1
|
Alcántara JM, Verdú M, Garrido JL, Montesinos-Navarro A, Aizen MA, Alifriqui M, Allen D, Al-Namazi AA, Armas C, Bastida JM, Bellido T, Paterno GB, Briceño H, Camargo de Oliveira RA, Campoy JG, Chaieb G, Chu C, Constantinou E, Delalandre L, Duarte M, Faife-Cabrera M, Fazlioglu F, Fernando ES, Flores J, Flores-Olvera H, Fodor E, Ganade G, Garcia MB, García-Fayos P, Gavini SS, Goberna M, Gómez-Aparicio L, González-Pendás E, González-Robles A, İpekdal K, Kikvidze Z, Ledo A, Lendínez S, Liu H, Lloret F, López RP, López-García Á, Lortie CJ, Losapio G, Lutz JA, Máliš F, Manzaneda AJ, Marcilio-Silva V, Michalet R, Molina-Venegas R, Navarro-Cano JA, Novotny V, Olesen JM, Ortiz-Brunel JP, Pajares-Murgó M, Perea AJ, Pérez-Hernández V, Pérez-Navarro MÁ, Pistón N, Prieto I, Prieto-Rubio J, Pugnaire FI, Ramírez N, Retuerto R, Rey PJ, Rodriguez-Ginart DA, Sánchez-Martín R, Tavşanoğlu Ç, Tedoradze G, Tercero-Araque A, Tielbörger K, Touzard B, Tüfekcioğlu İ, Turkis S, Usero FM, Usta-Baykal N, Valiente-Banuet A, Vargas-Colin A, Vogiatzakis I, Zamora R. Key concepts and a world-wide look at plant recruitment networks. Biol Rev Camb Philos Soc 2024. [PMID: 39727257 DOI: 10.1111/brv.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Plant-plant interactions are major determinants of the dynamics of terrestrial ecosystems. There is a long tradition in the study of these interactions, their mechanisms and their consequences using experimental, observational and theoretical approaches. Empirical studies overwhelmingly focus at the level of species pairs or small sets of species. Although empirical data on these interactions at the community level are scarce, such studies have gained pace in the last decade. Studying plant-plant interactions at the community level requires knowledge of which species interact with which others, so an ecological networks approach must be incorporated into the basic toolbox of plant community ecology. The concept of recruitment networks (RNs) provides an integrative framework and new insights for many topics in the field of plant community ecology. RNs synthesise the set of canopy-recruit interactions in a local plant assemblage. Canopy-recruit interactions describe which ("canopy") species allow the recruitment of other species in their vicinity and how. Here we critically review basic concepts of ecological network theory as they apply to RNs. We use RecruitNet, a recently published worldwide data set of canopy-recruit interactions, to describe RN patterns emerging at the interaction, species, and community levels, and relate them to different abiotic gradients. Our results show that RNs can be sampled with high accuracy. The studies included in RecruitNet show a very high mean network completeness (95%), indicating that undetected canopy-recruit pairs must be few and occur very infrequently. Across 351,064 canopy-recruit pairs analysed, the effect of the interaction on recruitment was neutral in an average of 69% of the interactions per community, but the remaining interactions were positive (i.e. facilitative) five times more often than negative (i.e. competitive), and positive interactions had twice the strength of negative ones. Moreover, the frequency and strength of facilitation increases along a climatic aridity gradient worldwide, so the demography of plant communities is increasingly strongly dependent on facilitation as aridity increases. At network level, species can be ascribed to four functional types depending on their position in the network: core, satellite, strict transients and disturbance-dependent transients. This functional structure can allow a rough estimation of which species are more likely to persist. In RecruitNet communities, this functional structure most often departs from random null model expectation and could allow on average the persistence of 77% of the species in a local community. The functional structure of RNs also varies along the aridity gradient, but differently in shrubland than in forest communities. This variation suggests an increase in the probability of species persistence with aridity in forests, while such probability remains roughly constant along the gradient in shrublands. The different functional structure of RNs between forests and shrublands could contribute to explaining their co-occurrence as alternative stable states of the vegetation under the same climatic conditions. This review is not exhaustive of all the topics that can be addressed using the framework of RNs, but instead aims to present some of the interesting insights that it can bring to the field of plant community ecology.
Collapse
Affiliation(s)
- Julio M Alcántara
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus Las Lagunillas, Jaén, 23071, Spain
- Andalusian Interuniversity Institute for Earth System Research (IISTA), Avenida del Mediterráneo, Granada, 18071, Spain
| | - Miguel Verdú
- Centro de Investigaciones Sobre Desertificación (CIDE, CSIC-UV-GV), Carretera de Moncada-Náquera Km 4.5, Moncada, 46113, Valencia, Spain
| | - José L Garrido
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zadín (EEZ-CSIC), Calle Profesor Albareda 1, Granada, 18008, Spain
- Estación Biológica de Doñana (EBD-CSIC), Calle Americo Vespucio 26, Sevilla, 41092, Spain
| | - Alicia Montesinos-Navarro
- Centro de Investigaciones Sobre Desertificación (CIDE, CSIC-UV-GV), Carretera de Moncada-Náquera Km 4.5, Moncada, 46113, Valencia, Spain
| | - Marcelo A Aizen
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, Pasaje Gutiérrez 1415, San Carlos de Bariloche, 8400, Argentina
| | - Mohamed Alifriqui
- Laboratory of Ecology and Environment, Biology Department, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd. Prince My Abdellah, BP 2390, Marrakech, 40000, Morocco
| | - David Allen
- Department of Biology, Middlebury College, McCardell Bicentennial Hall, 276 Bicentennial Way, Middlebury, Vermont, 05753, USA
| | - Ali A Al-Namazi
- Sustainability and Environment Sector, King Abdulaziz City for Science and Technology (KACST), 11442, P.O. Box 6086, Riyadh, Saudi Arabia
| | - Cristina Armas
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas (EEZA-CSIC), Carretera de Sacramento s/n, 04120 La Cañada, Almería, Spain
| | - Jesús M Bastida
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zadín (EEZ-CSIC), Calle Profesor Albareda 1, Granada, 18008, Spain
| | - Tono Bellido
- Servici Devesa-Albufera, Vivers Municipals de El Saler, CV-500, km 8.5, Valencia, 46012, Spain
| | - Gustavo Brant Paterno
- Biodiversity, Macroecology & Biogeography, Georg-August-Universität Göttingen, Wilhelmsplatz 1, 37073, Göttingen, Germany
| | - Herbert Briceño
- Universidad Central de Venezuela, Facultad de Ciencias, Instituto Biología Experimental, Centro Botánica Tropical, Apartado 1041A, Caracas, Venezuela
| | - Ricardo A Camargo de Oliveira
- Setor de Ciências Biológicas, Departamento de Botânica, Universidade Federal do Paraná, R. Elétrica, 540 - Jardim das Américas, Curitiba, PR, 82590-300, Brazil
| | - Josefina G Campoy
- Department of Functional Biology (Area of Ecology), Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, s/n, 15782 Santiago de Compostela, A Coruña, Spain
| | - Ghassen Chaieb
- University of Bordeaux, UMR CNRS 5805 EPOC, Allée Geoffroy Saint-Hilaire - CS 50023, Pessac, FR-33615, France
| | - Chengjin Chu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, No. 135 Xingang West Road, Guangzhou, 510275, China
| | - Elena Constantinou
- Faculty of Pure & Applied Sciences, Open University of Cyprus, PO Box 12794, Nicosia, 2252, Cyprus
| | - Léo Delalandre
- Centre d'écologie fonctionnelle et évolutive (CEFE UMR 5175), 1919 route de Mende, Montpellier Cedex 5, 34293, France
| | - Milen Duarte
- Instituto de Conservación Biodiversidad y Territorio, Universidad Austral de Chile, Campus Isla Teja, Casilla 567, Valdivia, Chile
- Instituto de Ecología y Biodiversidad (IEB), Casilla, Santiago, 653, Chile
| | - Michel Faife-Cabrera
- Jardin Botanico de Villa Clara, Facultad de Ciencias Agropecuarias, Universidad Central "Marta Abreu" de Las Villas, Carretera a Camajuaní Km. 5 y 1/2, Santa Clara, Villa Clara, Cuba
| | - Fatih Fazlioglu
- Chair of Plant Ecology, University of Bayreuth, Building NWI, Bayreuth, D-95440, Germany
- Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Ordu University, Cumhuriyet Campus, PK 52200 Center, Ordu, Türkiye
| | - Edwino S Fernando
- Institute of Biology, National Science Complex, College of Science, University of the Philippines, Diliman, Quezon City, NCR, 1101, Philippines
- Department of Forest Biological Sciences, College of Forestry and Natural Resources, Florencio Tamesis Hall, Martin Reyes St., UP, Los Baños, Laguna, 4031, Philippines
| | - Joel Flores
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, A.C, Camino a la Presa San José 2055, Col. Lomas 4a. Sección, San Luis Potosí, 78216, Mexico
| | - Hilda Flores-Olvera
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México. 3er. Circuito Exterior S/N, Ciudad Universitaria, Alcaldía Coyoacán, C.P. 04510, CDMX, Mexico
| | - Ecaterina Fodor
- Faculty of Environmental Protection, Department of Forestry and Forest Engineering, University of Oradea, 26 Gen. Magheru Street, Oradea, Romania
| | - Gislene Ganade
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN - Lagoa Nova, Natal, RN, CEP 59078-970, Brazil
| | - Maria B Garcia
- Pyrenean Institute of Ecology (CSIC), Avda. Montañana 1005, Zaragoza, 50059, Spain
| | - Patricio García-Fayos
- Centro de Investigaciones Sobre Desertificación (CIDE, CSIC-UV-GV), Carretera de Moncada-Náquera Km 4.5, Moncada, 46113, Valencia, Spain
| | - Sabrina S Gavini
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, Pasaje Gutiérrez 1415, San Carlos de Bariloche, 8400, Argentina
| | - Marta Goberna
- Department of Environment and Agronomy, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña km 7.5, Madrid, 28040, Spain
| | - Lorena Gómez-Aparicio
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS-CSIC), Avenida Reina Mercedes 10, Sevilla, 41012, Spain
