1
|
Raggi A, Leonardi M, Arruda M, Caponnetto V, Castaldo M, Coppola G, Della Pietra A, Fan X, Garcia-Azorin D, Gazerani P, Grangeon L, Grazzi L, Hsiao FJ, Ihara K, Labastida-Ramirez A, Lange KS, Lisicki M, Marcassoli A, Montisano DA, Onan D, Onofri A, Pellesi L, Peres M, Petrušić I, Raffaelli B, Rubio-Beltran E, Straube A, Straube S, Takizawa T, Tana C, Tinelli M, Valeriani M, Vigneri S, Vuralli D, Waliszewska-Prosół M, Wang W, Wang Y, Wells-Gatnik W, Wijeratne T, Martelletti P. Hallmarks of primary headache: part 1 - migraine. J Headache Pain 2024; 25:189. [PMID: 39482575 PMCID: PMC11529271 DOI: 10.1186/s10194-024-01889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND AND AIM Migraine is a common disabling conditions which, globally, affects 15.2% of the population. It is the second cause of health loss in terms of years lived with disability, the first among women. Despite being so common, it is poorly recognised and too often undertreated. Specialty centres and neurologists with specific expertise on headache disorders have the knowledge to provide specific care: however, those who do not regularly treat patients with migraine will benefit from a synopsis on the most relevant and updated information about this condition. This paper presents a comprehensive view on the hallmarks of migraine, from genetics and diagnostic markers, up to treatments and societal impact, and reports the elements that identify migraine specific features. MAIN RESULTS The most relevant hallmark of migraine is that it has common and individual features together. Besides the known clinical manifestations, migraine presentation is heterogeneous with regard to frequency of attacks, presence of aura, response to therapy, associated comorbidities or other symptoms, which likely reflect migraine heterogeneous genetic and molecular basis. The amount of therapies for acute and for prophylactic treatment is really wide, and one of the difficulties is with finding the best treatment for the single patient. In addition to this, patients carry out different daily life activities, and might show lifestyle habits which are not entirely adequate to manage migraine day by day. Education will be more and more important as a strategy of brain health promotion, because this will enable reducing the amount of subjects needing specialty care, thus leaving it to those who require it in reason of refractory condition or presence of comorbidities. CONCLUSIONS Recognizing the hallmarks of migraine and the features of single patients enables prescribing specific pharmacological and non-pharmacological treatments. Medical research on headaches today particularly suffers from the syndrome of single-disease approach, but it is important to have a cross-sectional and joint vision with other close specialties, in order to treat our patients with a comprehensive approach that a heterogeneous condition like migraine requires.
Collapse
Affiliation(s)
- Alberto Raggi
- Neurology, Public Health and Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy.
| | - Matilde Leonardi
- Neurology, Public Health and Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Marco Arruda
- Department of Neuroscience, Glia Institute, Ribeirão Preto, Brazil
| | - Valeria Caponnetto
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Matteo Castaldo
- Department of Health Science and Technology, Faculty of Medicine, CNAP, Center for Sensory-Motor Interaction (SMI), Aalborg University, Gistrup, Denmark
- Department of Medicine and Surgery, Clinical Psychophysiology and Clinical Neuropsychology Labs, Parma University, Parma, Italy
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Adriana Della Pietra
- Dept. Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xiangning Fan
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - David Garcia-Azorin
- Department of Medicine, Toxicology and Dermatology, Faculty of Medicine, University of Valladolid, Valladolid, Spain
- Department of Neurology, Hospital Universitario Río Hortega, Valladolid, Spain
| | - Parisa Gazerani
- Department of Health Science and Technology, Faculty of Medicine, CNAP, Center for Sensory-Motor Interaction (SMI), Aalborg University, Gistrup, Denmark
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Lou Grangeon
- Neurology Department, CHU de Rouen, Rouen, France
| | - Licia Grazzi
- Neuroalgology Unit and Headache Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Fu-Jung Hsiao
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Keiko Ihara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
- Japanese Red Cross Ashikaga Hospital, Tochigi, Japan
| | - Alejandro Labastida-Ramirez
- Division of Neuroscience, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Kristin Sophie Lange
- Department of Neurology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Marco Lisicki
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alessia Marcassoli
- Neurology, Public Health and Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Danilo Antonio Montisano
- Neuroalgology Unit and Headache Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Dilara Onan
- Department of Physiotherapy and Rehabilitation, Faculty of Heath Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - Agnese Onofri
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Lanfranco Pellesi
- Department of Public Health Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Mario Peres
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Instituto de Psiquiatria; Hospital das Clínicas da Faculdade de Medicina da USP, Sao Paulo, Brazil
| | - Igor Petrušić
- Laboratory for Advanced Analysis of Neuroimages, Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Bianca Raffaelli
- Department of Neurology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Eloisa Rubio-Beltran
- Headache Group, Wolfson SPaRC, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Andreas Straube
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Straube
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Tsubasa Takizawa
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Claudio Tana
- Center of Excellence On Headache and Geriatrics Clinic, SS Annunziata Hospital of Chieti, Chieti, Italy
| | - Michela Tinelli
- Care Policy Evaluation Centre (CPEC), London School of Economics and Political Science, London, UK
| | - Massimiliano Valeriani
- Systems Medicine Department, University of Tor Vergata, Rome, Italy
- Developmental Neurology Unit, IRCSS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Simone Vigneri
- Neurology and Neurophysiology Service - Pain Medicine Unit, Santa Maria Maddalena Hospital, Occhiobello, Italy
| | - Doga Vuralli
- Department of Neurology and Algology, Neuropsychiatry Center, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University Faculty of Medicine, Ankara, Türkiye
| | | | - Wei Wang
- Department of Neurology, Headache Center, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Department of Neurology, Headache Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yonggang Wang
- Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
| | | | - Tissa Wijeratne
- Department of Neurology, Sunshine Hospital, St Albans, VIC, Australia
- Australian Institute of Migraine, Pascoe Vale South, VIC, Australia
| | | |
Collapse
|
2
|
Fernandes O, Ramos LR, Acchar MC, Sanchez TA. Migraine aura discrimination using machine learning: an fMRI study during ictal and interictal periods. Med Biol Eng Comput 2024; 62:2545-2556. [PMID: 38637358 DOI: 10.1007/s11517-024-03080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Functional magnetic resonance imaging (fMRI) studies on migraine with aura are challenging due to the rarity of patients with triggered cases. This study optimized methodologies to explore differences in ictal and interictal spatiotemporal activation patterns based on visual stimuli using fMRI in two patients with unique aura triggers. Both patients underwent separate fMRI sessions during the ictal and interictal periods. The Gaussian Process Classifier (GPC) was used to differentiate these periods by employing a machine learning temporal embedding approach and spatiotemporal activation patterns based on visual stimuli. When restricted to visual and occipital regions, GPC had an improved performance, with accuracy rates for patients A and B of roughly 86-90% and 77-81%, respectively (p < 0.01). The algorithm effectively differentiated visual stimulation and rest periods and identified times when aura symptoms manifested, as evident from the varying predicted probabilities in the GPC models. These findings contribute to our understanding of the role of visual processing and brain activity patterns in migraine with aura and the significance of temporal embedding techniques in examining aura phenomena. This finding has implications for diagnostic tools and therapeutic techniques, especially for patients suffering from aura symptoms.
Collapse
Affiliation(s)
- Orlando Fernandes
- Laboratory of Neuroimaging and Psychophysiology, Instituto de Psiquiatria, Faculdade de Medicina - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Laboratório de Neurofisiolgia e Comportamento, Departamento de Fisiologia e Farmacologia, Instituto Biomédico - Universidade Federal Fluminense, Nitéroi, RJ, Brazil
| | - Lucas Rego Ramos
- Laboratory of Neuroimaging and Psychophysiology, Instituto de Psiquiatria, Faculdade de Medicina - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana Calixto Acchar
- Laboratory of Neuroimaging and Psychophysiology, Instituto de Psiquiatria, Faculdade de Medicina - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Universidade Estacio de Sá (UNESA), Rio de Janeiro, RJ, Brazil
| | - Tiago Arruda Sanchez
- Laboratory of Neuroimaging and Psychophysiology, Instituto de Psiquiatria, Faculdade de Medicina - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
3
|
He M, Kis-Jakab G, Komáromy H, Perlaki G, Orsi G, Bosnyák E, Rozgonyi R, John F, Trauninger A, Eklics K, Pfund Z. Volumetric alteration of brainstem in female migraineurs with and without aura. Clin Neurol Neurosurg 2024; 236:108089. [PMID: 38141551 DOI: 10.1016/j.clineuro.2023.108089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND AND AIM Brainstem descending modulatory circuits have been postulated to be involved in migraine. Differences in brainstem volume between migraineurs and healthy controls have been demonstrated in previous research, nevertheless, the effect of migraine aura on brainstem volume is still uncertain. The aim of this study was to investigate the brainstem volume in migraineurs and examine the effect of migraine aura on brainstem volume. METHODS Our study included 90 female migraine patients without white matter lesions. (29 migraine patients with aura (MwA) and 61 migraine patients without aura (MwoA) and 32 age-matched female healthy controls (HC). Using the FreeSurfer image analysis suite, the volumes of the entire brainstem and its subfields (medulla, pons, and midbrain) were measured and compared between migraine subgroups (MwA vs. MwoA) and the healthy control group. The possible effects of migraine characteristics (i.e., disease duration and migraine attack frequency) on brainstem volume were also investigated. RESULTS Migraineurs had greater medulla volume (MwoA 3552 ± 459 mm3, MwA 3424 ± 448 mm3) than healthy controls (3236 ± 411 mm3). Statistically, MwA vs. HC p = 0.040, MwoA vs. HC p = 0.002, MwA vs. MwoA p = 0.555. A significant positive correlation was found between disease duration and the volume of medulla in the whole migraine group (r = 0.334, p = 0.001). Neither the whole brainstem nor its subfields were significantly different in volume between migraine subgroups. CONCLUSION Brainstem volume changes in migraine are mainly localized to the medulla and not specific to the presence of aura.
Collapse
Affiliation(s)
| | - Gréta Kis-Jakab
- HUN-REN-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary; Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary; Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | | | - Gábor Perlaki
- Pécs Diagnostic Center, Pécs, Hungary; HUN-REN-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary; Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary; Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Gergely Orsi
- Pécs Diagnostic Center, Pécs, Hungary; HUN-REN-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary; Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary; Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Edit Bosnyák
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Renáta Rozgonyi
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Flóra John
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Anita Trauninger
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Kata Eklics
- Department of Languages for Biomedical Purposes and Communication, University of Pécs, Pécs, Hungary
| | - Zoltán Pfund
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
4
|
Hougaard A, Gaist D, Garde E, Iversen P, Madsen CG, Kyvik KO, Ashina M, Siebner HR, Madsen KH. Lack of reproducibility of resting-state functional MRI findings in migraine with aura. Cephalalgia 2023; 43:3331024231212574. [PMID: 37950678 DOI: 10.1177/03331024231212574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
BACKGROUND Several studies have applied resting-state functional MRI to examine whether functional brain connectivity is altered in migraine with aura patients. These studies had multiple limitations, including small sample sizes, and reported conflicting results. Here, we performed a large, cross-sectional brain imaging study to reproduce previous findings. METHODS We recruited women aged 30-60 years from the nationwide Danish Twin Registry. Resting-state functional MRI of women with migraine with aura, their co-twins, and unrelated migraine-free twins was performed at a single centre. We carried out an extensive series of brain connectivity data analyses. Patients were compared to migraine-free controls and to co-twins. RESULTS Comparisons were based on data from 160 patients, 30 co-twins, and 136 controls. Patients were similar to controls with regard to age, and several lifestyle characteristics. We replicated clear effects of age on resting-state networks. In contrast, we failed to detect any differences, and to replicate previously reported differences, in functional connectivity between migraine patients with aura and non-migraine controls or their co-twins in any of the analyses. CONCLUSION Given the large sample size and the unbiased population-based design of our study, we conclude that women with migraine with aura have normal resting-state brain connectivity outside of migraine attacks.
