1
|
Priest J, Ferreira CM, Munday PL, Roberts A, Rodolfo-Metalpa R, Rummer JL, Schunter C, Ravasi T, Nagelkerken I. Out of shape: Ocean acidification simplifies coral reef architecture and reshuffles fish assemblages. J Anim Ecol 2024; 93:1097-1107. [PMID: 38926938 DOI: 10.1111/1365-2656.14127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/06/2024] [Indexed: 06/28/2024]
Abstract
Climate change stressors are progressively simplifying biogenic habitats in the terrestrial and marine realms, and consequently altering the structure of associated species communities. Here, we used a volcanic CO2 seep in Papua New Guinea to test in situ if altered reef architecture due to ocean acidification reshuffles associated fish assemblages. We observed replacement of branching corals by massive corals at the seep, with simplified coral architectural complexity driving abundance declines between 60% and 86% for an assemblage of damselfishes associated with branching corals. An experimental test of habitat preference for a focal species indicated that acidification does not directly affect habitat selection behaviour, with changes in habitat structural complexity consequently appearing to be the stronger driver of assemblage reshuffling. Habitat health affected anti-predator behaviour, with P. moluccensis becoming less bold on dead branching corals relative to live branching corals, irrespective of ocean acidification. We conclude that coral reef fish assemblages are likely to be more sensitive to changes in habitat structure induced by increasing pCO2 than any direct effects on behaviour, indicating that changes in coral architecture and live cover may act as important mediators of reef fish community structures in a future ocean.
Collapse
Affiliation(s)
- Jamie Priest
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Camilo M Ferreira
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Philip L Munday
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Amelia Roberts
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Riccardo Rodolfo-Metalpa
- ENTROPIE-UMR 9220 (CNRS, IRD, UR, UNC, IFREMER), IRD Institut de Recherche Pour le Développement, Nouméa Cedex, New Caledonia
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Celia Schunter
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Timothy Ravasi
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), Onna-son, Okinawa, Japan
| | - Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Sannassy Pilly S, Roche RC, Richardson LE, Turner JR. Depth variation in benthic community response to repeated marine heatwaves on remote Central Indian Ocean reefs. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231246. [PMID: 38545610 PMCID: PMC10966399 DOI: 10.1098/rsos.231246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/01/2023] [Accepted: 02/21/2024] [Indexed: 04/26/2024]
Abstract
Coral reefs are increasingly impacted by climate-induced warming events. However, there is limited empirical evidence on the variation in the response of shallow coral reef communities to thermal stress across depths. Here, we assess depth-dependent changes in coral reef benthic communities following successive marine heatwaves from 2015 to 2017 across a 5-25 m depth gradient in the remote Chagos Archipelago, Central Indian Ocean. Our analyses show an overall decline in hard and soft coral cover and an increase in crustose coralline algae, sponge and reef pavement following successive marine heatwaves on the remote reef system. Our findings indicate that the changes in benthic communities in response to elevated seawater temperatures varied across depths. We found greater changes in benthic group cover at shallow depths (5-15 m) compared with deeper zones (15-25 m). The loss of hard coral cover was better predicted by initial thermal stress, while the loss of soft coral was associated with repeated thermal stress following successive warming events. Our study shows that benthic communities extending to 25 m depth were impacted by successive marine heatwaves, supporting concerns about the resilience of shallow coral reef communities to increasingly severe climate-driven warming events.
Collapse
Affiliation(s)
| | - Ronan C. Roche
- School of Ocean Sciences, Bangor University, BangorLL59 5AB, UK
| | | | - John R. Turner
- School of Ocean Sciences, Bangor University, BangorLL59 5AB, UK
| |
Collapse
|
3
|
Morais J, Tebbett SB, Morais RA, Bellwood DR. Natural recovery of corals after severe disturbance. Ecol Lett 2024; 27:e14332. [PMID: 37850584 DOI: 10.1111/ele.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023]
Abstract
Ecosystem recovery from human-induced disturbances, whether through natural processes or restoration, is occurring worldwide. Yet, recovery dynamics, and their implications for broader ecosystem management, remain unclear. We explored recovery dynamics using coral reefs as a case study. We tracked the fate of 809 individual coral recruits that settled after a severe bleaching event at Lizard Island, Great Barrier Reef. Recruited Acropora corals, first detected in 2020, grew to coral cover levels that were equivalent to global average coral cover within just 2 years. Furthermore, we found that just 11.5 Acropora recruits per square meter were sufficient to reach this cover within 2 years. However, wave exposure, growth form and colony density had a marked effect on recovery rates. Our results underscore the importance of considering natural recovery in management and restoration and highlight how lessons learnt from reef recovery can inform our understanding of recovery dynamics in high-diversity climate-disturbed ecosystems.
Collapse
Affiliation(s)
- Juliano Morais
- Research Hub for Coral Reef Ecosystem Functions and College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions and College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Renato A Morais
- Research Hub for Coral Reef Ecosystem Functions and College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Paris Sciences et Lettres Université, École Pratique des Hautes Études, EPHE-UPVD-CNRS, UAR 3278 CRIOBE, University of Perpignan, Perpignan, France
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions and College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
4
|
Olán-González M, Briones-Fourzán P, Lozano-Álvarez E, Acosta-González G, Alvarez-Filip L. Similar functional composition of fish assemblages despite contrasting levels of habitat degradation on shallow Caribbean coral reefs. PLoS One 2023; 18:e0295238. [PMID: 38150437 PMCID: PMC10752542 DOI: 10.1371/journal.pone.0295238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023] Open
Abstract
Functional trait-based approaches provide an opportunity to assess how changes in habitat affect the structure of associated communities. Global analyses have found a similarity in the composition of reef fish functional traits despite differences in species richness, environmental regimes, and habitat components. These large-scale patterns raised the question of whether this same stability can be observed at smaller spatial scales. Here, we compared the fish trait composition and their functional diversity in two Caribbean shallow coral reefs with contrasting levels of habitat degradation: Limones (>30% cover), constituted mainly by colonies of Acropora palmata and Bonanza, a reef with extensive areas of dead Acropora structures, dominated by algae. To characterize the functional structure of fishes on each reef, we calculated the community-weighted mean trait values (CWM), functional richness, functional evenness, functional dispersion, and functional originality. Despite the differences in habitat quality, reefs exhibited a similar proportion and common structure on fish functional traits. Functional richness and functional evenness differed significantly, but functional dispersion and functional originality did not show differences between reefs. The greater niche complexity driven by the high availability of microhabitats provided by A. palmata may explain the higher functional richness in Limones, whereas the reef degradation in Bonanza may contribute to a higher functional evenness because of a similar distribution of abundance per fish trait combinations. Our results suggest that widespread degradation on Caribbean reefs has limited the type, variety, and range of traits, which could lead to a functional homogenization of fish communities even at local scales.