| | - Enrique González-Pendás
- Departamento de Investigaciones Botánicas, Centro de Investigaciones y Servicios Ambientales, Ecovida, Kilómetro 21/2 carretera a Luis Lazo, Pinar del Río, Cuba
| | - Ana González-Robles
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus Las Lagunillas, Jaén, 23071, Spain
- Andalusian Interuniversity Institute for Earth System Research (IISTA), Avenida del Mediterráneo, Granada, 18071, Spain
| | - Kahraman İpekdal
- Division of Ecology, Department of Biology, Hacettepe University, Beytepe, Ankara, 06800, Türkiye
| | - Zaal Kikvidze
- Institute of Botany, Ilia State University, Room F-310, 5 Cholokashvili Ave, Tbilisi, 0162, Georgia
| | | | - Sandra Lendínez
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zadín (EEZ-CSIC), Calle Profesor Albareda 1, Granada, 18008, Spain
| | - Hanlun Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, No. 135 Xingang West Road, Guangzhou, 510275, China
| | - Francisco Lloret
- CREAF, U. Ecologia, Dept. Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma Barcelona, Cerdanyola del Valles, 08193, Spain
| | - Ramiro P López
- Instituto de Ecología, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés (UMSA), campus universitario, calle 27, s/n, Cotacota, La Paz, Bolivia
| | - Álvaro López-García
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zadín (EEZ-CSIC), Calle Profesor Albareda 1, Granada, 18008, Spain
| | - Christopher J Lortie
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J1P3, Canada
| | - Gianalberto Losapio
- Institute of Earth Surface Dynamics, University of Lausanne, Quartier UNIL-Mouline, Bâtiment Géopolis, Lausanne, CH-1015, Switzerland
- Department of Biosciences, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - James A Lutz
- Wildland Resources, Utah State University, 5230 Old Main Hill, Logan, Utah, 84322-5230, USA
| | - František Máliš
- Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, Zvolen, Slovakia
| | - Antonio J Manzaneda
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus Las Lagunillas, Jaén, 23071, Spain
| | - Vinicius Marcilio-Silva
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Ave, Saint Paul, Minnesota, 55108, USA
| | - Richard Michalet
- University of Bordeaux, UMR CNRS 5805 EPOC, Allée Geoffroy Saint-Hilaire - CS 50023, Pessac, FR-33615, France
| | - Rafael Molina-Venegas
- Department of Ecology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - José A Navarro-Cano
- Department of Environment and Agronomy, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña km 7.5, Madrid, 28040, Spain
| | - Vojtech Novotny
- Biology Centre, Institute of Entomology of the Czech Academy of Sciences, Branišovská 1160/31, Ceske Budejovice, 370 05, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1645/31a, České Budějovice, 370 05, Czech Republic
| | - Jens M Olesen
- Department of Biology, Aarhus University, Ny Munkegade 114-116, Aarhus C, DK-8000, Denmark
| | - Juan P Ortiz-Brunel
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Nextipac, Zapopan, Jalisco, 45200, Mexico
| | - Mariona Pajares-Murgó
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus Las Lagunillas, Jaén, 23071, Spain
- Andalusian Interuniversity Institute for Earth System Research (IISTA), Avenida del Mediterráneo, Granada, 18071, Spain
| | - Antonio J Perea
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus Las Lagunillas, Jaén, 23071, Spain
- Andalusian Interuniversity Institute for Earth System Research (IISTA), Avenida del Mediterráneo, Granada, 18071, Spain
| | - Vidal Pérez-Hernández
- Departamento de Investigaciones Botánicas, Centro de Investigaciones y Servicios Ambientales, Ecovida, Kilómetro 21/2 carretera a Luis Lazo, Pinar del Río, Cuba
| | - María Ángeles Pérez-Navarro
- CREAF, U. Ecologia, Dept. Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma Barcelona, Cerdanyola del Valles, 08193, Spain
| | - Nuria Pistón
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas (EEZA-CSIC), Carretera de Sacramento s/n, 04120 La Cañada, Almería, Spain
- Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, Avenida Fuentenueva s/n, Granada, 18003, Spain
| | - Iván Prieto
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas (EEZA-CSIC), Carretera de Sacramento s/n, 04120 La Cañada, Almería, Spain
- Department of Biodiversity and Environmental Management, Ecology Area, Faculty of Biological and Environmental Sciences, University of León, Cjón. Campus Vegazana, s/n, León, 24007, Spain
| | - Jorge Prieto-Rubio
- Centro de Investigaciones Sobre Desertificación (CIDE, CSIC-UV-GV), Carretera de Moncada-Náquera Km 4.5, Moncada, 46113, Valencia, Spain
| | - Francisco I Pugnaire
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas (EEZA-CSIC), Carretera de Sacramento s/n, 04120 La Cañada, Almería, Spain
| | - Nelson Ramírez
- Universidad Central de Venezuela, Facultad de Ciencias, Instituto Biología Experimental, Centro Botánica Tropical, Apartado 1041A, Caracas, Venezuela
| | - Rubén Retuerto
- Department of Functional Biology (Area of Ecology), Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, s/n, 15782 Santiago de Compostela, A Coruña, Spain
| | - Pedro J Rey
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus Las Lagunillas, Jaén, 23071, Spain
- Andalusian Interuniversity Institute for Earth System Research (IISTA), Avenida del Mediterráneo, Granada, 18071, Spain
| | - Daniel A Rodriguez-Ginart
- Centro de Investigaciones Sobre Desertificación (CIDE, CSIC-UV-GV), Carretera de Moncada-Náquera Km 4.5, Moncada, 46113, Valencia, Spain
| | - Ricardo Sánchez-Martín
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, 8903, Switzerland
| | - Çağatay Tavşanoğlu
- Division of Ecology, Department of Biology, Hacettepe University, Beytepe, Ankara, 06800, Türkiye
| | - Giorgi Tedoradze
- Department of Plant Systematics and Geography, Institute of Botany, Ilia State University, Botanikuri Str. 1, Tbilisi, 0105, Georgia
| | - Amanda Tercero-Araque
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus Las Lagunillas, Jaén, 23071, Spain
- Andalusian Interuniversity Institute for Earth System Research (IISTA), Avenida del Mediterráneo, Granada, 18071, Spain
| | - Katja Tielbörger
- Institute of Evolution and Ecology, Plant Ecology Group, University of Tübingen, Auf der Morgenstelle 5, Tübingen, 72076, Germany
| | - Blaise Touzard
- University of Bordeaux, UMR CNRS 5805 EPOC, Allée Geoffroy Saint-Hilaire - CS 50023, Pessac, FR-33615, France
| | - İrem Tüfekcioğlu
- Division of Ecology, Department of Biology, Hacettepe University, Beytepe, Ankara, 06800, Türkiye
| | - Sevda Turkis
- Faculty of Education, Department of Mathematics and Science Education, Ordu University, Cumhuriyet Campus, PK Center, Ordu, 52200, Türkiye
| | - Francisco M Usero
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas (EEZA-CSIC), Carretera de Sacramento s/n, 04120 La Cañada, Almería, Spain
| | - Nurbahar Usta-Baykal
- Division of Ecology, Department of Biology, Hacettepe University, Beytepe, Ankara, 06800, Türkiye
| | - Alfonso Valiente-Banuet
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70-275, Ciudad de México, C.P. 04510, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico
| | - Alexa Vargas-Colin
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, A.C, Camino a la Presa San José 2055, Col. Lomas 4a. Sección, San Luis Potosí, 78216, Mexico
| | - Ioannis Vogiatzakis
- Faculty of Pure & Applied Sciences, Open University of Cyprus, PO Box 12794, Nicosia, 2252, Cyprus
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, Bari, 70126, Italy
| | - Regino Zamora
- Andalusian Interuniversity Institute for Earth System Research (IISTA), Avenida del Mediterráneo, Granada, 18071, Spain
- Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, Avenida Fuentenueva s/n, Granada, 18003, Spain
| |
Collapse
|
2
|
Coelho-Silva D, Guimarães ZTM, Podadera DS, Modolo GS, Rossi S, Ferreira MJ, Marcati CR. Hydraulic and structural traits of trees across light gradients in the Amazon secondary forest. TREE PHYSIOLOGY 2024; 44:tpae146. [PMID: 39541424 DOI: 10.1093/treephys/tpae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Amazonian species are generally unable to adapt to long drought periods, indicating a low capacity to adjust their hydraulic traits. Secondary forests account for 20% of forest cover in the Amazon, making natural regeneration species crucial under climate change scenarios. In this study, we compared the hydraulic traits of five species, including non-pioneers (Bertholletia excelsa Bonpl., Carapa guianensis Aubl., Hymenaea courbaril L.) and pioneers [Cedrela fissilis Vell., Tabebuia rosea (Bertol.) Bertero ex A.DC.], across light conditions (understory, intermediate, gap) in a 22-year-old secondary forest in Central Amazon, Brazil. Twenty-five saplings were planted and monitored in 3 plots × 5 blocks. Five years after the plantation, we assessed growth, wood density, leaf water potential at predawn and midday, xylem embolism resistance (P50), and hydraulic safety margins (HSM). The leaf water potential ranged from -2.9 to 0 MPa. The non-pioneer species C. guianensis and H. courbaril exhibited the lowest P50 (-4.06 MPa), indicating higher embolism resistance, whereas the pioneer T. rosea had the highest P50 (-1.25 MPa), indicating lower resistance. The HSM varied from -1.60 to 3.26 MPa, with lower values in gap conditions during the dry period (-1.60 MPa), especially affecting pioneer species. Wood density was influenced by both light and species type, with non-pioneers showing a generally higher density, with H. courbaril reaching 0.75 g cm-3 in the understory while the pioneer T. rosea showed the lowest density (0.27 g cm-3). These results highlight that light conditions affect hydraulic traits differently across species strategies, especially during early growth. Non-pioneer, slow-growing native species appear more resilient to light variation, making them suitable for future plantations aimed at climate adaptation in secondary forests.