Collapse
Affiliation(s)
- Anders Hougaard
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet Glostrup, Glostrup, Denmark
- Department of Neurology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Gaist
- Research Unit for Neurology, Odense University Hospital, Odense, Denmark; University of Southern Denmark, Odense, Denmark
| | - Ellen Garde
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Pernille Iversen
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Camilla G Madsen
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Radiology, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Kirsten O Kyvik
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
- The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography, Institute of Public Health, University of Southern Denmark, Odense, Denmark
- Odense Patient data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet Glostrup, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hartwig R Siebner
- Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Neurology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Kristoffer H Madsen
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
5
|
Soleimani G, Nitsche MA, Bergmann TO, Towhidkhah F, Violante IR, Lorenz R, Kuplicki R, Tsuchiyagaito A, Mulyana B, Mayeli A, Ghobadi-Azbari P, Mosayebi-Samani M, Zilverstand A, Paulus MP, Bikson M, Ekhtiari H. Closing the loop between brain and electrical stimulation: towards precision neuromodulation treatments. Transl Psychiatry 2023; 13:279. [PMID: 37582922 PMCID: PMC10427701 DOI: 10.1038/s41398-023-02565-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
One of the most critical challenges in using noninvasive brain stimulation (NIBS) techniques for the treatment of psychiatric and neurologic disorders is inter- and intra-individual variability in response to NIBS. Response variations in previous findings suggest that the one-size-fits-all approach does not seem the most appropriate option for enhancing stimulation outcomes. While there is a growing body of evidence for the feasibility and effectiveness of individualized NIBS approaches, the optimal way to achieve this is yet to be determined. Transcranial electrical stimulation (tES) is one of the NIBS techniques showing promising results in modulating treatment outcomes in several psychiatric and neurologic disorders, but it faces the same challenge for individual optimization. With new computational and methodological advances, tES can be integrated with real-time functional magnetic resonance imaging (rtfMRI) to establish closed-loop tES-fMRI for individually optimized neuromodulation. Closed-loop tES-fMRI systems aim to optimize stimulation parameters based on minimizing differences between the model of the current brain state and the desired value to maximize the expected clinical outcome. The methodological space to optimize closed-loop tES fMRI for clinical applications includes (1) stimulation vs. data acquisition timing, (2) fMRI context (task-based or resting-state), (3) inherent brain oscillations, (4) dose-response function, (5) brain target trait and state and (6) optimization algorithm. Closed-loop tES-fMRI technology has several advantages over non-individualized or open-loop systems to reshape the future of neuromodulation with objective optimization in a clinically relevant context such as drug cue reactivity for substance use disorder considering both inter and intra-individual variations. Using multi-level brain and behavior measures as input and desired outcomes to individualize stimulation parameters provides a framework for designing personalized tES protocols in precision psychiatry.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Michael A Nitsche
- Department of Psychology and Neuroscience, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
- Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld, Germany
| | - Til Ole Bergmann
- Neuroimaging Center, Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Farzad Towhidkhah
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ines R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guilford, UK
| | - Romy Lorenz
- Department of Psychology, Stanford University, Stanford, CA, USA
- MRC CBU, University of Cambridge, Cambridge, UK
- Department of Neurophysics, MPI, Leipzig, Germany
| | | | | | - Beni Mulyana
- Laureate Institute for Brain Research, Tulsa, OK, USA
- School of Electrical and Computer Engineering, University of Oklahoma, Tulsa, OK, USA
| | - Ahmad Mayeli
- University of Pittsburgh Medical Center, Pittsburg, PA, USA
| | - Peyman Ghobadi-Azbari
- Department of Biomedical Engineering, Shahed University, Tehran, Iran
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Mosayebi-Samani
- Department of Psychology and Neuroscience, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
| | - Anna Zilverstand
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Hamed Ekhtiari
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
- Laureate Institute for Brain Research, Tulsa, OK, USA.
| |
Collapse
|
6
|
Lee CH, Park H, Lee MJ, Park BY. Whole-brain functional gradients reveal cortical and subcortical alterations in patients with episodic migraine. Hum Brain Mapp 2023; 44:2224-2233. [PMID: 36649309 PMCID: PMC10028679 DOI: 10.1002/hbm.26204] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Migraine is a type of headache with multiple neurological symptoms. Prior neuroimaging studies in patients with migraine based on functional magnetic resonance imaging have found regional as well as network-level alterations in brain function. Here, we expand on prior studies by establishing whole-brain functional connectivity patterns in patients with migraine using dimensionality reduction techniques. We studied functional brain connectivity in 50 patients with episodic migraine and sex- and age-matched healthy controls. Using dimensionality reduction techniques that project high-dimensional functional connectivity onto low-dimensional representations (i.e., eigenvectors), we found significant between-group differences in the eigenvectors between patients with migraine and healthy controls, particularly in the sensory/motor and limbic cortices. Furthermore, we assessed between-group differences in subcortical connectivity with subcortical weighted manifolds defined by subcortico-cortical connectivity multiplied by cortical eigenvectors and revealed significant alterations in the amygdala. Finally, leveraging supervised machine learning, we moderately predicted headache frequency using cortical and subcortical functional connectivity features, again indicating that sensory and limbic regions play a particularly important role in predicting migraine frequency. Our study confirmed that migraine is a hierarchical disease of the brain that shows alterations along the sensory-limbic axis, and therefore, the functional connectivity in these areas could be a useful marker to investigate migraine symptomatology.
Collapse
Affiliation(s)
- Chae Hyeon Lee
- Department of Statistics, Inha University, Incheon, Republic of Korea
| | - Hyunjin Park
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Mi Ji Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bo-Yong Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
- Department of Data Science, Inha University, Incheon, Republic of Korea
| |
Collapse
|
7
|
Schramm S, Börner C, Reichert M, Baum T, Zimmer C, Heinen F, Bonfert MV, Sollmann N. Functional magnetic resonance imaging in migraine: A systematic review. Cephalalgia 2023; 43:3331024221128278. [PMID: 36751858 DOI: 10.1177/03331024221128278] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND Migraine is a highly prevalent primary headache disorder. Despite a high burden of disease, key disease mechanisms are not entirely understood. Functional magnetic resonance imaging is an imaging method using the blood-oxygen-level-dependent signal, which has been increasingly used in migraine research over recent years. This systematic review summarizes recent findings employing functional magnetic resonance imaging for the investigation of migraine. METHODS We conducted a systematic search and selection of functional magnetic resonance imaging applications in migraine from April 2014 to December 2021 (PubMed and references of identified articles according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines). Methodological details and main findings were extracted and synthesized. RESULTS Out of 224 articles identified, 114 were included after selection. Repeatedly emerging structures of interest included the insula, brainstem, limbic system, hypothalamus, thalamus, and functional networks. Assessment of functional brain changes in response to treatment is emerging, and machine learning has been used to investigate potential functional magnetic resonance imaging-based markers of migraine. CONCLUSIONS A wide variety of functional magnetic resonance imaging-based metrics were found altered across the brain for heterogeneous migraine cohorts, partially correlating with clinical parameters and supporting the concept to conceive migraine as a brain state. However, a majority of findings from previous studies have not been replicated, and studies varied considerably regarding image acquisition and analyses techniques. Thus, while functional magnetic resonance imaging appears to have the potential to advance our understanding of migraine pathophysiology, replication of findings in large representative datasets and precise, standardized reporting of clinical data would likely benefit the field and further increase the value of observations.
Collapse
Affiliation(s)
- Severin Schramm
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Corinna Börner
- LMU Hospital, Dr. von Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany.,LMU Center for Children with Medical Complexity, iSPZ Hauner, Ludwig Maximilian University, Munich, Germany
| | - Miriam Reichert
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Florian Heinen
- LMU Hospital, Dr. von Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany
| | - Michaela V Bonfert
- LMU Hospital, Dr. von Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany.,LMU Center for Children with Medical Complexity, iSPZ Hauner, Ludwig Maximilian University, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
8
|
Zhang X, Zhou J, Guo M, Cheng S, Chen Y, Jiang N, Li X, Hu S, Tian Z, Li Z, Zeng F. A systematic review and meta-analysis of voxel-based morphometric studies of migraine. J Neurol 2023; 270:152-170. [PMID: 36098838 DOI: 10.1007/s00415-022-11363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVES To comprehensively summarize and meta-analyze the concurrence across voxel-based morphometric (VBM) neuroimaging studies of migraine. METHODS Neuroimaging studies published from origin to August 1, 2021 were searched in six databases including PubMed, Web of Science, Excerpta Medica Database (EMBASE), China National Knowledge Infrastructure (CNKI), Wanfang Database, and Chongqing VIP. Study selection, quality assessment, and data extraction were conducted by two independent researchers. Anisotropic effect size-signed differential mapping (AES-SDM) and activation likelihood estimation (ALE) were used to perform the meta-analysis of available studies reporting whole-brain gray matter (GM) structural data in migraine patients. Clinical variables correlation analysis and migraine subgroup analysis were also conducted. RESULTS 40 articles were included after the strict screening, containing 1616 migraine patients and 1681 matched healthy subjects (HS) in total. Using the method of AES-SDM, migraine patients showed GM increase in the bilateral amygdala, the bilateral parahippocampus, the bilateral temporal poles, the bilateral superior temporal gyri, the left hippocampus, the right superior frontal gyrus, and the left middle temporal gyrus, as well as GM decrease in the left insula, the bilateral cerebellum (hemispheric lobule IX), the right dorsal medulla, the bilateral rolandic operculum, the right middle frontal gyrus, and the right inferior parietal gyrus. Using the method of ALE, migraine patients showed GM increase in the left parahippocampus and GM decrease in the left insula. The results of correlation analysis showed that many of these brain regions were associated with migraine headache frequency and migraine disease duration. Migraine patients in different subtypes (such as migraine without aura (MwoA), migraine with aura (MwA), episodic migraine (EM), chronic migraine (CM), vestibular migraine (VM), etc.), and in different periods (in the ictal and interictal periods) presented not entirely consistent GM alterations. CONCLUSION Migraine patients have GM alterations in multiple brain regions associated with sensation, affection, cognition, and descending modulation aspects of pain. These changes might be a consequence of repeated migraine attacks. Further studies are required to determine how these GM changes can be used to diagnose, monitor disease progression, or exploit potential therapeutic interventions for migraine patients.
Collapse
Affiliation(s)
- Xinyue Zhang
- The Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jun Zhou
- The Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mengyuan Guo
- Institute College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Shirui Cheng
- The Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yilin Chen
- The Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Nannan Jiang
- The Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinling Li
- The Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shengjie Hu
- The Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zilei Tian
- The Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhengjie Li
- The Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China. .,Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Fang Zeng
- The Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China. .,Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Karsan N, Silva E, Goadsby PJ. Evaluating migraine with typical aura with neuroimaging. Front Hum Neurosci 2023; 17:1112790. [PMID: 37025972 PMCID: PMC10070832 DOI: 10.3389/fnhum.2023.1112790] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/01/2023] [Indexed: 04/08/2023] Open
Abstract
Objective To provide an up-to-date narrative literature review of imaging in migraine with typical aura, as a means to understand better migraine subtypes and aura biology. Background Characterizing subtypes of migraine with typical aura and appreciating possible biological differences between migraine with and without aura, are important to understanding the neurobiology of aura and trying to advance personalized therapeutics in this area through imaging biomarkers. One means of doing this over recent years has been the use of increasingly advanced neuroimaging techniques. Methods We conducted a literature review of neuroimaging studies in migraine with aura, using a PubMed search for terms 'imaging migraine', 'aura imaging', 'migraine with aura imaging', 'migraine functional imaging' and 'migraine structural imaging'. We collated the findings of the main studies, excluding small case reports and series with n < 6, and have summarized these and their implications for better understanding of aura mechanisms. Results Aura is likely mediated by widespread brain dysfunction in areas involving, but not limited to, visual cortex, somatosensory and insular cortex, and thalamus. Higher brain excitability in response to sensory stimulation and altered resting-state functional connectivity in migraine sufferers with aura could have a genetic component. Pure visual aura compared to visual aura with other sensory or speech symptoms as well, may involve different functional reorganization of brain networks and additional mitochondrial dysfunction mediating more aura symptoms. Conclusion There is a suggestion of at least some distinct neurobiological differences between migraine with and without aura, despite the shared phenotypic similarity in headache and other migraine-associated symptoms. It is clear from the vast majority of aura phenotypes being visual that there is a particular predisposition of the occipital cortex to aura mechanisms. Why this is the case, along with the relationships between cortical spreading depression and headache, and the reasons why aura does not consistently present in affected individuals, are all important research questions for the future.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, School of Neuroscience, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- NIHR King’s Clinical Research Facility, King’s College London, London, United Kingdom
- *Correspondence: Nazia Karsan,
| | - Elisa Silva
- Headache Group, School of Neuroscience, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Peter J. Goadsby
- Headache Group, School of Neuroscience, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- NIHR King’s Clinical Research Facility, King’s College London, London, United Kingdom
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
10
|
Piervincenzi C, Petsas N, Viganò A, Mancini V, Mastria G, Puma M, Giannì C, Di Piero V, Pantano P. Functional connectivity alterations in migraineurs with Alice in Wonderland syndrome. Neurol Sci 2023; 44:305-317. [PMID: 36114397 DOI: 10.1007/s10072-022-06404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/09/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND PURPOSE Alice in Wonderland syndrome (AIWS) is a neurological disorder characterized by erroneous perception of the body schema or surrounding space. Migraine is the primary cause of AIWS in adults. The pathophysiology of AIWS is largely unknown, especially regarding functional abnormalities. In this study, we compared resting-state functional connectivity (FC) of migraine patients experiencing AIWS, migraine patients with typical aura (MA) and healthy controls (HCs). METHODS Twelve AIWS, 12 MA, and 24 HCs were enrolled and underwent 3 T MRI scanning. Independent component analysis was used to identify RSNs thought to be relevant for AIWS: visual, salience, basal ganglia, default mode, and executive control networks. Dual regression technique was used to detect between-group differences in RSNs. Finally, AIWS-specific FC alterations were correlated with clinical measures. RESULTS With respect to HCs, AIWS and MA patients both showed significantly lower (p < 0.05, FDR corrected) FC in lateral and medial visual networks and higher FC in salience and default mode networks. AIWS patients alone showed higher FC in basal ganglia and executive control networks than HCs. When directly compared, AIWS patients showed lower FC in visual networks and higher FC in all other investigated RSNs than MA patients. Lastly, AIWS-specific FC alterations in the executive control network positively correlated with migraine frequency. CONCLUSIONS AIWS and MA patients showed similar FC alterations in several RSNs, although to a different extent, suggesting common pathophysiological underpinnings. However, AIWS patients showed additional FC alterations, likely due to the complexity of AIWS symptoms involving high-order associative cortical areas.