Collapse
Affiliation(s)
- Manuel Olán-González
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
- Biodiversity and Reef Conservation Laboratory. Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Patricia Briones-Fourzán
- Laboratorio de Ecología de Crustáceos. Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Enrique Lozano-Álvarez
- Laboratorio de Ecología de Crustáceos. Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Gilberto Acosta-González
- Centro de Investigación Científica de Yucatán A.C. Unidad de Ciencias del Agua, Cancún, Quintana Roo, México
| | - Lorenzo Alvarez-Filip
- Biodiversity and Reef Conservation Laboratory. Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| |
Collapse
|
5
|
Díaz-López AM, Hernández-Arana HA, Vega-Zepeda A, Ruiz-Zárate MÁ, Victoria-Salazar I. Changes in the community structure of stony corals in the southern Mexican Caribbean. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106154. [PMID: 37678100 DOI: 10.1016/j.marenvres.2023.106154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 06/29/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
The Mexican Caribbean coral reef ecosystem has endured the effects of global and regional stressors and, recently, the massive arrivals of the free-living, floating brown algae Sargassum spp. This study aimed to evaluate spatiotemporal changes in the stony coral community structure in the southern Mexican Caribbean by a temporal comparison of live coral cover and colony density using a data set collected in 2008-2009 and a recent survey in 2021 within a Protected Natural Area. A multivariate analysis approach was used to reveal spatiotemporal changes in coral cover and colony densities. Coral cover ranged from 6.9 to 8.9% in 2008-2009 to 6.5% in 2021, the lowest values recorded for the area. Coral colony density ranged from 0.68 to 0.78 colonies m-1 in 2008-2009 to 0.68 colonies m-1 in 2021. The present results appear to represent subtle changes during the last decade.
Collapse
Affiliation(s)
- Alan Mauri Díaz-López
- El Colegio de la Frontera Sur, Unidad Chetumal. Departamento de Sistemática y Ecología Acuática. Av. Centenario km 5.5, CP. 77014. Chetumal, Quintana Roo, Mexico
| | - Héctor Abuid Hernández-Arana
- El Colegio de la Frontera Sur, Unidad Chetumal. Departamento de Sistemática y Ecología Acuática. Av. Centenario km 5.5, CP. 77014. Chetumal, Quintana Roo, Mexico.
| | - Alejandro Vega-Zepeda
- El Colegio de la Frontera Sur, Unidad Chetumal. Departamento de Sistemática y Ecología Acuática. Av. Centenario km 5.5, CP. 77014. Chetumal, Quintana Roo, Mexico
| | - Miguel Ángel Ruiz-Zárate
- El Colegio de la Frontera Sur, Unidad Chetumal. Departamento de Sistemática y Ecología Acuática. Av. Centenario km 5.5, CP. 77014. Chetumal, Quintana Roo, Mexico
| | - Isael Victoria-Salazar
- El Colegio de la Frontera Sur, Unidad Chetumal. Departamento de Sistemática y Ecología Acuática. Av. Centenario km 5.5, CP. 77014. Chetumal, Quintana Roo, Mexico
| |
Collapse
|
6
|
Medellín-Maldonado F, Cruz-Ortega I, Pérez-Cervantes E, Norzogaray-López O, Carricart-Ganivet JP, López-Pérez A, Alvarez-Filip L. Newly deceased Caribbean reef-building corals experience rapid carbonate loss and colonization by endolithic organisms. Commun Biol 2023; 6:934. [PMID: 37699971 PMCID: PMC10497637 DOI: 10.1038/s42003-023-05301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Coral mortality triggers the loss of carbonates fixed within coral skeletons, compromising the reef matrix. Here, we estimate rates of carbonate loss in newly deceased colonies of four Caribbean reef-building corals. We use samples from living and recently deceased colonies following a stony coral tissue loss disease (SCTLD) outbreak. Optical densitometry and porosity analyses reveal a loss of up to 40% of the calcium carbonate (CaCO3) content in dead colonies. The metabolic activity of the endolithic organisms colonizing the dead skeletons is likely partially responsible for the observed dissolution. To test for the consequences of mass mortality events over larger spatial scales, we integrate our estimates of carbonate loss with field data of the composition and size structure of coral communities. The dissolution rate depends on the relative abundance of coral species and the structural properties of their skeletons, yet we estimate an average reduction of 1.33 kg CaCO3 m-2, nearly 7% of the total amount of CaCO3 sequestered in the entire system. Our findings highlight the importance of including biological and chemical processes of CaCO3 dissolution in reef carbonate budgets, particularly as the impacts of global warming, ocean acidification, and disease likely enhance dissolution processes.
Collapse
Affiliation(s)
- Francisco Medellín-Maldonado
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, Coyoacán, 04510, Ciudad de México, Mexico.
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales en Puerto Morelos, ICML, UNAM, 77580, Puerto Morelos, Mexico.