Collapse
Affiliation(s)
- Debora Coelho-Silva
- Department of Forest Science, Soil and Environment, School of Agricultural Sciences, Botucatu, São Paulo State University, São Paulo 01049-010, Brazil
| | - Zilza T M Guimarães
- Coordination of Environmental Dynamics, National Institute of Amazon Research, Manaus, Amazonas 69060-731, Brazil
| | - Diego S Podadera
- Department of Forest Science, Soil and Environment, School of Agricultural Sciences, Botucatu, São Paulo State University, São Paulo 01049-010, Brazil
| | - Guilherme S Modolo
- Coordination of Environmental Dynamics, National Institute of Amazon Research, Manaus, Amazonas 69060-731, Brazil
| | - Sergio Rossi
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada
| | - Marciel J Ferreira
- Department of Forest Sciences, Federal University of Amazonas, Manaus, Amazonas 69077-000, Brazil
| | - Carmen R Marcati
- Department of Forest Science, Soil and Environment, School of Agricultural Sciences, Botucatu, São Paulo State University, São Paulo 01049-010, Brazil
| |
Collapse
|
3
|
Moreno M, Limousin JM, Simioni G, Badel E, Rodríguez-Calcerrada J, Cochard H, Torres-Ruiz JM, Dupuy JL, Ruffault J, Ormeno E, Delzon S, Fernandez C, Ourcival JM, Martin-StPaul N. Hydraulic plasticity and water use regulation act to maintain the hydraulic safety margins of Mediterranean trees in rainfall exclusion experiments. PLANT, CELL & ENVIRONMENT 2024; 47:4741-4753. [PMID: 39077899 DOI: 10.1111/pce.15066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Hydraulic failure due to xylem embolism has been identified as one of the main mechanisms involved in drought-induced forest decline. Trees vulnerability to hydraulic failure depends on their hydraulic safety margin (HSM). While it has been shown that HSM globally converges between tree species and biomes, there is still limited knowledge regarding how HSM can adjust locally to varying drought conditions within species. In this study, we relied on three long-term partial rainfall exclusion experiments to investigate the plasticity of hydraulic traits and HSM for three Mediterranean tree species (Quercus ilex L., Quercus pubescens Willd., and Pinus halepensis Mill.). For all species, a homeostasis of HSM in response to rainfall reduction was found, achieved through different mechanisms. For Q. ilex, the convergence in HSM is attributed to the adjustment of both the turgor loss point (Ψtlp) and the water potential at which 50% of xylem conductivity is lost due to embolism (P50). In contrast, the maintenance of HSM for P. halepensis and Q. pubescens is related to its isohydric behavior for the first and leaf area adjustment for the latter. It remains to be seen whether this HSM homeostasis can be generalized and if it will be sufficient to withstand extreme droughts expected in the Mediterranean region.
Collapse
Affiliation(s)
- Myriam Moreno
- INRAE, URFM, Avignon, France
- French Environment and Energy Management Agency, Angers, France
| | | | | | - Eric Badel
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | - Jesus Rodríguez-Calcerrada
- Research Group Functioning of Forest Systems in a Changing Environment, Universidad Politécnica de Madrid, Madrid, Spain
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | | | | | | | - Elena Ormeno
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, Marseille, France
| | | | - Catherine Fernandez
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, Marseille, France
| | | | | |
Collapse
|
4
|
Guillemot J, Martin-StPaul N. Tree growth strategies mediate drought resistance in species-diverse forests. TREE PHYSIOLOGY 2024; 44:tpae141. [PMID: 39485940 DOI: 10.1093/treephys/tpae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Affiliation(s)
- Joannès Guillemot
- CIRAD, UMR Eco&Sols, Montpellier, France
- Eco&Sols, University of Montpellier, CIRAD, INRAe, Institut Agro, IRD, Montpellier, France
- Department of Forest Sciences, ESALQ, University of São Paulo, Piracicaba, São Paulo, Brazil
| | | |
Collapse
|
5
|
Decarsin R, Guillemot J, le Maire G, Blondeel H, Meredieu C, Achard E, Bonal D, Cochard H, Corso D, Delzon S, Doucet Z, Druel A, Grossiord C, Torres-Ruiz JM, Bauhus J, Godbold DL, Hajek P, Jactel H, Jensen J, Mereu S, Ponette Q, Rewald B, Ruffault J, Sandén H, Scherer-Lorenzen M, Serrano-León H, Simioni G, Verheyen K, Werner R, Martin-StPaul N. Tree drought-mortality risk depends more on intrinsic species resistance than on stand species diversity. GLOBAL CHANGE BIOLOGY 2024; 30:e17503. [PMID: 39315483 DOI: 10.1111/gcb.17503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/25/2024]
Abstract
Increasing tree diversity is considered a key management option to adapt forests to climate change. However, the effect of species diversity on a forest's ability to cope with extreme drought remains elusive. In this study, we assessed drought tolerance (xylem vulnerability to cavitation) and water stress (water potential), and combined them into a metric of drought-mortality risk (hydraulic safety margin) during extreme 2021 or 2022 summer droughts in five European tree diversity experiments encompassing different biomes. Overall, we found that drought-mortality risk was primarily driven by species identity (56.7% of the total variability), while tree diversity had a much lower effect (8% of the total variability). This result remained valid at the local scale (i.e within experiment) and across the studied European biomes. Tree diversity effect on drought-mortality risk was mediated by changes in water stress intensity, not by changes in xylem vulnerability to cavitation. Significant diversity effects were observed in all experiments, but those effects often varied from positive to negative across mixtures for a given species. Indeed, we found that the composition of the mixtures (i.e., the identities of the species mixed), but not the species richness of the mixture per se, is a driver of tree drought-mortality risk. This calls for a better understanding of the underlying mechanisms before tree diversity can be considered an operational adaption tool to extreme drought. Forest diversification should be considered jointly with management strategies focussed on favouring drought-tolerant species.
Collapse
Affiliation(s)
- Renaud Decarsin
- INRAE, URFM, Avignon, France
- CIRAD, UMR Eco&Sols, Montpellier, France
- Eco&Sols, Univ. Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
- French Environment and Energy Management Agency, Angers, France
| | - Joannès Guillemot
- CIRAD, UMR Eco&Sols, Montpellier, France
- Eco&Sols, Univ. Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
- Department of Forest Sciences, ESALQ, University of São Paulo, Piracicaba, Brazil
| | - Guerric le Maire
- CIRAD, UMR Eco&Sols, Montpellier, France
- Eco&Sols, Univ. Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Haben Blondeel
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | | | - Emma Achard
- INRAE, URFM, Avignon, France
- CIRAD, UMR Eco&Sols, Montpellier, France
- Eco&Sols, Univ. Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
- INRAE, Piaf, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - Damien Bonal
- AgroParisTech, INRAE, UMR Silva, Université de Lorraine, Nancy, France
| | - Hervé Cochard
- INRAE, Piaf, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - Déborah Corso
- INRAE, UMR BIOGECO, University of Bordeaux, Pessac, France
| | - Sylvain Delzon
- INRAE, UMR BIOGECO, University of Bordeaux, Pessac, France
| | - Zoé Doucet
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - José Manuel Torres-Ruiz
- Instituto de Recursos Naturales y Agrobiologıa (IRNAS), Consejo Superior de Investigaciones Cientıficas (CSIC), Seville, Spain
| | - Jürgen Bauhus
- Chair of Silviculture, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg im Breisgau, Germany
| | - Douglas L Godbold
- Department of Forest Protection and Wildlife Management, Mendel University in Brno, Brno, Czech Republic
| | - Peter Hajek
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Joel Jensen
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Simone Mereu
- Institute of BioEconomy, National Research Council (IBE CNR), Sassari, Italy
- National Biodiversity Future Center S.C.A.R.L., (NBFC), Palermo, Italy
| | - Quentin Ponette
- UCLouvain-Université Catholique de Louvain, Earth & Life Institute, Louvain-La-Neuve, Belgium
| | - Boris Rewald
- Department of Forest Protection and Wildlife Management, Mendel University in Brno, Brno, Czech Republic
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | | | - Hans Sandén
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | | | - Hernán Serrano-León
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
- Chair of Silviculture, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Kris Verheyen
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - Ramona Werner
- Department of Forest and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | | |
Collapse
|
6
|
Rodríguez-Ramírez EC, Arroyo F, Ames-Martínez FN, Andrés-Hernández AR. Tracking climate vulnerability across spatial distribution and functional traits in Magnolia gentryi in the Peruvian tropical montane cloud forest. AMERICAN JOURNAL OF BOTANY 2024; 111:e16400. [PMID: 39238126 DOI: 10.1002/ajb2.16400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 09/07/2024]
Abstract
PREMISE Understanding the responses of functional traits in tree species to climate variability is essential for predicting the future of tropical montane cloud forest (TMCF) tree species, especially in Andean montane environments where fog pockets act as moisture traps. METHODS We studied the distribution of Magnolia gentryi, measured its spatial arrangement, identified local hotspots, and evaluated the extent to which climate-related factors are associated with its distribution. We then analyzed the variation in 13 functional traits of M. gentryi and the relationship with climate. RESULTS Andean TMCF climatic factors constrain M. gentryi spatial distribution with significant patches or gaps that are associated with high precipitation and mean minimum temperature. The functional traits of M. gentryi are limited by the Andean TMCF climatic factors, resulting in reduced within-species variation in traits associated with water deficit. CONCLUSIONS The association between functional traits and climate oscillation is crucial for understanding the growth conditions of relict-endemic species and is essential for conservation efforts. Forest trait diversity and species composition change because of fluctuations in hydraulic safety-efficiency gradients.
