR 5174 EDB), CNRS, Université Paul Sabatier - Toulouse III, 31062 Toulouse, France
| | - Shaun S Killen
- School of Biodiversity, One Health & Veterinary Medicine, Graham Kerr Building, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Camilla Liénart
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, Hanko, 10900, Finland
| | - Margaux Mathieu-Resuge
- WasserCluster Lunz - Biologische Station, Inter-university Centre for Aquatic Ecosystem Research, A-3293 Lunz am See, Austria; Université de Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzané, Brittany, France; UMR DECOD (Ecosystem Dynamics and Sustainability), Ifremer, INRAE, Institut Agro, Plouzané, France
| | - Pavel Němec
- Department of Zoology, Faculty of Science, Charles University, CZ-12844 Prague, Czech Republic
| | - Matthias Pilecky
- WasserCluster Lunz - Biologische Station, Inter-university Centre for Aquatic Ecosystem Research, A-3293 Lunz am See, Austria; Danube University Krems, Dr. Karl Dorrek Straße 30, A-3500 Krems, Austria
| | - Kristin Scharnweber
- University of Potsdam, Plant Ecology and Nature Conservation, Am Mühlenberg 3, 14476 Potsdam, Germany
| | - Cornelia W Twining
- Department of Fish Ecology and Evolution, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047 Kastanienbaum, Switzerland
| | - Martin J Kainz
- WasserCluster Lunz - Biologische Station, Inter-university Centre for Aquatic Ecosystem Research, A-3293 Lunz am See, Austria; Danube University Krems, Dr. Karl Dorrek Straße 30, A-3500 Krems, Austria
| |
Collapse
|
18
|
Effect of temperature on the life cycle of Harmonia axyridis (Pallas), and its predation rate on the Spodoptera litura (Fabricius) eggs. Sci Rep 2022; 12:15303. [PMID: 36096905 PMCID: PMC9468180 DOI: 10.1038/s41598-022-18166-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
Biological control is one of the strategies of pest control which is determined by the biological fitness and metabolic rates of the predator species used. Temperature and resource are important factors which influence the role of insects as biocontrol agents. Harmonia axyridis is a cosmopolitan and non-specific polyphagous predator. It can survive ecologically diverse environments and exploit multiple preys. This study investigated the effects of temperature on the population parameters of H. axyridis and its predation on the eggs of prey Spodoptera litura. For this purpose, an age-stage, two-sex life table of the predator was constructed at four constant temperatures, i.e. 15, 20, 25 and 30 °C, under laboratory settings of: 70 ± 5% RH, and 16:8 h (L: D) photoperiod. A computer simulation was then used to project the population and predation responses with respect to temperatures tested. We found that the development of larvae and adult (male/female) stages of H. axyridis decreased with colder temperatures (i.e., 15 and 20 °C) but increased with warmer temperatures (25 and 30 °C). The intrinsic rate of increase (r) and mean generation time (T) were 0.0662 d-1 and 79.84 d at 15 °C, 0.0843 d-1 and 64.90 d at 20 °C, 0.1067 d-1 and 48.89 d at 25 °C, and 0.1378 d-1 and 35.55 d at 30 °C, respectively. The mean duration of the total pre-adult stage was 44.26, 32.91, 20.63, and 15.39 d at 15, 20, 25, and 30 °C, respectively. At 30 °C. the finite rate of increase (1.1477 d-1) was the highest and the mean generation time (35.55 d) was the shortest. The net predation rate (C0) was 7935.54, 10,466.28, 10,139.38, and 7126.36 eggs at 15, 20, 25, and 30 °C, respectively. Population and predation projections were proportional to temperature. These findings are important for modelling the population responses of H. axyridis to climate change and tailoring integrated pest management strategies to altered climates.