Collapse
Affiliation(s)
| | | | | | - Valentina Mancini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Giulio Mastria
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,My Space Lab, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Marta Puma
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Costanza Giannì
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,IRCCS NEUROMED, Pozzilli, IS, Italy
| | - Vittorio Di Piero
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Patrizia Pantano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,IRCCS NEUROMED, Pozzilli, IS, Italy
| |
Collapse
|
11
|
Wu L, Wang X, Liu Q, Chai L, Tian S, Wu W. A study on alterations in functional activity in migraineurs during the interictal period. Heliyon 2022; 9:e12372. [PMID: 36691529 PMCID: PMC9860458 DOI: 10.1016/j.heliyon.2022.e12372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/08/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Migraine is a recurrent disease in which the cumulative effect of repeated pain attacks over a long period of time causes changes in brain function. Although there are some studies focusing on the interictal period of migraine, the reproducibility of these results is poor. Therefore, we intend to use a data-driven functional connectivity (FC) approach to probe the alterations in cerebral functional activity during the interictal period, as well as underlying no-task mechanisms of inducing headache attack in migraine patients. In the current research, 24 episodic migraine patients and 23 healthy controls (HCs) were recruited. By analyzing the magnitude of regional homogeneity (ReHo) and low-frequency fractional fluctuation (fALFF), We identified alterations in spontaneous brain activity in migraineurs, including the bilateral middle frontal gyrus, left postcentral, and right lingual gyrus. Thereafter such abnormalities were selected as seeds (ROIs) for FC analysis to further explore the underlying changes between ROIs and the whole brain areas. Compared with HCs, FC between the right middle frontal gyrus with the left precuneus cortex, and bilateral thalamus were enhanced in migraineurs. In addition, increased FC has been showed between the left postcentral gyrus with the bilateral thalamus. Furthermore, negative correlation existed between fALFF values of the left middle frontal gyrus and the pain intensity of migraine attacks (r = -0.4578, p = 0.0245). In summary, abnormal FC between the bilateral thalamus and right middle frontal gyrus, or the left retrocentral gyrus may occur between attacks in migraineurs, which may be the basis for sensory integration and pain regulation dysfunction. Thus, this could become a promising biomarker for the early diagnosis and evaluation of migraine in the interictal period, and provide a novel view for further investigation of the pathogenesis and etiology of recurrent migraine.
Collapse
Affiliation(s)
- Lanxiang Wu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People’s Republic of China
| | - Xuan Wang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People’s Republic of China
| | - Qian Liu
- Imaging Department, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People’s Republic of China
| | - Lijun Chai
- Imaging Department, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People’s Republic of China
| | - Sheng Tian
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People’s Republic of China
| | - Wei Wu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People’s Republic of China
- Corresponding author.
| |
Collapse
|
12
|
Gu L, Wang Y, Shu H. Association between migraine and cognitive impairment. J Headache Pain 2022; 23:88. [PMID: 35883043 PMCID: PMC9317452 DOI: 10.1186/s10194-022-01462-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/16/2022] [Indexed: 11/20/2022] Open
Abstract
Background Previous studies revealed inconsistent results regarding association between migraine and cognitive impairment. In addition, previous studies found inconsistent results regarding the association between migraine and risk of dementia. Thus, the study aimed to make a meta-analysis exploring comparison result in different types of cognitive function between migraine patients and non-migraine subjects. In addition, meta-analysis was made to explore the association between migraine and risk of dementia. Methods Articles published before June 2022 were searched in the following databases: PubMed, Web of Science, SCOPUS, EMBASE, EBSCO, PROQUEST, ScienceDirect and Cochrane Database of Systematic Reviews. Results were computed using STATA 12.0 software. Results Meta-analysis showed lower general cognitive function and language function in migraine group, compared to no migraine group (general cognitive function: standard mean difference (SMD) = − 0.40, 95% CI = − 0.66 to − 0.15; language: SMD = − 0.14, 95% confidence interval (CI) = − 0.27 to − 0.00), whereas the study showed no significant difference in visuospatial function, attention, executive function and memory between migraine group and no migraine group (visuospatial function: SMD = − 0.23, 95% CI = − 0.53 to 0.08; attention: SMD = − 0.01, 95% CI = − 0.10 to 0.08; executive function: SMD = − 0.05, 95% CI = − 0.16 to 0.05; memory: SMD = − 0.14, 95% CI = − 0.30 to 0.03). In addition, the meta-analysis showed a significant association between migraine and risk of dementia (odds ratio (OR)/relative risk (RR) = 1.30, 95% CI = 1.11 to 1.52). Conclusions In conclusion, the meta-analysis demonstrated lower general cognitive function and language function in migraine. In addition, migraine is associated with an increased risk of all-cause dementia, VaD and AD. These results suggest a significant association between migraine and cognitive impairment. Because of the association between migraine and cognitive impairment, neurological physician should be vigilant and effectively intervene in migraineurs with high risk factors of cognitive impairment to prevent the development of cognitive impairment. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01462-4.
Collapse
Affiliation(s)
- Lihua Gu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China. .,Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.
| | - Yanjuan Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Hao Shu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
13
|
Coppola G, Corbelli I, Di Renzo A, Chiappiniello A, Chiarini P, Parisi V, Guercini G, Calabresi P, Tarducci R, Sarchielli P. Visual stimulation and frequency of focal neurological symptoms engage distinctive neurocognitive resources in migraine with aura patients: a study of resting-state functional networks. J Headache Pain 2022; 23:80. [PMID: 35820799 PMCID: PMC9277919 DOI: 10.1186/s10194-022-01446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022] Open
Abstract
Introduction Several functional neuroimaging studies on healthy controls and patients with migraine with aura have shown that the activation of functional networks during visual stimulation is not restricted to the striate system, but also includes several extrastriate networks. Methods Before and after 4 min of visual stimulation with a checkerboard pattern, we collected functional MRI in 21 migraine with aura (MwA) patients and 18 healthy subjects (HS). For each recording session, we identified independent resting-state networks in each group and correlated network connection strength changes with clinical disease features. Results Before visual stimulation, we found reduced connectivity between the default mode network and the left dorsal attention system (DAS) in MwA patients compared to HS. In HS, visual stimulation increases functional connectivity between the independent components of the bilateral DAS and the executive control network (ECN). In MwA, visual stimulation significantly improved functional connectivity between the independent component pairs salience network and DAS, and between DAS and ECN. The ECN Z-scores after visual stimulation were negatively related to the monthly frequency of aura. Conclusions In individuals with MwA, 4 min of visual stimulation had stronger cognitive impact than in healthy people. A higher frequency of aura may lead to a diminished ability to obtain cognitive resources to cope with transitory but important events like aura-related focal neurological symptoms.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino - I.C.O.T., Via Franco Faggiana 1668, 04100, Latina, Italy.
| | - Ilenia Corbelli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | | | - Pietro Chiarini
- Medical Physics Service, Azienda Ospedaliera Di Perugia, Perugia, Italy
| | | | - Giorgio Guercini
- Neuroradiology Service, Azienda Ospedaliera Di Perugia, Perugia, Italy
| | - Paolo Calabresi
- Department of Neuroscience, Cattolica Sacro Cuore University, Rome, Italy.,Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Roberto Tarducci
- Medical Physics Service, Azienda Ospedaliera Di Perugia, Perugia, Italy
| | - Paola Sarchielli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
14
|
Microstructural white matter alterations associated with migraine headaches: a systematic review of diffusion tensor imaging studies. Brain Imaging Behav 2022; 16:2375-2401. [PMID: 35710680 PMCID: PMC9581876 DOI: 10.1007/s11682-022-00690-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 11/04/2022]
Abstract
The pathophysiology of migraine as a headache disorder is still undetermined. Diffusion tensor imaging (DTI) has significantly improved our knowledge about brain microstructure in this disease. Here, we aimed to systematically review DTI studies in migraine and survey the sources of heterogeneity by investigating diffusion parameter changes associated with clinical characteristics and migraine subtypes. Microstructural changes, as revealed by widespread alteration of diffusion metrics in white matter (WM) tracts, subcortical and cortical regions, were reported by several migraine DTI studies. Specifically, we reported changes in the corpus callosum, thalamic radiations, corona radiata, and brain stem. These alterations showed high variability across migraine cycle phases. Additionally, migraine associated with depressive/anxiety symptoms revealed significant changes in the corpus callosum, internal capsule, and superior longitudinal fasciculus. No significant WM microstructural differences were observed between migraine patients with and without aura. Overall, differences between chronic and episodic migraine showed inconsistency across studies. Migraine is associated with microstructural changes in widespread regions including thalamic radiations, corpus callosum, and brain stem. These alterations can highlight neuronal damage and neuronal plasticity mechanisms either following pain stimulations occurring in migraine cycle or as a compensatory response to pain in chronic migraine. Longitudinal studies applying advanced modalities may shed new light on the underlying microstructural changes in migraine subtypes.
Collapse
|
15
|
Migliore S, D'Aurizio G, Altamura C, Brunelli N, Costa C, Curcio G, Vernieri F. Task-switching abilities in episodic and chronic migraine. Neurol Sci 2022; 43:3803-3810. [PMID: 35064344 DOI: 10.1007/s10072-021-05837-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Migraineurs show impaired cognitive functions interictally, mainly involving information processing speed, basic attention, and executive functions. We aimed to assess executive impairment in migraine patients with different attack frequencies through a task-switching protocol designed to assess different sub-processes of executive functioning. We enrolled 42 migraine patients and divided them into three groups based on the attack frequency: 13 subjects had episodic migraine with a low frequency (LFEM, 4-7 migraine days per month), 14 subjects had high-frequency episodic migraine (HFEM, 8-14 days) and, finally, 15 subjects presented chronic migraine (≥ 15 headache days/month, CM); we compared them to 20 healthy control (HC), matched to both gender and education. Patients with high headache frequencies (CM and HFEM) showed worse performance than LFEM and HC controls, as indicated by poor accuracy, increased switch cost, and reaction times. Our study demonstrated a difference in task-switching abilities in patients with high frequency or chronic migraine compared with low-frequency episodic migraine and healthy controls. These difficulties in executive control processes could be related to altered functioning of the frontal cortex and its cortical and subcortical connections.