- Laboratorio de Arrecifes y Biodiversidad, Universidad Autónoma Metropolitana, 09340, Ciudad de México, Mexico.
| | - Israel Cruz-Ortega
- Laboratorio de Esclerocronología de Corales Arrecifales, Unidad Académica de Sistemas Arrecifales en Puerto Morelos, ICML, UNAM, 77580, Puerto Morelos, Mexico
| | - Esmeralda Pérez-Cervantes
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, Coyoacán, 04510, Ciudad de México, Mexico
| | - Orion Norzogaray-López
- Instituto de Investigaciones Oceanológicas y Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, 22860, Ensenada, BC, Mexico
| | - Juan P Carricart-Ganivet
- Laboratorio de Esclerocronología de Corales Arrecifales, Unidad Académica de Sistemas Arrecifales en Puerto Morelos, ICML, UNAM, 77580, Puerto Morelos, Mexico
| | - Andrés López-Pérez
- Laboratorio de Arrecifes y Biodiversidad, Universidad Autónoma Metropolitana, 09340, Ciudad de México, Mexico
| | - Lorenzo Alvarez-Filip
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales en Puerto Morelos, ICML, UNAM, 77580, Puerto Morelos, Mexico
| |
Collapse
|
7
|
Caballero-Aragón H, Perera-Valderrama S, Cobián-Rojas D, Hernández Gonzalez Z, González Méndez J, De la Guardia E. A decade of study on the condition of western Cuban coral reefs, with low human impact. PeerJ 2023; 11:e15953. [PMID: 37667748 PMCID: PMC10475277 DOI: 10.7717/peerj.15953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/01/2023] [Indexed: 09/06/2023] Open
Abstract
Background The long-time study of coral reefs with low human impacts can provide information on the effects of regional pressures like climate change, and is an opportunity to document how these pressures are reflected in coral communities. An example of minimal local anthropogenic impacts are the Guanahacabibes coral reefs, located in the westernmost region of Cuba. The objectives of this study were: to evaluate the temporal variability of six benthic biological indicators of coral reefs, and to explore the possible relationship between predictive abiotic variables and biological response variables. Methods Four coral reef sites were sampled between 2008 and 2017, to analyze biological indicators (living coral cover, fleshy algae index, coral species richness, coral species abundance, coral trait groups species abundance, Functional Reef Index). Seven abiotic variables (wave exposure, sea surface temperature, degree heating week, chlorophyll-a concentration, particulate organic carbon, photosynthetically available radiation, and the diffuse attenuation coefficient) were compiled between 2007 and 2016, from remote sensing datasets, to analyze their relationship with the biological indicators. Permanova statistical analysis was used to evaluate trends in biological variables between sites and years, and Routine Analysis Based on Linear Distances (DISTLM) was used to explore some dependencies between biotic and abiotic variables. Results We found significant variability in the temporal analysis, with a decrease in living coral cover, a decline in the predominance of the branching and massive framework reef-building species, a decline in Orbicella species abundance, and an increase in the fleshy algae index. Some abiotic variables (average of degree heating weeks, standard deviation of the diffuse attenuation coefficient, average of the sea surface temperature, among others) significantly explained the variability of biological indicators; however, determination coefficients were low. Conclusions Certain decrease in the functionality of the coral reef was appreciated, taking into account the predominance of secondary and nom-massive framework reef-building species in the last years. A weak association between abiotic and biological variables was found in the temporal analysis. The current scenario of the condition of the coral reefs seems to be regulated by the global effects of climate change, weakly associated effects, and in longer terms.
Collapse
|
8
|
Mendoza Quiroz S, Beltrán-Torres AU, Grosso-Becerra MV, Muñoz Villareal D, Tecalco Rentería R, Banaszak AT. Long-term survival, growth, and reproduction of Acropora palmata sexual recruits outplanted onto Mexican Caribbean reefs. PeerJ 2023; 11:e15813. [PMID: 37547720 PMCID: PMC10402697 DOI: 10.7717/peerj.15813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023] Open
Abstract
Acropora palmata is a foundational yet endangered Caribbean reef-building coral species. The lack of recovery after a disease outbreak and low recruitment has led to widespread use of fragmentation to restore populations. Another option is the production of sexual recruits (settlers) via assisted reproduction to improve the genetic diversity of depleted populations; however, the viability of this approach has not been tested over the long term. In 2011 and 2012, A. palmata larvae were cultured, settled, and the sexual recruits raised in an ex-situ nursery. Survival and growth were monitored over time. In 2014, these two F1 cohorts were moved to an in-situ nursery and after one year, a subset (29 colonies) was outplanted onto Cuevones Reef in the Mexican Caribbean. Growth and survival of these colonies were monitored periodically and compared to colonies that remained in the in-situ nursery. In 2019, samples were collected and analyzed for fertility and fecundity. 53% of the colonies were gravid and fecundity was 5.61 ± 1.91 oocytes and 3.04 ± 0.26 spermaries per polyp. A further 14 colonies from these two cohorts were outplanted in 2020 onto Picudas Reef and monitored during the subsequent spawning seasons. Two years after outplanting onto Picudas Reef, all colonies were alive and spawning of three of these colonies was recorded in 2022 in synchrony with the wild population. Gametes were collected from two colonies and crossed, with 15% fertilization success. Spermatozoa from wild colonies were then added and fertilization success increased to 95%. The resultant larvae followed normal development and symbiont uptake was visible within two weeks. The F2 generation was settled, maintained in an ex-situ nursery, and monitored for survival and growth. Both F1 and F2 generations followed a Type III survival curve with high initial mortality while in the ex-situ nursery and low later-stage mortality. The growth rates of these colonies increased three-fold after outplanting when compared to their growth rates in the ex-situ and in-situ nurseries. All colonies survived while in the in-situ nursery and for an additional nine years after outplanting onto Cuevones Reef. Overall, our results show that colonies produced by assisted breeding, once outplanted, may contribute to the genetic diversity and establishment of self-sustaining sexually-reproducing populations, which is an overarching goal of coral restoration programs.