Collapse
|
19
|
Keva O, Kiljunen M, Hämäläinen H, Jones RI, Kahilainen KK, Kankaala P, Laine MB, Schilder J, Strandberg U, Vesterinen J, Taipale SJ. Allochthony, fatty acid and mercury trends in muscle of Eurasian perch (Perca fluviatilis) along boreal environmental gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155982. [PMID: 35588838 DOI: 10.1016/j.scitotenv.2022.155982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Environmental change, including joint effects of increasing dissolved organic carbon (DOC) and total phosphorus (TP) in boreal northern lakes may affect food web energy sources and the biochemical composition of organisms. These environmental stressors are enhanced by anthropogenic land-use and can decrease the quality of polyunsaturated fatty acids (PUFAs) in seston and zooplankton, and therefore, possibly cascading up to fish. In contrast, the content of mercury in fish increases with lake browning potentially amplified by intensive forestry practises. However, there is little evidence on how these environmental stressors simultaneously impact beneficial omega-3 fatty acid (n3-FA) and total mercury (THg) content of fish muscle for human consumption. A space-for-time substitution study was conducted to assess whether environmental stressors affect Eurasian perch (Perca fluviatilis) allochthony and muscle nutritional quality [PUFA, THg, and their derivative, the hazard quotient (HQ)]. Perch samples were collected from 31 Finnish lakes along pronounced lake size (0.03-107.5 km2), DOC (5.0-24.3 mg L-1), TP (5-118 μg L-1) and land-use gradients (forest: 50.7-96.4%, agriculture: 0-32.6%). These environmental gradients were combined using principal component analysis (PCA). Allochthony for individual perch was modelled using source and consumer δ2H values. Perch allochthony increased with decreasing lake pH and increasing forest coverage (PC1), but no correlation between lake DOC and perch allochthony was found. Perch muscle THg and omega-6 fatty acid (n6-FA) content increased with PC1 parallel with allochthony. Perch muscle DHA (22:6n3) content decreased, and ALA (18:3n3) increased towards shallower murkier lakes (PC2). Perch allochthony was positively correlated with muscle THg and n6-FA content, but did not correlate with n3-FA content. Hence, the quality of perch muscle for human consumption decreases (increase in HQ) with increasing forest coverage and decreasing pH, potentially mediated by increasing fish allochthony.
Collapse
Affiliation(s)
- Ossi Keva
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (YA), FI-40014 Jyväskylä, Finland.
| | - Mikko Kiljunen
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (YA), FI-40014 Jyväskylä, Finland
| | - Heikki Hämäläinen
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (YA), FI-40014 Jyväskylä, Finland
| | - Roger I Jones
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (YA), FI-40014 Jyväskylä, Finland
| | - Kimmo K Kahilainen
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, FI-16900 Lammi, Finland
| | - Paula Kankaala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Miikka B Laine
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (YA), FI-40014 Jyväskylä, Finland
| | - Jos Schilder
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (YA), FI-40014 Jyväskylä, Finland
| | - Ursula Strandberg
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Jussi Vesterinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland; Association for Water and Environment of Western Uusimaa, Lohja, Finland
| | - Sami J Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (YA), FI-40014 Jyväskylä, Finland
| |
Collapse
|
20
|
Taipale SJ, Pulkkinen K, Keva O, Kainz MJ, Nykänen H. Lowered nutritional quality of prey decrease the growth and biomolecule content of rainbow trout fry. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110767. [PMID: 35618185 DOI: 10.1016/j.cbpb.2022.110767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/07/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
Diet quality is crucial for the development of offspring. Here, we examined how the nutritional quality of prey affects somatic growth and the lipid, carbohydrate, protein, amino acid, and polyunsaturated fatty acid content of rainbow trout (Oncorhynchus mykiss) fry using a three-trophic-level experimental setup. Diets differed especially in their content of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are physiologically essential polyunsaturated fatty acids for a fish fry. Trout were fed with an artificial diet (fish feed, DHA-rich), marine zooplankton diet (krill/Mysis, DHA-rich), or freshwater zooplankton diet (Daphnia, Cladocera, DHA-deficient). The Daphnia were grown either on a poor, intermediate, or high-quality algal/microbial diet simulating potential changes in the nutritional prey quality (EPA-content). Trout fed with the fish feed or marine zooplankton entirely replaced their muscle tissue composition with compounds of dietary origin. In contrast, fish tissue renewal was only partial in fish fed any Daphnia diet. Furthermore, fish grew five times faster on marine zooplankton than on any of the Daphnia diets. This was mainly explained by the higher dietary contents of arachidonic acid (ARA), EPA, and DHA, but also by the higher content of some amino acids in the marine zooplankton than in the Daphnia diets. Moreover, fatty acid-specific carbon isotopes revealed that trout fry could not biosynthesize ARA, EPA, or DHA efficiently from their precursors. Our results suggest that changes in the zooplankton and macroinvertebrate communities' structure in freshwater habitats from DHA-rich to DHA-poor species may reduce the somatic growth of fish fry.
