1
|
Qu Y, Yang X, Zhang M, Chen J, Sui Y, Zhang X, Zeng Y, Huang M, Gao Y, Ochoa-Hueso R, Shi B, Zhao D, Yang T, Sun W. Bacterial and fungal diversity and species interactions inversely affect ecosystem functions under drought in a semi-arid grassland. Microbiol Res 2025; 293:128075. [PMID: 39862561 DOI: 10.1016/j.micres.2025.128075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Extreme climatic events, such as drought, can significantly alter belowground microbial diversity and species interactions, leading to unknown consequences for ecosystem functioning. Here, we simulated a drought gradient by removing 30 %, 50 %, and 70 % of precipitation in a semi-arid grassland over five years. We assessed the effects of drought on bacterial and fungal diversity, as well as on their species interactions. We also evaluated the impact of drought on ecosystem individual functions (e.g., plant biomass and microbial activity), and on multifunctionality (EMF). Finally, we linked the drought-induced changes in microbial communities with the variations in EMF. Drought significantly increased fungal diversity and intensified species interactions, but it decreased bacterial diversity and species interactions. Both plant and microbial biomass significantly decreased with increasing drought severity, while microbial activity showed the opposite trend. Only the -50 % rainfall treatment notably reduced EMF. Bacterial diversity and species interactions positively correlated with most ecosystem functions. However, fungal parameters were negatively associated with these functions. Structural equation modeling indicated that bacterial diversity had a strong direct positive effect on EMF (standardized path coefficient: 0.52), and that bacterial diversity was indirectly suppressed by drought through decreasing soil water content and bacterial phospholipid fatty acids (PLFAs). In contrast, fungal species interactions had a significant direct negative effect on EMF with the highest standardized path coefficient (-0.6) and were directly enhanced by fungal diversity. Drought had indirect positive effects on fungal diversity by decreasing soil water content and stimulating fungal PLFAs. Our results highlight the importance of considering soil microbial species interactions when evaluating the ecological impacts of drought. Furthermore, the divergent regulatory pathways of bacterial and fungal communities to EMF suggest that improving ecosystem functionality may be achieved by enhancing bacterial diversity while mitigating fungal species interactions through reducing fungal diversity.
Collapse
Affiliation(s)
- Yanan Qu
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Xuechen Yang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Minghao Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Junda Chen
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Yushu Sui
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Xiaochong Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Yizhu Zeng
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Muping Huang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Yifan Gao
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Raúl Ochoa-Hueso
- Department of Biology, IVAGRO, University of Cádiz, Cádiz, Spain; Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Baoku Shi
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Daiqi Zhao
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Tianxue Yang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China.
| | - Wei Sun
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China.
| |
Collapse
|
2
|
Li Y, Li R, Li Q, Zhao X, Zhao P, Yan P, Zhang S, Gu L, Xue J. Study on the synergistic mechanisms of fungal biodiversity and ecosystem multifunctionality across vegetation diversity gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178563. [PMID: 39837117 DOI: 10.1016/j.scitotenv.2025.178563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
Ecosystem multifunctionality denotes the capacity of an ecosystem to deliver various functions and services concurrently, emphasizing the overall effectiveness of these functions. Although biodiversity is intrinsically linked to ecosystem multifunctionality, research on the determinants of changes in this relationship remains limited. This study focused on 147 research plots across various ecosystems in the Lüliang region. Through high-throughput sequencing and data modeling, it was revealed that there exists a significant positive correlation between soil fungal biodiversity and ecosystem multifunctionality (P < 0.05). Notably, this correlation was found to be influenced by specialists and vegetation diversity. The specific results supporting this finding are presented as follows: 1) By means of linear regression and the establishment of various models, it was indicated that specialists exert a more substantial influence on the fungal biodiversity-ecosystem multifunctionality (BEF) relationship compared to generalists. 2) Moving window analysis demonstrated that changes in vegetation diversity affected BEF relationships within fungal communities, leading to synergistic shifts. As vegetation diversity increased, co-occurrence networks generally simplified, and the positive fungal BEF correlation was somewhat decreased. This study enhances the comprehension of fungal BEF relationships in natural ecosystems and provides a foundation for the development of effective management and conservation strategies in response to global changes.
Collapse
Affiliation(s)
- Yujing Li
- Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Jinzhong 030619, China; College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, China
| | - Ruiyun Li
- Shanxi Lipu Innovation Technology Company Limited, Jinzhong 030619, China
| | - Qiao Li
- Shanxi Lipu Innovation Technology Company Limited, Jinzhong 030619, China
| | - Xiaodong Zhao
- Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Jinzhong 030619, China; College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, China
| | - Pengyu Zhao
- Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Jinzhong 030619, China; College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, China.
| | - Pingmei Yan
- Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Jinzhong 030619, China; College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, China
| | - Shuhui Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, China
| | - Lihong Gu
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, China
| | - Jinhua Xue
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, China
| |
Collapse
|
3
|
Zhou J, Wang P, Wei L, Zhang J, Li X, Huang N, Liu G, Zou K, Fan R, Liu L, Ma X, Huang T, Sun F. Grazing increases the complexity of networks and ecological stochastic processes of mycorrhizal fungi. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123933. [PMID: 39742771 DOI: 10.1016/j.jenvman.2024.123933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Arbuscular mycorrhizal fungi (AMF) form extensive symbiotic relationships with plants, which are critical for plant-driven biogeochemical cycles and ecosystem functions. Grazing and mowing, which are common grassland utilization patterns globally, significantly alter plant community characteristics as well as soil nutrients and structure, thereby potentially influencing AMF communities. However, the effects of these grassland managements on AMF community structure and ecological processes remain unclear. Here, we investigated AMF communities in cattle grazing, sheep grazing, and mowing grasslands. We examined AMF community diversity, composition, assembly processes, and network interactions. Our results revealed distinct AMF compositions across different grassland managements. In cattle and sheep grazing grasslands, the AMF community assembly processes were determined by dispersal limitation and drift, with increased importance of stochasticity. Although AMF abundance did not alter by grassland managements, AMF diversity decreased under sheep grazing, associated with reduced pH levels compared to cattle grazing or mowing. AMF formed more complex (higher average degree and graph density) and integrated (lower modularity) networks in grazing grasslands than mowing grasslands. The AMF network in cattle grazing grasslands showed the highest stability, associated with a broader habitat niche, balanced interspecies competition, and higher soil AP and MBN. Meanwhile, some species with high adaptability to grazing became key nodes in the AMF network, such as Funneliformis. Our findings highlight significant AMF responses to grazing, including increased network complexity and ecological stochasticity, providing new insights into how grassland managements influence the composition and assembly patterns of soil symbiotic microbial communities.
Collapse
Affiliation(s)
- Jiqiong Zhou
- Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
| | - Pengsen Wang
- Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Li Wei
- Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Jianguo Zhang
- Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Xuxu Li
- Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu, 611130, China; Sichuan Ganzi Tibetan Autonomous Prefecture, Institute of Animal Husbandry Science, Ganzi, China
| | - Nan Huang
- Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Gang Liu
- Sichuan Academy of Grassland Sciences, Chengdu, 610097, China
| | - Kun Zou
- Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Rui Fan
- Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu, 611130, China; College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lin Liu
- Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Xiao Ma
- Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Ting Huang
- Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Feida Sun
- Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| |
Collapse
|
4
|
Chang C, Hu E, Tang X, Ye S, Zhao D, Qu Z, Li M. Assembly of soil multitrophic community regulates multifunctionality via multifaceted biotic factors in subtropical ecosystems. ENVIRONMENT INTERNATIONAL 2025; 195:109272. [PMID: 39805170 DOI: 10.1016/j.envint.2025.109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/05/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Soil biodiversity underpins multiple ecosystem functions and services essential for human well-being. Understanding the determinants of biodiversity-ecosystem function relationships (BEFr) is critical for the conservation and management of soil ecosystems. Community assembly processes determine community diversity and structure. However, there remains limited systematic research on how the assembly processes of multiple organismal groups affect soil ecosystem functions through their influence on biodiversity and species interactions. Here, we analyzed 331 soil samples from different land-use types (cropland, forest, and grassland) in the Qinling-Daba Mountains to investigate the drivers, assembly processes, and network stability of multitrophic organisms. High-throughput sequencing was used to examine archaea, bacteria, fungi, algae, protozoa, and invertebrates, while enzyme activity assays were used to assess ecosystem multifunctionality related to nutrient provisioning. Our results indicated that biotic factors contributed to 62.81-94.97 % of α-diversity and 4.19-52.37 % of β-diversity in multitrophic organisms, even when considering the influence of abiotic factors. Protozoan α- and β-diversity most significantly explained the α- and β-diversity of bacteria, fungi, algae, and invertebrates in soil ecosystems, serving as important indicators for assessing soil multifunctionality and ecosystem health. Furthermore, the assembly processes in prokaryotes were primarily governed by stochasticity (>50 %), whereas those in eukaryotic groups were dominated by deterministic processes (<50 %). Diversity and network stability increased with greater stochasticity in bacterial communities where stochastic processes predominated. Conversely, in fungal and protozoan communities dominated by deterministic processes, diversity and network stability decreased as deterministic processes intensified. Importantly, stochastic processes in soil multitrophic assembly enhanced ecosystem multifunctionality by increasing α-diversity, β-diversity, and network stability. These findings provide valuable insights into the regulation of BEFr by multitrophic assembly processes. Future research should further explore the role of these assembly processes in soil ecosystem functioning under land-use change scenarios.
Collapse
Affiliation(s)
- Chao Chang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100 Shaanxi, China
| | - En Hu
- Shaanxi Provincial Academy of Environmental Science, Xi'an 710061 Shaanxi, China
| | - Xiaofeng Tang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100 Shaanxi, China
| | - Sisi Ye
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100 Shaanxi, China
| | - Dan Zhao
- Shaanxi Provincial Academy of Environmental Science, Xi'an 710061 Shaanxi, China
| | - Zhi Qu
- State Key Laboratory of Eco-hydraulics in the Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048 Shaanxi, China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100 Shaanxi, China.
| |
Collapse
|
5
|
Liu X, Kong L, Tong L, Zackariah GSK, Zhu R, Li Z, Lv Y. Inoculation with effective microorganisms agent enhanced fungal diversity in the secondary fermentation process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123985. [PMID: 39752954 DOI: 10.1016/j.jenvman.2024.123985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
Microbial inoculations have emerged as a key approach to address the low natural microbial activity of traditional composting technologies. It is crucial for successfully promoting manure composting to understand the influences of microbial inoculations on fungal communities and its mechanisms. To investigate the effects of microbial inoculation on diversity characteristics, tropic mode, and co-occurrence network of fungal communities during composting, an aerobic composting experiment of chicken manure inoculated with microbial agents was performed. The results showed that microbial inoculations enhanced fungal richness and diversity during the secondary fermentation, promoted beneficial fungi, and restrained pathogenic microbes. Microbial inoculation facilitated saprophytic fungi and symbiotic fungi, augmented fungal network complexity and cooperation during the first fermentation, concurrently impeding fungal network complexity and cooperation during the secondary fermentation. These results provide technical guidance for composting process optimization and compost product quality improving, which was beneficial to promote soil quality and mitigating agricultural non-point source pollution.
Collapse
Affiliation(s)
- Xiayan Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China; Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lingyu Kong
- Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lihong Tong
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China
| | - G S K Zackariah
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rongsheng Zhu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Zhaojun Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.
| | - Yizhong Lv
- Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
6
|
Zhang D, Sun J, Peng S, Wang Y, Hua Q, Wu P, Lin X. Paddy-upland rotation combined with manure application: An optimal strategy for enhancing soil multifunctionality. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123788. [PMID: 39705991 DOI: 10.1016/j.jenvman.2024.123788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Promoting soil multifunctionality is pivotal for maintaining agricultural productivity and sustainable agriculture, especially with the increasing global population and food demand. The effectiveness of different agricultural practices in enhancing soil multifunctionality and how the combination can maximize soil multifunctionality remains unknown. This study aimed to investigate the different impacts of rotation (paddy-upland rotation and dryland rotation) combined with fertilization (chemical fertilizer and manure) on soil multifunctionality, microbial community structure, and microbial networks. A two-year field experiment was conducted at the Fengqiu National Agro-Ecosystem Observation and Research Station in Henan Province, China, comparing the differences between rice-wheat rotation (paddy-upland rotation) and maize-wheat rotation (dryland rotation) combined with chemical fertilizer and pig manure. This finding revealed that paddy-upland rotation combined with manure application had the optimal effect in enhancing soil multifunctionality with a 216.25 % enhancement while contributing to a yield increase of 222.71 %. Notably, paddy-upland rotation and fertilization significantly promoted the soil bacterial network complexity and robustness, and these network properties were crucial factors in predicting soil multifunctionality. This study provides a new insight for developing a comprehensive strategy combining paddy-upland rotation with manure application in the future, which can help us to better improve soil health and agricultural sustainability.
Collapse
Affiliation(s)
- Dan Zhang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 101400, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Jianbin Sun
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 101400, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Shuang Peng
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; College of Environment and Ecology, Jiangsu Open University, Nanjing, 210017, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| | - Yiming Wang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 101400, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| | - Qingqing Hua
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Pan Wu
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Xiangui Lin
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| |
Collapse
|
7
|
Long X, Li J, Liao X, Wang J, Zhang W, Wang K, Zhao J. Stable Soil Biota Network Enhances Soil Multifunctionality in Agroecosystems. GLOBAL CHANGE BIOLOGY 2025; 31:e70041. [PMID: 39840664 DOI: 10.1111/gcb.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/19/2024] [Indexed: 01/23/2025]
Abstract
Unraveling how agricultural management practices affect soil biota network complexity and stability and how these changes relate to soil processes and functions is critical for the development of sustainable agriculture. However, our understanding of these knowledge still remains unclear. Here, we explored the effects of soil management intensity on soil biota network complexity, stability, and soil multifunctionality, as well as the relationships among these factors. Four typical land use types representing a gradient of disturbance intensity were selected in calcareous and red soils in southwest China. The four land use types with increasing disturbance intensity included pasture, sugarcane farmland, rice paddy fields, and maize cropland. The network cohesion, the network topological features (e.g., average degree, average clustering coefficient, average path length, network diameter, graph density, and modularity), and the average variation degree were used to evaluate the strength of interactions between species, soil biota network complexity, and the network stability, respectively. The results showed that intensive soil management increased species competition and soil biota network complexity but decreased soil biota network stability. Soil microfauna (e.g., nematode, protozoa, and arthropoda) stabilized the entire soil biota network through top-down control. Soil biota network stability rather than soil biota network complexity or soil biodiversity predicted the dynamics of soil multifunctionality. Specifically, stable soil communities, in both the entire soil biota network and selected soil organism groups (e.g., archaea, bacteria, fungi, arthropoda, nematode, protozoa, viridiplantae, and viruses), support high soil multifunctionality. In particular, soil microfauna stability had more contributions to soil multifunctionality than the stability of soil microbial communities. This result was further supported by network analysis, which showed that modules 1 and 4 had greater numbers of soil microfauna species and explained more variation of soil multifunctionality. Our study highlights that soil biota network stability should be considered a key factor in improving agricultural sustainability and crop productivity in the context of increasing global agricultural intensification.