Collapse
Affiliation(s)
- Simone Migliore
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy.
| | - Giulia D'Aurizio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Claudia Altamura
- Headache and Neurosonology Unit, Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Nicoletta Brunelli
- Headache and Neurosonology Unit, Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Carmelinda Costa
- Headache and Neurosonology Unit, Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Giuseppe Curcio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Fabrizio Vernieri
- Headache and Neurosonology Unit, Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
16
|
Arca KN, VanderPluym JH, Halker Singh RB. Narrative review of neuroimaging in migraine with aura. Headache 2021; 61:1324-1333. [PMID: 34309848 DOI: 10.1111/head.14191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/21/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To improve the understanding of the role and utility of various neuroimaging modalities (clinical and research) for the evaluation of migraine aura (MA) and hemiplegic migraine during the ictal and interictal phases. BACKGROUND MA is defined by reversible neurologic symptoms and is considered a manifestation of a primary condition. As such, most patients with MA do not require imaging. However, if there are atypical features, change in symptom pattern, or it is a first-time presentation, neuroimaging may be used to evaluate for secondary conditions. Neuroimaging includes many modalities, and it is important to consider what information is being captured by these modalities (i.e., structural vs. functional). Imaging abnormalities may be noted both during (ictal) and between (interictal) MA attacks, and it is important for clinicians to be familiar with neuroimaging findings reported in migraine with aura (MWA) compared with other conditions. METHODS With the assistance of a medical librarian, we performed a review of the literature pertaining to MWA and neuroimaging in PubMed. Search terms included were magnetic resonance imaging, positron-emission tomography, single photon-emission computed tomography, functional magnetic resonance imaging, and migraine with aura. We hand-searched these references to inform our subsequent literature review. RESULTS Acute MA can be associated with several unique neuroimaging findings-reversible cortical diffusion restriction, cortical venous engorgement, and a "biphasic" transition from hypoperfusion to hyperperfusion. Imaging findings during MA tend to span more than one vascular territory. Between acute attacks, neuroimaging in people with MWA can resemble migraine without aura in terms of white matter abnormalities and "infarct-like lesions." Research imaging modalities such as volumetric analysis and functional imaging have demonstrated unique findings in migraine with aura. CONCLUSION Although migraine is a clinical diagnosis, understanding of neuroimaging findings in MWA can help clinicians interpret imaging findings and improve patient care.
Collapse
Affiliation(s)
- Karissa N Arca
- Department of Neurology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | | |
Collapse
|
17
|
Karsan N, Goadsby PJ. Migraine Is More Than Just Headache: Is the Link to Chronic Fatigue and Mood Disorders Simply Due to Shared Biological Systems? Front Hum Neurosci 2021; 15:646692. [PMID: 34149377 PMCID: PMC8209296 DOI: 10.3389/fnhum.2021.646692] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Migraine is a symptomatically heterogeneous condition, of which headache is just one manifestation. Migraine is a disorder of altered sensory thresholding, with hypersensitivity among sufferers to sensory input. Advances in functional neuroimaging have highlighted that several brain areas are involved even prior to pain onset. Clinically, patients can experience symptoms hours to days prior to migraine pain, which can warn of impending headache. These symptoms can include mood and cognitive change, fatigue, and neck discomfort. Some epidemiological studies have suggested that migraine is associated in a bidirectional fashion with other disorders, such as mood disorders and chronic fatigue, as well as with other pain conditions such as fibromyalgia. This review will focus on the literature surrounding alterations in fatigue, mood, and cognition in particular, in association with migraine, and the suggested links to disorders such as chronic fatigue syndrome and depression. We hypothesize that migraine should be considered a neural disorder of brain function, in which alterations in aminergic networks integrating the limbic system with the sensory and homeostatic systems occur early and persist after headache resolution and perhaps interictally. The associations with some of these other disorders may allude to the inherent sensory sensitivity of the migraine brain and shared neurobiology and neurotransmitter systems rather than true co-morbidity.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, Wolfson Centre for Age-Related Diseases, Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,NIHR-Wellcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre, King's College Hospital, London, United Kingdom
| | - Peter J Goadsby
- Headache Group, Wolfson Centre for Age-Related Diseases, Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,NIHR-Wellcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre, King's College Hospital, London, United Kingdom.,Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
18
|
Su M, Wang R, Dong Z, Zhao D, Yu S. Decline in attentional inhibition among migraine patients: an event-related potential study using the Stroop task. J Headache Pain 2021; 22:34. [PMID: 33941081 PMCID: PMC8091750 DOI: 10.1186/s10194-021-01242-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/08/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND As a disorder of brain dysfunction, migraine has been associated with cognitive decline. However, no consistent results with respect to the attention function in migraineurs have been found, and the relationship between attentional inhibition and migraine is also unclear. In this study, the attentional inhibition function was evaluated using event-related potentials (ERPs) while migraine patients and healthy controls were performing the color-word Stroop task. METHODS In this study, 75 migraine patients and 41 age-, gender-, and education-matched healthy controls were enrolled. The Stroop task was performed, and both behavioral and ERP data were analyzed. RESULTS As to the behavioral data, the migraine group had a longer reaction time compared to the control group, but no difference in Stroop effect was observed. With respect to ERP components, the amplitudes of both early and late medial frontal negativity (MFN) were decreased in the migraine group. Additionally, obvious differences in the early MFN and sustained potential (SP) amplitudes were found between patients with and without allodynia. CONCLUSIONS At the behavioral level, migraine patients exhibited decreased executive ability but no obvious decline in inhibition. By contrast, a decline in attentional inhibition during the migraine interictal phase was confirmed by the analysis of ERP components, mainly those associated with changes in the conflict-monitoring stage, independent of confounding factors such as age, education, medication and mood disorders. Migraine patients with allodynia exhibited some significant differences in early MFN and SP compared to those without, supporting the hypothesis that migraine chronification aggravates the decline in attentional inhibition.
Collapse
Affiliation(s)
- Min Su
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Rongfei Wang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Zhao Dong
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Dengfa Zhao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Shengyuan Yu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, 100853, Beijing, China.
| |
Collapse
|
19
|
Chamanzar A, Haigh SM, Grover P, Behrmann M. Abnormalities in cortical pattern of coherence in migraine detected using ultra high-density EEG. Brain Commun 2021; 3:fcab061. [PMID: 34258580 PMCID: PMC8269966 DOI: 10.1093/braincomms/fcab061] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Individuals with migraine generally experience photophobia and/or phonophobia during and between migraine attacks. Many different mechanisms have been postulated to explain these migraine phenomena including abnormal patterns of connectivity across the cortex. The results, however, remain contradictory and there is no clear consensus on the nature of the cortical abnormalities in migraine. Here, we uncover alterations in cortical patterns of coherence (connectivity) in interictal migraineurs during the presentation of visual and auditory stimuli and during rest. We used a high-density EEG system, with 128 customized electrode locations, to compare inter- and intra-hemispheric coherence in the interictal period from 17 individuals with migraine (12 female) and 18 age- and gender-matched healthy control subjects. During presentations of visual (vertical grating pattern) and auditory (modulated tone) stimulation which varied in temporal frequency (4 and 6 Hz), and during rest, participants performed a colour detection task at fixation. Analyses included characterizing the inter- and intra-hemisphere coherence between the scalp EEG channels over 2-s time intervals and over different frequency bands at different spatial distances and spatial clusters. Pearson's correlation coefficients were estimated at zero-lag. Repeated measures analyses-of-variance revealed that, relative to controls, migraineurs exhibited significantly (i) faster colour detection performance, (ii) lower spatial coherence of alpha-band activity, for both inter- and intra-hemisphere connections, and (iii) the reduced coherence occurred predominantly in frontal clusters during both sensory conditions, regardless of the stimulation frequency, as well as during the resting-state. The abnormal patterns of EEG coherence in interictal migraineurs during visual and auditory stimuli, as well as at rest (eyes open), may be associated with the cortical hyper-responsivity that is characteristic of abnormal sensory processing in migraineurs.
Collapse
Affiliation(s)
- Alireza Chamanzar
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sarah M Haigh
- Department of Psychology, University of Nevada, Reno, NV 89557, USA
- Institute for Neuroscience, University of Nevada, Reno, NV 89557, USA
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Pulkit Grover
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Marlene Behrmann
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Wei HL, Chen YC, Yu YS, Guo X, Zhou GP, Zhou QQ, Qu LJ, Yin X, Li J, Zhang H. Aberrant activity within auditory network is associated with psychiatric comorbidities in interictal migraineurs without aura. Brain Imaging Behav 2021; 15:2464-2471. [PMID: 33479923 DOI: 10.1007/s11682-020-00446-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 12/20/2022]
Abstract
The present study aimed to explore associations between brain activity in the auditory cortex and clinical and psychiatric characteristics in patients with migraine without aura (MwoA) during interictal periods. Resting-state data were acquired from patients with episodic MwoA (n = 34) and healthy controls (n = 30). Independent component analysis was used to extract and calculate the resting-state auditory network. Subsequently, we analyzed the correlations between spontaneous activity in the auditory cortex and clinical and psychiatric features in interictal MwoA. Compared with healthy controls, patients with MwoA showed increased activity in the left superior temporal gyrus (STG), postcentral gyrus (PoCG) and insula. Brain activity in the left STG was positively correlated with anxiety scores, and activity in the left PoCG was negatively correlated with anxiety and depression scores. No significant differences were found in intracranial volume between the two groups. This study indicated that functional impairment and altered integration linked to the auditory cortex existed in patients with MwoA in the interictal period, suggesting that auditory-associated cortex disruption as a biomarker may be implemented for the early diagnosis and prediction of neuropsychiatric impairment in interictal MwoA patients.
Collapse
Affiliation(s)
- Heng-Le Wei
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu Province, China
| | - Yu-Sheng Yu
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Xi Guo
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Gang-Ping Zhou
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Qing-Qing Zhou
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Li-Jie Qu
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu Province, China
| | - Junrong Li
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, Jiangsu, China.
| | - Hong Zhang
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, Jiangsu, China.
| |
Collapse
|
21
|
Lim M, Jassar H, Kim DJ, Nascimento TD, DaSilva AF. Differential alteration of fMRI signal variability in the ascending trigeminal somatosensory and pain modulatory pathways in migraine. J Headache Pain 2021; 22:4. [PMID: 33413090 PMCID: PMC7791681 DOI: 10.1186/s10194-020-01210-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/10/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The moment-to-moment variability of resting-state brain activity has been suggested to play an active role in chronic pain. Here, we investigated the regional blood-oxygen-level-dependent signal variability (BOLDSV) and inter-regional dynamic functional connectivity (dFC) in the interictal phase of migraine and its relationship with the attack severity. METHODS We acquired resting-state functional magnetic resonance imaging from 20 migraine patients and 26 healthy controls (HC). We calculated the standard deviation (SD) of the BOLD time-series at each voxel as a measure of the BOLD signal variability (BOLDSV) and performed a whole-brain voxel-wise group comparison. The brain regions showing significant group differences in BOLDSV were used to define the regions of interest (ROIs). The SD and mean of the dynamic conditional correlation between those ROIs were calculated to measure the variability and strength of the dFC. Furthermore, patients' experimental pain thresholds and headache pain area/intensity levels during the migraine ictal-phase were assessed for clinical correlations. RESULTS We found that migraineurs, compared to HCs, displayed greater BOLDSV in the ascending trigeminal spinal-thalamo-cortical pathways, including the spinal trigeminal nucleus, pulvinar/ventral posteromedial (VPM) nuclei of the thalamus, primary somatosensory cortex (S1), and posterior insula. Conversely, migraine patients exhibited lower BOLDSV in the top-down modulatory pathways, including the dorsolateral prefrontal (dlPFC) and inferior parietal (IPC) cortices compared to HCs. Importantly, abnormal interictal BOLDSV in the ascending trigeminal spinal-thalamo-cortical and frontoparietal pathways were associated with the patient's headache severity and thermal pain sensitivity during the migraine attack. Migraineurs also had significantly lower variability and greater strength of dFC within the thalamo-cortical pathway (VPM-S1) than HCs. In contrast, migraine patients showed greater variability and lower strength of dFC within the frontoparietal pathway (dlPFC-IPC). CONCLUSIONS Migraine is associated with alterations in temporal signal variability in the ascending trigeminal somatosensory and top-down modulatory pathways, which may explain migraine-related pain and allodynia. Contrasting patterns of time-varying connectivity within the thalamo-cortical and frontoparietal pathways could be linked to abnormal network integrity and instability for pain transmission and modulation.