Collapse
Affiliation(s)
- Sandra Mendoza Quiroz
- SECORE International, Miami, FL, United States of America
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, Mexico
| | | | - Maria Victoria Grosso-Becerra
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, Mexico
| | | | - Raúl Tecalco Rentería
- SECORE International, Miami, FL, United States of America
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, Mexico
| | - Anastazia T. Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, Mexico
| |
Collapse
|
9
|
González-Barrios FJ, Estrada-Saldívar N, Pérez-Cervantes E, Secaira-Fajardo F, Álvarez-Filip L. Legacy effects of anthropogenic disturbances modulate dynamics in the world's coral reefs. GLOBAL CHANGE BIOLOGY 2023; 29:3285-3303. [PMID: 36932916 DOI: 10.1111/gcb.16686] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 05/16/2023]
Abstract
Rapidly changing conditions alter disturbance patterns, highlighting the need to better understand how the transition from pulse disturbances to more persistent stress will impact ecosystem dynamics. We conducted a global analysis of the impacts of 11 types of disturbances on reef integrity using the rate of change of coral cover as a measure of damage. Then, we evaluated how the magnitude of the damage due to thermal stress, cyclones, and diseases varied among tropical Atlantic and Indo-Pacific reefs and whether the cumulative impact of thermal stress and cyclones was able to modulate the responses of reefs to future events. We found that reef damage largely depends on the condition of a reef before a disturbance, disturbance intensity, and biogeographic region, regardless of the type of disturbance. Changes in coral cover after thermal stress events were largely influenced by the cumulative stress of past disturbances and did not depend on disturbance intensity or initial coral cover, which suggests that an ecological memory is present within coral communities. In contrast, the effect of cyclones (and likely other physical impacts) was primarily modulated by the initial reef condition and did not appear to be influenced by previous impacts. Our findings also underscore that coral reefs can recover if stressful conditions decrease, yet the lack of action to reduce anthropogenic impacts and greenhouse gas emissions continues to trigger reef degradation. We uphold that evidence-based strategies can guide managers to make better decisions to prepare for future disturbances.
Collapse
Affiliation(s)
- F Javier González-Barrios
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Nuria Estrada-Saldívar
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Esmeralda Pérez-Cervantes
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | | | - Lorenzo Álvarez-Filip
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| |
Collapse
|
10
|
Wang L, Xu J, Liu H, Wang S, Ou W, Zhang M, Wei F, Luo S, Chen B, Zhang S, Yu K. Ultrasensitive and on-site eDNA detection for the monitoring of crown-of-thorns starfish densities at the pre-outbreak stage using an electrochemical biosensor. Biosens Bioelectron 2023; 230:115265. [PMID: 36996547 DOI: 10.1016/j.bios.2023.115265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
The coral reef crisis has significantly intensified over the last decades, mainly due to severe outbreaks of crown-of-thorns starfish (COTS). Current ecological monitoring has failed to detect COTS densities at the pre-outbreak stage, thus preventing early intervention. In this work, we developed an effective electrochemical biosensor modified by a MoO2/C nanomaterial, as well as a specific DNA probe that could detect trace COTS environmental DNA (eDNA) at a lower detection limit (LOD = 0.147 ng/μL) with excellent specificity. The reliability and accuracy of the biosensor were validated against the standard methods by an ultramicro spectrophotometer and droplet digital PCR (p > 0.05). The biosensor was then utilized for the on-site analysis of seawater samples from SYM-LD and SY sites in the South China Sea. For the SYM-LD site suffering an outbreak, the COTS eDNA concentrations were 0.33 ng/μL (1 m, depth) and 0.26 ng/μL (10 m, depth), respectively. According to the ecological survey, the COTS density was 500 ind/hm2 at the SYM-LD site, verifying the accuracy of our measurements. At the SY site, COTS eDNA was also detected at 0.19 ng/μL, but COTS was not found by the traditional survey. Hence, larvae were possibly present in this region. Therefore, this electrochemical biosensor could be used to monitor COTS populations at the pre-outbreak stages, and potentially serve as a revolutionary early warning method. We will continue to improve this method for picomolar or even femtomolar detection of COTS eDNA.
Collapse
Affiliation(s)
- Liwei Wang
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China; School of Resources, Environment and Materials, Guangxi, Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Nanning, 530003, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China
| | - Jiarong Xu
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China; School of Resources, Environment and Materials, Guangxi, Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Nanning, 530003, China
| | - Hongjie Liu
- School of Resources, Environment and Materials, Guangxi, Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Nanning, 530003, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shaopeng Wang
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Wenchao Ou
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Man Zhang
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Fen Wei
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Songlin Luo
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Biao Chen
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Shaolong Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Kefu Yu
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| |
Collapse
|
11
|
Shlesinger T, van Woesik R. Oceanic differences in coral-bleaching responses to marine heatwaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162113. [PMID: 36773903 DOI: 10.1016/j.scitotenv.2023.162113] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Anomalously high ocean temperatures have increased in frequency, intensity, and duration over the last several decades because of greenhouse gas emissions that cause global warming and marine heatwaves. Reef-building corals are sensitive to such temperature anomalies that commonly lead to coral bleaching, mortality, and changes in community structure. Yet, despite these overarching effects, there are geographical differences in thermal regimes, evolutionary histories, and past disturbances that may lead to different bleaching responses of corals within and among oceans. Here we examined the overall bleaching responses of corals in the Atlantic, Indian, and Pacific Oceans, using both a spatially explicit Bayesian mixed-effects model and a deep-learning neural-network model. We used a 40-year global dataset encompassing 23,288 coral-reef surveys at 11,058 sites in 88 countries, from 1980 to 2020. Focusing on ocean-wide differences we assessed the relationships between the percentage of bleached corals and different temperature-related metrics alongside a suite of environmental variables. We found that while high sea-surface temperatures were consistently, and strongly, related to coral bleaching within all oceans, there were clear geographical differences in the relationships between coral bleaching and most environmental variables. For instance, there was an increase in coral bleaching with depth in the Atlantic Ocean whereas the opposite was observed in the Indian Ocean, and no clear trend could be seen in the Pacific Ocean. The standard deviation of thermal-stress anomalies was negatively related to coral bleaching in the Atlantic and Pacific Oceans, but not in the Indian Ocean. Globally, coral bleaching has progressively occurred at higher temperatures over the last four decades within the Atlantic, Indian, and Pacific Oceans, although, again, there were differences among the three oceans. Together, such patterns highlight that historical circumstances and geographical differences in oceanographic conditions play a central role in contemporary coral-bleaching responses.