Collapse
Affiliation(s)
- Xianwen Long
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, Guangxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiangnan Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, Guangxi, China
| | - Xionghui Liao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, Guangxi, China
| | - Jiachen Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, Guangxi, China
| | - Wei Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, Guangxi, China
| | - Kelin Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, Guangxi, China
| | - Jie Zhao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, Guangxi, China
| |
Collapse
|
8
|
Tian L, Wu G, Chi S, Liu X, Wang C, Jiang H. Water level fluctuation regulated the effect of bacterial community on ecosystem multifunctionality in Poyang Lake wetland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123965. [PMID: 39746262 DOI: 10.1016/j.jenvman.2024.123965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/30/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Soil bacterial communities are critical for maintaining ecosystem functions, yet the impact of water level fluctuations on ecosystem multifunctionality (EMF) and the role of bacterial communities in the lake water-level-fluctuating zone (WLFZ) remain poorly understood. This study investigated how seasonal water level fluctuations influence EMF and their relationships with soil bacterial communities through a two-year field survey. We found that soil bacterial diversity was significantly positively correlated with EMF. Rising water levels decreased soil bacterial diversity and EMF; neutral model analysis showed that the contribution of stochastic processes in bacterial community assembly decreased during the flood period. Structural equation modeling revealed that soil moisture and pH were the primary factors influencing EMF during the dry period, while soil pH, bacterial diversity, and water depth were the main factors affecting EMF during the flood period. Our study highlights that the dry-wet transitions caused by water level fluctuations lead to distinct seasonal driving patterns of EMF. This study provides a data reference for studying the ecological effects of water level fluctuations and wetland management.
Collapse
Affiliation(s)
- Linqi Tian
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Guiping Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Shenyan Chi
- College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Xin Liu
- College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Chunliu Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Helong Jiang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing, 211135, China.
| |
Collapse
|
9
|
Li D, Chen D, Hou C, Chen H, Zhou Q, Wu J. Soil microfauna mediate multifunctionality under multilevel warming in a primary forest. J Anim Ecol 2025; 94:58-68. [PMID: 39551974 DOI: 10.1111/1365-2656.14210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/05/2024] [Indexed: 11/19/2024]
Abstract
Soil microfauna play a crucial role in maintaining multiple functions associated with soil phosphorous, nitrogen and carbon cycling. Although both soil microfauna diversity and multifunctionality are strongly affected by climate warming, it remains unclear how their relationships respond to different levels of warming. We conducted a 3-year multilevel warming experiment with five warming treatments in a subtropical primary forest. Using infrared heating systems, the soil surface temperature in plots was maintained at 0.8, 1.5, 3.0 and 4.2°C above ambient temperature (control). Our findings indicated that low-level warming (+0.8-1.5°C) increased soil multifunctionality, as well as nematode and protist diversity, compared with the control. In contrast, high-level warming (+4.2°C) significantly reduced these variables. We also identified significant positive correlations between soil multifunctionality and nematode and protist diversity in the 0-10 cm soil layer. Notably, we found that soil multifunctionality and protist diversity did not change significantly under 3.0°C warming treatment. Our results imply that a temperature increase of around 3°C may represent a critical threshold in subtropical forests, which is of great importance for identifying response measures to global warming from the perspective of microfauna in the surface soil. Our findings provide new evidence on how soil microfauna regulate multifunctionality under varying degrees of warming in primary forests.
Collapse
Affiliation(s)
- Debao Li
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| | - Deyun Chen
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| | - Chunyu Hou
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| | - Hong Chen
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| | - Qingqiu Zhou
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| | - Jianping Wu
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| |
Collapse
|
10
|
Miao L, Zhang J, Luo D, Adyel TM, Ao Y, Li C, Yao Y, Wu J, You G, Hou J. Distinct effects of flow intermittency on the benthic microbial diversity and their denitrification on different substrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177394. [PMID: 39528219 DOI: 10.1016/j.scitotenv.2024.177394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/14/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Global climate change has significantly increased the duration of droughts in intermittent rivers, impacting benthic microbial-mediated biogeochemical processes. However, the response mechanisms of biofilms on different substrate types to alternating dry and wet conditions and their related ecosystem functions remain poorly understood. This study uses high-throughput sequencing and enzyme assays to investigate the impact of gradient drought stress on microbial diversity and functional changes of biofilm communities inhabiting on gravel, cobblestone, and sediment. Results showed that the duration of drought significantly affects microbial diversity, with algal and bacterial α-diversity declining under extended drought across gravel, cobblestone, and sediment substrates. At the same time, fungal diversity was less affected, likely due to their distinct ecological niches and reproductive strategies. β-diversity analysis revealed significant changes in community heterogeneity, with algae and bacteria showing increased Bray-Curtis dissimilarities, indicating distinct adaptation strategies that may affect ecosystem functioning. Fungal communities, however, were less impacted by drought-induced heterogeneity changes. Network analysis showed that drought altered microbial network connectivity, with algal networks displaying decreased path distances, while bacterial networks remained stable, suggesting greater resilience to drought stress. Functional enzyme assays revealed significantly reduced denitrification rates across all substrates post-drought, with distinct denitrifying enzyme activity responses depending on substrate type. Partial least squares path modeling revealed that algal biodiversity were closely linked to the maintaining of enzyme activities, particularly denitrification rates of biofilms on cobblestone and gravel. These findings indicated the critical role of substrate types in shaping microbial responses to drought stress, with distinct microbial groups and diversity indices playing key roles in maintaining ecosystem functions. This study highlights the importance of understanding the interactions between microbial community dynamics and ecosystem functions under varying environmental stressors in river ecosystems.
Collapse
Affiliation(s)
- Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Junling Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Dan Luo
- Tibet Research Academy of Eco-environmental Sciences, No.26, Jinzhu Middle Road, Chengguan District, Lhasa 850030, Tibet Autonomous Region, People's Republic of China
| | - Tanveer M Adyel
- Biosciences and Food Technology Discipline, RMIT University, Melbourne, VIC 3000, Australia
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Chaoran Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Yu Yao
- School of Environment, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
11
|
Hu D, Zhou X, Ma G, Pan J, Ma H, Chai Y, Li Y, Yue M. Increased soil bacteria-fungus interactions promote soil nutrient availability, plant growth, and coexistence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176919. [PMID: 39454778 DOI: 10.1016/j.scitotenv.2024.176919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/14/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Tree species and interkingdom relationships in the belowground metacommunity are key factors in determining soil microbial diversity and community composition. However, how bacterial-fungal interactions mediate soil nutrient and plant growth remains largely unexplored in the coniferous forests. Here, we selected three types of naturally growing coniferous forests on the Loess Plateau-pure stands of Platycladus orientalis, mixed stands of Platycladus orientalis and Pinus tabuliformis, and pure stands of Pinus tabuliformis-to compare the differences in soil properties, microbial diversity and community composition, soil enzymatic activity, and plant growth conditions across these stand types. We found that tree species mixing significantly alters soil microbial community diversity and composition, increasing the positive associations between bacteria and fungi. Compared to pure stands, mixed stands exhibit significantly higher bacterial diversity, whereas fungal diversity shows no significant difference. Additionally, available soil nutrients (ammonium nitrogen and available phosphorus) are significantly increased in mixed stands, along with their associated soil enzymatic activities. The partial least squares path model suggests that higher bacterial diversity enhances bacterial-fungal positive interactions, increasing the relative abundance of ectomycorrhizal fungi and the decomposition rate of organic matter in mixed stands, thereby boosting soil nutrient availability and plant growth. These results highlight the importance of positive bacterial-fungal associations for soil nutrient availability and plant growth, deepen the understanding of the role of soil microbial interactions in mediating plant species coexistence. Most importantly, our results implied a stable coexistence of the pioneer P. orientalis and the late successional species P. tabuliformis in the Loess Plateau region and provided a microbiological interpretation.
Collapse
Affiliation(s)
- Dong Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, PR China; College of life science, Northwest University, Xi'an, PR China
| | - Xuehui Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, PR China; College of life science, Northwest University, Xi'an, PR China
| | - Gaoyuan Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, PR China; College of life science, Northwest University, Xi'an, PR China
| | - Jiahao Pan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, PR China; College of life science, Northwest University, Xi'an, PR China
| | - Huan Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, PR China; College of life science, Northwest University, Xi'an, PR China
| | - Yongfu Chai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, PR China; College of life science, Northwest University, Xi'an, PR China
| | - Yunshi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, PR China; College of life science, Northwest University, Xi'an, PR China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, PR China; College of life science, Northwest University, Xi'an, PR China; Xi'an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi'an, PR China.
| |
Collapse
|
12
|
Li X, Li T, Li H. Asynchronous patterns in soil bacterial diversity and functional potentials along an alpine altitudinal gradient. Front Microbiol 2024; 15:1428815. [PMID: 39687866 PMCID: PMC11647016 DOI: 10.3389/fmicb.2024.1428815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction Altitudinal changes in soil bacterial diversity, composition, biotic interactions, and function are prevalent. However, the overall patterns and associations among these dimensions remain unclear, particularly in vulnerable alpine mountain ecosystems. Methods Here, we investigated soil bacterial communities along a high-altitude gradient to elucidate patterns and associations in taxonomic and phylogenetic diversity, co-occurrence networks, and functional potentials. Results We observed increasing altitudinal trends in bacterial richness and phylogenetic diversity, along with significant differences in taxonomic and phylogenetic composition across altitudes. The connectivity component of the co-occurrence network properties showed a negative association with altitude. We also observed high redundancy in functional potentials, resulting in insignificant variation in functional diversity along the altitudinal gradient. However, the strength of functional diversity varied based on the interaction between network connectivity and phylogenetic diversity. Additionally, functional dissimilarity was more closely associated with phylogenetic rather than taxonomic dissimilarity or differences in network properties, highlighting the role of phylogenetic lineages in functional redundancy. Discussion This study characterizes the altitudinal distribution of soil bacteria and explores their covariations, enhancing our understanding of soil bacterial diversity and functional potentials along altitudinal gradients and providing valuable insights for predicting community changes and improving alpine ecosystem conservation.
Collapse
Affiliation(s)
| | | | - Huixin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Ding K, Lu M, Zhang Y, Liu Q, Zhang Y, Li Y, Yang Q, Shen Z, Tong Z, Zhang J. Depth-dependent effects of forest diversification on soil functionality and microbial community characteristics in subtropical forests. Microbiol Res 2024; 289:127931. [PMID: 39442466 DOI: 10.1016/j.micres.2024.127931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Soil microbes are critical to the maintenance of forest ecosystem function and stability. Forest diversification, such as monocultures versus mixed forests stands, can strongly influence microbial community patterns and processes, as well as their role in soil ecosystem multifunctionality, such as in subtropical forest ecosystems. However, less is known about these patterns and processes vary with soil depth. Here, we investigated the results of an eight-year forest diversification field experiment comparing the soil ecosystem multifunctionality, bacterial and fungal community assembly, and network patterns in mixed versus monoculture plantations along vertical profiles (0-80 cm depth) in a subtropical region. We found that the introduction of broadleaf trees in coniferous monocultures led to enhanced synergies between multiple functions, thus improving soil multifunctionality. The effects of mixed plantations on the functional potential in top soils were greater than in deep soils, especially for carbon degradation genes (apu, xylA, cex, and glx). Microbial community assembly in the top layer, particularly in mixed plantations, was dominated by stochastic processes, whereas deterministic were more important in the deep layer. Soil microbial network complexity and stability were higher in the top layer of mixed plantations, but in the deep layer was monoculture. Interestingly, the changes in microbial communities and multifunctionality in the top layer were mainly related to variation in nutrients, whereas those in the deep were more influenced by soil moisture. Overall, we reveal positive effects of mixed forest stands on soil microbial characteristics and functionality compared to that of monocultures. Our findings highlighted the importance of enhancing functional diversity through the promotion of tree species diversity, and managers can better develop forest management strategies to promote soil health under global change scenarios.
Collapse
Affiliation(s)
- Kai Ding
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China
| | - Meng Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China
| | - Yuting Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China
| | - Qiyan Liu
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China
| | - Yiman Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China
| | - Yinrong Li
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China
| | - Qi Yang
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China
| | - Zhenming Shen
- Agricultural and Rural Bureau of Lin'an District, Hangzhou, Zhejiang 311300, PR China.
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China.
| | - Junhong Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China.
| |
Collapse
|
14
|
Liu C, Liu Y, Bai G, Li Q, Zhou Q, Liu L, Kong L, Xia S, Wu Z, Quintana M, Li T, Zhang Y. Silicate-based mineral materials promote submerged plant growth: Insights from plant physiology and microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175992. [PMID: 39241876 DOI: 10.1016/j.scitotenv.2024.175992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/17/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Restoring submerged plants naturally has been a significant challenge in water ecology restoration programs. Some silicate-based mineral materials have shown promise in improving the substrate properties for plant growth. While it is well-established that silicate mineral materials enhance submerged plant growth by improving salt release and reducing salt stress, the influence of rhizosphere microorganisms on phytohormone synthesis and key enzyme activities has been underestimated. This study focused on two typical silicate mineral materials, bentonite and maifanite, to investigate their effects on Myriophyllum oguraense from both plant physiology and microbiome perspectives. The results demonstrated that both bentonite and maifanite regulated the synthesis of phytohormones such as gibberellin (GA) and methyl salicylate (MESA), leading to inhibition of cellular senescence and promotion of cell division. Moreover, these silicate mineral materials enhanced the activity of antioxidant enzymes, thereby reducing intracellular reactive oxygen species levels. They also optimized the structure of rhizosphere microbial communities, increasing the proportion of functional microorganisms like Nitrospirota and Sva0485, which indirectly influenced plant metabolism. Analysis of sediment physicochemical properties revealed increased rare earth elements, macronutrients, and oxygen content in pore water in the presence of silicate materials, creating favorable conditions for root growth. Overall, these findings shed light on the multifaceted mechanisms by which natural silicate mineral materials promote the growth of aquatic plants, offering a promising solution for restoring aquatic vegetation in eutrophic lake sediments.