Collapse
Affiliation(s)
| | - Frank Arroyo
- Herbario MOL, Universidad Nacional Agraria La Molina, Av. La Universidad s./n., La Molina, Lima, Peru
| | - Fressia N Ames-Martínez
- Laboratorio de Biotecnología y Biología Molecular, Universidad Continental, Urbanización San Antonio, Huancayo, Peru
- Programa de Investigación en Ecología y Biodiversidad, Asociación ANDINUS, Sicaya, Huancayo, Peru
| | | |
Collapse
|
7
|
Ziegler C, Cochard H, Stahl C, Foltzer L, Gérard B, Goret JY, Heuret P, Levionnois S, Maillard P, Bonal D, Coste S. Residual water losses mediate the trade-off between growth and drought survival across saplings of 12 tropical rainforest tree species with contrasting hydraulic strategies. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4128-4147. [PMID: 38613495 DOI: 10.1093/jxb/erae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/12/2024] [Indexed: 04/15/2024]
Abstract
Knowledge of the physiological mechanisms underlying species vulnerability to drought is critical for better understanding patterns of tree mortality. Investigating plant adaptive strategies to drought should thus help to fill this knowledge gap, especially in tropical rainforests exhibiting high functional diversity. In a semi-controlled drought experiment using 12 rainforest tree species, we investigated the diversity in hydraulic strategies and whether they determined the ability of saplings to use stored non-structural carbohydrates during an extreme imposed drought. We further explored the importance of water- and carbon-use strategies in relation to drought survival through a modelling approach. Hydraulic strategies varied considerably across species with a continuum between dehydration tolerance and avoidance. During dehydration leading to hydraulic failure and irrespective of hydraulic strategies, species showed strong declines in whole-plant starch concentrations and maintenance, or even increases in soluble sugar concentrations, potentially favouring osmotic adjustments. Residual water losses mediated the trade-off between time to hydraulic failure and growth, indicating that dehydration avoidance is an effective drought-survival strategy linked to the 'fast-slow' continuum of plant performance at the sapling stage. Further investigations on residual water losses may be key to understanding the response of tropical rainforest tree communities to climate change.
Collapse
Affiliation(s)
- Camille Ziegler
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, 54000 Nancy, France
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Clément Stahl
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Louis Foltzer
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, 54000 Nancy, France
| | - Bastien Gérard
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, 54000 Nancy, France
| | - Jean-Yves Goret
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Patrick Heuret
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Sébastien Levionnois
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Pascale Maillard
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, 54000 Nancy, France
| | - Damien Bonal
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, 54000 Nancy, France
| | - Sabrina Coste
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
| |
Collapse
|
8
|
Gerolamo CS, Pereira L, Costa FRC, Jansen S, Angyalossy V, Nogueira A. Lianas in tropical dry seasonal forests have a high hydraulic efficiency but not always a higher embolism resistance than lianas in rainforests. ANNALS OF BOTANY 2024; 134:337-350. [PMID: 38721801 PMCID: PMC11232521 DOI: 10.1093/aob/mcae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/07/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND AND AIMS Lianas have higher relative abundance and biomass in drier seasonal forests than in rainforests, but whether this difference is associated with their hydraulic strategies is unclear. Here, we investigate whether lianas of seasonally dry forests are safer and more efficient in water transport than rainforest lianas, explaining patterns of liana abundance. METHODS We measured hydraulic traits on five pairs of congeneric lianas of the tribe Bignonieae in two contrasting forest sites: the wet 'Dense Ombrophilous Forest' in Central Amazonia (~2 dry months) and the drier 'Semideciduous Seasonal Forest' in the inland Atlantic Forest (~6 dry months). We also gathered a broader database, including 197 trees and 58 liana species from different tropical forests, to compare hydraulic safety between habits and forest types. KEY RESULTS Bignonieae lianas from both forests had high and similar hydraulic efficiency but exhibited variability in resistance to embolism across forest types when phylogenetic relationships were taken into account. Three genera had higher hydraulic safety in the seasonal forest than in the rainforest, but species across both forests had similar positive hydraulic safety margins despite lower predawn water potential values of seasonal forest lianas. We did not find the safety-efficiency trade-off. Merging our results with previously published data revealed a high variability of resistance to embolism in both trees and lianas, independent of forest types. CONCLUSIONS The high hydraulic efficiency of lianas detected here probably favours their rapid growth across tropical forests, but differences in hydraulic safety highlight that some species are highly vulnerable and may rely on other mechanisms to cope with drought. Future research on the lethal dehydration threshold and the connection between hydraulic resistance strategies and liana abundance could offer further insights into tropical forest dynamics under climatic threats.
Collapse
Affiliation(s)
- Caian S Gerolamo
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Luciano Pereira
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm D-89081, Germany
| | - Flavia R C Costa
- Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, AM, 69011-970, Brazil
| | - Steven Jansen
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm D-89081, Germany
| | - Veronica Angyalossy
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Anselmo Nogueira
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, São Bernardo do Campo, SP, 09606-070, Brazil
| |
Collapse
|
9
|
Matsuo T, Martínez-Ramos M, Onoda Y, Bongers F, Lohbeck M, Poorter L. Light competition drives species replacement during secondary tropical forest succession. Oecologia 2024; 205:1-11. [PMID: 38727828 PMCID: PMC11144147 DOI: 10.1007/s00442-024-05551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 04/08/2024] [Indexed: 06/03/2024]
Abstract
Light competition is thought to drive successional shifts in species dominance in closed vegetations, but few studies have assessed this for species-rich and vertically structured tropical forests. We analyzed how light competition drives species replacement during succession, and how cross-species variation in light competition strategies is determined by underlying species traits. To do so, we used chronosequence approach in which we compared 14 Mexican tropical secondary rainforest stands that differ in age (8-32 year-old). For each tree, height and stem diameter were monitored for 2 years to calculate relative biomass growth rate (RGR, the aboveground biomass gain per unit aboveground tree biomass per year). For each stand, 3D light profiles were measured to estimate individuals' light interception to calculate light interception efficiency (LIE, intercepted light per unit biomass per year) and light use efficiency (LUE, biomass growth per intercepted light). Throughout succession, species with higher RGR attained higher changes in species dominance and thus increased their dominance over time. Both light competition strategies (LIE and LUE) increased RGR. In early succession, a high LIE and its associated traits (large crown leaf mass and low wood density) are more important for RGR. During succession, forest structure builds up, leading to lower understory light levels. In later succession, a high LUE and its associated traits (high wood density and leaf mass per area) become more important for RGR. Therefore, successional changes in relative importance of light competition strategies drive shifts in species dominance during tropical rainforest succession.
Collapse
Affiliation(s)
- Tomonari Matsuo
- Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands.
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, CP 58190, Morelia, Michoacán, México.
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | - Miguel Martínez-Ramos
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, CP 58190, Morelia, Michoacán, México
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Frans Bongers
- Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Madelon Lohbeck
- Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
10
|
Zhai L, Will RE, Zhang B. Structural diversity is better associated with forest productivity than species or functional diversity. Ecology 2024; 105:e4269. [PMID: 38361215 DOI: 10.1002/ecy.4269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/05/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
Understanding the relationship between biodiversity and productivity can be advanced by improving metrics used to quantify biodiversity. Structural diversity, that is, variation of size and form of plant organs, is an emerging biodiversity metric. However, compared with the other biodiversity metrics, its relative importance in specific components of forest productivity, for example, recruitment of new individuals, biomass net change after accounting for mortality, is largely unknown, particularly across a large spatial scale with multiple influential gradients. To address the knowledge gap, we used USDA Forest Service Forest Inventory and Analysis (FIA) data across the southcentral USA from 2008 to 2017. We calculated forest biomass increments due to recruitment and growth and net change in biomass. Then, we quantified the effects of a range of abiotic and biotic variables on the biomass increments and net change. Our results showed that (1) Structural diversity was negatively associated with the two biomass increments and net change in biomass. The negative effects were supported by increased occurrences of insects and diseases with greater structural diversity. (2) Compared with species and functional diversity, structural diversity showed a better association with biomass increments and net change, suggested by its larger absolute values of standardized coefficients, and the effects of structural diversity were negative in contrast to species diversity. (3) The effects of structural diversity, stand age, and elevation differed between natural and planted forests that may stem from the differences in stand development and species composition between the two forest types. Together, structural diversity may represent an important dimension of biodiversity impacts on plant productivity, which could be related to the exacerbated disturbances with greater structural diversity.