Collapse
Affiliation(s)
- Manyoel Lim
- Headache and Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, 1011 N. University Ave, Room 1014A, Ann Arbor, MI 48109-1078 USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Hassan Jassar
- Headache and Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, 1011 N. University Ave, Room 1014A, Ann Arbor, MI 48109-1078 USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Dajung J. Kim
- Headache and Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, 1011 N. University Ave, Room 1014A, Ann Arbor, MI 48109-1078 USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Thiago D. Nascimento
- Headache and Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, 1011 N. University Ave, Room 1014A, Ann Arbor, MI 48109-1078 USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Alexandre F. DaSilva
- Headache and Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, 1011 N. University Ave, Room 1014A, Ann Arbor, MI 48109-1078 USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
22
|
Shi Y, Zeng W, Nie W, Yang J. Multi-channel hierarchy functional integration analysis between large-scale brain networks for migraine: An fMRI study. NEUROIMAGE-CLINICAL 2020; 28:102462. [PMID: 33395958 PMCID: PMC7575876 DOI: 10.1016/j.nicl.2020.102462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 12/26/2022]
Abstract
A multi-channel hierarchy functional analysis was performed between MPs and HCs. Both static and dynamic FCs between BFNs was studied at group and individual levels. A graph metrics based method was used to detect the potential DFC patterns. Both global and local topological properties and dynamic volatility were explored. The results provided a new perspective for the clinical diagnosis of migraine.
Migraine is a chronic dysfunction characterized by recurrent pain, but its pathogenesis is still unclear. As a result, more and more methods have been focused on the study of migraine in recent years, including functional magnetic resonance imaging (fMRI), which is a mainstream technique for exploring the neural mechanisms of migraine. In this paper, we systematically investigated the fMRI functional connectivities (FCs) between large-scale brain networks in migraine patients from the perspective of multi-channel hierarchy, including static and dynamic FCs of group and individual levels, where the brain networks were obtained using group independent component analysis. Meanwhile, the corresponding topology properties of static and dynamic FCs networks in migraine patients were statistically compared with those in healthy controls. Furthermore, a graph metrics based method was used to detect the potential brain functional connectivity states in dynamic FCs at individual and group levels, and the corresponding topology properties and specificity of these brain functional connectivity states in migraine patients were explored compared with these in healthy controls. The results showed that the dynamic FCs and corresponding global topology properties among nine large-scale brain networks involved in this study have significant differences between migraine patients and healthy controls, while local topological properties and dynamic fluctuations were easily affected by window-widths. Moreover, the implicit dynamic functional connectivity patterns in migraine patients presented specificity and consistency under different window-widths, which suggested that the dynamic changes in FCs and topology structure between them played a key role in the brain functional activity of migraine. Therefore, it may be provided a new perspective for the clinical diagnosis of migraine.
Collapse
Affiliation(s)
- Yuhu Shi
- College of Information Engineering, Shanghai Maritime University, Shanghai, China.
| | - Weiming Zeng
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Weifang Nie
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Jiajun Yang
- Department of Neurology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Science, Shanghai 201306, China
| |
Collapse
|
23
|
Dynamic functional connectivity of the migraine brain: a resting-state functional magnetic resonance imaging study. Pain 2020; 160:2776-2786. [PMID: 31408050 DOI: 10.1097/j.pain.0000000000001676] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Migraine headache is an episodic phenomenon, and patients with episodic migraine have ictal (headache), peri-ictal (premonitory, aura, and postdrome), and interictal (asymptomatic) phases. We aimed to find the functional characteristics of the migraine brain regardless of headache phase using dynamic functional connectivity analysis. We prospectively recruited 50 patients with migraine and 50 age- and sex-matched controls. All subjects underwent a resting-state functional magnetic resonance imaging. Significant networks were defined in a data-driven fashion from the interictal (>48 hours apart from headache phases) patients and matched controls (interictal data set) and tested to ictal or peri-ictal patients and controls (ictal/peri-ictal data set). Both static and dynamic analyses were used for the between-group comparison. A false discovery rate correction was performed. As a result, the static analysis did not reveal a network which was significant in both interictal and ictal/peri-ictal data sets. Dynamic analysis revealed significant between-group differences in 7 brain networks in the interictal data set, among which a frontoparietal network (controls > patients, P = 0.0467), 2 brainstem networks (patients > controls, P = 0.0467 and <0.001), and a cerebellar network (controls > patients, P = 0.0408 and <0.001 in 2 states) remained significant in the ictal/peri-ictal data set. Using these networks, migraine was classified with a sensitivity of 0.70 and specificity of 0.76 in the ictal/peri-ictal data set. In conclusion, the dynamic connectivity analysis revealed more functional networks related to migraine than the conventional static analysis, suggesting a substantial temporal fluctuation in functional characteristics. Our data also revealed migraine-related networks which show significant difference regardless of headache phases between patients and controls.
Collapse
|
24
|
Vallesi A. On the utility of the trail making test in migraine with and without aura: a meta-analysis. J Headache Pain 2020; 21:63. [PMID: 32493204 PMCID: PMC7271430 DOI: 10.1186/s10194-020-01137-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/27/2020] [Indexed: 01/18/2023] Open
Abstract
This meta-analytical review assesses the utility of the Trail Making Test (TMT), versions A and B, in detecting migraine-related cognitive deficits. A comprehensive literature search was performed in two electronic databases and other sources to obtain relevant studies administering TMT to migraine patients. Search terms included “migraine” and “Trail Making”. Only studies in which the TMT-A, TMT-B or both were administered to adult patients suffering from migraine with and without aura were included. All pooled meta-analyses were based on random effects models. A total of 14 studies for TMT-A and 15 for TMT-B met inclusion criteria and were subjected to meta-analyses. Results showed that performance is worse in migraine patients than in controls for both the TMT-A (Hedges’ g = −.28) and TMT-B (g = −.37), with no difference between migraine with and without aura. This study demonstrates the sensitivity of the TMT in detecting cognitive alterations in migraine. This test should be considered for inclusion in cognitive batteries assessing patients with migraine.
Collapse
Affiliation(s)
- Antonino Vallesi
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Via Giustiniani, 5, Padova, 35128, Italy. .,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, 30126, Italy.
| |
Collapse
|
25
|
Shepherd AJ. Tracking the Migraine Cycle Using Visual Tasks. Vision (Basel) 2020; 4:vision4020023. [PMID: 32365776 PMCID: PMC7355979 DOI: 10.3390/vision4020023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
There are a number of reports that perceptual, electrophysiological and imaging measures can track migraine periodicity. As the electrophysiological and imaging research requires specialist equipment, it has few practical applications. This study sought to track changes in performance on four visual tasks over the migraine cycle. Coherence thresholds were measured for two motion and two orientation tasks. The first part of the study confirmed that the data obtained from an online study produced comparable results to those obtained under controlled laboratory conditions. Thirteen migraine with aura, 12 without aura, and 12 healthy controls participated. The second part of the study showed that thresholds for discriminating vertical coherent motion varied with the migraine cycle for a majority of the participants who tested themselves multiple times (four with aura, seven without). Performance improved two days prior to a migraine attack and remained improved for two days afterwards. This outcome is as expected from an extrapolation of earlier electrophysiological research. This research points to the possibility of developing sensitive visual tests that patients can use at home to predict an impending migraine attack and so take steps to try to abort it or, if it is inevitable, to plan their lives around it.
Collapse
Affiliation(s)
- A J Shepherd
- Department of Psychological Sciences, Birkbeck, University of London, London WC1E 7HX, UK
| |
Collapse
|
26
|
Argaman Y, Kisler LB, Granovsky Y, Coghill RC, Sprecher E, Manor D, Weissman-Fogel I. The Endogenous Analgesia Signature in the Resting Brain of Healthy Adults and Migraineurs. THE JOURNAL OF PAIN 2020; 21:905-918. [PMID: 31904502 DOI: 10.1016/j.jpain.2019.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022]
Abstract
Altered pain modulation and resting state functional connectivity (rsFC) were found to be related to migraine pathology and clinical manifestation. We examined how pain modulation psychophysical measures are related to resting-state networks and rsFC between bottom-up and top-down pain modulation areas. Thirty-two episodic migraineurs and 23 age-matched healthy individuals underwent temporal summation of pain (TSOP) and conditioned pain modulation (CPM) tests, followed by a resting-state imaging scan. No differences in temporal summation of pain and CPM were found between groups. However, in healthy individuals, more efficient CPM was correlated with 1) stronger rsFCs of the posterior cingulate cortex, with the ventromedial prefrontal cortex and with the pregenual anterior cingulate cortex; 2) weaker rsFC of the anterior insula with the angular gyrus. Conversely, in migraineurs, the association between CPM and rsFC was altered. Our results suggest that the functional connectivity within the default mode network (DMN) components and the functional coupling between the DMN and pain inhibitory brain areas is linked with pain inhibition efficiency. In migraineurs, this interplay is changed, yet enables normal pain inhibition. Our findings shed light on potential functional adaptation of the DMN and its role in pain inhibition in health and migraine. PERSPECTIVE: This article establishes evidence for the relationship between the resting-state brain and individual responses in psychophysical pain modulation tests, in both migraine and healthy individuals. The results emphasize the significant role of the default mode network in maintaining pain inhibition efficiency in health and in the presence of chronic pain.
Collapse
Affiliation(s)
- Yuval Argaman
- Laboratory of Clinical Neurophysiology, Technion Faculty of Medicine, Haifa, Israel
| | - Lee B Kisler
- Laboratory of Clinical Neurophysiology, Technion Faculty of Medicine, Haifa, Israel
| | - Yelena Granovsky
- Laboratory of Clinical Neurophysiology, Technion Faculty of Medicine, Haifa, Israel; Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Robert C Coghill
- Department of Anesthesiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Elliot Sprecher
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - David Manor
- MRI Unit, Rambam Health Care Campus, Haifa, Israel; Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Irit Weissman-Fogel
- Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
27
|
A subjective cognitive impairments scale for migraine attacks: validation of the Italian version of the MIG-SCOG. Neurol Sci 2020; 41:1139-1143. [DOI: 10.1007/s10072-019-04200-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/16/2019] [Indexed: 01/03/2023]
|
28
|
Skorobogatykh K, van Hoogstraten WS, Degan D, Prischepa A, Savitskaya A, Ileen BM, Bentivegna E, Skiba I, D'Acunto L, Ferri L, Sacco S, Hansen JM, Amin FM. Functional connectivity studies in migraine: what have we learned? J Headache Pain 2019; 20:108. [PMID: 31747874 PMCID: PMC6868768 DOI: 10.1186/s10194-019-1047-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/12/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Resting-state functional connectivity (FC) MRI has widely been used to understand migraine pathophysiology and to identify an imaging marker of the disorder. Here, we review what we have learned from FC studies. METHODS We performed a literature search on the PubMed website for original articles reporting data obtained from conventional resting-state FC recording in migraine patients compared with healthy controls or during and outside of migraine attacks in the same patients. RESULTS We found 219 articles and included 28 in this review after screening for inclusion and exclusion criteria. Twenty-five studies compared migraine patients with healthy controls, whereas three studies investigated migraine patients during and outside of attacks. In the studies of interictal migraine more alterations of more than 20 FC networks (including amygdala, caudate nucleus, central executive, cerebellum, cuneus, dorsal attention network, default mode, executive control, fronto-parietal, hypothalamus, insula, neostriatum, nucleus accumbens, occipital lobe, periaqueductal grey, prefrontal cortex, salience, somatosensory cortex I, thalamus and visual) were reported. We found a poor level of reproducibility and no migraine specific pattern across these studies. CONCLUSION Based on the findings in the present review, it seems very difficult to extract knowledge of migraine pathophysiology or to identify a biomarker of migraine. There is an unmet need of guidelines for resting-state FC studies in migraine, which promote the use of homogenous terminology, public availability of protocol and the a priori hypothesis in line with for instance randomized clinical trial guidelines.