Collapse
Affiliation(s)
- Changzi Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunli Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Bai
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiaohong Zhou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lei Liu
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lingwei Kong
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zhenbin Wu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Mildred Quintana
- Facultad de Ciencias, Universidad Autonoma de San Luis Potosi, San Luis Potosi 78210, Mexico
| | - Tao Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Fang W, Zhu Y, Liang C, Shao S, Chen J, Qing H, Xu Q. Deciphering differences in microbial community characteristics and main factors between healthy and root rot-infected Carya cathayensis rhizosphere soils. Front Microbiol 2024; 15:1448675. [PMID: 39588107 PMCID: PMC11586369 DOI: 10.3389/fmicb.2024.1448675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction Fusarium-induced root rot of Carya cathayensis (C. cathayensis) is a typical soil-borne disease that has severely damaged the Carya cathayensis industry in China. Understanding the interaction among soil microbial communities, soil characteristics, and pathogenic bacteria is very important for the ecological prevention and control of Carya cathayensis root rot. Methods We used Miseq Illumina high-throughput sequencing technology to study the microbial community in the rhizosphere soil of healthy and diseased C. cathayensis, quantified the abundance of bacteria, fungi, and pathogenic fungi, and combined these with soil chemistry and enzyme activity indicators to analyze the characteristics of healthy and diseased rhizosphere soils. Results We found that the pH, soil organic carbon(SOC), available nitrogen (AN), available phosphorus (AP), available potassium (AK),N-acetyl-β-D-glucosaminidase (NAG) β-glucosidase (BG), fungal gene copy number, bacterial community diversity and network complexity of the diseased soil were significantly lower (p < 0.05), while Fusarium graminearum copies number levels increased (p < 0.05). Additionally, the study found that healthy soils were enriched with beneficial bacteria such as Subgroup_7 (0.08%), MND1 (0.29%), SWB02 (0.08%), and Bradyrhizobium (0.09%), as well as potential pathogen-suppressing fungi such as Mortierella (0.13%), Preussia (0.03%), and Humicol (0.37%), were found to be associated with the growth and development of C. cathayensis. Discussion In summary, this research comprehensively reveals the differences in environmental and biological factors between healthy and diseased soils, as well as their correlations. It provides a theoretical basis for optimal soil environmental regulation and the construction of healthy microbial communities. This foundation facilitates the development of multifaceted strategies for the prevention and control of C. cathayensis root rot.
Collapse
Affiliation(s)
- Wei Fang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, China
| | - Yiyang Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, China
| | - Chenfei Liang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, China
| | - Shuai Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, China
| | - Junhui Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, China
| | - Hua Qing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, China
| | - Qiufang Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
16
|
Cuartero J, Querejeta JI, Prieto I, Frey B, Alguacil MM. Warming and rainfall reduction alter soil microbial diversity and co-occurrence networks and enhance pathogenic fungi in dryland soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175006. [PMID: 39069184 DOI: 10.1016/j.scitotenv.2024.175006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
In this 9-year manipulative field experiment, we examined the impacts of experimental warming (2 °C, W), rainfall reduction (30 % decrease in annual rainfall, RR), and their combination (W + RR) on soil microbial communities and native vegetation in a semi-arid shrubland in south-eastern Spain. Warming had strong negative effects on plant performance across five coexisting native shrub species, consistently reducing their aboveground biomass growth and long-term survival. The impacts of rainfall reduction on plant growth and survival were species-specific and more variable. Warming strongly altered the soil microbial community alpha-diversity and changed the co-occurrence network structure. The relative abundance of symbiotic arbuscular mycorrhizal fungi (AMF) increased under W and W + RR, which could help buffer the direct negative impacts of climate change on their host plants nutrition and enhance their resistance to heat and drought stress. Indicator microbial taxa analyses evidenced that the marked sequence abundance of many plant pathogenic fungi, such as Phaeoacremonium, Cyberlindnera, Acremonium, Occultifur, Neodevriesia and Stagonosporopsis, increased significantly in the W and W + RR treatments. Moreover, the relative abundance of fungal animal pathogens and mycoparasites in soil also increased significantly under climate warming. Our findings indicate that warmer and drier conditions sustained over several years can alter the soil microbial community structure, composition, and network topology. The projected warmer and drier climate favours pathogenic fungi, which could offset the benefits of increased AMF abundance under warming and further aggravate the severe detrimental impacts of increased abiotic stress on native vegetation performance and ecosystem services in drylands.
Collapse
Affiliation(s)
- J Cuartero
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland.
| | - J I Querejeta
- Departamento de Conservación de Suelos y Agua, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas, Murcia, Spain
| | - I Prieto
- Departamento de Conservación de Suelos y Agua, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas, Murcia, Spain; Area de Ecología, Facultad de Ciencias Biológicas y Ambientales, Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - B Frey
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - M M Alguacil
- Departamento de Conservación de Suelos y Agua, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas, Murcia, Spain
| |
Collapse
|
17
|
Deng N, Nian L, Zhang S, Liang Y, Shang H, Li Y, Mao Z. Response of soil microbial community structure to temperature and nitrogen fertilizer in three different provenances of Pennisetum alopecuroides. Front Microbiol 2024; 15:1483150. [PMID: 39512941 PMCID: PMC11542641 DOI: 10.3389/fmicb.2024.1483150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Soil microorganisms are key indicators of soil health, and it is crucial to investigate the structure and interactions of soil microbial communities among three different provenances of Pennisetum alopecuroides under varying nitrogen fertilizer and temperature levels in Northwest China. This study aims to provide theoretical support for the sustainable use of artificial grassland in this region. Employing a two-factor pot-control experiment with three nitrogen fertilizer treatments and three temperature treatments, a total of all treatments was utilized to examine the composition and abundance of soil microbial communities associated with Pennisetum alopecuroides using high-throughput sequencing, PCR technology, and molecular ecological network analysis. The results revealed that Proteobacteria was the dominant bacterial phylum while Ascomycota was the dominant fungal phylum in the soil samples from three provenances of Pennisetum. Specifically, Proteobacteria exhibited higher abundance in the N3T2 treatment compared to other treatments under N3T2 (25-30°C, 3 g/pot) treatment conditions in Shaanxi and Gansu provinces; similarly, Proteobacteria was more abundant in the N1T2 (25-30°C, 1 g/pot) treatment in Inner Mongolia under N1T2. Moreover, Ascomycota displayed higher abundance than other treatments in both Inner Mongolia and Gansu provinces. Additionally, Pennisetum Ascomycota demonstrated greater prevalence under (25-30°C, 3 g/pot) treatment compared to other treatments; furthermore, Shaanxi's Pennisetum Ascomycota exhibited increased prevalence under N3T1 (18-23°C, 3 g/pot) treatment compared to other treatments. The richness and diversity of soil microbial communities were significantly influenced by nitrogen fertilizer and temperature changes, leading to notable alterations in their structure. Molecular ecological network analyses revealed strong collaborative relationships among microbial species in Shaanxi Pennisetum and Inner Mongolia Pennisetum under high nitrogen and high temperature treatments, while competitive relationships were observed among microbial species in Gansu Pennisetum under similar conditions. Redundancy analysis indicated that soil pH, total potassium, and total phosphorus were the primary environmental factors influencing microorganisms. In summary, this study offers a theoretical foundation for assessing the sustainable utilization of Pennisetum artificial grasslands in Northwest China by investigating the shifts in soil microbial communities and the driving factors under varying nitrogen fertilizer and temperature levels.
Collapse
Affiliation(s)
- Niandong Deng
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, China
| | - Lili Nian
- Gansu Academy Agricultural Sciences, Lanzhou, China
| | - Shuolun Zhang
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, China
| | - Yixuan Liang
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, China
| | - Huiying Shang
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an, China
| | - Yang Li
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an, China
| | - Zhuxin Mao
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an, China
| |
Collapse
|
18
|
Tian L, An M, Liu F, Zhang Y. Fungal community characteristics of the last remaining habitat of three paphiopedilum species in China. Sci Rep 2024; 14:24737. [PMID: 39433552 PMCID: PMC11494054 DOI: 10.1038/s41598-024-75185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
Paphiopedilum armeniacum, Paphiopedilum wenshanense and Paphiopedilum emersonii are critically endangered wild orchids. Their populations are under severe threat, with a dramatic decline in the number of their natural distribution sites. Ex situ conservation and artificial breeding are the keys to maintaining the population to ensure the success of ex situ conservation and field return in the future. The habitat characteristics and soil nutrient information of the last remaining wild distribution sites of the three species were studied. ITS high-throughput sequencing was used to reveal the composition and structure of the soil fungal community, analyze its diversity and functional characteristics, and reveal its relationship with soil nutrients. The three species preferred to grow on low-lying, ventilated and shaded declivities with good water drainage. There were significant differences in soil alkali-hydrolyzed nitrogen and available phosphorus among the three species. There were 336 fungal species detected in the samples. On average, there were different dominant groups in the soil fungal communities of the three species. The functional groups of soil fungi within their habitats were dominated by saprophytic fungi and ectomycorrhizae, with significant differences in diversity and structure. The co-occurrence network of habitat soil fungi was mainly positive. Soil pH significantly affected soil fungal diversity within their habitats of the three paphiopedilum species. The study confirmed that the dominant groups of soil fungi were significantly correlated with soil nutrients. The three species exhibit comparable habitat inclinations, yet they display substantial variations in the composition, structure, and diversity of soil fungi. The fungal functional group is characterized by a rich presence of saprophytic fungi, a proliferation of ectomycorrhizae, and a modest occurrence of orchid mycorrhizae. The symbiotic interactions among the soil fungi associated with these three species are well-coordinated, enhancing their resilience against challenging environmental conditions. There is a significant correlation between soil environmental factors and the composition of soil fungal communities, with pH emerging as a pivotal factor regulating fungal diversity. Our research into the habitat traits and soil fungal ecosystems of the three wild Paphiopedilum species has established a cornerstone for prospective ex situ conservation measures and the eventual reestablishment of these species in their native landscapes.
Collapse
Affiliation(s)
- Li Tian
- College of Forestry, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, China
| | - Mingtai An
- College of Forestry, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, China.
| | - Feng Liu
- College of Forestry, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, China
| | - Yang Zhang
- Guiyang City, Guizhou Province Forestry Bureau, Nanming District, Guiyang City, Guizhou Province, 550002, China
| |
Collapse
|
19
|
Zhang H, Zhu W, Zhang J, Müller C, Wang L, Jiang R. Enhancing soil gross nitrogen transformation through regulation of microbial nitrogen-cycling genes by biodegradable microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135528. [PMID: 39154476 DOI: 10.1016/j.jhazmat.2024.135528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Microplastics (MPs) in agricultural plastic film mulching system changes microbial functions and nutrient dynamics in soils. However, how biodegradable MPs impact the soil gross nitrogen (N) transformations and crop N uptake remain significantly unknown. In this study, we conducted a paired labeling 15N tracer experiment and microbial N-cycling gene analysis to investigate the dynamics and mechanisms of soil gross N transformation processes in soils amended with conventional (polyethylene, PE) and biodegradable (polybutylene adipate co-terephthalate, PBAT) MPs at concentrations of 0 %, 0.5 %, and 2 % (w/w). The biodegradable MPs-amended soils showed higher gross N mineralization rates (0.5-16 times) and plant N uptake rates (16-32 %) than soils without MPs (CK) and with conventional MPs. The MPs (both PE and PBAT) with high concentration (2 %) increased gross N mineralization rates compared to low concentration (0.5 %). Compare to CK, MPs decreased the soil gross nitrification rates, except for PBAT with 2 % concentration; while PE with 0.5 % concentration and PBAT with 2 % concentration increased but PBAT with 0.5 % concentration decreased the gross N immobilization rates significantly. The results indicated that there were both a concentration effect and a material effect of MPs on soil gross N transformations. Biodegradable MPs increased N-cycling gene abundance by 60-103 %; while there was no difference in the abundance of total N-cycling genes between soils without MPs and with conventional MPs. In summary, biodegradable MPs increased N cycling gene abundance by providing enriched nutrient substrates and enhancing microbial biomass, thereby promoting gross N transformation processes and maize N uptake in short-term. These findings provide insights into the potential consequences associated with the exposure of biodegradable MPs, particularly their impact on soil N cycling processes.
Collapse
Affiliation(s)
- Hao Zhang
- Research Center for cultural Landscape Protection and Ecological Restoration, China-Portugal Belt and Road Cooperation Laboratory of Cultural Heritage Conservation Science, Gold Mantis School of Architecture, Soochow University, Suzhou 215006, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wei Zhu
- College of Civil and Architecture Engineering, Chuzhou University, Chuzhou 239000, China
| | - Jinbo Zhang
- School of Breeding and Multiplication, Hainan University, Sanya 570228, China; Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
| | - Christoph Müller
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany; Institute of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; School of Biology and Environmental Science and Earth Institute, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Lifen Wang
- Research Center for cultural Landscape Protection and Ecological Restoration, China-Portugal Belt and Road Cooperation Laboratory of Cultural Heritage Conservation Science, Gold Mantis School of Architecture, Soochow University, Suzhou 215006, China
| | - Rui Jiang
- Research Center for cultural Landscape Protection and Ecological Restoration, China-Portugal Belt and Road Cooperation Laboratory of Cultural Heritage Conservation Science, Gold Mantis School of Architecture, Soochow University, Suzhou 215006, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
20
|
Gao C, Bezemer TM, de Vries FT, van Bodegom PM. Trade-offs in soil microbial functions and soil health in agroecosystems. Trends Ecol Evol 2024; 39:895-903. [PMID: 38910081 DOI: 10.1016/j.tree.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/24/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024]
Abstract
Soil microbial communities play pivotal roles in maintaining soil health in agroecosystems. However, how the delivery of multiple microbial functions in agroecosystems is maintained remains poorly understood. This may put us at risk of incurring unexpected trade-offs between soil functions. We elucidate how interactions between soil microbes can lead to trade-offs in the functioning of agricultural soils. Interactions within soil microbial communities can result in not only positive but also neutral and negative relationships among soil functions. Altering soil conditions through soil health-improving agricultural management can alleviate these functional trade-offs by promoting the diversity and interrelationships of soil microbes, which can help to achieve more productive and sustainable agroecosystems.