Collapse
Affiliation(s)
- Lu Zhai
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Rodney E Will
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Bo Zhang
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
11
|
Beckett HAA, Bryant C, Neeman T, Mencuccini M, Ball MC. Plasticity in branch water relations and stem hydraulic vulnerability enhances hydraulic safety in mangroves growing along a salinity gradient. PLANT, CELL & ENVIRONMENT 2024; 47:854-870. [PMID: 37975319 DOI: 10.1111/pce.14764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Coping with water stress depends on maintaining cellular function and hydraulic conductance. Yet measurements of vulnerability to drought and salinity do not often focus on capacitance in branch organs that buffer hydraulic function during water stress. The relationships between branch water relations, stem hydraulic vulnerability and stem anatomy were investigated in two co-occurring mangroves Aegiceras corniculatum and Rhizophora stylosa growing at low and high salinity. The dynamics of branch water release acted to conserve water content in the stem at the expense of the foliage during extended drying. Hydraulic redistribution from the foliage to the stem increased stem relative water content by up to 21%. The water potentials at which 12% and 50% loss of stem hydraulic conductivity occurred decreased by ~1.7 MPa in both species between low and high salinity sites. These coordinated tissue adjustments increased hydraulic safety despite declining turgor safety margins at higher salinity sites. Our results highlight the complex interplay of plasticity in organ-level water relations with hydraulic vulnerability in the maintenance of stem hydraulic function in mangroves distributed along salinity gradients. These results emphasise the importance of combining water relations and hydraulic vulnerability parameters to understand vulnerability to water stress across the whole plant.
Collapse
Affiliation(s)
- Holly A A Beckett
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| | - Callum Bryant
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| | - Teresa Neeman
- Biological Data Science Institute, Australian National University, Canberra, Australia
| | - Maurizio Mencuccini
- Ecological and Forestry Applications Research Centre (CREAF), Barcelona, Bellaterra, Spain
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
12
|
Schnabel F, Barry KE, Eckhardt S, Guillemot J, Geilmann H, Kahl A, Moossen H, Bauhus J, Wirth C. Neighbourhood species richness and drought-tolerance traits modulate tree growth and δ 13 C responses to drought. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:330-345. [PMID: 38196270 DOI: 10.1111/plb.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024]
Abstract
Mixed-species forests are promoted as a forest management strategy for climate change adaptation, but whether they are more resistant to drought than monospecific forests remains contested. In particular, the trait-based mechanisms driving the role of tree diversity under drought remain elusive. Using tree cores from a large-scale biodiversity experiment, we investigated tree growth and physiological stress responses (i.e. increase in wood carbon isotopic ratio; δ13 C) to changes in climate-induced water availability (wet to dry years) along gradients in neighbourhood tree species richness and drought-tolerance traits. We hypothesized that neighbourhood species richness increases growth and decreases δ13 C and that these relationships are modulated by the abiotic (i.e. climatic conditions) and the biotic context. We characterised the biotic context using drought-tolerance traits of focal trees and their neighbours. These traits are related to cavitation resistance versus resource acquisition and stomatal control. Tree growth increased with neighbourhood species richness. However, we did not observe a universal relief of water stress in species-rich neighbourhoods. The effects of neighbourhood species richness and climate on growth and δ13 C were modulated by the traits of focal trees and the traits of their neighbours. At either end of each drought-tolerance gradient, species responded in opposing directions during dry and wet years. We show that species' drought-tolerance traits can explain the strength and nature of biodiversity-ecosystem functioning relationships in experimental tree communities experiencing drought. Mixing tree species can increase growth but may not universally relieve drought stress.
Collapse
Affiliation(s)
- F Schnabel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Systematic Botany and Functional Biodiversity, Leipzig University, Leipzig, Germany
- Chair of Silviculture, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - K E Barry
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Systematic Botany and Functional Biodiversity, Leipzig University, Leipzig, Germany
- Ecology and Biodiversity, Department of Biology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | - S Eckhardt
- Systematic Botany and Functional Biodiversity, Leipzig University, Leipzig, Germany
| | - J Guillemot
- CIRAD, UMR Eco&Sols, Piracicaba, Brazil
- Eco&Sols, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Campus SupAgro, Montpellier, France
- Department of Forest Sciences, ESALQ, University of São Paulo, Piracicaba, Brazil
| | - H Geilmann
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | - A Kahl
- Systematic Botany and Functional Biodiversity, Leipzig University, Leipzig, Germany
| | - H Moossen
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | - J Bauhus
- Chair of Silviculture, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - C Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Systematic Botany and Functional Biodiversity, Leipzig University, Leipzig, Germany
- Max Planck Institute for Biogeochemistry, Jena, Germany
| |
Collapse
|
13
|
Zhang SB, Song Y, Wen HD, Chen YJ. Leaf nitrogen and phosphorus resorption efficiencies are related to drought resistance across woody species in a Chinese savanna. TREE PHYSIOLOGY 2024; 44:tpad149. [PMID: 38102768 PMCID: PMC10849754 DOI: 10.1093/treephys/tpad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Leaf nutrient resorption and drought resistance are crucial for the growth and survival of plants. However, our understanding of the relationships between leaf nutrient resorption and plant drought resistance is still limited. In this study, we investigated the nitrogen and phosphorus resorption efficiencies (NRE and PRE), leaf structural traits, leaf osmotic potential at full hydration (Ψosm), xylem water potential at 50% loss of xylem-specific hydraulic conductivity (P50) and seasonal minimum water potential (Ψmin) for 18 shrub and tree species in a semiarid savanna ecosystem, in Southwest China. Our results showed that NRE and PRE exhibited trade-off against drought resistance traits (Ψosm and P50) across woody species. Moreover, this relationship was modulated by leaf structural investment. Species with low structural investment (e.g., leaf mass per area, leaf dry mass content and leaf construction cost [LCC]) tend to have high NRE and PRE, while those with high LCCs show high drought resistance, showing more negative Ψosm and P50.These results indicate that species with a lower leaf structural investment may have a greater need to recycle their nutrients, thus exhibiting higher nutrient resorption efficiencies, and vice versa. In conclusion, nutrient resorption efficiency may be a crucial adaptation strategy for coexisting plants in semiarid ecosystems, highlighting the importance of understanding the complex relationships between nutrient cycling and plant survival strategies.
Collapse
Affiliation(s)
- Shu-Bin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- T-STAR Core Team, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Yu Song
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education), Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Han-Dong Wen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- T-STAR Core Team, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan 653300, China
| | - Ya-Jun Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- T-STAR Core Team, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan 653300, China
| |
Collapse
|
14
|
Torres-Ruiz JM, Cochard H, Delzon S, Boivin T, Burlett R, Cailleret M, Corso D, Delmas CEL, De Caceres M, Diaz-Espejo A, Fernández-Conradi P, Guillemot J, Lamarque LJ, Limousin JM, Mantova M, Mencuccini M, Morin X, Pimont F, De Dios VR, Ruffault J, Trueba S, Martin-StPaul NK. Plant hydraulics at the heart of plant, crops and ecosystem functions in the face of climate change. THE NEW PHYTOLOGIST 2024; 241:984-999. [PMID: 38098153 DOI: 10.1111/nph.19463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/05/2023] [Indexed: 01/12/2024]
Abstract
Plant hydraulics is crucial for assessing the plants' capacity to extract and transport water from the soil up to their aerial organs. Along with their capacity to exchange water between plant compartments and regulate evaporation, hydraulic properties determine plant water relations, water status and susceptibility to pathogen attacks. Consequently, any variation in the hydraulic characteristics of plants is likely to significantly impact various mechanisms and processes related to plant growth, survival and production, as well as the risk of biotic attacks and forest fire behaviour. However, the integration of hydraulic traits into disciplines such as plant pathology, entomology, fire ecology or agriculture can be significantly improved. This review examines how plant hydraulics can provide new insights into our understanding of these processes, including modelling processes of vegetation dynamics, illuminating numerous perspectives for assessing the consequences of climate change on forest and agronomic systems, and addressing unanswered questions across multiple areas of knowledge.