Collapse
Affiliation(s)
- Tom Shlesinger
- Institute for Global Ecology, Florida Institute of Technology, Melbourne 32901, FL, USA
| | - Robert van Woesik
- Institute for Global Ecology, Florida Institute of Technology, Melbourne 32901, FL, USA.
| |
Collapse
|
12
|
Mason RAB, Bozec YM, Mumby PJ. Setting sustainable limits on anchoring to improve the resilience of coral reefs. MARINE POLLUTION BULLETIN 2023; 189:114721. [PMID: 36907169 DOI: 10.1016/j.marpolbul.2023.114721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Boat anchoring is common at coral reefs that have high economic or social value, but anchoring has received relatively little attention in reef resilience studies. We developed an individual-based model of coral populations and simulated the effects of anchor damage over time. The model allowed us to estimate the carrying capacity of anchoring for four different coral assemblages and different starting levels of coral cover. The carrying capacity of small to medium-sized recreational vessels across these four assemblages was between 0 and 3.1 anchor strikes ha-1 day-1. In a case study of two Great Barrier Reef archipelagos, we modelled the benefits of anchoring mitigation under bleaching regimes expected for four climate scenarios. The partial mitigation of even a very mild anchoring incidence (1.17 strikes ha-1 day-1) resulted in median coral gains of 2.6-7.7 % absolute cover under RCP2.6, though benefits varied temporally and depended on the Atmosphere-Ocean General Circulation Model used.
Collapse
Affiliation(s)
- Robert A B Mason
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Yves-Marie Bozec
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Peter J Mumby
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
13
|
Villalobos R, Aylagas E, Pearman JK, Curdia J, Lozano-Cortés D, Coker DJ, Jones B, Berumen ML, Carvalho S. Inter-annual variability patterns of reef cryptobiota in the central Red Sea across a shelf gradient. Sci Rep 2022; 12:16944. [PMID: 36210380 PMCID: PMC9548503 DOI: 10.1038/s41598-022-21304-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 09/26/2022] [Indexed: 12/29/2022] Open
Abstract
The combination of molecular tools, standard surveying techniques, and long-term monitoring programs are relevant to understanding environmental and ecological changes in coral reef communities. Here we studied temporal variability in cryptobenthic coral reef communities across the continental shelf in the central Red Sea spanning 6 years (three sampling periods: 2013-2019) and including the 2015 mass bleaching event. We used a combination of molecular tools (barcoding and metabarcoding) to assess communities on Autonomous Reef Monitoring Structures (ARMS) as a standardized sampling approach. Community composition associated with ARMS for both methodologies (barcoding and metabarcoding) was statistically different across reefs (shelf position) and time periods. The partition of beta diversity showed a higher turnover and lower nestedness between pre-bleaching and post-bleaching samples than between the two post-bleaching periods, revealing a community shift from the bleaching event. However, a slight return to the pre-bleaching community composition was observed in 2019 suggesting a recovery trajectory. Given the predictions of decreasing time between bleaching events, it is concerning that cryptobenthic communities may not fully recover and communities with new characteristics will emerge. We observed a high turnover among reefs for all time periods, implying a homogenization of the cryptobiome did not occur across the cross shelf following the 2015 bleaching event. It is possible that dispersal limitations and the distinct environmental and benthic structures present across the shelf maintained the heterogeneity in communities among reefs. This study has to the best of our knowledge presented for the first time a temporal aspect into the analysis of ARMS cryptobenthic coral reef communities and encompasses a bleaching event. We show that these structures can detect cryptic changes associated with reef degradation and provides support for these being used as long-term monitoring tools.
Collapse
Affiliation(s)
- R Villalobos
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia
| | - E Aylagas
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia
- The Red Sea Development Company, 5th Floor, MU04 Tower, ITCC Complex, AlRaidah Digital City, Al Nakhil District 3807, Riyadh, 12382-6726, Saudi Arabia
| | - J K Pearman
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - J Curdia
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia
| | - D Lozano-Cortés
- Environmental Protection, Saudi Aramco, Dhahran, Saudi Arabia
| | - D J Coker
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia
| | - B Jones
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia
| | - M L Berumen
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia
| | - S Carvalho
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
14
|
Alvarez-Filip L, González-Barrios FJ, Pérez-Cervantes E, Molina-Hernández A, Estrada-Saldívar N. Stony coral tissue loss disease decimated Caribbean coral populations and reshaped reef functionality. Commun Biol 2022; 5:440. [PMID: 35681037 PMCID: PMC9184636 DOI: 10.1038/s42003-022-03398-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
Diseases are major drivers of the deterioration of coral reefs and are linked to major declines in coral abundance, reef functionality, and reef-related ecosystems services. An outbreak of a new disease is currently rampaging through the populations of the remaining reef-building corals across the Caribbean region. The outbreak was first reported in Florida in 2014 and reached the northern Mesoamerican Reef by summer 2018, where it spread across the ~450-km reef system in only a few months. Rapid spread was generalized across all sites and mortality rates ranged from 94% to <10% among the 21 afflicted coral species. Most species of the family Meandrinadae (maze corals) and subfamily Faviinae (brain corals) sustained losses >50%. This single event further modified the coral communities across the region by increasing the relative dominance of weedy corals and reducing reef functionality, both in terms of functional diversity and calcium carbonate production. This emergent disease is likely to become the most lethal disturbance ever recorded in the Caribbean, and it will likely result in the onset of a new functional regime where key reef-building and complex branching acroporids, an apparently unaffected genus that underwent severe population declines decades ago and retained low population levels, will once again become conspicuous structural features in reef systems with yet even lower levels of physical functionality.
Collapse
Affiliation(s)
- Lorenzo Alvarez-Filip
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México.