Collapse
Affiliation(s)
| | | | - Diana Degan
- Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, L'Aquila, Italy
| | | | | | | | - Enrico Bentivegna
- Internal Medicine Unit, Sant' Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Iaroslav Skiba
- Neurology Department, Military Medical Academy, St. Petersburg, Russia
| | - Laura D'Acunto
- Clinical Unit of Neurology, Department of Medical Sciences, University Hospital and Health Services of Trieste, University of Trieste, Trieste, Italy
| | - Livia Ferri
- Internal Medicine Unit, Sant' Andrea Hospital, Sapienza University of Rome, Rome, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Rome, Italy
| | - Simona Sacco
- Clinical Neurology Section, Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, L'Aquila, Italy
| | - Jakob Møller Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Valdemar Hansens Vej 5, Glostrup, 2600, Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Valdemar Hansens Vej 5, Glostrup, 2600, Copenhagen, Denmark.
| |
Collapse
|
29
|
Dysregulation of multisensory processing stands out from an early stage of migraine: a study in pediatric patients. J Neurol 2019; 267:760-769. [DOI: 10.1007/s00415-019-09639-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022]
|
30
|
Coppola G, Parisi V, Di Renzo A, Pierelli F. Cortical pain processing in migraine. J Neural Transm (Vienna) 2019; 127:551-566. [DOI: 10.1007/s00702-019-02089-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/28/2019] [Indexed: 12/17/2022]
|
31
|
Kincses ZT, Veréb D, Faragó P, Tóth E, Kocsis K, Kincses B, Király A, Bozsik B, Párdutz Á, Szok D, Tajti J, Vécsei L, Tuka B, Szabó N. Are Migraine With and Without Aura Really Different Entities? Front Neurol 2019; 10:982. [PMID: 31632329 PMCID: PMC6783501 DOI: 10.3389/fneur.2019.00982] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/28/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Migraine research is booming with the rapidly developing neuroimaging tools. Structural and functional alterations of the migrainous brain were detected with MRI. The outcome of a research study largely depends on the working hypothesis, on the chosen measurement approach and also on the subject selection. Against all evidence from the literature that migraine subtypes are different, most of the studies handle migraine with and without aura as one disease. Methods: Publications from PubMed database were searched for terms of "migraine with aura," "migraine without aura," "interictal," "MRI," "diffusion weighted MRI," "functional MRI," "compared to," "atrophy" alone and in combination. Conclusion: Only a few imaging studies compared the two subforms of the disease, migraine with aura, and without aura, directly. Functional imaging investigations largely agree that there is an increased activity/activation of the brain in migraine with aura as compared to migraine without aura. We propose that this might be the signature of cortical hyperexcitability. However, structural investigations are not equivocal. We propose that variable contribution of parallel, competing mechanisms of maladaptive plasticity and neurodegeneration might be the reason behind the variable results.
Collapse
Affiliation(s)
- Zsigmond Tamás Kincses
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
- Department of Radiology, University of Szeged, Szeged, Hungary
| | - Dániel Veréb
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - Péter Faragó
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - Eszter Tóth
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - Krisztián Kocsis
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - Bálint Kincses
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - András Király
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
- Brain and Mind Research, Central European Institute of Technology, Brno, Czechia
| | - Bence Bozsik
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - Árpád Párdutz
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - Délia Szok
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - János Tajti
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
- MTA-SZTE, Neuroscience Research Group, Szeged, Hungary
| | - Bernadett Tuka
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
- MTA-SZTE, Neuroscience Research Group, Szeged, Hungary
| | - Nikoletta Szabó
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellent Centre, University of Szeged, Szeged, Hungary
- Brain and Mind Research, Central European Institute of Technology, Brno, Czechia
| |
Collapse
|
32
|
Bunk S, Preis L, Zuidema S, Lautenbacher S, Kunz M. Executive Functions and Pain. ZEITSCHRIFT FUR NEUROPSYCHOLOGIE 2019. [DOI: 10.1024/1016-264x/a000264] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract. A growing body of literature suggests that chronic-pain patients suffer from problems in various neuropsychological domains, including executive functioning. In order to better understand which components of executive functioning (inhibition, shifting and/or updating) might be especially affected by pain and which mechanisms might underlie this association, we conducted a systematic review, including both chronic-pain studies as well as experimental-pain studies. The chronic-pain studies (N = 57) show that pain is associated with poorer executive functioning. The findings of experimental-pain studies (N = 28) suggest that this might be a bidirectional relationship: Pain can disrupt executive functioning, but poorer executive functioning might also be a risk factor for higher vulnerability to pain.
Collapse
Affiliation(s)
- Stefanie Bunk
- Department of General Practice and Elderly Care Medicine, University Medical Center Groningen, The Netherlands
| | - Lukas Preis
- Clinical and Developmental Neuropsychology, University of Groningen, The Netherlands
| | - Sytse Zuidema
- Department of General Practice and Elderly Care Medicine, University Medical Center Groningen, The Netherlands
| | | | - Miriam Kunz
- Department of General Practice and Elderly Care Medicine, University Medical Center Groningen, The Netherlands
| |
Collapse
|
33
|
Russo A, Silvestro M, Tessitore A, Tedeschi G. Shedding light on migraine with aura: the clarifying role of advanced neuroimaging investigations. Expert Rev Neurother 2019; 19:739-750. [PMID: 31267785 DOI: 10.1080/14737175.2019.1638252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Introduction: While migraine with aura is a complex neurological syndrome with a well-characterized clinical phenotype, its pathophysiology still has grey areas which could be partially clarified by microstructural and functional neuroimaging investigations. Areas covered: This article, summarizing the most significant findings from advanced neuroimaging studies, aims to achieve a unifying pathophysiological model of the migraine aura. A comprehensive review has been conducted of PubMed citations by entering the key word 'neuroimaging' combined with 'migraine with aura' AND/OR 'MRI.' Other keywords included 'grey matter' OR 'white matter', 'structural' OR 'functional'. Expert opinion: Converging evidence from advanced neuroimaging investigations underlined the critical role of the extrastriate visual cortex, and in particular the lingual gyrus, in the genesis of the aura phenomenon. However, the relationship between the aura and the headache phase of migraine attacks has not been completely clarified, to date, and underlying pathophysiological mechanisms need to be further elucidated.
Collapse
Affiliation(s)
- Antonio Russo
- a Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences , University of Campania "Luigi Vanvitelli" , Naples , Italy.,b MRI Research Center SUN-FISM , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Marcello Silvestro
- a Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences , University of Campania "Luigi Vanvitelli" , Naples , Italy.,b MRI Research Center SUN-FISM , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Alessandro Tessitore
- a Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences , University of Campania "Luigi Vanvitelli" , Naples , Italy.,b MRI Research Center SUN-FISM , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Gioacchino Tedeschi
- a Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences , University of Campania "Luigi Vanvitelli" , Naples , Italy.,c Institute for Diagnosis and Care ''Hermitage Capodimonte'' , Naples , Italy
| |
Collapse
|
34
|
Soheili-Nezhad S, Sedghi A, Schweser F, Eslami Shahr Babaki A, Jahanshad N, Thompson PM, Beckmann CF, Sprooten E, Toghae M. Structural and Functional Reorganization of the Brain in Migraine Without Aura. Front Neurol 2019; 10:442. [PMID: 31133962 PMCID: PMC6515892 DOI: 10.3389/fneur.2019.00442] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/10/2019] [Indexed: 01/27/2023] Open
Abstract
It remains unknown whether migraine headache has a progressive component in its pathophysiology. Quantitative MRI may provide valuable insight into abnormal changes in the migraine interictum and assist in identifying disrupted brain networks. We carried out a data-driven study of structural integrity and functional connectivity of the resting brain in migraine without aura. MRI scanning was performed in 36 patients suffering from episodic migraine without aura and 33 age-matched healthy subjects. Voxel-wise analysis of regional brain volume was performed by registration of the T1-weighted MRI scans into a common study brain template using the tensor-based morphometry (TBM) method. Changes in functional synchronicity of the brain networks were assessed using probabilistic independent component analysis (ICA). TBM revealed that migraine is associated with reduced volume of the medial prefrontal cortex (mPFC). Among 375 functional brain networks, resting-state connectivity was decreased between two components spanning the visual cortex, posterior insula, and parietal somatosensory cortex. Our study reveals structural and functional alterations of the brain in the migraine interictum that may stem from underlying disease risk factors and the "silent" aura phenomenon. Longitudinal studies will be needed to investigate whether interictal brain changes are progressive and associated with clinical disease trajectories.
Collapse
Affiliation(s)
- Sourena Soheili-Nezhad
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands.,Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands
| | - Alireza Sedghi
- Medical Informatics Laboratory, Queen's University, Kingston, ON, Canada
| | - Ferdinand Schweser
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University at Buffalo, Buffalo, NY, United States.,Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, Buffalo, NY, United States
| | | | - Neda Jahanshad
- Keck School of Medicine of USC, Imaging Genetics Center, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, United States
| | - Paul M Thompson
- Keck School of Medicine of USC, Imaging Genetics Center, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, United States
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands.,Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands.,John Radcliffe Hospital, Oxford Centre for Functional MRI of the Brain, Oxford, United Kingdom
| | - Emma Sprooten
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands.,Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands
| | - Mansoureh Toghae
- Headache Department, Iranian Center of Neurological Research, Neuroscience Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Dumkrieger G, Chong CD, Ross K, Berisha V, Schwedt TJ. Static and dynamic functional connectivity differences between migraine and persistent post-traumatic headache: A resting-state magnetic resonance imaging study. Cephalalgia 2019; 39:1366-1381. [PMID: 31042064 DOI: 10.1177/0333102419847728] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Although migraine and persistent post-traumatic headache often share phenotypic characteristics, few studies have interrogated the pathophysiological differences underlying these headache types. While there is now some indication of differences in brain structure between migraine and persistent post-traumatic headache, differences in brain function have not been adequately investigated. The objective of this study was to compare static and dynamic functional connectivity patterns in migraine versus persistent post-traumatic headache using resting-state magnetic resonance imaging. METHODS This case-control study interrogated the static functional connectivity and dynamic functional connectivity patterns of 59 a priori selected regions of interest involved in pain processing. Pairwise connectivity (region of interest to region of interest) differences between migraine (n = 33) and persistent post-traumatic headache (n = 44) were determined and compared to healthy controls (n = 36) with ANOVA and subsequent t-tests. Pearson partial correlations were used to explore the relationship between headache burden (headache frequency; years lived with headache) and functional connectivity and between pain intensity at the time of imaging and functional connectivity for migraine and persistent post-traumatic headache groups, separately. RESULTS Significant differences in static functional connectivity between migraine and persistent post-traumatic headache were found for 17 region pairs that included the following regions of interest: Primary somatosensory, secondary somatosensory, posterior insula, hypothalamus, anterior cingulate, middle cingulate, temporal pole, supramarginal gyrus, superior parietal, middle occipital, lingual gyrus, pulvinar, precuneus, cuneus, somatomotor, ventromedial prefrontal cortex, and dorsolateral prefrontal cortex. Significant differences in dynamic functional connectivity between migraine and persistent post-traumatic headache were found for 10 region pairs that included the following regions of interest: Secondary somatosensory, hypothalamus, middle cingulate, temporal pole, supramarginal gyrus, superior parietal, lingual gyrus, somatomotor, precentral, posterior cingulate, middle frontal, fusiform gyrus, parieto-occiptal, and amygdala. Although there was overlap among the regions demonstrating static functional connectivity differences and those showing dynamic functional connectivity differences between persistent post-traumatic headache and migraine, there was no overlap in the region pair functional connections. After controlling for sex and age, there were significant correlations between years lived with headache with static functional connectivity of the right dorsolateral prefrontal cortex with the right ventromedial prefrontal cortex in the migraine group and with static functional connectivity of right primary somatosensory with left supramarginal gyrus in the persistent post-traumatic headache group. There were significant correlations between headache frequency with static functional connectivity of left secondary somatosensory with right cuneus in the migraine group and with static functional connectivity of left middle cingulate with right pulvinar and right posterior insula with left hypothalamus in the persistent post-traumatic headache group. Dynamic functional connectivity was significantly correlated with headache frequency, after controlling for sex and age, in the persistent post-traumatic headache group for one region pair (right middle cingulate with right supramarginal gyrus). Dynamic functional connectivity was correlated with pain intensity at the time of imaging for the migraine cohort for one region pair (right posterior cingulate with right amygdala). CONCLUSIONS Resting-state functional imaging revealed static functional connectivity and dynamic functional connectivity differences between migraine and persistent post-traumatic headache for regions involved in pain processing. These differences in functional connectivity might be indicative of distinctive pathophysiology associated with migraine versus persistent post-traumatic headache.
Collapse
|
36
|
Ellingson BM, Hesterman C, Johnston M, Dudeck NR, Charles AC, Villablanca JP. Advanced Imaging in the Evaluation of Migraine Headaches. Neuroimaging Clin N Am 2019; 29:301-324. [PMID: 30926119 PMCID: PMC8765285 DOI: 10.1016/j.nic.2019.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The use of advanced imaging in routine diagnostic practice appears to provide only limited value in patients with migraine who have not experienced recent changes in headache characteristics or symptoms. However, advanced imaging may have potential for studying the biological manifestations and pathophysiology of migraine headaches. Migraine with aura appears to have characteristic spatiotemporal changes in structural anatomy, function, hemodynamics, metabolism, and biochemistry, whereas migraine without aura produces more subtle and complex changes. Large, controlled, multicenter imaging-based observational trials are needed to confirm the anecdotal evidence in the literature and test the scientific hypotheses thought to underscore migraine pathophysiology.