Collapse
Affiliation(s)
- Chenguang Gao
- Environmental Biology, Institute of Environmental Sciences, Leiden University, Einsteinweg 2, 2333 CC Leiden, The Netherlands.
| | - Thiemo Martijn Bezemer
- Institute of Biology, Above-Belowground Interactions Group, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Franciska T de Vries
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1090 GE Amsterdam, The Netherlands
| | - Peter M van Bodegom
- Environmental Biology, Institute of Environmental Sciences, Leiden University, Einsteinweg 2, 2333 CC Leiden, The Netherlands
| |
Collapse
|
21
|
Xie G, Zhang Y, Gong Y, Luo W, Tang X. Extreme trophic tales: deciphering bacterial diversity and potential functions in oligotrophic and hypereutrophic lakes. BMC Microbiol 2024; 24:348. [PMID: 39277721 PMCID: PMC11401395 DOI: 10.1186/s12866-024-03488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Oligotrophy and hypereutrophy represent the two extremes of lake trophic states, and understanding the distribution of bacterial communities across these contrasting conditions is crucial for advancing aquatic microbial research. Despite the significance of these extreme trophic states, bacterial community characteristics and co-occurrence patterns in such environments have been scarcely interpreted. To bridge this knowledge gap, we collected 60 water samples from Lake Fuxian (oligotrophic) and Lake Xingyun (hypereutrophic) during different hydrological periods. RESULTS Employing 16S rRNA gene sequencing, our findings revealed distinct community structures and metabolic potentials in bacterial communities of hypereutrophic and oligotrophic lake ecosystems. The hypereutrophic ecosystem exhibited higher bacterial α- and β-diversity compared to the oligotrophic ecosystem. Actinobacteria dominated the oligotrophic Lake Fuxian, while Cyanobacteria, Proteobacteria, and Bacteroidetes were more prevalent in the hypereutrophic Lake Xingyun. Functions associated with methanol oxidation, methylotrophy, fermentation, aromatic compound degradation, nitrogen/nitrate respiration, and nitrogen/nitrate denitrification were enriched in the oligotrophic lake, underscoring the vital role of bacteria in carbon and nitrogen cycling. In contrast, functions related to ureolysis, human pathogens, animal parasites or symbionts, and phototrophy were enriched in the hypereutrophic lake, highlighting human activity-related disturbances and potential pathogenic risks. Co-occurrence network analysis unveiled a more complex and stable bacterial network in the hypereutrophic lake compared to the oligotrophic lake. CONCLUSION Our study provides insights into the intricate relationships between trophic states and bacterial community structure, emphasizing significant differences in diversity, community composition, and network characteristics between extreme states of oligotrophy and hypereutrophy. Additionally, it explores the nuanced responses of bacterial communities to environmental conditions in these two contrasting trophic states.
Collapse
Affiliation(s)
- Guijuan Xie
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yuqing Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- The Third Construction Company of CCCC second Harbor Engineering Co., Ltd, Zhenjiang, 212000, China
| | - Yi Gong
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Wenlei Luo
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- The Fuxianhu Station of Plateau Deep Lake Field Scientific Observation and Research, Yunnan, 653100, Yuxi, China
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
22
|
Kang P, Hu J, Pan Y, Qu X, Ran Y, Yang C, Liu B. Response of soil fungal-community structure and function to land conversion to agriculture in desert grassland. Front Microbiol 2024; 15:1413973. [PMID: 39318436 PMCID: PMC11420991 DOI: 10.3389/fmicb.2024.1413973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
Land conversion to agriculture is an important factor affecting soil ecological processes in the desert grasslands of northern China. However, soil fungal-community structure and function in response to Land conversion remain unclear. In this study, desert grassland, artificial shrubland, and land conversion were investigated in the western part of the Mu Us Sandland (Yanchi, Ningxia; Dingbian, Shaanxi). We found that land conversion significantly increased soil total carbon, nitrogen, and phosphorus, and available phosphorous and potassium contents. In the early stage of conversion to agricultural (April), soil fungal operational taxonomic units and abundance-based coverage estimator were lower than those of dessert grasslands and shrubland plots and had significant correlations with pH, electric conductivity, and available phosphorus and potassium. The dominant phyla strongly correlated with soil physicochemical properties. Concomitantly, the relative abundance of Glomeromycota was significantly lower, and the complexity of the network in the land conversion plots was lower than that in the shrubland plots. In the late stage of land conversion (September), soil fungal operational taxonomic units and abundance-based coverage estimator were lower in the conversion plots than in the desert grassland plots, with more complex network relationships compared to the desert grassland or shrubland plots. Symbiotrophic groups, a functional group of desert grassland soil fungi, can be used as a predictor of environmental change; in addition, land conversion decreases the relative abundance of arbuscular mycorrhizal functional groups. Our study highlights the response of soil fungal communities and functions to human disturbances in desert grasslands. Considering the potential of land conversion to agriculture to influence soil secondary salinization, there is a need for continued observation of soil ecological health over the time continuum of land conversion to agriculture.
Collapse
Affiliation(s)
- Peng Kang
- School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Jinpeng Hu
- School of Biological Science and Engineering, North Minzu University, Yinchuan, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yaqing Pan
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xuan Qu
- School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Yichao Ran
- School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Chenxi Yang
- School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Bingru Liu
- School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| |
Collapse
|
23
|
Luo YH, Ma LL, Cadotte MW, Seibold S, Zou JY, Burgess KS, Tan SL, Ye LJ, Zheng W, Chen ZF, Liu DT, Zhu GF, Shi XC, Zhao W, Bi Z, Huang XY, Li JH, Liu J, Li DZ, Gao LM. Testing the ectomycorrhizal-dominance hypothesis for ecosystem multifunctionality in a subtropical mountain forest. THE NEW PHYTOLOGIST 2024; 243:2401-2415. [PMID: 39073209 DOI: 10.1111/nph.20003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Mycorrhizal associations are key mutualisms that shape the structure of forest communities and multiple ecosystem functions. However, we lack a framework for predicting the varying dominance of distinct mycorrhizal associations in an integrated proxy of multifunctionality across ecosystems. Here, we used the datasets containing diversity of mycorrhizal associations and 18 ecosystem processes related to supporting, provisioning, and regulating services to examine how the dominance of ectomycorrhiza (EcM) associations affects ecosystem multifunctionality in subtropical mountain forests in Southwest China. Meanwhile, we synthesized the prevalence of EcM-dominant effects on ecosystem functioning in forest biomes. Our results demonstrated that elevation significantly modified the distributions of EcM trees and fungal dominance, which in turn influenced multiple functions simultaneously. Multifunctionality increased with increasing proportion of EcM associations, supporting the ectomycorrhizal-dominance hypothesis. Meanwhile, we observed that the impacts of EcM dominance on individual ecosystem functions exhibited different relationships among forest biomes. Our findings highlight the importance of ectomycorrhizal dominance in regulating multifunctionality in subtropical forests. However, this ectomycorrhizal feedback in shaping ecosystem functions cannot necessarily be generalized across forests. Therefore, we argue that the predictions for ecosystem multifunctionality in response to the shifts of mycorrhizal composition could vary across space and time.
Collapse
Affiliation(s)
- Ya-Huang Luo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
| | - Liang-Liang Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Marc W Cadotte
- Biological Sciences, University of Toronto-Scarborough, Toronto, ON, M1C1A4, Canada
| | - Sebastian Seibold
- Forest Zoology, TUD Dresden University of Technology, Tharandt, 01737, Germany
- Ecosystem Dynamics and Forest Management Research Group, Department for Ecology and Ecosystem Management, Technical University of Munich, Freising, 85354, Germany
- Berchtesgaden National Park, Berchtesgaden, 83471, Germany
| | - Jia-Yun Zou
- Forest Zoology, TUD Dresden University of Technology, Tharandt, 01737, Germany
- Ecosystem Dynamics and Forest Management Research Group, Department for Ecology and Ecosystem Management, Technical University of Munich, Freising, 85354, Germany
| | - Kevin S Burgess
- Department of Biomedical Sciences, Mercer University School of Medicine, Columbus, GA, 31901, USA
| | - Shao-Lin Tan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lin-Jiang Ye
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Wei Zheng
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhi-Fa Chen
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - De-Tuan Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Guang-Fu Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiao-Chun Shi
- Gaoligongshan National Nature Reserve Baoshan Bureau, Baoshan, 678000, China
| | - Wei Zhao
- Gaoligongshan National Nature Reserve Baoshan Bureau, Baoshan, 678000, China
| | - Zheng Bi
- Gaoligongshan National Nature Reserve Baoshan Bureau Tengchong Division, Baoshan, 679100, China
| | - Xiang-Yuan Huang
- Gaoligongshan National Nature Reserve Baoshan Bureau Tengchong Division, Baoshan, 679100, China
| | - Jia-Hua Li
- Gaoligongshan National Nature Reserve Baoshan Bureau Longyang Division, Baoshan, 678000, China
| | - Jie Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
| | - Lian-Ming Gao
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
| |
Collapse
|
24
|
Wang X, Wang L, Wu B, Yuan Z, Zhong Y, Qi L, Wang M, Wu Y, Ge T, Zhu Z. Neglected role of microelements in determining soil microbial communities and fruit micronutrients in loquat orchards. Front Microbiol 2024; 15:1447921. [PMID: 39234550 PMCID: PMC11373571 DOI: 10.3389/fmicb.2024.1447921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction The relationships among microelements and soil microbial communities are essential for understanding the maintenance of soil's ecological functions and their effects on fruit quality in orchards. However, these relationships have not been adequately studied, despite the importance of microelements for the growth of microorganisms and plants. Methods To address this research gap, we investigated the relationships among microelements (K, Ca, Na, Mg, Fe, Mn, Zn, and Cu), the diversity and composition of soil microbiomes, and fruit quality in loquat orchards. Results We found that microelements explained more variations in microbial community structures than geographic position, basic soil properties, and macroelements, with 19.6-42.6% of bacterial, 4.3-27.7% of fungal, and 5.9-18.8% of protistan genera significantly correlated with microelements. Among the microelements, AMg and ACu were the most influential in determining the soil microbiome. The soil microbes exhibited varied threshold values for environmental breadth among the microelements, with the broadest range for AMg and the narrowest for AZn. Additionally, the microbes showed significant phylogenetic signals for all microelements, with an increasing divergence of soil microelements. The dominant community assembly shifted from homogeneous selection to stochastic, and then to heterogeneous selection. Moreover, microelements and the microbiome were the top two factors individually explaining 11.0 and 11.4% of fruit quality variation, respectively. Discussion These results highlight the importance of microelement fertilization in orchard management and provide scientific guidance for improving fruit quality.
Collapse
Affiliation(s)
- Xianting Wang
- Yinzhou Station of Agricultural Technical Extension, Ningbo, China
| | - Li Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Bibo Wu
- Ninghai County Forestry Specialty Technology Promotion Station, Ningbo, China
| | - Zhaofeng Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | | | - Lin Qi
- Ningbo Agricultural and Rural Green Development Center, Ningbo, China
| | - Miao Wang
- Ningbo Agricultural and Rural Green Development Center, Ningbo, China
| | - Yuping Wu
- Ningbo Agricultural and Rural Green Development Center, Ningbo, China
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhenke Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
25
|
Chang C, Hu E, Shi Y, Pan B, Li M. Linking microbial community coalescence to ecological diversity, community assembly and species coexistence in a typical subhumid river catchment in northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173367. [PMID: 38796011 DOI: 10.1016/j.scitotenv.2024.173367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
Community coalescence denotes the amalgamation of biotic and abiotic factors across multiple intact ecological communities. Despite the growing attention given to the phenomenon of coalescence, there remains limited investigation into community coalescence in single and multiple source habitats and its impact on microbial community assemblages in sinks. This study focused on a major river catchment in northern China. We investigated microbial community coalescence across different habitats (i.e., water, sediment, biofilm, and riparian soil) and seasons (i.e., summer and winter). Using 16S rRNA gene amplicon sequence variants, we examined the relationship between community coalescence and microbial diversity, assembly processes, and species coexistence. The results showed that the intensity of microbial community coalescence was higher in the same habitat pairs compared to disparate habitat pairs in both summer and winter. During the occurrence of microbial community coalescence, the assembly processes regulated the intensity of coalescence. When the microbial community exhibited strong heterogeneous selection (heterogeneous environmental conditions leading to more dissimilar community structures), the intensity of community coalescence was low. With the assembly process shifted towards stochasticity, coalescence intensity increased gradually. However, when homogeneous selection (homogeneous environmental conditions leading to more similar community structures) predominantly shaped microbial communities, coalescence intensity exceeded the threshold of 0.25-0.30. Moreover, the enhanced intensity of community coalescence could increase the complexity of microbial networks, thereby enhancing species coexistence. Furthermore, the assembly processes mediated the relationship between community coalescence and species coexistence, underscoring the pivotal role of intermediate intensity of community coalescence in maintaining efficient species coexistence. In conclusion, this study highlights the crucial role of community coalescence originating from single and multiple source habitats in shaping microbial communities in sinks, thus emphasizing its central importance in watershed ecosystems.
Collapse
Affiliation(s)
- Chao Chang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - En Hu
- Shaanxi Provincial Academy of Environmental Science, Xi'an 710061, Shaanxi, China
| | - Yifei Shi
- Shaanxi Environmental Investigation and Assessment Center, Xi'an 710054, Shaanxi, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulics in the Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
26
|
Zhang C, Ndungu CN, Feng L, Huang J, Ba S, Liu W, Cai M. Plant diversity is more important than soil microbial diversity in explaining soil multifunctionality in Qinghai-Tibetan plateau wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121509. [PMID: 38897088 DOI: 10.1016/j.jenvman.2024.121509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
The Qinghai-Tibetan Plateau harbors rich and diverse wetlands that provide multiple ecological functions simultaneously. Although the relationships between biodiversity and wetland functioning have been well studied in recent decades, the links between the multiple features of plant and microbial communities and soil multifunctionality (SMF) remain unknown in the high-altitude wetlands that are extremely sensitive to human disturbance. Here, using the single function, averaging, weighted, and multiple-threshold methods, we calculated the SMF of Qinghai-Tibetan wetlands based on 15 variables associated with soil nutrient status, nutrient cycle, and greenhouse gas emission. We then related SMF to multidimensional (species, phylogenetic, and functional) diversity of plants and soil microorganisms and microbial network modules. The results showed that plant diversity explained more variance in SMF than soil microbial diversity, and plant species richness and phylogenetic distance were positive predictors of SMF. Bacterial network modules were more positively related to SMF than fungal network modules, and the alpha diversity of bacterial network modules contributed more to SMF than the diversity of the whole bacterial community. Pediococcus, Hirsutella, and Rhodotorula were biomarkers for SMF and had significant relationships with nitrogen mineralization and greenhouse gas emissions. Together, these results highlight the importance of plant diversity and bacterial network modules in determining the SMF, which are crucial to predicting the response of ecosystem functioning to biodiversity loss under intensifying anthropogenic activities.