| | - F Javier González-Barrios
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Esmeralda Pérez-Cervantes
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Ana Molina-Hernández
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Nuria Estrada-Saldívar
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| |
Collapse
|
15
|
Steinberg RK, Ainsworth TD, Moriarty T, Bednarek T, Dafforn KA, Johnston EL. Bleaching Susceptibility and Resistance of Octocorals and Anemones at the World's Southern-Most Coral Reef. Front Physiol 2022; 13:804193. [PMID: 35665222 PMCID: PMC9161773 DOI: 10.3389/fphys.2022.804193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Coral reefs are amongst the most biodiverse ecosystems on earth, and while stony corals create the foundational complexity of these ecosystems, octocorals and anemones contribute significantly to their biodiversity and function. Like stony corals, many octocorals contain Symbiodiniaceae endosymbionts and can bleach when temperatures exceed the species' upper thermal limit. Here, we report octocoral bleaching susceptibility and resistance within the subtropical Lord Howe Island coral reef ecosystem during and after marine heatwaves in 2019. Octocoral and anemone surveys were conducted at multiple reef locations within the Lord Howe Island lagoon during, immediately after, and 7 months after the heatwaves. One octocoral species, Cladiella sp. 1, experienced bleaching and mortality, with some bleached colonies detaching from the reef structure during the heatwave (presumed dead). Those that remained attached to the benthos survived the event and recovered endosymbionts within 7 months of bleaching. Cladiella sp. 1 Symbiodiniaceae density (in cells per µg protein), chlorophyll a and c 2 per µg protein, and photosynthetic efficiency were significantly lower in bleached colonies compared to unbleached colonies, while chlorophyll a and c 2 per symbiont were higher. Interestingly, no other symbiotic octocoral species of the Lord Howe Island lagoonal reef bleached. Unbleached Xenia cf crassa colonies had higher Symbiodiniaceae and chlorophyll densities during the marine heatwave compared to other monitoring intervals, while Cladiella sp. 2 densities did not change substantially through time. Previous work on octocoral bleaching has focused primarily on gorgonian octocorals, while this study provides insight into bleaching variability in other octocoral groups. The study also provides further evidence that octocorals may be generally more resistant to bleaching than stony corals in many, but not all, reef ecosystems. Responses to marine heating events vary and should be assessed on a species by species basis.
Collapse
Affiliation(s)
- Rosemary K Steinberg
- Evolution and Ecology Research Centre and Centre for Marine Science and Innovation, School of Biological, Earth, and Environmental Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
- Sydney Institute of Marine Science, Mosman, NSW, Australia
| | - Tracy D Ainsworth
- Evolution and Ecology Research Centre and Centre for Marine Science and Innovation, School of Biological, Earth, and Environmental Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Tess Moriarty
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, Australia
| | - Teresa Bednarek
- Evolution and Ecology Research Centre and Centre for Marine Science and Innovation, School of Biological, Earth, and Environmental Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
- RUHR Universtad Bouchum, Bouchum, Germany
| | | | - Emma L Johnston
- Evolution and Ecology Research Centre and Centre for Marine Science and Innovation, School of Biological, Earth, and Environmental Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
16
|
Medina-Valmaseda AE, Blanchon P, Alvarez-Filip L, Pérez-Cervantes E. Geomorphically controlled coral distribution in degraded shallow reefs of the Western Caribbean. PeerJ 2022; 10:e12590. [PMID: 35310164 PMCID: PMC8929170 DOI: 10.7717/peerj.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/12/2021] [Indexed: 01/06/2023] Open
Abstract
The development of coral reefs results from the interaction between ecological and geological processes in space and time. Their difference in scale, however, makes it difficult to detect the impact of ecological changes on geological reef development. The decline of coral cover over the last 50 years, for example, has dramatically impaired the function of ecological processes on reefs. Yet given the limited-resolution of their Holocene record, it is uncertain how this will impact accretion and structural integrity over longer timescales. In addition, reports of this ecological decline have focused on intrinsic parameters such as coral cover and colony size at the expense of extrinsic ones such as geomorphic and environmental variables. Despite these problems, several attempts have been made to predict the long-term accretion status of reefs based entirely on the contemporary health status of benthic communities. Here we explore how this ecological decline is represented within the reef geomorphic structure, which represents the long-term expression of reef development. Using a detailed geomorphic zonation scheme, we analyze the distribution and biodiversity of reef-building corals in fringing-reef systems of the Mesoamerican Reef tract. We find a depth-related pattern in community structure which shows that the relative species distribution between geomorphic zones is statistically different. Despite these differences, contemporary coral assemblages in all zones are dominated by the same group of pioneer generalist species. These findings imply that first, coral species distribution is still controlled by extrinsic processes that generate the geomorphic zonation; second, that coral biodiversity still reflects species zonation patterns reported by early studies; and third that dominance of pioneer species implies that modern coral assemblages are in a prolonged post-disturbance adjustment stage. In conclusion, any accurate assessment of the future viability of reefs requires a consideration of the geomorphic context or risks miscalculating the impact of ecological changes on long-term reef development.
Collapse
Affiliation(s)
- Alexis Enrique Medina-Valmaseda
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, Mexico,Reef Geoscience Group, Unidad Académica de Sistemas Arrecifales Instituto de Ciencias de Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, Mexico
| | - Paul Blanchon
- Reef Geoscience Group, Unidad Académica de Sistemas Arrecifales Instituto de Ciencias de Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, Mexico
| | - Lorenzo Alvarez-Filip
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales Instituto de Ciencias de Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, Mexico
| | - Esmeralda Pérez-Cervantes
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales Instituto de Ciencias de Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, Mexico
| |
Collapse
|
17
|
Reverter M, Helber SB, Rohde S, de Goeij JM, Schupp PJ. Coral reef benthic community changes in the Anthropocene: Biogeographic heterogeneity, overlooked configurations, and methodology. GLOBAL CHANGE BIOLOGY 2022; 28:1956-1971. [PMID: 34951504 DOI: 10.1111/gcb.16034] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Non-random community changes are becoming more frequent in many ecosystems. In coral reefs, changes towards communities dominated by other than hard corals are increasing in frequency, with severe impacts on ecosystem functioning and provision of ecosystem services. Although new research suggests that a variety of alternative communities (i.e. not dominated by hard corals) exist, knowledge on the global diversity and functioning of alternative coral reef benthic communities, especially those not dominated by algae, remains scattered. In this systematic review and meta-analysis of 523 articles, we analyse the different coral reef benthic community changes reported to date and discuss the advantages and limitations of the methods used to study these changes. Furthermore, we used field cover data (1116 reefs from the ReefCheck database) to explore the biogeographic and latitudinal patterns in dominant benthic organisms. We found a mismatch between literature focus on coral-algal changes (over half of the studies analysed) and observed global natural patterns. We identified strong biogeographic patterns, with the largest and most biodiverse biogeographic regions (Western and Central Indo-Pacific) presenting previously overlooked soft-coral-dominated communities as the most abundant alternative community. Finally, we discuss the potential biases associated with methods that overlook ecologically important cryptobenthic communities and the potential of new technological advances in improving monitoring efforts. As coral reef communities inevitably and swiftly change under changing ocean conditions, there is an urgent need to better understand the distribution, dynamics as well as the ecological and societal impacts of these new communities.