Collapse
Affiliation(s)
- Benjamin M Ellingson
- UCLA Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Boulevard, Suite 615, Los Angeles, CA 90024, USA; Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Boulevard, Suite 615, Los Angeles, CA 90024, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA; UCLA Brain Research Institute (BRI), David Geffen School of Medicine, University of California Los Angeles, 695 Charles E Young Dr S, Los Angeles, CA 90095, USA; UCLA Brain Tumor Imaging Laboratory (BTIL), Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, 924 Westwood Boulevard, Suite 615, Los Angeles, CA 90024, USA; UCLA Brain Tumor Imaging Laboratory (BTIL), Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, 924 Westwood Boulevard, Suite 615, Los Angeles, CA 90024, USA.
| | - Chelsea Hesterman
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Mollie Johnston
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Nicholas R Dudeck
- UCLA Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Boulevard, Suite 615, Los Angeles, CA 90024, USA; Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Boulevard, Suite 615, Los Angeles, CA 90024, USA
| | - Andrew C Charles
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Juan Pablo Villablanca
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Boulevard, Suite 615, Los Angeles, CA 90024, USA
| |
Collapse
|
37
|
Coppola G, Di Lorenzo C, Parisi V, Lisicki M, Serrao M, Pierelli F. Clinical neurophysiology of migraine with aura. J Headache Pain 2019; 20:42. [PMID: 31035929 PMCID: PMC6734510 DOI: 10.1186/s10194-019-0997-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/16/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The purpose of this review is to provide a comprehensive overview of the findings of clinical electrophysiology studies aimed to investigate changes in information processing of migraine with aura patients. MAIN BODY Abnormalities in alpha rhythm power and symmetry, the presence of slowing, and increased information flow in a wide range of frequency bands often characterize the spontaneous EEG activity of MA. Higher grand-average cortical response amplitudes, an increased interhemispheric response asymmetry, and lack of amplitude habituation were less consistently demonstrated in response to any kind of sensory stimulation in MA patients. Studies with single-pulse and repetitive transcranial magnetic stimulation (TMS) have reported abnormal cortical responsivity manifesting as greater motor evoked potential (MEP) amplitude, lower threshold for phosphenes production, and paradoxical effects in response to both depressing or enhancing repetitive TMS methodologies. Studies of the trigeminal system in MA are sparse and the few available showed lack of blink reflex habituation and abnormal findings on SFEMG reflecting subclinical, probably inherited, dysfunctions of neuromuscular transmission. The limited studies that were able to investigate patients during the aura revealed suppression of evoked potentials, desynchronization in extrastriate areas and in the temporal lobe, and large variations in direct current potentials with magnetoelectroencephalography. Contrary to what has been observed in the most common forms of migraine, patients with familial hemiplegic migraine show greater habituation in response to visual and trigeminal stimuli, as well as a higher motor threshold and a lower MEP amplitude than healthy subjects. CONCLUSION Since most of the electrophysiological abnormalities mentioned above were more frequently present and had a greater amplitude in migraine with aura than in migraine without aura, neurophysiological techniques have been shown to be of great help in the search for the pathophysiological basis of migraine aura.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica, 79–04100 Latina, Italy
| | | | | | - Marco Lisicki
- Headache Research Unit, University of Liège, Department of Neurology-Citadelle Hospital, Boulevard du Douzième de Ligne, 1-400 Liège, Belgium
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica, 79–04100 Latina, Italy
| | - Francesco Pierelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica, 79–04100 Latina, Italy
- IRCCS – Neuromed, Via Atinense, 18-86077 Pozzilli, (IS) Italy
| |
Collapse
|
38
|
Recent Insights in Migraine With Aura: A Narrative Review of Advanced Neuroimaging. Headache 2019; 59:637-649. [DOI: 10.1111/head.13512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2019] [Indexed: 12/30/2022]
|
39
|
Chong CD, Schwedt TJ, Hougaard A. Brain functional connectivity in headache disorders: A narrative review of MRI investigations. J Cereb Blood Flow Metab 2019; 39:650-669. [PMID: 29154684 PMCID: PMC6446420 DOI: 10.1177/0271678x17740794] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) is used to interrogate the functional connectivity and network organization amongst brain regions. Functional connectivity is determined by measuring the extent of synchronization in the spontaneous fluctuations of blood oxygenation level dependent (BOLD) signal. Here, we review current rs-fMRI studies in headache disorders including migraine, trigeminal autonomic cephalalgias, and medication overuse headache. We discuss (1) brain network alterations that are shared amongst the different headache disorders and (2) network abnormalities distinct to each headache disorder. In order to focus the section on migraine, the headache disorder that has been most extensively studied, we chose to include articles that interrogated functional connectivity: (i) during the attack phase; (ii) in migraine patients with aura compared to migraine patients without aura; and (iii) of regions within limbic, sensory, motor, executive and default mode networks and those which participate in multisensory integration. The results of this review show that headache disorders are associated with atypical functional connectivity of regions associated with pain processing as well as atypical functional connectivity of multiple core resting state networks such as the salience, sensorimotor, executive, attention, limbic, visual, and default mode networks.
Collapse
Affiliation(s)
| | - Todd J Schwedt
- 1 Department of Neurology, Mayo Clinic, Arizona, AZ, USA
| | - Anders Hougaard
- 2 Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Does the migraine attack start in the cortex and is the cortex critical in the migraine process? Neurol Sci 2019; 40:31-37. [DOI: 10.1007/s10072-019-03838-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Selective attention network impairment during the interictal period of migraine without aura. J Clin Neurosci 2018; 60:73-78. [PMID: 30327224 DOI: 10.1016/j.jocn.2018.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/03/2018] [Indexed: 10/28/2022]
Abstract
Attention deficits have been demonstrated in migraine patients during the interictal period, but these findings are not consistent across all studies. These inconsistencies may arise due to the different aspects of attention measured by various psychometric tests. Current theories divide attention into three separate domains subserved by separate networks: alerting, orienting, and executive control. The attention network test (ANT) was developed to measure all three attention networks and so may reveal more specific attention deficits among migraineurs. The aim of this study was to evaluate the attention function of migraine without aura (MwoA) patients using a series of neuropsychological scales and the ANT, and to assess the relationships between attention function and headache characteristics (e.g., history, frequency, and duration of each attack). Our results showed that MwoA patients exhibited significantly longer response times (RTs) of the executive control network, whereas no significant differences were observed in alerting and orienting network RTs between groups. MwoA patients also exhibited poorer performance than health control (HC) on the Stroop III and Shape Trail test B (STT B) tests. Spearman's analysis revealed positive correlations between executive control network RTs and both frequency and duration of migraine attack. MwoA patients demonstrate impairments of the executive control network, which appear to be exacerbated by more frequent and longer migraine attacks.
Collapse
|
42
|
Hu B, Wang X, He JB, Dai YJ, Zhang J, Yu Y, Sun Q, Lin-FengYan, Hu YC, Nan HY, Yang Y, Kaye AD, Cui GB, Wang W. Structural and functional brain changes in perimenopausal women who are susceptible to migraine: a study protocol of multi-modal MRI trial. BMC Med Imaging 2018; 18:26. [PMID: 30189858 PMCID: PMC6127929 DOI: 10.1186/s12880-018-0272-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/29/2018] [Indexed: 01/01/2023] Open
Abstract
Background As a common clinical symptom that often bothers midlife females, migraine is closely associated with perimenopause. Previous studies suggest that one of the most prominent triggers is the sudden decline of estrogen during perimenopausal period. Hormone replacement therapy (HRT) is widely used to prevent this suffering in perimenopausal women, but effective diagnostic system is lacked for quantifying the severity of the diseaase. To avoid the abuse and overuse of HRT, we propose to conduct a diagnostic trial using multimodal MRI techniques to quantify the severity of these perimenopausal migraineurs who are susceptible to the decline of estrogen. Methods Perimenopausal women suffering from migraine will be recruited from the pain clinic of our hospital. Perimenopausal women not suffering from any kind of headache will be recruited from the local community. Clinical assessment and multi-modal MR imaging examination will be conducted. A follow up will be conducted once half year within 3 years. Pain behavior, neuropsychology scores, fMRI analysis combined with suitable statistical software will be used to reveal the potential association between these above traits and the susceptibility of migraine. Discussion Multi-modal imaging features of both healthy controls and perimenopausal women who are susceptible to estrogen decline will be acquired. Imaging features will include volumetric characteristics, white matter integrity, functional characteristics, topological properties, and perfusion properties. Clinical information, such as basic information, blood estrogen level, information of migraine, and a bunch of neurological scale will also be used for statistic assessment. This clinical trial would help to build an effective screen system for quantifying the severity of illness of those susceptible women during the perimenopausal period. Trial registration This study has already been registered at Clinical Trials. gov (ID: NCT02820974). Registration date: September 28th, 2014.
Collapse
Affiliation(s)
- Bo Hu
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Xu Wang
- Student Brigade, Fourth Military Medical University (Air Force Medical University), 169 West Changle Road, Xi'an, 710032, Shaanxi Province, China
| | - Jie-Bing He
- Student Brigade, Fourth Military Medical University (Air Force Medical University), 169 West Changle Road, Xi'an, 710032, Shaanxi Province, China
| | - Yu-Jie Dai
- Department of Clinical Nutrition, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jin Zhang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Ying Yu
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Qian Sun
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Lin-FengYan
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Yu-Chuan Hu
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Hai-Yan Nan
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Yang Yang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Alan D Kaye
- Departments of Anesthesiology and Pharmacology, Louisiana State University School of Medicine, New Orleans, Louisiana, USA
| | - Guang-Bin Cui
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Wen Wang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
43
|
|
44
|
Disrupted Resting State Network of Fibromyalgia in Theta frequency. Sci Rep 2018; 8:2064. [PMID: 29391478 PMCID: PMC5794911 DOI: 10.1038/s41598-017-18999-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/12/2017] [Indexed: 12/26/2022] Open
Abstract
Fibromyalgia (FM), chronic widespread pain, exhibits spontaneous pain without external stimuli and is associated with altered brain activities during resting state. To understand the topological features of brain network in FM, we employed persistent homology which is a multiple scale network modeling framework not requiring thresholding. Spontaneous magnetoencephalography (MEG) activity was recorded in 19 healthy controls (HCs) and 18 FM patients. Barcode, single linkage dendrogram and single linkage matrix were generated based on the proposed modeling framework. In theta band, the slope of decrease in the number of connected components in barcodes showed steeper in HC, suggesting FM patients had decreased global connectivity. FM patients had reduced connectivity within default mode network, between middle/inferior temporal gyrus and visual cortex. The longer pain duration was correlated with reduced connectivity between inferior temporal gyrus and visual cortex. Our findings demonstrated that the aberrant resting state network could be associated with dysfunction of sensory processing in chronic pain. The spontaneous nature of FM pain may accrue to disruption of resting state network.
Collapse
|
45
|
Upadhyay J, Geber C, Hargreaves R, Birklein F, Borsook D. A critical evaluation of validity and utility of translational imaging in pain and analgesia: Utilizing functional imaging to enhance the process. Neurosci Biobehav Rev 2018; 84:407-423. [PMID: 28807753 PMCID: PMC5729102 DOI: 10.1016/j.neubiorev.2017.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/22/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023]
Abstract
Assessing clinical pain and metrics related to function or quality of life predominantly relies on patient reported subjective measures. These outcome measures are generally not applicable to the preclinical setting where early signs pointing to analgesic value of a therapy are sought, thus introducing difficulties in animal to human translation in pain research. Evaluating brain function in patients and respective animal model(s) has the potential to characterize mechanisms associated with pain or pain-related phenotypes and thereby provide a means of laboratory to clinic translation. This review summarizes the progress made towards understanding of brain function in clinical and preclinical pain states elucidated using an imaging approach as well as the current level of validity of translational pain imaging. We hypothesize that neuroimaging can describe the central representation of pain or pain phenotypes and yields a basis for the development and selection of clinically relevant animal assays. This approach may increase the probability of finding meaningful new analgesics that can help satisfy the significant unmet medical needs of patients.