Collapse
Affiliation(s)
- Caifang Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Caroline Njambi Ndungu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lian Feng
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Jieya Huang
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Sang Ba
- School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Earth's Third Pole, Tibet University, Lhasa 850000, China
| | - Wenzhi Liu
- Center for Carbon Neutrality in the Earth's Third Pole, Tibet University, Lhasa 850000, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China.
| | - Miaomiao Cai
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China.
| |
Collapse
|
27
|
Jiang P, Wang Y, Zhang Y, Fei J, Rong X, Peng J, Yin L, Luo G. Intercropping enhances maize growth and nutrient uptake by driving the link between rhizosphere metabolites and microbiomes. THE NEW PHYTOLOGIST 2024; 243:1506-1521. [PMID: 38874414 DOI: 10.1111/nph.19906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Intercropping leads to different plant roots directly influencing belowground processes and has gained interest for its promotion of increased crop yields and resource utilization. However, the precise mechanisms through which the interactions between rhizosphere metabolites and the microbiome contribute to plant production remain ambiguous, thus impeding the understanding of the yield-enhancing advantages of intercropping. This study conducted field experiments (initiated in 2013) and pot experiments, coupled with multi-omics analysis, to investigate plant-metabolite-microbiome interactions in the rhizosphere of maize. Field-based data revealed significant differences in metabolite and microbiome profiles between the rhizosphere soils of maize monoculture and intercropping. In particular, intercropping soils exhibited higher microbial diversity and metabolite chemodiversity. The chemodiversity and composition of rhizosphere metabolites were significantly related to the diversity, community composition, and network complexity of soil microbiomes, and this relationship further impacted plant nutrient uptake. Pot-based findings demonstrated that the exogenous application of a metabolic mixture comprising key components enriched by intercropping (soyasapogenol B, 6-hydroxynicotinic acid, lycorine, shikimic acid, and phosphocreatine) significantly enhanced root activity, nutrient content, and biomass of maize in natural soil, but not in sterilized soil. Overall, this study emphasized the significance of rhizosphere metabolite-microbe interactions in enhancing yields in intercropping systems. It can provide new insights into rhizosphere controls within intensive agroecosystems, aiming to enhance crop production and ecosystem services.
Collapse
Affiliation(s)
- Pan Jiang
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Yizhe Wang
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Yuping Zhang
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China
| | - Jiangchi Fei
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China
| | - Xiangmin Rong
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China
| | - Jianwei Peng
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China
| | - Lichu Yin
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
| | - Gongwen Luo
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China
| |
Collapse
|
28
|
Tang H, Liu Y, Yang X, Huang G, Liang X, Shah AN, Nawaz M, Hassan MU, Qumsani AT, Qari SH. Multiple cropping effectively increases soil bacterial diversity, community abundance and soil fertility of paddy fields. BMC PLANT BIOLOGY 2024; 24:715. [PMID: 39060975 PMCID: PMC11282777 DOI: 10.1186/s12870-024-05386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Crop diversification is considered as an imperative approach for synchronizing the plant nutrient demands and soil nutrient availability. Taking two or more crops from the same field in one year is considered as multiple cropping. It improves the diversity and abundance of soil microbes, thereby improving the growth and yield of crops. Therefore, the present study was conducted to explore the effects of different multiple winter cropping on soil microbial communities in paddy fields. In this study, eight rice cropping patterns from two multiple cropping systems with three different winter crops, including Chinese milk vetch (CMV), rape, and wheat were selected. The effects of different multiple winter cropping on soil microbial abundance, community structure, and diversity in paddy fields were studied by 16 S rRNA high-throughput sequencing and real-time fluorescence quantitative polymerase chain reaction (PCR). RESULTS The results showed that different multiple winter cropping increased the operational taxonomic units (OTUs), species richness, and community richness index of the bacterial community in 0 ~ 20 cm soil layer. Moreover, soil physical and chemical properties of different multiple cropping patterns also affected the diversity and abundance of microbial bacterial communities. The multiple cropping increased soil potassium and nitrogen content, which significantly affected the diversity and abundance of bacterial communities, and it also increased the overall paddy yield. Moreover, different winter cropping changed the population distribution of microorganisms, and Proteobacteria, Acidobacteria, Nitrospira, and Chloroflexi were identified as the most dominant groups. Multiple winter cropping, especially rape-early rice-late rice (TR) andChinese milk vetch- early rice-late rice (TC) enhanced the abundance of Proteobacteria, Acidobacteria, and Actinobacteria and decreased the relative abundance of Verrucomicrobia and Euryarchaeota. CONCLUSION In conclusion, winter cropping of Chinese milk vetch and rape were beneficial to improve the soil fertility, bacteria diversity, abundance and rice yield.
Collapse
Affiliation(s)
- Haiying Tang
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, China
- Key Laboratory of Crop Physiology, Ecology and Genetics Breeding, Jiangxi Agricultural University, Ministry of Education, Nanchang, China
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ying Liu
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - Xiaoqi Yang
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - Guoqin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetics Breeding, Jiangxi Agricultural University, Ministry of Education, Nanchang, China.
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Xiaogui Liang
- Key Laboratory of Crop Physiology, Ecology and Genetics Breeding, Jiangxi Agricultural University, Ministry of Education, Nanchang, China
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan
| | - Muhammad Umair Hassan
- Key Laboratory of Crop Physiology, Ecology and Genetics Breeding, Jiangxi Agricultural University, Ministry of Education, Nanchang, China
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Alaa T Qumsani
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sameer H Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
29
|
Li Y, Shi X, Zeng M, Qin P, Fu M, Luo S, Tang C, Mo C, Yu F. Effect of polyethylene microplastics on antibiotic resistance genes: A comparison based on different soil types and plant types. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134581. [PMID: 38743972 DOI: 10.1016/j.jhazmat.2024.134581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/13/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Microplastics (MPs) and antibiotic resistance genes (ARGs) are two types of contaminants that are widely present in the soil environment. MPs can act as carriers of microbes, facilitating the colonization and spread of ARGs and thus posing potential hazards to ecosystem safety and human health. In the present study, we explored the microbial networks and ARG distribution characteristics in different soil types (heavy metal (HM)-contaminated soil and agricultural soil planted with different plants: Bidens pilosa L., Ipomoea aquatica F., and Brassica chinensis L.) after the application of MPs and evaluated environmental factors, potential microbial hosts, and ARGs. The microbial communities in the three rhizosphere soils were closely related to each other, and the modularity of the microbial networks was greater than 0.4. Moreover, the core taxa in the microbial networks, including Actinobacteriota, Proteobacteria, and Myxococcota, were important for resisting environmental stress. The ARG resistance mechanisms were dominated by antibiotic efflux in all three rhizosphere soils. Based on the annotation results, the MP treatments induced changes in the relative abundance of microbes carrying ARGs, and the G1-5 treatment significantly increased the abundance of MuxB in Verrucomicrobia, Elusimicrobia, Actinobacteria, Planctomycetes, and Acidobacteria. Path analysis showed that changes in MP particle size and dosage may indirectly affect soil enzyme activities by changing pH, which affects microbes and ARGs. We suggest that MPs may provide surfaces for ARG accumulation, leading to ARG enrichment in plants. In conclusion, our results demonstrate that MPs, as potentially persistent pollutants, can affect different types of soil environments and that the presence of ARGs may cause substantial environmental risks.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China
| | - Xinwei Shi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China
| | - Meng Zeng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Peiqing Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Mingyue Fu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Shiyu Luo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Chijian Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Cuiju Mo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China.
| |
Collapse
|
30
|
Jiang A, Dong Y, Asitaiken J, Zhou S, Nie T, Wu Y, Liu Z, An S, Yang K. Response of soil fungal communities and their co-occurrence patterns to grazing exclusion in different grassland types. Front Microbiol 2024; 15:1404633. [PMID: 39027108 PMCID: PMC11256198 DOI: 10.3389/fmicb.2024.1404633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Overgrazing and climate change are the main causes of grassland degradation, and grazing exclusion is one of the most common measures for restoring degraded grasslands worldwide. Soil fungi can respond rapidly to environmental stresses, but the response of different grassland types to grazing control has not been uniformly determined. Three grassland types (temperate desert, temperate steppe grassland, and mountain meadow) that were closed for grazing exclusion for 9 years were used to study the effects of grazing exclusion on soil nutrients as well as fungal community structure in the three grassland types. The results showed that (1) in the 0-5 cm soil layer, grazing exclusion significantly affected the soil water content of the three grassland types (P < 0.05), and the pH, total phosphorous (TP), and nitrogen-to-phosphorous ratio (N/P) changed significantly in all three grassland types (P < 0.05). Significant changes in soil nutrients in the 5-10 cm soil layer after grazing exclusion occurred in the mountain meadow grasslands (P < 0.05), but not in the temperate desert and temperate steppe grasslands. (2) For the different grassland types, Archaeorhizomycetes was most abundant in the montane meadows, and Dothideomycetes was most abundant in the temperate desert grasslands and was significantly more abundant than in the remaining two grassland types (P < 0.05). Grazing exclusion led to insignificant changes in the dominant soil fungal phyla and α diversity, but significant changes in the β diversity of soil fungi (P < 0.05). (3) Grazing exclusion areas have higher mean clustering coefficients and modularity classes than grazing areas. In particular, the highest modularity class is found in temperate steppe grassland grazing exclusion areas. (4) We also found that pH is the main driving factor affecting soil fungal community structure, that plant coverage is a key environmental factor affecting soil community composition, and that grazing exclusion indirectly affects soil fungal communities by affecting soil nutrients. The above results suggest that grazing exclusion may regulate microbial ecological processes by changing the soil fungal β diversity in the three grassland types. Grazing exclusion is not conducive to the recovery of soil nutrients in areas with mountain grassland but improves the stability of soil fungi in temperate steppe grassland. Therefore, the type of degraded grassland should be considered when formulating suitable restoration programmes when grazing exclusion measures are implemented. The results of this study provide new insights into the response of soil fungal communities to grazing exclusion, providing a theoretical basis for the management of degraded grassland restoration.
Collapse
Affiliation(s)
- Anjing Jiang
- College of Grassland Science, Xinjiang Agricultural University, Ürümqi, China
| | - Yiqiang Dong
- College of Grassland Science, Xinjiang Agricultural University, Ürümqi, China
- Xinjiang Key Laboratory of Grassland Resources and Ecology, Ürümqi, Xinjiang, China
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education, Ürümqi, China
- Postdoctoral Mobile Station of Xinjiang Agricultural University, Ürümqi, China
| | - Julihaiti Asitaiken
- College of Grassland Science, Xinjiang Agricultural University, Ürümqi, China
| | - Shijie Zhou
- College of Grassland Science, Xinjiang Agricultural University, Ürümqi, China
| | - Tingting Nie
- College of Grassland Science, Xinjiang Agricultural University, Ürümqi, China
| | - Yue Wu
- College of Grassland Science, Xinjiang Agricultural University, Ürümqi, China
| | - Zeyu Liu
- College of Grassland Science, Xinjiang Agricultural University, Ürümqi, China
| | - Shazhou An
- College of Grassland Science, Xinjiang Agricultural University, Ürümqi, China
- Xinjiang Key Laboratory of Grassland Resources and Ecology, Ürümqi, Xinjiang, China
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, Ministry of Education, Ürümqi, China
| | - Kailun Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
31
|
Sun S, Liu C, Zhang Y, Yue Y, Sun S, Bai Y, Zhang P, Ravanbakhsh M, Dini-Andreote F, Li R, Zhang Z, Jousset A, Shen Q, A Kowalchuk G, Xiong W. Divergent impacts of fertilization regimes on below-ground prokaryotic and eukaryotic communities in the Tibetan Plateau. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121379. [PMID: 38870787 DOI: 10.1016/j.jenvman.2024.121379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024]
Abstract
Chemical nutrient amendment by human activities can lead to environmental impacts contributing to global biodiversity loss. However, the comprehensive understanding of how below- and above-ground biodiversity shifts under fertilization regimes in natural ecosystems remains elusive. Here, we conducted a seven-year field experiment (2011-2017) and examined the effects of different fertilization on plant biodiversity and soil belowground (prokaryotic and eukaryotic) communities in the alpine meadow of the Tibetan Plateau, based on data collected in 2017. Our results indicate that nitrogen addition promoted total plant biomass but reduced the plant species richness. Conversely, phosphorus enrichment did not promote plant biomass and exhibited an unimodal pattern with plant richness. In the belowground realm, distinct responses of soil prokaryotic and eukaryotic communities were observed under fertilizer application. Specifically, soil prokaryotic diversity decreased with nitrogen enrichment, correlating with shifts in soil pH. Similarly, soil eukaryotic diversity decreased with increased phosphorous inputs, aligning with the equilibrium between soil available and total phosphorus. We also established connections between these soil organism communities with above-ground plant richness and biomass. Overall, our study contributes to a better understanding of the sustainable impacts of human-induced nutrient enrichment on the natural environment. Future research should delve deeper into the long-term effects of fertilization on soil health and ecosystem functioning, aiming to achieve a balance between agricultural productivity and environmental conservation.