Collapse
Affiliation(s)
- José M Torres-Ruiz
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Sylvain Delzon
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | | | - Regis Burlett
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | - Maxime Cailleret
- INRAE, Aix-Marseille Université, UMR RECOVER, Aix-en-Provence, 13100, France
| | - Déborah Corso
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | - Chloé E L Delmas
- INRAE, Bordeaux Sciences Agro, ISVV, SAVE, F-33140, Villenave d'Ornon, France
| | | | - Antonio Diaz-Espejo
- Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Seville, 41012, Spain
| | | | - Joannes Guillemot
- CIRAD, UMR Eco&Sols, Montpellier, 34394, France
- Eco&Sols, Univ. Montpellier, CIRAD, INRAe, Institut Agro, IRD, Montpellier, 34394, France
- Department of Forest Sciences, ESALQ, University of São Paulo, Piracicaba, 05508-060, São Paulo, Brazil
| | - Laurent J Lamarque
- Département des sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, G9A 5H7, Québec, Canada
| | | | - Marylou Mantova
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Maurizio Mencuccini
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
- ICREA, Barcelona, 08010, Spain
| | - Xavier Morin
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34394, France
| | | | - Victor Resco De Dios
- Department of Forest and Agricultural Science and Engineering, University of Lleida, Lleida, 25198, Spain
- JRU CTFC-AGROTECNIO-CERCA Center, Lleida, 25198, Spain
| | | | - Santiago Trueba
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | | |
Collapse
|
15
|
Umaña MN, Salgado-Negret B, Norden N, Salinas V, Garzón F, Medina SP, Rodríguez-M GM, López-Camacho R, Castaño-Naranjo A, Cuadros H, Franke-Ante R, Avella A, Idárraga-Piedrahita Á, Jurado R, Nieto J, Pizano C, Torres AM, García H, González-M R. Upscaling the effect of traits in response to drought: The relative importance of safety-efficiency and acquisitive-conservation functional axes. Ecol Lett 2023; 26:2098-2109. [PMID: 37847674 DOI: 10.1111/ele.14328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 10/19/2023]
Abstract
We tested the idea that functional trade-offs that underlie species tolerance to drought-driven shifts in community composition via their effects on demographic processes and subsequently on shifts in species' abundance. Using data from 298 tree species from tropical dry forests during the extreme ENSO-2015, we scaled-up the effects of trait trade-offs from individuals to communities. Conservative wood and leaf traits favoured slow tree growth, increased tree survival and positively impacted species abundance and dominance at the community-level. Safe hydraulic traits, on the other hand, were related to demography but did not affect species abundance and communities. The persistent effects of the conservative-acquisitive trade-off across organizational levels is promising for generalization and predictability of tree communities. However, the safety-efficient trade-off showed more intricate effects on performance. Our results demonstrated the complex pathways in which traits scale up to communities, highlighting the importance of considering a wide range of traits and performance processes.
Collapse
Affiliation(s)
- María Natalia Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Natalia Norden
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Viviana Salinas
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Fabián Garzón
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Sandra P Medina
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Gina M Rodríguez-M
- Fundación Ecosistemas Secos de Colombia, Puerto Colombia, Atlántico, Colombia
| | - René López-Camacho
- Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia
| | | | - Hermes Cuadros
- Programa de Biología, Universidad del Atlántico, Barranquilla, Colombia
| | - Rebeca Franke-Ante
- Dirección Territorial Caribe, Parques Nacionales Naturales de Colombia, Santa Marta, Colombia
| | - Andrés Avella
- Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia
| | | | | | - Jhon Nieto
- Instituto de Hidrología, Meteorología y Estudios Ambientales, Bogotá, Colombia
| | - Camila Pizano
- Department of Biology, Lake Forest College, Lake Forest, Illinois, USA
| | - Alba M Torres
- Dirección Territorial Caribe, Parques Nacionales Naturales de Colombia, Santa Marta, Colombia
| | - Hernando García
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Roy González-M
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| |
Collapse
|
16
|
Mu Y, Lindenmayer D, Zheng S, Yang Y, Wang D, Liu J. Size-focused conservation may fail to protect the world's oldest trees. Curr Biol 2023; 33:4641-4649.e3. [PMID: 37820721 DOI: 10.1016/j.cub.2023.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/02/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Old trees are irreplaceable natural resources that provide multifaceted benefits to humans. Current conservation strategies focus primarily on large-sized trees that were often considered old. However, some studies have demonstrated that small trees can be more than thousands of years old, suggesting that conventional size-focused perceptions may hamper the efficiency of current conservation strategies for old trees. Here, we compiled paired age and diameter data using tree-ring records sampled from 121,918 trees from 269 species around the world to detect whether tree size is a strong predictor of age for old trees and whether the spatial distribution of small old trees differs from that of large old trees. We found that tree size was a weak predictor of age for old trees, and diameter explained only 10% of the total age variance of old trees. Unlike large-sized trees that are mainly in warm, wet environments and protected, small old trees are predominantly in cold, dry environments and mostly unprotected, indicating that size-focused conservation failed to protect some of the oldest trees. To conserve old trees, comprehensive old-tree recognition systems are needed that consider not only tree size but also age and external characteristics. Protected areas designed for small old trees are urgently needed.
Collapse
Affiliation(s)
- Yumei Mu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - David Lindenmayer
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT 2601, Australia
| | - Shilu Zheng
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yongchuan Yang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Deyi Wang
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, the Netherlands
| | - Jiajia Liu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming, Shanghai 202183, China.
| |
Collapse
|
17
|
Smith-Martin CM, Muscarella R, Hammond WM, Jansen S, Brodribb TJ, Choat B, Johnson DM, Vargas-G G, Uriarte M. Hydraulic variability of tropical forests is largely independent of water availability. Ecol Lett 2023; 26:1829-1839. [PMID: 37807917 DOI: 10.1111/ele.14314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 07/06/2023] [Accepted: 08/08/2023] [Indexed: 10/10/2023]
Abstract
Tropical rainforest woody plants have been thought to have uniformly low resistance to hydraulic failure and to function near the edge of their hydraulic safety margin (HSM), making these ecosystems vulnerable to drought; however, this may not be the case. Using data collected at 30 tropical forest sites for three key traits associated with drought tolerance, we show that site-level hydraulic diversity of leaf turgor loss point, resistance to embolism (P50 ), and HSMs is high across tropical forests and largely independent of water availability. Species with high HSMs (>1 MPa) and low P50 values (< -2 MPa) are common across the wet and dry tropics. This high site-level hydraulic diversity, largely decoupled from water stress, could influence which species are favoured and become dominant under a drying climate. High hydraulic diversity could also make these ecosystems more resilient to variable rainfall regimes.
Collapse
Affiliation(s)
- Chris M Smith-Martin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York City, New York, USA
| | - Robert Muscarella
- Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - William M Hammond
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Daniel M Johnson
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
| | - German Vargas-G
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - María Uriarte
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York City, New York, USA
| |
Collapse
|
18
|
Castelar JVS, Da Cunha M, Simioni PF, Castilhori MF, Lira-Martins D, Giles AL, Costa WS, Alexandrino CR, Callado CH. Functional traits and water-transport strategies of woody species in an insular environment in a tropical forest. AMERICAN JOURNAL OF BOTANY 2023; 110:e16214. [PMID: 37475703 DOI: 10.1002/ajb2.16214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 07/22/2023]
Abstract
PREMISE Plants survive in habitats with limited resource availability and contrasting environments by responding to variation in environmental factors through morphophysiological traits related to species performance in different ecosystems. However, how different plant strategies influence the megadiversity of tropical species has remained a knowledge gap. METHODS We analyzed variations in 27 morphophysiological traits of leaves and secondary xylem in Erythroxylum pulchrum and Tapirira guianensis, which have the highest absolute dominance in these physiognomies and occur together in areas of restinga and dense ombrophilous forest to infer water-transport strategies of Atlantic Forest woody plants. RESULTS The two species presented different sets of morphophysiological traits, strategies to avoid embolism and ensure water transport, in different phytophysiognomies. Tapirira guianensis showed possible adaptations influenced by phytophysiognomy, while E. pulchrum showed less variation in the set of characteristics between different phytophysiognomies. CONCLUSIONS Our results provide essential tools to understand how the environment can modulate morphofunctional traits and how each species adjusts differently to adapt to different phytophysiognomies. In this sense, the results for these species reveal new species-specific responses in the tropical forest. Such knowledge is a prerequisite to predict future development of the most vulnerable forests as climate changes.
Collapse
Affiliation(s)
- João Victor S Castelar
- Departamento de Biologia Vegetal, Instituto de Biologia Roberto Alcantara Gomes, Unidade de Desenvolvimento Tecnológico Laboratório de Anatomia Vegetal, Programa de Pós-Graduação em Biologia Vegetal, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Maura Da Cunha
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| | - Priscila F Simioni
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| | - Marcelo F Castilhori
- Departamento de Biologia Vegetal, Instituto de Biologia Roberto Alcantara Gomes, Unidade de Desenvolvimento Tecnológico Laboratório de Anatomia Vegetal, Programa de Pós-Graduação em Biologia Vegetal, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | - André L Giles
- INPA - Instituto Nacional de Pesquisas da Amazônia, AM, Brasil
- Departamento de Fitotecnia, Centro de Ciência Agrárias, Universidade Federal de Santa Catarina, Florianópolis, SC
| | - Warlen S Costa
- Departamento de Biologia Vegetal, Instituto de Biologia Roberto Alcantara Gomes, Unidade de Desenvolvimento Tecnológico Laboratório de Anatomia Vegetal, Programa de Pós-Graduação em Biologia Vegetal, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Camilla R Alexandrino
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| | - Cátia H Callado
- Departamento de Biologia Vegetal, Instituto de Biologia Roberto Alcantara Gomes, Unidade de Desenvolvimento Tecnológico Laboratório de Anatomia Vegetal, Programa de Pós-Graduação em Biologia Vegetal, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
19
|
Bravo-Avila CH, Feeley KJ. Variation in the Drought Tolerance of Tropical Understory Plant Communities across an Extreme Elevation and Precipitation Gradient. PLANTS (BASEL, SWITZERLAND) 2023; 12:2957. [PMID: 37631168 PMCID: PMC10459884 DOI: 10.3390/plants12162957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Little is known about how differences in water availability within the "super humid" tropics can influence the physiology of understory plant species and the composition of understory plant communities. We investigated the variation in the physiological drought tolerances of hundreds of understory plants in dozens of plant communities across an extreme elevation and precipitation gradient. Specifically, we established 58 understory plots along a gradient of 400-3600 m asl elevation and 1000-6000 mm yr-1 rainfall in and around Manu National Park in southeastern Peru. Within the plots, we sampled all understory woody plants and measured three metrics of physiological leaf drought tolerance-turgor loss point (TLP), cuticular conductance (Gmin), and solute leakage (SL)-and assessed how the community-level means of these three traits related to the mean annual precipitation (MAP) and elevation (along the study gradient, the temperature decreases linearly, and the vapor pressure deficit increases monotonically with elevation). We did not find any correlations between the three metrics of leaf drought tolerance, suggesting that they represent independent strategies for coping with a low water availability. Despite being widely used metrics of leaf drought tolerance, neither the TLP nor Gmin showed any significant relationships with elevation or the MAP. In contrast, SL, which has only recently been developed for use in ecological field studies, increased significantly at higher precipitations and at lower elevations (i.e., plants in colder and drier habitats have a lower average SL, indicating greater drought tolerances). Our results illustrate that differences in water availability may affect the physiology of tropical montane plants and thus play a strong role in structuring plant communities even in the super humid tropics. Our results also highlight the potential for SL assays to be efficient and effective tools for measuring drought tolerances in the field.