Collapse
Affiliation(s)
| | - Christian Geber
- Department of Neurology, University Medical Centre Mainz, Mainz, Germany; DRK Schmerz-Zentrum Mainz, Mainz, Germany
| | - Richard Hargreaves
- Center for Pain and the Brain, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Harvard Medical School, Boston, MA 02115, United States
| | - Frank Birklein
- Department of Neurology, University Medical Centre Mainz, Mainz, Germany
| | - David Borsook
- Center for Pain and the Brain, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
46
|
Zhang J, Su J, Wang M, Zhao Y, Zhang QT, Yao Q, Lu H, Zhang H, Li GF, Wu YL, Liu YS, Liu FD, Zhuang MT, Shi YH, Hou TY, Zhao R, Qiao Y, Li J, Liu JR, Du X. The Posterior Insula Shows Disrupted Brain Functional Connectivity in Female Migraineurs Without Aura Based on Brainnetome Atlas. Sci Rep 2017; 7:16868. [PMID: 29203874 PMCID: PMC5715029 DOI: 10.1038/s41598-017-17069-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 11/21/2017] [Indexed: 12/18/2022] Open
Abstract
Long-term headache attacks may cause human brain network reorganization in patients with migraine. In the current study, we calculated the topologic properties of functional networks based on the Brainnetome atlas using graph theory analysis in 29 female migraineurs without aura (MWoA) and in 29 female age-matched healthy controls. Compared with controls, female MWoA exhibited that the network properties altered, and the nodal centralities decreased/increased in some brain areas. In particular, the right posterior insula and the left medial superior occipital gyrus of patients exhibited significantly decreased nodal centrality compared with healthy controls. Furthermore, female MWoA exhibited a disrupted functional network, and notably, the two sub-regions of the right posterior insula exhibited decreased functional connectivity with many other brain regions. The topological metrics of functional networks in female MWoA included alterations in the nodal centrality of brain regions and disrupted connections between pair regions primarily involved in the discrimination of sensory features of pain, pain modulation or processing and sensory integration processing. In addition, the posterior insula decreased the nodal centrality, and exhibited disrupted connectivity with many other brain areas in female migraineurs, which suggests that the posterior insula plays an important role in female migraine pathology.
Collapse
Affiliation(s)
- Jilei Zhang
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Jingjing Su
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Mengxing Wang
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Ying Zhao
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qi-Ting Zhang
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qian Yao
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Haifeng Lu
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Hui Zhang
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Ge-Fei Li
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi-Lan Wu
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi-Sheng Liu
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Feng-Di Liu
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Mei-Ting Zhuang
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yan-Hui Shi
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Tian-Yu Hou
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Rong Zhao
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuan Qiao
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jianqi Li
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Jian-Ren Liu
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Xiaoxia Du
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of the most recent and significant functional neuroimaging studies which have clarified the complex mechanisms underlying migraine pathophysiology. RECENT FINDINGS The recent data allow us to overcome the concept of a migraine generator suggesting that functional networks abnormalities may lead to changes in different brain area activities and consequent reduced migraine thresholds susceptibility, likely associated with higher migraine severity and burden. Although functional magnetic resonance imaging studies have allowed recognition of several migraine mechanisms, its pathophysiology is not completely understood and is still a matter of research. Nevertheless, in recent years, functional magnetic resonance imaging studies have allowed us to implement our knowledge of migraine pathophysiology. The pivotal role of both the brainstem and the hippocampus in the first phase of a migraine attack, the involvement of limbic pathway in the constitution of a migrainous pain network, the disrupted functional connectivity in cognitive brain networks, as well as the abnormal function of the visual network in patients with migraine with aura are the main milestones in migraine imaging achieved through functional imaging advances. We believe that further studies based on combined functional and structural techniques and the investigation of the different phases of migraine cycle may represent an efficient methodological approach for comprehensively looking into the migrainous brain secrets.
Collapse
|
48
|
Galioto R, O'Leary KC, Gunstad J, Thomas JG, Lipton RB, Pavlović JM, Roth J, Rathier L, Bond DS. The role of migraine headache severity, associated features and interactions with overweight/obesity in inhibitory control. Int J Neurosci 2017; 128:63-70. [PMID: 28796589 DOI: 10.1080/00207454.2017.1366474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AIM OF THE STUDY While migraine and obesity are related and both conditions are associated with reduced executive functioning, no study has examined whether obesity exacerbates executive dysfunction in migraine. This cross-sectional study examined whether overweight/obesity moderated associations of migraine severity and associated features with inhibitory control, one aspect of executive function. MATERIALS AND METHODS Women (n = 124) aged 18-50 years old with overweight/obesity body mass index (BMI) = 35.1 ± 6.4 kg/m2 and migraine completed a 28-day smartphone-based headache diary assessing migraine headache severity (attack frequency, pain intensity) and frequency of associated features (aura, photophobia, phonophobia, nausea). They then completed computerized measures of inhibitory control during an interictal (headache-free) period. RESULTS Participants with higher migraine attack frequency performed worse on the Flanker test (accuracy and reaction time; p < .05). Migraine attack frequency and pain intensity interacted with BMI to predict slower Stroop and/or Flanker Reaction Time (RT; p < .05). More frequent photophobia, phonophobia and aura were independently related to slower RT on the Stroop and/or Flanker tests (p < .05), and BMI moderated the relationship between the occurrence of aura and Stroop RT (p = .03). CONCLUSIONS Associations of migraine severity and presence of associated features with inhibitory control varied by BMI in overweight/obese women with migraine. These findings warrant consideration of weight status in clarifying the role of migraine in executive functioning.
Collapse
Affiliation(s)
- Rachel Galioto
- a Department of Psychiatry and Human Behavior , Alpert Medical School of Brown University/Rhode Island Hospital , Providence , RI , USA
| | - Kevin C O'Leary
- b Department of Psychiatry and Human Behavior , Alpert Medical School of Brown University/The Miriam Hospital Weight Control and Diabetes Research Center , Providence , RI , USA
| | - John Gunstad
- c Department of Psychological Sciences , Kent State University , Kent , OH , USA
| | - J Graham Thomas
- b Department of Psychiatry and Human Behavior , Alpert Medical School of Brown University/The Miriam Hospital Weight Control and Diabetes Research Center , Providence , RI , USA
| | - Richard B Lipton
- d Department of Neurology and the Montefiore Headache Center , Albert Einstein College of Medicine/Montefiore Medical Center , Bronx , NY , USA
| | - Jelena M Pavlović
- d Department of Neurology and the Montefiore Headache Center , Albert Einstein College of Medicine/Montefiore Medical Center , Bronx , NY , USA
| | - Julie Roth
- e Department of Neurology , Alpert Medical School of Brown University/Rhode Island Hospital , Providence , RI , USA
| | - Lucille Rathier
- a Department of Psychiatry and Human Behavior , Alpert Medical School of Brown University/Rhode Island Hospital , Providence , RI , USA
| | - Dale S Bond
- b Department of Psychiatry and Human Behavior , Alpert Medical School of Brown University/The Miriam Hospital Weight Control and Diabetes Research Center , Providence , RI , USA
| |
Collapse
|
49
|
Assessment of gray and white matter structural alterations in migraineurs without aura. J Headache Pain 2017; 18:74. [PMID: 28733941 PMCID: PMC5520823 DOI: 10.1186/s10194-017-0783-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/13/2017] [Indexed: 01/03/2023] Open
Abstract
Background Migraine constitute a disorder characterized by recurrent headaches, and have a high prevalence, a high socio-economic burden and severe effects on quality of life. Our previous fMRI study demonstrated that some brain regions are functional alterations in migraineurs. As the function of the human brain is related to its structure, we further investigated white and gray matter structural alterations in migraineurs. Methods In current study, we used surface-based morphometry, voxel-based morphometry and diffusion tensor imaging analyses to detect structural alterations of the white matter and gray matter in 32 migraineurs without aura compared with 32 age- and gender-matched healthy controls. Results We found that migraineurs without aura exhibited significantly increased gray matter volume in the bilateral cerebellar culmen, increased cortical thickness in the lateral occipital-temporal cortex, decreased cortical thickness in the right insula, increased gyrification index in left postcentral gyrus, superior parietal lobule and right lateral occipital cortex, and decreased gyrification index in the left rostral middle frontal gyrus compared with controls. No significant change in white matter microstructure was found in DTI analyses. Conclusion The significantly altered gray matter brain regions were known to be associated with sensory discrimination of pain, multi-sensory integration and nociceptive information processing and were consistent with our previous fMRI study, and may be involved in the pathological mechanism of migraine without aura.
Collapse
|
50
|
Androulakis XM, Krebs K, Peterlin BL, Zhang T, Maleki N, Sen S, Rorden C, Herath P. Modulation of intrinsic resting-state fMRI networks in women with chronic migraine. Neurology 2017; 89:163-169. [PMID: 28615426 DOI: 10.1212/wnl.0000000000004089] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/06/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To evaluate the intrinsic resting functional connectivity of the default mode network (DMN), salience network (SN), and central executive network (CEN) network in women with chronic migraine (CM), and whether clinical features are associated with such abnormalities. METHODS We analyzed resting-state connectivity in 29 women with CM as compared to age- and sex-matched controls. Relationships between clinical characteristics and changes in targeted networks connectivity were evaluated using a multivariate linear regression model. RESULTS All 3 major intrinsic brain networks were less coherent in CM (DMN: p = 0.030, SN: p = 0.007, CEN: p = 0.002) as compared to controls. When stratified based on medication overuse headache (MOH) status, CM without MOH (DMN: p = 0.029, SN: p = 0.023, CEN: p = 0.003) and CM with MOH (DMN: p = 0.016, SN: p = 0.016, CEN: p = 0.015) were also less coherent as compared to controls. There was no difference in CM with MOH as compared to CM without MOH (DMN: p = 0.382, SN: p = 0.408, CEN: p = 0.419). The frequency of moderate and severe headache days was associated with decreased connectivity in SN (p = 0.003) and CEN (p = 0.015), while cutaneous allodynia was associated with increased connectivity in SN (p = 0.011). CONCLUSIONS Our results demonstrated decreased overall resting-state functional connectivity of the 3 major intrinsic brain networks in women with CM, and these patterns were associated with frequency of moderate to severe headache and cutaneous allodynia.
Collapse
Affiliation(s)
- X Michelle Androulakis
- From the Departments of Neurology (X.M.A., K.K., S.S., P.H.), Statistics (T.Z.), and Psychology (C.R.), University of South Carolina, Columbia; Department of Neurology (B.L.P.), Johns Hopkins University, Baltimore, MD; and Department of Psychiatry (N.M.), Massachusetts General Hospital, Boston.
| | - Kaitlin Krebs
- From the Departments of Neurology (X.M.A., K.K., S.S., P.H.), Statistics (T.Z.), and Psychology (C.R.), University of South Carolina, Columbia; Department of Neurology (B.L.P.), Johns Hopkins University, Baltimore, MD; and Department of Psychiatry (N.M.), Massachusetts General Hospital, Boston
| | - B Lee Peterlin
- From the Departments of Neurology (X.M.A., K.K., S.S., P.H.), Statistics (T.Z.), and Psychology (C.R.), University of South Carolina, Columbia; Department of Neurology (B.L.P.), Johns Hopkins University, Baltimore, MD; and Department of Psychiatry (N.M.), Massachusetts General Hospital, Boston
| | - Tianming Zhang
- From the Departments of Neurology (X.M.A., K.K., S.S., P.H.), Statistics (T.Z.), and Psychology (C.R.), University of South Carolina, Columbia; Department of Neurology (B.L.P.), Johns Hopkins University, Baltimore, MD; and Department of Psychiatry (N.M.), Massachusetts General Hospital, Boston
| | - Nasim Maleki
- From the Departments of Neurology (X.M.A., K.K., S.S., P.H.), Statistics (T.Z.), and Psychology (C.R.), University of South Carolina, Columbia; Department of Neurology (B.L.P.), Johns Hopkins University, Baltimore, MD; and Department of Psychiatry (N.M.), Massachusetts General Hospital, Boston
| | - Souvik Sen
- From the Departments of Neurology (X.M.A., K.K., S.S., P.H.), Statistics (T.Z.), and Psychology (C.R.), University of South Carolina, Columbia; Department of Neurology (B.L.P.), Johns Hopkins University, Baltimore, MD; and Department of Psychiatry (N.M.), Massachusetts General Hospital, Boston
| | - Chris Rorden
- From the Departments of Neurology (X.M.A., K.K., S.S., P.H.), Statistics (T.Z.), and Psychology (C.R.), University of South Carolina, Columbia; Department of Neurology (B.L.P.), Johns Hopkins University, Baltimore, MD; and Department of Psychiatry (N.M.), Massachusetts General Hospital, Boston
| | - Priyantha Herath
- From the Departments of Neurology (X.M.A., K.K., S.S., P.H.), Statistics (T.Z.), and Psychology (C.R.), University of South Carolina, Columbia; Department of Neurology (B.L.P.), Johns Hopkins University, Baltimore, MD; and Department of Psychiatry (N.M.), Massachusetts General Hospital, Boston
| |
Collapse
|