Collapse
Affiliation(s)
- Miriam Reverter
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Wilhelmshaven, Germany
| | - Stephanie B Helber
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Wilhelmshaven, Germany
| | - Sven Rohde
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Wilhelmshaven, Germany
| | - Jasper M de Goeij
- Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Peter J Schupp
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Wilhelmshaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
| |
Collapse
|
18
|
Westphal H, Murphy GN, Doo SS, Mann T, Petrovic A, Schmidt C, Stuhr M. Ecosystem design as an avenue for improving services provided by carbonate producing marine ecosystems. PeerJ 2022; 10:e12785. [PMID: 35116197 PMCID: PMC8784016 DOI: 10.7717/peerj.12785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/21/2021] [Indexed: 01/10/2023] Open
Abstract
Ecosystem Design (ED) is an approach for constructing habitats that places human needs for ecosystem services at the center of intervention, with the overarching goal of establishing self-sustaining habitats which require limited management. This concept was originally developed for use in mangrove ecosystems, and is understandably controversial, as it markedly diverges from other protection approaches that assign human use a minor priority or exclude it. However, the advantage of ED lies within the considered implementation of these designed ecosystems, thus preserving human benefits from potential later disturbances. Here, we outline the concept of ED in tropical carbonate depositional systems and discuss potential applications to aid ecosystem services such as beach nourishment and protection of coastlines and reef islands at risk from environmental and climate change, CO2 sequestration, food production, and tourism. Biological carbonate sediment production is a crucial source of stability of reef islands and reef-rimmed coastlines. Careful implementation of designed carbonate depositional ecosystems could help counterbalance sea-level rise and manage documented erosion effects of coastal constructions. Importantly, adhering to the core ethos of ED, careful dynamic assessments which provide a balanced approach to maximizing ecosystem services (e.g., carbonate production), should identify and avoid any potential damages to existing functioning ecosystems.
Collapse
Affiliation(s)
- Hildegard Westphal
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany,Geoscience Department, Universität Bremen, Bremen, Germany,King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gary N. Murphy
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
| | - Steve S. Doo
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany,King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Thomas Mann
- Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover, Germany
| | - Alexander Petrovic
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Marleen Stuhr
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany,Inter-University Institute for Marine Sciences (IUI), Eilat, Israel,Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
19
|
Baumann JH, Zhao L, Stier AC, Bruno JF. Remoteness does not enhance coral reef resilience. GLOBAL CHANGE BIOLOGY 2022; 28:417-428. [PMID: 34668280 PMCID: PMC8671335 DOI: 10.1111/gcb.15904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 05/02/2023]
Abstract
Remote coral reefs are thought to be more resilient to climate change due to their isolation from local stressors like fishing and pollution. We tested this hypothesis by measuring the relationship between local human influence and coral community resilience. Surprisingly, we found no relationship between human influence and resistance to disturbance and some evidence that areas with greater human development may recover from disturbance faster than their more isolated counterparts. Our results suggest remote coral reefs are imperiled by climate change, like so many other geographically isolated ecosystems, and are unlikely to serve as effective biodiversity arks. Only drastic and rapid cuts in greenhouse gas emissions will ensure coral survival. Our results also indicate that some reefs close to large human populations were relatively resilient. Focusing research and conservation resources on these more accessible locations has the potential to provide new insights and maximize conservation outcomes.
Collapse
Affiliation(s)
- Justin H. Baumann
- The Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3280 USA
- Department of Marine Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3300 USA
- Biology Department, Bowdoin College, Brunswick, Maine, 04011 USA
- Correspondence to: or
| | - Lily Zhao
- Department of Ecology, Evolution, and Marine Biology, The University of California Santa Barbara, Santa Barbara CA, 93106-9620, USA
| | - Adrian C. Stier
- Department of Ecology, Evolution, and Marine Biology, The University of California Santa Barbara, Santa Barbara CA, 93106-9620, USA
| | - John F. Bruno
- The Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3280 USA
- Correspondence to: or
| |
Collapse
|
20
|
Reverter M, Jackson M, Rohde S, Moeller M, Bara R, Lasut MT, Segre Reinach M, Schupp PJ. High taxonomic resolution surveys and trait-based analyses reveal multiple benthic regimes in North Sulawesi (Indonesia). Sci Rep 2021; 11:16554. [PMID: 34400684 PMCID: PMC8367970 DOI: 10.1038/s41598-021-95905-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
As coral reef communities change and reorganise in response to increasing disturbances, there is a growing need for understanding species regimes and their contribution to ecosystem processes. Using a case study on coral reefs at the epicentre of tropical marine biodiversity (North Sulawesi, Indonesia), we explored how application of different biodiversity approaches (i.e., use of major taxonomic categories, high taxonomic resolution categories and trait-based approaches) affects the detection of distinct fish and benthic communities. Our results show that using major categories fails to identify distinct coral reef regimes. We also show that monitoring of only scleractinian coral communities is insufficient to detect different benthic regimes, especially communities dominated by non-coral organisms, and that all types of benthic organisms need to be considered. We have implemented the use of a trait-based approach to study the functional diversity of whole coral reef benthic assemblages, which allowed us to detect five different community regimes, only one of which was dominated by scleractinian corals. Furthermore, by the parallel study of benthic and fish communities we provide new insights into key processes and functions that might dominate or be compromised in the different community regimes.