Collapse
Affiliation(s)
- Shuo Sun
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chen Liu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yun Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yang Yue
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shiqi Sun
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yang Bai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China
| | - Pengfei Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province, People's Republic of China; Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA.
| | - Mohammadhossein Ravanbakhsh
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, the Netherlands
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; The One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Rong Li
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhenhua Zhang
- Key Laboratory of Biodiversity and Biosafety, Nanjing Institute of Environmental Sciences, Nanjing, People's Republic of China
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, the Netherlands
| | - Wu Xiong
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
32
|
Zhang S, Hu W, Zhang J, Yu G, Liu Y, Kong Z, Wu L. Long-term cultivation reduces soil carbon storage by altering microbial network complexity and metabolism activity in macroaggregates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172788. [PMID: 38677431 DOI: 10.1016/j.scitotenv.2024.172788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Cultivation alters soil aggregation, microbial compositions and the potential for carbon sequestration in cropland soils. However, the specific effects of long-term cultivation and the underlying mechanisms on soil organic carbon (SOC) storage at different aggregate sizes remain poorly understood. We characterized the dynamics of SOC storage in macroaggregates (>0.25 mm) and microaggregates (<0.25 mm) across four paddy soils successively cultivated for 60, 100, 125, and 150 years. Microbial community compositions, network patterns, enzyme activities and carbon use efficiency (CUE) were examined to elucidate the underlying microbial pathways governing SOC storage. The results showed that prolonged cultivation led to an average reduction of 45 % in SOC storage, particularly in macroaggregates. Partial least squares path modeling revealed that shifts in microorganisms in macroaggregates explained almost 80 % of the variation in SOC storage. Specifically, variations in fungal composition and decreased complexity of microbial interaction networks were strongly correlated with SOC storage. Fungal community and microbial interactions also indirectly affected SOC storage by positively correlating with extracellular enzyme activity. Moreover, bacterial composition indirectly regulated SOC storage by positively correlating with carbon use efficiency. Our findings indicated that the macroaggregate-associated microbial interactions and the metabolism activities had significant implications for SOC sequestration in paddy fields. We suggest that implementation of management practices targeted at improvement of these microbial attributes could enhance agroecosystems sustainability.
Collapse
Affiliation(s)
- Shan Zhang
- School of Life Sciences, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330022, China
| | - Wanjin Hu
- School of Life Sciences, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330022, China
| | - Jinting Zhang
- School of Life Sciences, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330022, China
| | - Guanjun Yu
- Jiangxi Poyang Lake Nanji Wetland National Nature Reserve Authority, Nanchang 330038, China
| | - Yizhen Liu
- School of Life Sciences, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330022, China.
| | - Zhaoyu Kong
- School of Life Sciences, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330022, China
| | - Lan Wu
- School of Life Sciences, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330022, China.
| |
Collapse
|
33
|
Li D, Wu C, Wu J. Soil fungal community has higher network stability than bacterial community in response to warming and nitrogen addition in a subtropical primary forest. Appl Environ Microbiol 2024; 90:e0000124. [PMID: 38771056 PMCID: PMC11218647 DOI: 10.1128/aem.00001-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Global change factors are known to strongly affect soil microbial community function and composition. However, as of yet, the effects of warming and increased anthropogenic nitrogen deposition on soil microbial network complexity and stability are still unclear. Here, we examined the effects of experimental warming (3°C above ambient soil temperature) and nitrogen addition (5 g N m-2 year-1) on the complexity and stability of the soil microbial network in a subtropical primary forest. Compared to the control, warming increased |negative cohesion|:positive cohesion by 7% and decreased network vulnerability by 5%; nitrogen addition decreased |negative cohesion|:positive cohesion by 10% and increased network vulnerability by 11%. Warming and decreased soil moisture acted as strong filtering factors that led to higher bacterial network stability. Nitrogen addition reduced bacterial network stability by inhibiting soil respiration and increasing resource availability. Neither warming nor nitrogen addition changed fungal network complexity and stability. These findings suggest that the fungal community is more tolerant than the bacterial community to climate warming and nitrogen addition. The link between bacterial network stability and microbial community functional potential was significantly impacted by nitrogen addition and warming, while the response of soil microbial network stability to climate warming and nitrogen deposition may be independent of its complexity. Our findings demonstrate that changes in microbial network structure are crucial to ecosystem management and to predict the ecological consequences of global change in the future. IMPORTANCE Soil microbes play a very important role in maintaining the function and health of forest ecosystems. Unfortunately, global change factors are profoundly affecting soil microbial structure and function. In this study, we found that climate warming promoted bacterial network stability and nitrogen deposition decreased bacterial network stability. Changes in bacterial network stability had strong effects on bacterial community functional potentials linked to metabolism, nitrogen cycling, and carbon cycling, which would change the biogeochemical cycle in primary forests.
Collapse
Affiliation(s)
- Debao Li
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| | - Chuansheng Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China
| | - Jianping Wu
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| |
Collapse
|
34
|
Hu Y, Zhang H, Sun X, Zhang B, Wang Y, Rafiq A, Jia H, Liang C, An S. Impact of grassland degradation on soil multifunctionality: Linking to protozoan network complexity and stability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172724. [PMID: 38663601 DOI: 10.1016/j.scitotenv.2024.172724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Soil protozoa, as predators of microbial communities, profoundly influence multifunctionality of soils. Understanding the relationship between soil protozoa and soil multifunctionality (SMF) is crucial to unraveling the driving mechanisms of SMF. However, this relationship remains unclear, particularly in grassland ecosystems that are experiencing degradation. By employing 18S rRNA gene sequencing and network analysis, we examined the diversity, composition, and network patterns of the soil protozoan community along a well-characterized gradient of grassland degradation at four alpine sites, including two alpine meadows (Cuona and Jiuzhi) and two alpine steppes (Shuanghu and Gonghe) on the Qinghai-Tibetan Plateau. Our findings showed that grassland degradation decreased SMF for 1-2 times in all four sites but increased soil protozoan diversity (Shannon index) for 13.82-298.01 % in alpine steppes. Grassland degradation-induced changes in soil protozoan composition, particularly to the Intramacronucleata with a large body size, were consistently observed across all four sites. The enhancing network complexity (average degree), stability (robustness), and cooperative relationships (positive correlation) are the responses of protozoa to grassland degradation. Further analyses revealed that the increased network complexity and stability led to a decrease in SMF by affecting microbial biomass. Overall, protozoa increase their diversity and strengthen their cooperative relationships to resist grassland degradation, and emphasize the critical role of protozoan network complexity and stability in regulating SMF. Therefore, not only protozoan diversity and composition but also their interactions should be considered in evaluating SMF responses to grassland degradation, which has important implications for predicting changes in soil function under future scenarios of anthropogenic change.
Collapse
Affiliation(s)
- Yang Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Haolin Zhang
- State Key Laboratory of Soil Erosion and Dry Land Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Xinya Sun
- State Key Laboratory of Soil Erosion and Dry Land Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Bicheng Zhang
- Institute of Soil and Water Conservation, CAS & MWR, Yangling, Shannxi 712100, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Yubin Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Anum Rafiq
- State Key Laboratory of Soil Erosion and Dry Land Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Chao Liang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dry Land Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
35
|
de Celis M, Fernández-Alonso MJ, Belda I, García C, Ochoa-Hueso R, Palomino J, Singh BK, Yin Y, Wang JT, Abdala-Roberts L, Alfaro FD, Angulo-Pérez D, Arthikala MK, Corwin J, Gui-Lan D, Hernandez-Lopez A, Nanjareddy K, Pasari B, Quijano-Medina T, Rivera DS, Shaaf S, Trivedi P, Yang Q, Zaady E, Zhu YG, Delgado-Baquerizo M, Milla R, García-Palacios P. The abundant fraction of soil microbiomes regulates the rhizosphere function in crop wild progenitors. Ecol Lett 2024; 27:e14462. [PMID: 39031813 DOI: 10.1111/ele.14462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/30/2024] [Accepted: 05/27/2024] [Indexed: 07/22/2024]
Abstract
The rhizosphere influence on the soil microbiome and function of crop wild progenitors (CWPs) remains virtually unknown, despite its relevance to develop microbiome-oriented tools in sustainable agriculture. Here, we quantified the rhizosphere influence-a comparison between rhizosphere and bulk soil samples-on bacterial, fungal, protists and invertebrate communities and on soil multifunctionality across nine CWPs at their sites of origin. Overall, rhizosphere influence was higher for abundant taxa across the four microbial groups and had a positive influence on rhizosphere soil organic C and nutrient contents compared to bulk soils. The rhizosphere influence on abundant soil microbiomes was more important for soil multifunctionality than rare taxa and environmental conditions. Our results are a starting point towards the use of CWPs for rhizosphere engineering in modern crops.
Collapse
Affiliation(s)
- Miguel de Celis
- Departamento de Suelo, Planta y Calidad Ambiental, Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - María José Fernández-Alonso
- Area of Biodiversity and Conservation, Department of Biology and Geology, Physics and Inorganic Chemistry, Universidad Rey Juan Carlos, Móstoles, Spain
- Departamento de Geología y Geoquímica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ignacio Belda
- Department of Genetics, Physiology and Microbiology, Microbiology Unit, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Carlos García
- Department of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, Murcia, Spain
| | - Raúl Ochoa-Hueso
- Department of Biology, IVAGRO, University of Cádiz, Cádiz, Spain
| | - Javier Palomino
- Area of Biodiversity and Conservation, Department of Biology and Geology, Physics and Inorganic Chemistry, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, Australia
| | - Yue Yin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jun-Tao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, Australia
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Fernando D Alfaro
- GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Santiago, Chile
| | - Diego Angulo-Pérez
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C., Mérida, Yucatán, Mexico
| | - Manoj-Kumar Arthikala
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México (UNAM), León, Guanajuato, Mexico
| | - Jason Corwin
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Duan Gui-Lan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Antonio Hernandez-Lopez
- Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Guanajuato, Mexico
| | - Kalpana Nanjareddy
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México (UNAM), León, Guanajuato, Mexico
| | - Babak Pasari
- Department of Agronomy and Plant Breeding, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Teresa Quijano-Medina
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Daniela S Rivera
- GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Santiago, Chile
| | - Salar Shaaf
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Qingwen Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Eli Zaady
- Department of Natural Resources, Agricultural Research Organization, Gilat Research Center, Institute of Plant Sciences, Mobile Post Negev, Israel
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Rubén Milla
- Area of Biodiversity and Conservation, Department of Biology and Geology, Physics and Inorganic Chemistry, Universidad Rey Juan Carlos, Móstoles, Spain
- Global Change Research Institute, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Pablo García-Palacios
- Departamento de Suelo, Planta y Calidad Ambiental, Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Hao X, Gu Y, Zhang H, Wang X, Liu X, Chen C, Wang C, Zhang X, Liu X, Shen X. Synthetic Microbial Community Promotes Bacterial Communities Leading to Soil Multifunctionality in Desertified Land. Microorganisms 2024; 12:1117. [PMID: 38930499 PMCID: PMC11205429 DOI: 10.3390/microorganisms12061117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Soil desertification is an important challenge in global soil management, and effectively and stably restoring soil function is an urgent problem. Using synthetic microbial communities (SynComs) is a burgeoning microbial strategy aimed at enhancing soil nutrients through functional synergies among diverse microorganisms; nevertheless, their effectiveness in restoring desertified soils remains unknown. In this study, we conducted a two-year field experiment using a SynCom constructed by in situ probiotic bacteria and set up control, chemical fertilizer, and combined SynCom-chemical fertilizer (combined fertilizer) treatments to investigate the linkage between microbial communities and soil multifunctionality in the soil surface layer (0-10 cm). Both the bacterial and fungal communities differed the most under the combined fertilizer treatment compared to the control. The bacterial communities differed more under treatments of the SynCom than the chemical fertilizer, while the fungal communities differed more under the chemical fertilizer treatment than the SynCom treatment. Regarding soil function, the SynCom strengthened the correlation between enzyme activities and both bacterial communities and functional properties. pH and available potassium were the main influencing factors under the chemical fertilizer and combined fertilizer treatments. The beta-diversity of the bacterial communities was significantly correlated with soil multifunctionality. Random forest analyses showed that the SynCom significantly enhanced the bacterial communities, driving soil multifunctionality, and that some potential microbial taxa drove multiple nutrient cycles simultaneously. In summary, the SynCom effectively increased the abundance of most carbon, nitrogen, and phosphorus functional genes as well as soil enzyme activities. The bacterial community composition contributed significantly to soil multifunctionality. Hence, the development of novel microbial agents holds significant potential for improving soil functionality and managing desertification.
Collapse
Affiliation(s)
- Xinwei Hao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (X.H.); (X.W.); (C.C.); (C.W.)
| | - Yazhou Gu
- Qingyang Longfeng Sponge City Construction Management and Operation Co., Ltd., Qingyang 745000, China; (Y.G.); (H.Z.)
| | - Hongzhi Zhang
- Qingyang Longfeng Sponge City Construction Management and Operation Co., Ltd., Qingyang 745000, China; (Y.G.); (H.Z.)
| | - Xiao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (X.H.); (X.W.); (C.C.); (C.W.)
| | - Xiaozhen Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010013, China; (X.L.); (X.Z.)
| | - Chunlei Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (X.H.); (X.W.); (C.C.); (C.W.)
| | - Congcong Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (X.H.); (X.W.); (C.C.); (C.W.)
| | - Xiaoqing Zhang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010013, China; (X.L.); (X.Z.)
| | - Xingyu Liu
- State Key Laboratory of Geological Processes and Mineral Resources, Institute of Earth Sciences, China University of Geosciences, Beijing 100083, China;
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (X.H.); (X.W.); (C.C.); (C.W.)
| |
Collapse
|
37
|
Sun Z, Sun C, Zhang T, Liu J, Wang X, Feng J, Li S, Tang S, Jin K. Soil microbial community variation among different land use types in the agro-pastoral ecotone of northern China is likely to be caused by anthropogenic activities. Front Microbiol 2024; 15:1390286. [PMID: 38841072 PMCID: PMC11150776 DOI: 10.3389/fmicb.2024.1390286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024] Open
Abstract
There are various types of land use in the agricultural and pastoral areas of northern China, including natural grassland and artificial grassland, scrub land, forest land and farmland, may change the soil microbial community However, the soil microbial communities in these different land use types remain poorly understood. In this study, we compared soil microbial communities in these five land use types within the agro-pastoral ecotone of northern China. Our results showed that land use has had a considerable impact on soil bacterial and fungal community structures. Bacterial diversity was highest in shrubland and lowest in natural grassland; fungal diversity was highest in woodland. Microbial network structural complexity also differed significantly among land use types. The lower complexity of artificial grassland and farmland may be a result of the high intensity of anthropogenic activities in these two land-use types, while the higher structural complexity of the shrubland and woodland networks characterised by low-intensity management may be a result of low anthropogenic disturbance. Correlation analysis of soil properties (e.g., soil physicochemical properties, soil nutrients, and microbiomass carbon and nitrogen levels) and soil microbial communities demonstrated that although microbial taxa were correlated to some extent with soil environmental factors, these factors did not sufficiently explain the microbial community differences among land use types. Understanding variability among soil microbial communities within agro-pastoral areas of northern China is critical for determining the most effective land management strategies and conserving microbial diversity at the regional level.