Collapse
Affiliation(s)
| | - Kenneth J. Feeley
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
- Fairchild Tropical Botanical Garden, Coral Gables, FL 33156, USA
| |
Collapse
|
20
|
Schmitt S, Boisseaux M. Higher local intra- than interspecific variability in water- and carbon-related leaf traits among Neotropical tree species. ANNALS OF BOTANY 2023; 131:801-811. [PMID: 36897823 PMCID: PMC10184448 DOI: 10.1093/aob/mcad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/08/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Intraspecific variability in leaf water-related traits remains little explored despite its potential importance in the context of increasing drought frequency and severity. Studies comparing intra- and interspecific variability of leaf traits often rely on inappropriate sampling designs that result in non-robust estimates, mainly owing to an excess of the species/individual ratio in community ecology or, on the contrary, to an excess of the individual/species ratio in population ecology. METHODS We carried out virtual testing of three strategies to compare intra- and interspecific trait variability. Guided by the results of our simulations, we carried out field sampling. We measured nine traits related to leaf water and carbon acquisition in 100 individuals from ten Neotropical tree species. We also assessed trait variation among leaves within individuals and among measurements within leaves to control for sources of intraspecific trait variability. KEY RESULTS The most robust sampling, based on the same number of species and individuals per species, revealed higher intraspecific variability than previously recognized, higher for carbon-related traits (47-92 and 4-33 % of relative and absolute variation, respectively) than for water-related traits (47-60 and 14-44 % of relative and absolute variation, respectively), which remained non-negligible. Nevertheless, part of the intraspecific trait variability was explained by variation of leaves within individuals (12-100 % of relative variation) or measurement variations within leaf (0-19 % of relative variation) and not only by individual ontogenetic stages and environmental conditions. CONCLUSIONS We conclude that robust sampling, based on the same number of species and individuals per species, is needed to explore global or local variation in leaf water- and carbon-related traits within and among tree species, because our study revealed higher intraspecific variation than previously recognized.
Collapse
Affiliation(s)
- Sylvain Schmitt
- CNRS, UMR EcoFoG (Agroparistech, Cirad, INRAE, Université des Antilles, Université de la Guyane), Campus Agronomique, 97310 Kourou, French Guiana
| | - Marion Boisseaux
- Université de la Guyane, UMR EcoFoG (Agroparistech, Cirad, CNRS, INRAE, Université des Antilles), Campus Agronomique, 97310 Kourou, French Guiana
| |
Collapse
|
21
|
Tavares JV, Oliveira RS, Mencuccini M, Signori-Müller C, Pereira L, Diniz FC, Gilpin M, Marca Zevallos MJ, Salas Yupayccana CA, Acosta M, Pérez Mullisaca FM, Barros FDV, Bittencourt P, Jancoski H, Scalon MC, Marimon BS, Oliveras Menor I, Marimon BH, Fancourt M, Chambers-Ostler A, Esquivel-Muelbert A, Rowland L, Meir P, Lola da Costa AC, Nina A, Sanchez JMB, Tintaya JS, Chino RSC, Baca J, Fernandes L, Cumapa ERM, Santos JAR, Teixeira R, Tello L, Ugarteche MTM, Cuellar GA, Martinez F, Araujo-Murakami A, Almeida E, da Cruz WJA, Del Aguila Pasquel J, Aragāo L, Baker TR, de Camargo PB, Brienen R, Castro W, Ribeiro SC, Coelho de Souza F, Cosio EG, Davila Cardozo N, da Costa Silva R, Disney M, Espejo JS, Feldpausch TR, Ferreira L, Giacomin L, Higuchi N, Hirota M, Honorio E, Huaraca Huasco W, Lewis S, Flores Llampazo G, Malhi Y, Monteagudo Mendoza A, Morandi P, Chama Moscoso V, Muscarella R, Penha D, Rocha MC, Rodrigues G, Ruschel AR, Salinas N, Schlickmann M, Silveira M, Talbot J, Vásquez R, Vedovato L, Vieira SA, Phillips OL, Gloor E, Galbraith DR. Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests. Nature 2023; 617:111-117. [PMID: 37100901 PMCID: PMC10156596 DOI: 10.1038/s41586-023-05971-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/17/2023] [Indexed: 04/28/2023]
Abstract
Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, [Formula: see text]50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3-5, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters [Formula: see text]50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both [Formula: see text]50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink.
Collapse
Affiliation(s)
- Julia Valentim Tavares
- School of Geography, University of Leeds, Leeds, UK.
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Caroline Signori-Müller
- School of Geography, University of Leeds, Leeds, UK
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- Department of Plant Biology, Institute of Biology, Programa de Pós Graduação em Biologia Vegetal, University of Campinas, Campinas, Brazil
| | - Luciano Pereira
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | | | | | | | | | - Martin Acosta
- Programa de Pós-Graduação em Ecologia e Manejo de Recursos Naturais, Universidade Federal do Acre, Rio Branco, Brazil
| | | | - Fernanda de V Barros
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- Department of Plant Biology, Institute of Biology, Programa de Pós Graduação em Ecologia, University of Campinas, Campinas, Brazil
| | - Paulo Bittencourt
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Halina Jancoski
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, Brazil
| | - Marina Corrêa Scalon
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, Brazil
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Brazil
| | - Beatriz S Marimon
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, Brazil
| | - Imma Oliveras Menor
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), CIRAD, CNRS, INRA, IRD, Université de Montpellier, Montpellier, France
| | - Ben Hur Marimon
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, Brazil
| | - Max Fancourt
- School of Geography, University of Leeds, Leeds, UK
| | | | - Adriane Esquivel-Muelbert
- School of Geography, University of Birmingham, Birmingham, UK
- Birmingham Institute of Forest Research (BIFoR), Birmingham, UK
| | - Lucy Rowland
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Patrick Meir
- School of Geosciences, University of Edinburgh, Edinburgh, UK
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | - Alex Nina
- Pontificia Universidad Católica del Perú, Lima, Peru
| | | | - Jose S Tintaya
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | | | - Jean Baca
- Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | | | - Edwin R M Cumapa
- Instituto de Geociências, Faculdade de Meteorologia, Universidade Federal do Pará, Belém, Brazil
| | | | - Renata Teixeira
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Ligia Tello
- Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | - Maira T M Ugarteche
- Museo de Historia Natural Noel Kempff Mercado, Santa Cruz de la Sierra, Bolivia
- Universidad Autonoma Gabriel Rene Moreno, Santa Cruz, Bolivia
| | - Gina A Cuellar
- Museo de Historia Natural Noel Kempff Mercado, Santa Cruz de la Sierra, Bolivia
- Universidad Autonoma Gabriel Rene Moreno, Santa Cruz, Bolivia
| | - Franklin Martinez
- Museo de Historia Natural Noel Kempff Mercado, Santa Cruz de la Sierra, Bolivia
- Universidad Autonoma Gabriel Rene Moreno, Santa Cruz, Bolivia
| | - Alejandro Araujo-Murakami
- Museo de Historia Natural Noel Kempff Mercado, Santa Cruz de la Sierra, Bolivia
- Universidad Autonoma Gabriel Rene Moreno, Santa Cruz, Bolivia
| | - Everton Almeida
- Instituto de Biodiversidade e Florestas, Universidade Federal do Oeste do Pará, Santarém, Brazil
| | | | - Jhon Del Aguila Pasquel
- Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos, Peru
- Instituto de Investigaciones de la Amazonia Peruana, Iquitos, Peru
| | - Luís Aragāo
- National Institute for Space Research (INPE), São José dos Campos-SP, Brazil
| | | | | | - Roel Brienen
- School of Geography, University of Leeds, Leeds, UK
| | - Wendeson Castro
- Laboratório de Botânica e Ecologia Vegetal, Universidade Federal do Acre, Rio Branco, Brazil
- SOS Amazônia, Programa Governança e Proteção da Paisagem Verde na Amazônia, Rio Branco-AC, Brazil
| | | | | | - Eric G Cosio
- Sección Química, Pontificia Universidad Católica del Perú, Lima, Peru
| | | | - Richarlly da Costa Silva
- Programa de Pós-Graduação em Ecologia e Manejo de Recursos Naturais, Universidade Federal do Acre, Rio Branco, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Acre, Campus Baixada do Sol, Rio Branco, Brazil
| | - Mathias Disney
- Department of Geography, University College London, London, UK
| | - Javier Silva Espejo
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
- Departamento de Biología, Universidad de La Serena, La Serena, Chile
| | - Ted R Feldpausch
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | - Leandro Giacomin
- Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Niro Higuchi
- Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Marina Hirota
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Physics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Euridice Honorio
- Instituto de Investigaciones de la Amazonia Peruana, Iquitos, Peru
| | - Walter Huaraca Huasco
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Simon Lewis
- School of Geography, University of Leeds, Leeds, UK
- Department of Geography, University College London, London, UK
| | - Gerardo Flores Llampazo
- Instituto de Investigaciones de la Amazonia Peruana, Iquitos, Peru
- Universidad Nacional Jorge Basadre de Grohmann (UNJBG), Tacna, Peru
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Abel Monteagudo Mendoza