Collapse
Affiliation(s)
- Sami J Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
| | - Katja Pulkkinen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland. https://twitter.com/Pulkkinen_K
| | - Ossi Keva
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Martin J Kainz
- WasserCluster - Biologische Station Lunz, Dr. Carl Kupelwieser Promenade 5, A-3293 Lunz am See, Austria; Department of Biomedical Research, Danube University Krems, A-3500 Krems, Austria. https://twitter.com/kainz_lab
| | - Hannu Nykänen
- Department of Environmental and Biological Sciences, Biogeochemistry Research Group, University of Eastern Finland, Finland. https://twitter.com/NykanenHannu
| |
Collapse
|
21
|
Blanchet CC, Arzel C, Davranche A, Kahilainen KK, Secondi J, Taipale S, Lindberg H, Loehr J, Manninen-Johansen S, Sundell J, Maanan M, Nummi P. Ecology and extent of freshwater browning - What we know and what should be studied next in the context of global change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152420. [PMID: 34953836 DOI: 10.1016/j.scitotenv.2021.152420] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Water browning or brownification refers to increasing water color, often related to increasing dissolved organic matter (DOM) and carbon (DOC) content in freshwaters. Browning has been recognized as a significant physicochemical phenomenon altering boreal lakes, but our understanding of its ecological consequences in different freshwater habitats and regions is limited. Here, we review the consequences of browning on different freshwater habitats, food webs and aquatic-terrestrial habitat coupling. We examine global trends of browning and DOM/DOC, and the use of remote sensing as a tool to investigate browning from local to global scales. Studies have focused on lakes and rivers while seldom addressing effects at the catchment scale. Other freshwater habitats such as small and temporary waterbodies have been overlooked, making the study of the entire network of the catchment incomplete. While past research investigated the response of primary producers, aquatic invertebrates and fishes, the effects of browning on macrophytes, invasive species, and food webs have been understudied. Research has focused on freshwater habitats without considering the fluxes between aquatic and terrestrial habitats. We highlight the importance of understanding how the changes in one habitat may cascade to another. Browning is a broader phenomenon than the heretofore concentration on the boreal region. Overall, we propose that future studies improve the ecological understanding of browning through the following research actions: 1) increasing our knowledge of ecological processes of browning in other wetland types than lakes and rivers, 2) assessing the impact of browning on aquatic food webs at multiple scales, 3) examining the effects of browning on aquatic-terrestrial habitat coupling, 4) expanding our knowledge of browning from the local to global scale, and 5) using remote sensing to examine browning and its ecological consequences.
Collapse
Affiliation(s)
- Clarisse C Blanchet
- Department of Biology, FI-20014, University of Turku, Finland; Department of Forest Sciences, P.O. Box 27, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Céline Arzel
- Department of Biology, FI-20014, University of Turku, Finland
| | - Aurélie Davranche
- CNRS UMR 6554 LETG, University of Angers, 2 Boulevard Lavoisier, FR-49000 Angers, France
| | - Kimmo K Kahilainen
- University of Helsinki, Lammi Biological Station, Pääjärventie 320, FI-16900 Lammi, Finland
| | - Jean Secondi
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France; Faculty of Sciences, University of Angers, F-49000 Angers, France
| | - Sami Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Henrik Lindberg
- HAMK University of Applied Sciences, Forestry Programme, Saarelantie 1, FI-16970 Evo, Finland
| | - John Loehr
- University of Helsinki, Lammi Biological Station, Pääjärventie 320, FI-16900 Lammi, Finland
| | | | - Janne Sundell
- University of Helsinki, Lammi Biological Station, Pääjärventie 320, FI-16900 Lammi, Finland
| | - Mohamed Maanan
- UMR CNRS 6554, University of Nantes, F-44000 Nantes, France
| | - Petri Nummi
- Department of Forest Sciences, P.O. Box 27, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
22
|
Bauer B, Berti E, Ryser R, Gauzens B, Hirt MR, Rosenbaum B, Digel C, Ott D, Scheu S, Brose U. Biotic filtering by species' interactions constrains food-web variability across spatial and abiotic gradients. Ecol Lett 2022; 25:1225-1236. [PMID: 35286010 DOI: 10.1111/ele.13995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/24/2021] [Accepted: 02/11/2022] [Indexed: 11/27/2022]
Abstract
Despite intensive research on species dissimilarity patterns across communities (i.e. β-diversity), we still know little about their implications for variation in food-web structures. Our analyses of 50 lake and 48 forest soil communities show that, while species dissimilarity depends on environmental and spatial gradients, these effects are only weakly propagated to the networks. Moreover, our results show that species and food-web dissimilarities are consistently correlated, but that much of the variation in food-web structure across spatial, environmental, and species gradients remains unexplained. Novel food-web assembly models demonstrate the importance of biotic filtering during community assembly by (1) the availability of resources and (2) limiting similarity in species' interactions to avoid strong niche overlap and thus competitive exclusion. This reveals a strong signature of biotic filtering processes during local community assembly, which constrains the variability in structural food-web patterns across local communities despite substantial turnover in species composition.