Collapse
Affiliation(s)
- Zhaokai Sun
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Chongzhi Sun
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Tongrui Zhang
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Jia Liu
- School of Grass Academy, Qingdao Agriculture University, Qingdao, China
| | - Xinning Wang
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Jing Feng
- School of Grass Academy, Qingdao Agriculture University, Qingdao, China
| | - Shucheng Li
- Anhui Science and Technology University, College of Agriculture, Huainan, China
| | - Shiming Tang
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Ke Jin
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Department of International Cooperation, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
38
|
Yang H, Cheng L, Che L, Su Y, Li Y. Nutrients addition decreases soil fungal diversity and alters fungal guilds and co-occurrence networks in a semi-arid grassland in northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172100. [PMID: 38556007 DOI: 10.1016/j.scitotenv.2024.172100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Anthropogenic eutrophication is known to impair the diversity and stability of aboveground community, but its effects on the diversity, composition and stability of belowground ecosystems are not yet fully understood. In this study, we conducted a 9-year nitrogen (N) and phosphorus (P) addition experiment in a semi-arid grassland of Northern China to elucidate the impacts of nutrients addition on soil fungal diversity, functional guilds, and co-occurrence networks. The results showed that N addition significantly decreased soil fungal diversity and altered fungal community composition, whereas P addition had no impact on them. The relative abundance of arbuscular mycorrhizal fungi and leaf_saprotroph were reduced by N and P addition, but P addition enhanced the abundance of saprotrophic fungi. Co-occurrence network analysis revealed that N addition destabilized fungal network complexity and stability, while P addition slightly increased the network complexity. Additionally, the network analysis of N × P interaction revealed that P addition mitigated negative effects of N addition on network complexity and stability. Structural equation modeling (SEM) results suggested that nutrients addition directly or indirectly influenced the fungal community structure through the loss of plant richness and the increase of perennial grass biomass. These findings indicate that in comparison to P addition, N addition exhibits a pronounced negative effect on soil fungal communities. Our findings also suggest that changes in plant functional groups under nutrients deposition are pivotal in shaping soil fungal community structure in semi-arid grassland and highlight the need for a better understanding of the belowground ecosystem dynamics.
Collapse
Affiliation(s)
- Hongling Yang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China
| | - Li Cheng
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China
| | - Limuge Che
- Graduate School of Dairy Science, Rakuno Gakuen University, Hokkaido, 069-8501, Japan
| | - YongZhong Su
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yulin Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China.
| |
Collapse
|
39
|
Liu L, Gao Z, Li H, Yang W, Yang Y, Lin J, Wang Z, Liu J. Thresholds of Nitrogen and Phosphorus Input Substantially Alter Arbuscular Mycorrhizal Fungal Communities and Wheat Yield in Dryland Farmland. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10236-10246. [PMID: 38647353 DOI: 10.1021/acs.jafc.4c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Arbuscular mycorrhizal (AM) fungi are essential for preserving the multifunctionality of ecosystems. The nitrogen (N)/phosphorus (P) threshold that causes notable variations in the AM fungus community of the soil and plant productivity is still unclear. Herein, a long-term (18 years) field experiment with five N and five P fertilizer levels was conducted to investigate the change patterns of soil AM fungus, multifunctionality, and wheat yield. High-N and -P fertilizer inputs did not considerably increase the wheat yield. In the AM fungal network, a statistically significant positive correlation was observed between ecosystem multifunctionality and the biodiversity of two primary ecological clusters (N: Module #0 and P: Module #3). Furthermore, fertilizer input thresholds for N (92-160 kg ha-1) and P (78-100 kg ha-1) significantly altered the AM fungal community, soil characteristics, and plant productivity. Our study provided a basis for reduced N and P fertilizer application and sustainable agricultural development from the aspect of soil AM fungi.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiyuan Gao
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haifeng Li
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenjie Yang
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Yang
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiangyun Lin
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhaohui Wang
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinshan Liu
- Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
40
|
Cai M, Zhang C, Ndungu CN, Liu G, Liu W, Zhang Q. Linking ecosystem multifunctionality to microbial community features in rivers along a latitudinal gradient. mSystems 2024; 9:e0014724. [PMID: 38445871 PMCID: PMC11019869 DOI: 10.1128/msystems.00147-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/17/2024] [Indexed: 03/07/2024] Open
Abstract
Microorganisms regulate numerous ecosystem functions and show considerable differences along a latitudinal gradient. Although studies have revealed the latitudinal patterns of microbial community structure and single ecosystem function, the latitudinal patterns of ecosystem multifunctionality (EMF) and how microbial communities affect EMF along a latitudinal gradient remain unclear. Here, we collected channel sediments, riparian rhizosphere soils, and riparian bulk soils from 30 rivers across China and calculated EMF using 18 variables related to nitrogen cycling, nutrient pool, plant productivity, and water quality. We also determined microbial diversity (taxonomic and functional) and microbial network complexity using metagenomic sequencing. The results showed that EMF significantly decreased with increasing latitude in riparian rhizosphere and bulk soils but not in channel sediments. Microbial taxonomic and functional richness (observed species) in channel sediments were significantly higher in the low-latitude group than in the high-latitude group. However, microbial co-occurrence networks were more complex in the high-latitude group compared with the low-latitude group. Abiotic factors, primarily geographic and climatic factors, contributed more to EMF than microbial diversity and network complexity parameters in which only betweenness centralization had a significant relationship with EMF. Together, this study provides insight into the latitudinal pattern of EMF in rivers and highlights the importance of large-scale factors in explaining such latitudinal patterns.IMPORTANCEEcosystem multifunctionality (EMF) is the capacity of an ecosystem to provide multiple functions simultaneously. Microorganisms, as dominant drivers of belowground processes, have a profound effect on ecosystem functions. Although studies have revealed the latitudinal patterns of microbial community structure and single ecosystem function, the latitudinal patterns of EMF and how microbial communities affect EMF along a latitudinal gradient remain unclear. We collected channel sediments, riparian rhizosphere soils, and riparian bulk soils from 30 rivers along a latitudinal gradient across China and calculated EMF using 18 variables related to nitrogen cycling, nutrient pool, plant productivity, and water quality. This study fills a critical knowledge gap regarding the latitudinal patterns and drivers of EMF in river ecosystems and gives new insights into how microbial diversity and network complexity affect EMF from a metagenomic perspective.
Collapse
Affiliation(s)
- Miaomiao Cai
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| | - Caifang Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Caroline Njambi Ndungu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guihua Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| | - Wenzhi Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| | - Quanfa Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| |
Collapse
|
41
|
Qu X, Pan Y, Wang P, Ran L, Qin G, Li Q, Kang P. Response of Phyllosphere and Rhizosphere Microbial Communities to Salt Stress of Tamarix chinensis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1091. [PMID: 38674498 PMCID: PMC11054833 DOI: 10.3390/plants13081091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
As carriers of direct contact between plants and the atmospheric environment, the microbiomes of phyllosphere microorganisms are increasingly recognized as an important area of study. Salt secretion triggered by salt-secreting halophytes elicits changes in the community structure and functions of phyllosphere microorganisms, and often provides positive feedback to the individual plant/community environment. In this study, the contents of Na+ and K+ in the rhizosphere, plant and phyllosphere of Tamarix chinensis were increased under 200 mmol/L NaCl stress. The increase in electrical conductivity, Na+ and K+ in the phyllosphere not only decreased the diversity of bacterial and fungal communities, but also decreased the relative abundance of Actinobacteriota and Basidiomycota. Influenced by electrical conductivity and Na+, the bacteria-fungus co-occurrence network under salt stress has higher complexity. Changes in the structure of the phyllosphere microbial community further resulted in a significant increase in the relative abundance of the bacterial energy source and fungal pathotrophic groups. The relative abundance of Actinobacteriota and Acidobacteriota in rhizosphere showed a decreasing trend under salt stress, while the complexity of the rhizosphere co-occurrence network was higher than that of the control. In addition, the relative abundances of functional groups of rhizosphere bacteria in the carbon cycle and phosphorus cycle increased significantly under stress, and were significantly correlated with electrical conductivity and Na+. This study investigated the effects of salinity on the structure and physicochemical properties of phyllosphere and rhizosphere microbial communities of halophytes, and highlights the role of phyllosphere microbes as ecological indicators in plant responses to stressful environments.
Collapse
Affiliation(s)
- Xuan Qu
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Q.); (P.W.); (L.R.); (G.Q.); (Q.L.)
| | - Yaqing Pan
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Peiqin Wang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Q.); (P.W.); (L.R.); (G.Q.); (Q.L.)
| | - Lele Ran
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Q.); (P.W.); (L.R.); (G.Q.); (Q.L.)
| | - Guifei Qin
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Q.); (P.W.); (L.R.); (G.Q.); (Q.L.)
| | - Qunfang Li
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Q.); (P.W.); (L.R.); (G.Q.); (Q.L.)
| | - Peng Kang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Q.); (P.W.); (L.R.); (G.Q.); (Q.L.)
- Innovation Team for Genetic Improvement of Economic Forests, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
42
|
Chao H, Cai A, Heimburger B, Wu Y, Zhao D, Sun M, Hu F. Keystone taxa enhance the stability of soil bacterial communities and multifunctionality under steelworks disturbance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120664. [PMID: 38508006 DOI: 10.1016/j.jenvman.2024.120664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Continuous discharge of wastewater, emissions, and solid wastes from steelworks poses environmental risks to ecosystems. However, the role of keystone taxa in maintaining multifunctional stability during environmental disturbances remains poorly understood. To address this, we investigated the community diversity, assembly mechanisms, and soil multifunctionality of soils collected from within the steelworks (I), within 2.5 km radius from the steelworks (E), and from an undisturbed area (CK) in Jiangsu Province, China, via 16 S rRNA sequencing. Significant differences were found in the Chao1 and the richness indexes of the total taxa (p < 0.05), while the diversity of keystone taxa was not significant at each site (p > 0.05). The deterministic processes for total taxa were 42.9%, 61.9% and 47.7% in CK, E, and I, respectively. Steelworks stress increased the deterministicity of keystone taxa from 52.3% in CK to 61.9% in E and I soils. The average multifunctionality indices were 0.518, 0.506 and 0.513 for CK, E and I, respectively. Although the soil multifunctionality was positive correlated with α diversity of both the total and keystone taxa, the average degree of keystone taxa in functional network increased significantly (79.96 and 65.58, respectively), while the average degree of total taxa decreased (44.59 and 51.25, respectively) in the E and I. This suggests keystone taxa contribute to promoting the stability of ecosystems. With increasing disturbance, keystone taxa shift their function from basic metabolism (ribosome biogenesis) to detoxification (xenobiotics biodegradation, metabolism, and benzoate degradation). Here we show that keystone taxa are the most important factor in maintaining stable microbial communities and functions, providing new insights for mitigating pollution stress and soil health protection.
Collapse
Affiliation(s)
- Huizhen Chao
- Soil Ecology Lab, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China; J.F. Blumenbach Institute of Zoology and Anthropology, University of Gottingen, Untere Karspule 2, 37073, Gottingen, Germany
| | - Anjuan Cai
- Jiangsu Provincial Academy of Environmental Science, 210019, China
| | - Bastian Heimburger
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Gottingen, Untere Karspule 2, 37073, Gottingen, Germany
| | - Yunling Wu
- Soil Ecology Lab, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Duokai Zhao
- Soil Ecology Lab, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingming Sun
- Soil Ecology Lab, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Feng Hu
- Soil Ecology Lab, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
43
|
Li Y, Jin L, Wu M, Wang B, Qu N, Zhou H, Chen T, Liu G, Yue M, Zhang G. Forest management positively reshapes the phyllosphere bacterial community and improves community stability. ENVIRONMENT INTERNATIONAL 2024; 186:108611. [PMID: 38603812 DOI: 10.1016/j.envint.2024.108611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/29/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Research has shown that forest management can improve the post-drought growth and resilience of Qinghai spruce in the eastern Qilian Mountains, located on the northeastern Tibetan Plateau. However, the impact of such management on the tree-associated phyllosphere microbiome is not yet fully understood. This study provides new evidence of positive forest management effects on the phyllosphere microbiome after extreme drought, from the perspectives of community diversity, structure, network inference, keystone species, and assembly processes. In managed Qinghai spruce forest, the α-diversity of the phyllosphere bacterial communities increased, whereas the β-diversity decreased. In addition, the phyllosphere bacterial community became more stable and resistant, yet less complex, following forest management. Keystone species inferred from a bacterial network also changed under forest management. Furthermore, forest management mediated changes in community assembly processes, intensifying the influence of determinacy, while diminishing that of stochasticity. These findings support the hypothesis that management can re-assemble the phyllosphere bacterial community, enhance community stability, and ultimately improve tree growth. Overall, the study highlights the importance of forest management on the phyllosphere microbiome and furnishes new insights into forest conservation from the perspective of managing microbial processes and effects.
Collapse
Affiliation(s)
- Yunshi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Xi'an 710069, China; Department of Life Science, Northwest University, Xi'an 710069, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Minghui Wu
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Bo Wang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Na Qu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Xi'an 710069, China; Department of Life Science, Northwest University, Xi'an 710069, China
| | - Huaizhe Zhou
- Test Center, National University of Defense Technology, Xi'an 710106, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Xi'an 710069, China; Department of Life Science, Northwest University, Xi'an 710069, China.