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
- Jardín Botánico de Missouri, Oxapampa, Peru
| | - Paulo Morandi
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, Brazil
| | - Victor Chama Moscoso
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
- Jardín Botánico de Missouri, Oxapampa, Peru
| | - Robert Muscarella
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Deliane Penha
- Programa de Pós-Graduação em Biodiversidade, Universidade Federal do Oeste do Pará, Santarém, Brazil
| | - Mayda Cecília Rocha
- Instituto de Ciências e Tecnologia das Águas, Universidade Federal do Oeste do Pará, Santarém, Brazil
| | - Gleicy Rodrigues
- Programa de Pós-Graduação em Botânica, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | | | - Norma Salinas
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- Sección Química, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Monique Schlickmann
- Programa de Pós-Graduação em Biodiversidade, Universidade Federal do Oeste do Pará, Santarém, Brazil
| | - Marcos Silveira
- Museu Universitário, Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Brazil
| | - Joey Talbot
- Institute for Transport Studies, University of Leeds, Leeds, UK
| | | | - Laura Vedovato
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Simone Aparecida Vieira
- Núcleo de Estudos e Pesquisas Ambientais, Universidade Estadual de Campinas, Campinas, Brazil
| | | | | | | |
Collapse
|
22
|
Ruffault J, Limousin JM, Pimont F, Dupuy JL, De Càceres M, Cochard H, Mouillot F, Blackman CJ, Torres-Ruiz JM, Parsons RA, Moreno M, Delzon S, Jansen S, Olioso A, Choat B, Martin-StPaul N. Plant hydraulic modelling of leaf and canopy fuel moisture content reveals increasing vulnerability of a Mediterranean forest to wildfires under extreme drought. THE NEW PHYTOLOGIST 2023; 237:1256-1269. [PMID: 36366950 DOI: 10.1111/nph.18614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Fuel moisture content (FMC) is a crucial driver of forest fires in many regions world-wide. Yet, the dynamics of FMC in forest canopies as well as their physiological and environmental determinants remain poorly understood, especially under extreme drought. We embedded a FMC module in the trait-based, plant-hydraulic SurEau-Ecos model to provide innovative process-based predictions of leaf live fuel moisture content (LFMC) and canopy fuel moisture content (CFMC) based on leaf water potential ( ψ Leaf ). SurEau-Ecos-FMC relies on pressure-volume (p-v) curves to simulate LFMC and vulnerability curves to cavitation to simulate foliage mortality. SurEau-Ecos-FMC accurately reproduced ψ Leaf and LFMC dynamics as well as the occurrence of foliage mortality in a Mediterranean Quercus ilex forest. Several traits related to water use (leaf area index, available soil water, and transpiration regulation), vulnerability to cavitation, and p-v curves (full turgor osmotic potential) had the greatest influence on LFMC and CFMC dynamics. As the climate gets drier, our results showed that drought-induced foliage mortality is expected to increase, thereby significantly decreasing CFMC. Our results represent an important advance in our capacity to understand and predict the sensitivity of forests to wildfires.
Collapse
Affiliation(s)
| | | | | | | | | | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Florent Mouillot
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 34000, Montpellier, France
| | - Chris J Blackman
- School of Biological Sciences, University of Tasmania, Hobart, Tas., 7001, Australia
| | - José M Torres-Ruiz
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Russell A Parsons
- Fire Sciences Laboratory, Rocky Mountain Research Station, USDA Forest Service, Missoula, MT, 59808, USA
| | | | | | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, D-89081, Ulm, Germany
| | | | - Brendan Choat
- Western Sydney University, Penrith, NSW, 2751, Australia
| | | |
Collapse
|
23
|
Vargas G. G, Kunert N, Hammond WM, Berry ZC, Werden LK, Smith‐Martin CM, Wolfe BT, Toro L, Mondragón‐Botero A, Pinto‐Ledezma JN, Schwartz NB, Uriarte M, Sack L, Anderson‐Teixeira KJ, Powers JS. Leaf habit affects the distribution of drought sensitivity but not water transport efficiency in the tropics. Ecol Lett 2022; 25:2637-2650. [PMID: 36257904 PMCID: PMC9828425 DOI: 10.1111/ele.14128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/11/2022] [Accepted: 09/10/2022] [Indexed: 01/12/2023]
Abstract
Considering the global intensification of aridity in tropical biomes due to climate change, we need to understand what shapes the distribution of drought sensitivity in tropical plants. We conducted a pantropical data synthesis representing 1117 species to test whether xylem-specific hydraulic conductivity (KS ), water potential at leaf turgor loss (ΨTLP ) and water potential at 50% loss of KS (ΨP50 ) varied along climate gradients. The ΨTLP and ΨP50 increased with climatic moisture only for evergreen species, but KS did not. Species with high ΨTLP and ΨP50 values were associated with both dry and wet environments. However, drought-deciduous species showed high ΨTLP and ΨP50 values regardless of water availability, whereas evergreen species only in wet environments. All three traits showed a weak phylogenetic signal and a short half-life. These results suggest strong environmental controls on trait variance, which in turn is modulated by leaf habit along climatic moisture gradients in the tropics.
Collapse
Affiliation(s)
- German Vargas G.
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA,School of Biological SciencesThe University of UtahSalt Lake CityUtahUSA
| | - Norbert Kunert
- Conservation Ecology CenterSmithsonian National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA,Forest Global Earth ObservatorySmithsonian Tropical Research InstitutePanamaRepublic of Panama,Department of Integrative Biology and Biodiversity Research, Institute of BotanyUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | - William M. Hammond
- Agronomy Department, Institute of Food and Agricultural SciencesUniversity of FloridaGainesvilleFloridaUSA
| | - Z. Carter Berry
- Department of BiologyWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | - Leland K. Werden
- Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Chris M. Smith‐Martin
- Department of Ecology Evolution and Environmental BiologyColumbia UniversityNew YorkNew YorkUSA
| | - Brett T. Wolfe
- School of Renewable Natural ResourcesLouisiana State University Agricultural CenterBaton RougeLouisianaUSA,Smithsonian Tropical Research InstitutePanamaRepublic of Panama
| | - Laura Toro
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
| | | | - Jesús N. Pinto‐Ledezma
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Naomi B. Schwartz
- Department of GeographyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - María Uriarte
- Department of Ecology Evolution and Environmental BiologyColumbia UniversityNew YorkNew YorkUSA
| | - Lawren Sack
- Department of Ecology and EvolutionUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Kristina J. Anderson‐Teixeira
- Conservation Ecology CenterSmithsonian National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA,Forest Global Earth ObservatorySmithsonian Tropical Research InstitutePanamaRepublic of Panama
| | - Jennifer S. Powers
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
24
|
Song Y, Sterck F, Zhou X, Liu Q, Kruijt B, Poorter L. Drought resilience of conifer species is driven by leaf lifespan but not by hydraulic traits. THE NEW PHYTOLOGIST 2022; 235:978-992. [PMID: 35474217 PMCID: PMC9322575 DOI: 10.1111/nph.18177] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Increased droughts impair tree growth worldwide. This study analyzes hydraulic and carbon traits of conifer species, and how they shape species strategies in terms of their growth rate and drought resilience. We measured 43 functional stem and leaf traits for 28 conifer species growing in a 50-yr-old common garden experiment in the Netherlands. We assessed: how drought- and carbon-related traits are associated across species, how these traits affect stem growth and drought resilience, and how traits and drought resilience are related to species' climatic origin. We found two trait spectra: a hydraulics spectrum reflecting a trade-off between hydraulic and biomechanical safety vs hydraulic efficiency, and a leaf economics spectrum reflecting a trade-off between tough, long-lived tissues vs high carbon assimilation rate. Pit aperture size occupied a central position in the trait-based network analysis and also increased stem growth. Drought recovery decreased with leaf lifespan. Conifer species with long-lived leaves suffer from drought legacy effects, as drought-damaged leaves cannot easily be replaced, limiting growth recovery after drought. Leaf lifespan, rather than hydraulic traits, can explain growth responses to a drier future.
Collapse
Affiliation(s)
- Yanjun Song
- Forest Ecology and Forest Management GroupWageningen University and Research6700 AAWageningenthe Netherlands
| | - Frank Sterck
- Forest Ecology and Forest Management GroupWageningen University and Research6700 AAWageningenthe Netherlands
| | - Xiaqu Zhou
- Forest Ecology and Forest Management GroupWageningen University and Research6700 AAWageningenthe Netherlands
- Department of Earth and Environmental SciencesKU LeuvenPO Box 24113001LeuvenBelgium
| | - Qi Liu
- Forest Ecology and Forest Management GroupWageningen University and Research6700 AAWageningenthe Netherlands
| | - Bart Kruijt
- Water Systems and Global Change GroupWageningen University and Research6700 AAWageningenthe Netherlands
| | - Lourens Poorter
- Forest Ecology and Forest Management GroupWageningen University and Research6700 AAWageningenthe Netherlands
| |
Collapse
|