Collapse
Affiliation(s)
- Barbara Bauer
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Zoological Institute and Museum & Institute for Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Emilio Berti
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Remo Ryser
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Benoit Gauzens
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Myriam R Hirt
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Benjamin Rosenbaum
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | - David Ott
- Institute of Landscape Ecology, University of Münster, Münster, Germany.,Centre for Biodiversity Monitoring, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Stefan Scheu
- JFB Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany.,Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
| | - Ulrich Brose
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
23
|
Taipale SJ, Ventelä A, Litmanen J, Anttila L. Poor nutritional quality of primary producers and zooplankton driven by eutrophication is mitigated at upper trophic levels. Ecol Evol 2022; 12:e8687. [PMID: 35342549 PMCID: PMC8928886 DOI: 10.1002/ece3.8687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
Eutrophication and rising water temperature in freshwaters may increase the total production of a lake while simultaneously reducing the nutritional quality of food web components. We evaluated how cyanobacteria blooms, driven by agricultural eutrophication (in eutrophic Lake Köyliöjärvi) or global warming (in mesotrophic Lake Pyhäjärvi), influence the biomass and structure of phytoplankton, zooplankton, and fish communities. In terms of the nutritional value of food web components, we evaluated changes in the ω-3 and ω-6 polyunsaturated fatty acids (PUFA) of phytoplankton and consumers at different trophic levels. Meanwhile, the lakes did not differ in their biomasses of phytoplankton, zooplankton, and fish communities, lake trophic status greatly influenced the community structures. The eutrophic lake, with agricultural eutrophication, had cyanobacteria bloom throughout the summer months whereas cyanobacteria were abundant only occasionally in the mesotrophic lake, mainly in early summer. Phytoplankton community differences at genus level resulted in higher arachidonic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) content of seston in the mesotrophic than in the eutrophic lake. This was also reflected in the EPA and DHA content of herbivorous zooplankton (Daphnia and Bosmina) despite more efficient trophic retention of these biomolecules in a eutrophic lake than in the mesotrophic lake zooplankton. Planktivorous juvenile fish (perch and roach) in a eutrophic lake overcame the lower availability of DHA in their prey by more efficient trophic retention and biosynthesis from the precursors. However, the most efficient trophic retention of DHA was found with benthivorous perch which prey contained only a low amount of DHA. Long-term cyanobacterial blooming decreased the nutritional quality of piscivorous perch; however, the difference was much less than previously anticipated. Our result shows that long-term cyanobacteria blooming impacts the structure of plankton and fish communities and lowers the nutritional quality of seston and zooplankton, which, however, is mitigated at upper trophic levels.
Collapse
Affiliation(s)
- Sami Johan Taipale
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | | | - Jaakko Litmanen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | | |
Collapse
|
24
|
Grosbois G, Power M, Evans M, Koehler G, Rautio M. Content, composition, and transfer of polyunsaturated fatty acids in an Arctic lake food web. Ecosphere 2022. [DOI: 10.1002/ecs2.3881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Guillaume Grosbois
- Département des Sciences Fondamentales Université du Québec à Chicoutimi Chicoutimi Quebec Canada
- Centre d’Études Nordiques (CEN) Université Laval Quebec City Quebec Canada
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL) Université de Montréal Montreal Quebec Canada
| | - Michael Power
- Department of Biology University of Waterloo Waterloo Ontario Canada
| | - Marlene Evans
- NHRC Stable Isotope Laboratory, Environment and Climate Change Canada Saskatoon Saskatchewan Canada
| | - Geoff Koehler
- NHRC Stable Isotope Laboratory, Environment and Climate Change Canada Saskatoon Saskatchewan Canada
| | - Milla Rautio
- Département des Sciences Fondamentales Université du Québec à Chicoutimi Chicoutimi Quebec Canada
- Centre d’Études Nordiques (CEN) Université Laval Quebec City Quebec Canada
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL) Université de Montréal Montreal Quebec Canada
| |
Collapse
|
25
|