Collapse
Affiliation(s)
- Miriam Reverter
- Institute for Chemistry and Biology of the Marine Environment (ICBM) at the Carl Von Ossietzky University of Oldenburg, Wilhelmshaven, Germany.
| | - Matthew Jackson
- Institute for Chemistry and Biology of the Marine Environment (ICBM) at the Carl Von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | - Sven Rohde
- Institute for Chemistry and Biology of the Marine Environment (ICBM) at the Carl Von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | - Mareen Moeller
- Institute for Chemistry and Biology of the Marine Environment (ICBM) at the Carl Von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | - Robert Bara
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, Jl. Kampus UNSRAT Bahu, 95115, Manado, Sulawesi Utara, Indonesia
| | - Markus T Lasut
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, Jl. Kampus UNSRAT Bahu, 95115, Manado, Sulawesi Utara, Indonesia
| | | | - Peter J Schupp
- Institute for Chemistry and Biology of the Marine Environment (ICBM) at the Carl Von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 26129, Oldenburg, Germany
| |
Collapse
|
21
|
Cramer KL, Donovan MK, Jackson JBC, Greenstein BJ, Korpanty CA, Cook GM, Pandolfi JM. The transformation of Caribbean coral communities since humans. Ecol Evol 2021; 11:10098-10118. [PMID: 34367562 PMCID: PMC8328467 DOI: 10.1002/ece3.7808] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 11/06/2022] Open
Abstract
The mass die-off of Caribbean corals has transformed many of this region's reefs to macroalgal-dominated habitats since systematic monitoring began in the 1970s. Although attributed to a combination of local and global human stressors, the lack of long-term data on Caribbean reef coral communities has prevented a clear understanding of the causes and consequences of coral declines. We integrated paleoecological, historical, and modern survey data to track the occurrence of major coral species and life-history groups throughout the Caribbean from the prehuman period to the present. The regional loss of Acropora corals beginning by the 1960s from local human disturbances resulted in increases in the occurrence of formerly subdominant stress-tolerant and weedy scleractinian corals and the competitive hydrozoan Millepora beginning in the 1970s and 1980s. These transformations have resulted in the homogenization of coral communities within individual countries. However, increases in stress-tolerant and weedy corals have slowed or reversed since the 1980s and 1990s in tandem with intensified coral bleaching and disease. These patterns reveal the long history of increasingly stressful environmental conditions on Caribbean reefs that began with widespread local human disturbances and have recently culminated in the combined effects of local and global change.
Collapse
Affiliation(s)
- Katie L. Cramer
- Center for Biodiversity Outcomes and School of Life SciencesArizona State UniversityTempeAZUSA
| | - Mary K. Donovan
- Center for Global Discovery and Conservation Science and School of Geographical Sciences and Urban PlanningArizona State UniversityTempeAZUSA
| | - Jeremy B. C. Jackson
- Center for Biodiversity and Conservation and Department of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
| | | | - Chelsea A. Korpanty
- MARUM Center for Marine Environmental SciencesUniversity of BremenBremenGermany
| | - Geoffrey M. Cook
- Department of Biology and Health ScienceNew England CollegeHennikerNHUSA
| | - John M. Pandolfi
- Centre for Marine ScienceSchool of Biological Sciences and ARC Centre of Excellence for Coral Reef StudiesThe University of QueenslandSt LuciaQldAustralia
| |
Collapse
|
22
|
Shlesinger T, van Woesik R. Different population trajectories of two reef-building corals with similar life-history traits. J Anim Ecol 2021; 90:1379-1389. [PMID: 33666226 PMCID: PMC8252767 DOI: 10.1111/1365-2656.13463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/26/2021] [Indexed: 01/01/2023]
Abstract
Increases in the frequency and intensity of acute and chronic disturbances are causing declines of coral reefs world‐wide. Although quantifying the responses of corals to acute disturbances is well documented, detecting subtle responses of coral populations to chronic disturbances is less common, but can also result in altered population and community structures. We investigated the population dynamics of two key reef‐building Merulinid coral species, Dipsastraea favus and Platygyra lamellina, with similar life‐history traits, in the Gulf of Eilat and Aqaba, Red Sea from 2015 to 2018, to assess potential differences in their population trajectories. Demographic processes, which included rates of survival, growth, reproduction and recruitment were used to parametrize integral projection models and estimate population growth rates and the likely population trajectories of both coral species. The survival and reproduction rates of both D. favus and P. lamellina were positively related to coral colony size, and elasticity analyses showed that large colonies most influenced population dynamics. Although both species have similar life‐history traits and growth morphologies and are generally regarded as ‘stress‐tolerant’, the populations showed contrasting trajectories—D. favus appears to be increasing whereas P. lamellina appears to be decreasing. As many corals have long‐life expectancies, the process of local and regional decline might be subtle and slow. Ecological assessments based on total living coral coverage, morphological groups or functional traits might overlook subtle, species‐specific trends. However, demographic approaches capable of detecting subtle species‐specific population changes can augment ecological studies and provide valuable early warning signs of decline before major coral loss becomes evident.
Collapse
Affiliation(s)
- Tom Shlesinger
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA
| | - Robert van Woesik
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA
| |
Collapse
|
23
|
Molina-Hernández A, González-Barrios FJ, Perry CT, Álvarez-Filip L. Two decades of carbonate budget change on shifted coral reef assemblages: are these reefs being locked into low net budget states? Proc Biol Sci 2020; 287:20202305. [PMID: 33290684 DOI: 10.1098/rspb.2020.2305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The ecology of coral reefs is rapidly shifting from historical baselines. One key-question is whether under these new, less favourable ecological conditions, coral reefs will be able to sustain key geo-ecological processes such as the capacity to accumulate carbonate structure. Here, we use data from 34 Caribbean reef sites to examine how the carbonate production, net erosion and net carbonate budgets, as well as the organisms underlying these processes, have changed over the past 15 years in the absence of further severe acute disturbances. We find that despite fundamental benthic ecological changes, these ecologically shifted coral assemblages have exhibited a modest but significant increase in their net carbonate budgets over the past 15 years. However, contrary to expectations this trend was driven by a decrease in erosion pressure, largely resulting from changes in the abundance and size-frequency distribution of parrotfishes, and not by an increase in rates of coral carbonate production. Although in the short term, the carbonate budgets seem to have benefitted marginally from reduced parrotfish erosion, the absence of these key substrate grazers, particularly of larger individuals, is unlikely to be conducive to reef recovery and will thus probably lock these reefs into low budget states.
Collapse
Affiliation(s)
- Ana Molina-Hernández
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacán, Ciudad de México, México.,Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - F Javier González-Barrios
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Chris T Perry
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Lorenzo Álvarez-Filip
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| |
Collapse
|