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China; Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
44
|
Chen X, Sheng Y, Wang G, Zhou P, Liao F, Mao H, Zhang H, Qiao Z, Wei Y. Spatiotemporal successions of N, S, C, Fe, and As cycling genes in groundwater of a wetland ecosystem: Enhanced heterogeneity in wet season. WATER RESEARCH 2024; 251:121105. [PMID: 38184913 DOI: 10.1016/j.watres.2024.121105] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Microorganisms in wetland groundwater play an essential role in driving global biogeochemical cycles. However, largely due to the dynamics of spatiotemporal surface water-groundwater interaction, the spatiotemporal successions of biogeochemical cycling in wetland groundwater remain poorly delineated. Herein, we investigated the seasonal coevolution of hydrogeochemical variables and microbial functional genes involved in nitrogen, carbon, sulfur, iron, and arsenic cycling in groundwater within a typical wetland, located in Poyang Lake Plain, China. During the dry season, the microbial potentials for dissimilatory nitrate reduction to ammonium and ammonification were dominant, whereas the higher potentials for nitrogen fixation, denitrification, methane metabolism, and carbon fixation were identified in the wet season. A likely biogeochemical hotspot was identified in the area located in the low permeable aquifer near the lake, characterized by reducing conditions and elevated levels of Fe2+ (6.65-17.1 mg/L), NH4+ (0.57-3.98 mg/L), total organic carbon (1.02-1.99 mg/L), and functional genes. In contrast to dry season, higher dissimilarities of functional gene distribution were observed in the wet season. Multivariable statistics further indicated that the connection between the functional gene compositions and hydrogeochemical variables becomes less pronounced as the seasons transition from dry to wet. Despite this transition, Fe2+ remained the dominant driving force on gene distribution during both seasons. Gene-based co-occurrence network displayed reduced interconnectivity among coupled C-N-Fe-S cycles from the dry to the wet season, underpinning a less complex and more destabilizing occurrence pattern. The rising groundwater level may have contributed to a reduction in the stability of functional microbial communities, consequently impacting ecological functions. Our findings shed light on microbial-driven seasonal biogeochemical cycling in wetland groundwater.
Collapse
Affiliation(s)
- Xianglong Chen
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Yizhi Sheng
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China; Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences, Beijing 100083, PR China.
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China.
| | - Pengpeng Zhou
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Fu Liao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Hairu Mao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Hongyu Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Zhiyuan Qiao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Yuquan Wei
- College of Resources and Environmental Science, China Agricultural University, Beijing 100094, PR China
| |
Collapse
|
45
|
Zhou G, Fan K, Gao S, Chang D, Li G, Liang T, Liang H, Li S, Zhang J, Che Z, Cao W. Green manuring relocates microbiomes in driving the soil functionality of nitrogen cycling to obtain preferable grain yields in thirty years. SCIENCE CHINA. LIFE SCIENCES 2024; 67:596-610. [PMID: 38057623 DOI: 10.1007/s11427-023-2432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/05/2023] [Indexed: 12/08/2023]
Abstract
Fertilizers are widely used to produce more food, inevitably altering the diversity and composition of soil organisms. The role of soil biodiversity in controlling multiple ecosystem services remains unclear, especially after decades of fertilization. Here, we assess the contribution of the soil functionalities of carbon (C), nitrogen (N), and phosphorus (P) cycling to crop production and explore how soil organisms control these functionalities in a 33-year field fertilization experiment. The long-term application of green manure or cow manure produced wheat yields equivalent to those obtained with chemical N, with the former providing higher soil functions and allowing the functionality of N cycling (especially soil N mineralization and biological N fixation) to control wheat production. The keystone phylotypes within the global network rather than the overall microbial community dominated the soil multifunctionality and functionality of C, N, and P cycling across the soil profile (0-100 cm). We further confirmed that these keystone phylotypes consisted of many metabolic pathways of nutrient cycling and essential microbes involved in organic C mineralization, N2O release, and biological N fixation. The chemical N, green manure, and cow manure resulted in the highest abundances of amoB, nifH, and GH48 genes and Nitrosomonadaceae, Azospirillaceae, and Sphingomonadaceae within the keystone phylotypes, and these microbes were significantly and positively correlated with N2O release, N fixation, and organic C mineralization, respectively. Moreover, our results demonstrated that organic fertilization increased the effects of the network size and keystone phylotypes on the subsoil functions by facilitating the migration of soil microorganisms across the soil profiles and green manure with the highest migration rates. This study highlights the importance of the functionality of N cycling in controlling crop production and keystone phylotypes in regulating soil functions, and provides selectable fertilization strategies for maintaining crop production and soil functions across soil profiles in agricultural ecosystems.
Collapse
Affiliation(s)
- Guopeng Zhou
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kunkun Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Songjuan Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Danna Chang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guilong Li
- Institute of Soil & Fertilizer and Resource & Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Ting Liang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hai Liang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shun Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiudong Zhang
- Institute of Soil and Fertilizer and Water-saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Zongxian Che
- Institute of Soil and Fertilizer and Water-saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China.
| | - Weidong Cao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
46
|
Li D, Wu J. Canopy nitrogen addition and understory removal destabilize the microbial community in a subtropical Chinese fir plantation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120407. [PMID: 38368803 DOI: 10.1016/j.jenvman.2024.120407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Subtropical Chinese fir plantations have been experiencing increased nitrogen deposition and understory management because of human activities. Nevertheless, effect of increased nitrogen deposition and understory removal in the plantations on microbial community stability and the resulting consequences for ecosystem functioning is still unclear. We carried out a 5-year experiment of canopy nitrogen addition (2.5 g N m-2 year-1), understory removal, and their combination to assess their influences on microbial community stability and functional potentials in a subtropical Chinese fir plantation. Nitrogen addition, understory removal, and their combination reduced soil bacterial diversity (OUT richness, Inverse Simpson index, Shannon index, and phylogenetic diversity) by 11-18%, 15-24%, and 19-31%; reduced fungal diversity indexes by 3-5%, 5-6%, and 5-7%, respectively. We found that environmental filtering and interspecific interactions together determined changes in bacterial community stability, while changes in fungal community stability were mainly caused by environmental filtering. Fungi were more stable than bacteria under disturbances, possibly from having a more stable network structure. Furthermore, we found that microbial community stability was linked to changes in microbial community functional potentials. Importantly, we observed synergistic interactions between understory removal and nitrogen addition on bacterial diversity, network structure, and community stability. These findings suggest that understory plants play a significant role in promoting soil microbial community stability in subtropical Chinese fir plantations and help to mitigate the negative impacts of nitrogen addition. Hence, it is crucial to retain understory vegetation as important components of subtropical plantations.
Collapse
Affiliation(s)
- Debao Li
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650 500, China; Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, 650500, China
| | - Jianping Wu
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650 500, China; Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
47
|
Zhang K, Zentella R, Burkey KO, Liao HL, Tisdale RH. Long-term tropospheric ozone pollution disrupts plant-microbe-soil interactions in the agroecosystem. GLOBAL CHANGE BIOLOGY 2024; 30:e17215. [PMID: 38429894 DOI: 10.1111/gcb.17215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
Tropospheric ozone (O3 ) threatens agroecosystems, yet its long-term effects on intricate plant-microbe-soil interactions remain overlooked. This study employed two soybean genotypes of contrasting O3 -sensitivity grown in field plots exposed elevated O3 (eO3 ) and evaluated cause-effect relationships with their associated soil microbiomes and soil quality. Results revealed long-term eO3 effects on belowground soil microbiomes and soil health surpass damage visible on plants. Elevated O3 significantly disrupted belowground bacteria-fungi interactions, reduced fungal diversity, and altered fungal community assembly by impacting soybean physiological properties. Particularly, eO3 impacts on plant performance were significantly associated with arbuscular mycorrhizal fungi, undermining their contribution to plants, whereas eO3 increased fungal saprotroph proliferation, accelerating soil organic matter decomposition and soil carbon pool depletion. Free-living diazotrophs exhibited remarkable acclimation under eO3 , improving plant performance by enhancing nitrogen fixation. However, overarching detrimental consequences of eO3 negated this benefit. Overall, this study demonstrated long-term eO3 profoundly governed negative impacts on plant-soil-microbiota interactions, pointing to a potential crisis for agroecosystems. These findings highlight urgent needs to develop adaptive strategies to navigate future eO3 scenarios.
Collapse
Affiliation(s)
- Kaile Zhang
- North Florida Research and Education Center, University of Florida, Quincy, Florida, USA
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, Florida, USA
| | - Rodolfo Zentella
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Raleigh, North Carolina, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Kent O Burkey
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Raleigh, North Carolina, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, Quincy, Florida, USA
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, Florida, USA
| | - Ripley H Tisdale
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Raleigh, North Carolina, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
48
|
Li T, Wang S, Liu C, Yu Y, Zong M, Duan C. Soil microbial communities' contributions to soil ecosystem multifunctionality in the natural restoration of abandoned metal mines. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120244. [PMID: 38335599 DOI: 10.1016/j.jenvman.2024.120244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/28/2023] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
On a global scale, the restoration of metal mine ecosystem functions is urgently required, and soil microorganisms play an important role in this process. Conventional studies frequently focused on the relationship between individual functions and their drivers; however, ecosystem functions are multidimensional, and considering any given function in isolation ignores the trade-offs and interconnectedness between functions, which complicates obtaining a comprehensive understanding of ecosystem functions. To elucidate the relationships between soil microorganisms and the ecosystem multifunctionality (EMF) of metal mines, this study investigated natural restoration of metal mines, evaluated the EMF, and used high-throughput sequencing to explore the bacterial and fungal communities as well as their influence on EMF. Bacterial community diversity and composition were more sensitive to mine restoration than fungal community. Bacterial diversity exhibited redundancy in improving N-P-K-S multifunctionality; however, rare bacterial taxa including Dependentiae, Spirochaetes, and WPS-2 were important for metal multifunctionality. Although no clear relationship between fungal diversity and EMF was observed, the abundance of Glomeromycota had a significant effect on the three EMF categories (N-P-K-S, carbon, and metal multifunctionality). Previous studies confirmed a pronounced positive association between microbial diversity and multifunctionality; however, the relationship between microbial diversity and multifunctionality differs among functions' categories. In contrast, the presence of critical microbial taxa exerted stronger effects on mine multifunctionality.
Collapse
Affiliation(s)
- Ting Li
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan University, Kunming, 650091, China
| | - Sichen Wang
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan University, Kunming, 650091, China
| | - Chang'e Liu
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan University, Kunming, 650091, China
| | - Yadong Yu
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan University, Kunming, 650091, China
| | - Mingming Zong
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan University, Kunming, 650091, China
| | - Changqun Duan
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
49
|
Yang X, Hua Z, Li L, Huo X, Zhao Z. Multi-source information fusion-driven corn yield prediction using the Random Forest from the perspective of Agricultural and Forestry Economic Management. Sci Rep 2024; 14:4052. [PMID: 38374339 PMCID: PMC11325042 DOI: 10.1038/s41598-024-54354-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024] Open
Abstract
The objective of this study is to promptly and accurately allocate resources, scientifically guide grain distribution, and enhance the precision of crop yield prediction (CYP), particularly for corn, along with ensuring application stability. The digital camera is selected to capture the digital image of a 60 m × 10 m experimental cornfield. Subsequently, the obtained data on corn yield and statistical growth serve as inputs for the multi-source information fusion (MSIF). The study proposes an MSIF-based CYP Random Forest model by amalgamating the fluctuating corn yield dataset. In relation to the spatial variability of the experimental cornfield, the fitting degree and prediction ability of the proposed MSIF-based CYP Random Forest are analyzed, with statistics collected from 1-hectare, 10-hectare, 20-hectare, 30-hectare, and 50-hectare experimental cornfields. Results indicate that the proposed MSIF-based CYP Random Forest model outperforms control models such as support vector machine (SVM) and Long Short-Term Memory (LSTM), achieving the highest prediction accuracy of 89.30%, surpassing SVM and LSTM by approximately 13.44%. Meanwhile, as the experimental field size increases, the proposed model demonstrates higher prediction accuracy, reaching a maximum of 98.71%. This study is anticipated to offer early warnings of potential factors affecting crop yields and to further advocate for the adoption of MSIF-based CYP. These findings hold significant research implications for personnel involved in Agricultural and Forestry Economic Management within the context of developing agricultural economy.
Collapse
Affiliation(s)
- Xuziqi Yang
- College of Economics and Management, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Zekai Hua
- College of Economics and Management, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Liang Li
- Laboratory of Walnut Research Center, College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xingheng Huo
- Laboratory of Walnut Research Center, College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ziqiang Zhao
- College of Humanities and Social Development, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
50
|
Zhu L, Luan L, Chen Y, Wang X, Zhou S, Zou W, Han X, Duan Y, Zhu B, Li Y, Liu W, Zhou J, Zhang J, Jiang Y, Sun B. Community assembly of organisms regulates soil microbial functional potential through dual mechanisms. GLOBAL CHANGE BIOLOGY 2024; 30:e17160. [PMID: 38379454 DOI: 10.1111/gcb.17160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/22/2024]
Abstract
Unraveling the influence of community assembly processes on soil ecosystem functioning presents a major challenge in the field of theoretical ecology, as it has received limited attention. Here, we used a series of long-term experiments spanning over 25 years to explore the assembly processes of bacterial, fungal, protist, and nematode communities using high-throughput sequencing. We characterized the soil microbial functional potential by the abundance of microbial genes associated with carbon, nitrogen, phosphorus, and sulfur cycling using GeoChip-based functional gene profiling, and determined how the assembly processes of organism groups regulate soil microbial functional potential through community diversity and network stability. Our results indicated that balanced fertilization (NPK) treatment improved the stochastic assembly of bacterial, fungal, and protist communities compared to phosphorus-deficient fertilization (NK) treatment. However, there was a nonsignificant increase in the normalized stochasticity ratio of the nematode community in response to fertilization across sites. Our findings emphasized that soil environmental factors influenced the assembly processes of the biotic community, which regulated soil microbial functional potential through dual mechanisms. One mechanism indicated that the high phosphorus levels and low soil nutrient stoichiometry may increase the stochasticity of bacterial, fungal, and protist communities and the determinism of the nematode community under NPK treatment, ultimately enhancing soil microbial functional potential by reinforcing the network stability of the biotic community. The other mechanism indicated that the low phosphorus levels and high soil nutrient stoichiometry may increase the stochastic process of the bacterial community and the determinism of the fungal, protist, and nematode communities under NK treatment, thereby enhancing soil microbial functional potential by improving the β-diversity of the biotic community. Taken together, these results provide valuable insights into the mechanisms underlying the assembly processes of the biotic community that regulate ecosystem functioning.
Collapse
Affiliation(s)
- Lingyue Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| | - Lu Luan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yan Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xiaoyue Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiu Zou
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xiaori Han
- College of Land and Environment, Shenyang Agricultural University, Shengyang, China
| | - Yinghua Duan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Yan Li
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wenzhao Liu
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|