Lau DCP, Jonsson A, Isles PDF, Creed IF, Bergström AK. Lowered nutritional quality of plankton caused by global environmental changes. GLOBAL CHANGE BIOLOGY 2021; 27:6294-6306. [PMID: 34520606 DOI: 10.1111/gcb.15887] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/13/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Global environmental changes are causing widespread nutrient depletion, declines in the ratio of dissolved inorganic nitrogen (N) to total phosphorus (DIN:TP), and increases in both water temperature and terrestrial colored dissolved organic carbon (DOC) concentration (browning) in high-latitude northern lakes. Declining lake DIN:TP, warming, and browning alter the nutrient limitation regime and biomass of phytoplankton, but how these stressors together affect the nutritional quality in terms of polyunsaturated fatty acid (PUFA) contents of the pelagic food web components remains unknown. We assessed the fatty acid compositions of seston and zooplankton in 33 lakes across south-to-north and boreal-to-subarctic gradients in Sweden. Data showed higher lake DIN:TP in the south than in the north, and that boreal lakes were warmer and browner than subarctic lakes. Lake DIN:TP strongly affected the PUFA contents-especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)-in seston, calanoids, and copepods (as a group), but not in cladocerans. The EPA+DHA contents increased by 123% in seston, 197% in calanoids, and 230% in copepods across a lake molar DIN:TP gradient from 0.17 to 14.53, indicating lower seston and copepod nutritional quality in the more N-limited lakes (those with lower DIN:TP). Water temperature affected EPA+DHA contents of zooplankton, especially cladocerans, but not seston. Cladoceran EPA+DHA contents were reduced by ca. 6% for every 1°C increase in surface water. Also, the EPA, DHA, or EPA+DHA contents of Bosmina, cyclopoids, and copepods increased in lakes with higher DOC concentrations or aromaticity. Our findings indicate that zooplankton food quality for higher consumers will decrease with warming alone (for cladocerans) or in combination with declining lake DIN:TP (for copepods), but impacts of these stressors are moderated by lake browning. Global environmental changes that drive northern lakes toward more N-limited, warmer, and browner conditions will reduce PUFA availability and nutritional quality of the pelagic food web components.
Collapse
Affiliation(s)
- Danny C P Lau
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anders Jonsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Peter D F Isles
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Irena F Creed
- Department of Physical and Environmental Sciences, University of Toronto-Scarborough Campus, Toronto, Ontario, Canada
| | | |
Collapse
|
26
|
Kozak N, Ahonen SA, Keva O, Østbye K, Taipale SJ, Hayden B, Kahilainen KK. Environmental and biological factors are joint drivers of mercury biomagnification in subarctic lake food webs along a climate and productivity gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146261. [PMID: 34030265 DOI: 10.1016/j.scitotenv.2021.146261] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Subarctic lakes are getting warmer and more productive due to the joint effects of climate change and intensive land-use practices (e.g. forest clear-cutting and peatland ditching), processes that potentially increase leaching of peat- and soil-stored mercury into lake ecosystems. We sampled biotic communities from primary producers (algae) to top consumers (piscivorous fish), in 19 subarctic lakes situated on a latitudinal (69.0-66.5° N), climatic (+3.2 °C temperature and +30% precipitation from north to south) and catchment land-use (pristine to intensive forestry areas) gradient. We first tested how the joint effects of climate and productivity influence mercury biomagnification in food webs focusing on the trophic magnification slope (TMS) and mercury baseline (THg baseline) level, both derived from linear regression between total mercury (log10THg) and organism trophic level (TL). We examined a suite of environmental and biotic variables thought to explain THg baseline and TMS with stepwise generalized multiple regression models. Finally, we assessed how climate and lake productivity affect the THg content of top predators in subarctic lakes. We found biomagnification of mercury in all studied lakes, but with variable TMS and THg baseline values. In stepwise multiple regression models, TMS was best explained by negative relationships with food chain length, climate-productivity gradient, catchment properties, and elemental C:N ratio of the top predator (full model R2 = 0.90, p < 0.001). The model examining variation in THg baseline values included the same variables with positive relationships (R2 = 0.69, p = 0.014). Mass-standardized THg content of a common top predator (1 kg northern pike, Esox lucius) increased towards warmer and more productive lakes. Results indicate that increasing eutrophication via forestry-related land-use activities increase the THg levels at the base of the food web and in top predators, suggesting that the sources of nutrients and mercury should be considered in future bioaccumulation and biomagnification studies.
Collapse
Affiliation(s)
- Natalia Kozak
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, Anne Evenstad veg 80, 2480 Koppang, Norway.
| | - Salla A Ahonen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Ossi Keva
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Kjartan Østbye
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, Anne Evenstad veg 80, 2480 Koppang, Norway; Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sami J Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Brian Hayden
- Biology Department, Canadian Rivers Institute, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Kimmo K Kahilainen
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, 16900 Lammi, Finland; Kilpisjärvi Biological Station, University of Helsinki, Käsivarrentie 14622, 99490 Kilpisjärvi, Finland
| |
Collapse
|