1
|
Li F, Si YT, Tang JW, Umar Z, Xiong XS, Wang JT, Yuan Q, Tay ACY, Chua EG, Zhang L, Marshall BJ, Yang WX, Gu B, Wang L. Rapid profiling of carcinogenic types of Helicobacter pylori infection via deep learning analysis of label-free SERS spectra of human serum. Comput Struct Biotechnol J 2024; 23:3379-3390. [PMID: 39329094 PMCID: PMC11424770 DOI: 10.1016/j.csbj.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
WHO classified Helicobacter pylori as a Group I carcinogen for gastric cancer as early as 1994. However, despite the high prevalence of H. pylori infection, only about 3 % of infected individuals eventually develop gastric cancer, with the highly virulent H. pylori strains expressing cytotoxin-associated protein (CagA) and vacuolating cytotoxin (VacA) being critical factors in gastric carcinogenesis. It is well known that H. pylori infection is divided into two types in terms of the presence and absence of CagA and VacA toxins in serum, that is, carcinogenic Type I infection (CagA+/VacA+, CagA+/VacA-, CagA-/VacA+) and non-carcinogenic Type II infection (CagA-/VacA-). Currently, detecting the two carcinogenic toxins in active modes is mainly done by diagnosing their serological antibodies. However, the method is restricted by expensive reagents and intricate procedures. Therefore, establishing a rapid, accurate, and cost-effective way for serological profiling of carcinogenic H. pylori infection holds significant implications for effectively guiding H. pylori eradication and gastric cancer prevention. In this study, we developed a novel method by combining surface-enhanced Raman spectroscopy with the deep learning algorithm convolutional neural network to create a model for distinguishing between serum samples with Type I and Type II H. pylori infections. This method holds the potential to facilitate rapid screening of H. pylori infections with high risks of carcinogenesis at the population level, which can have long-term benefits in reducing gastric cancer incidence when used for guiding the eradication of H. pylori infections.
Collapse
Affiliation(s)
- Fen Li
- Department of Laboratory Medicine, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huai'an, Jiangsu, China
| | - Yu-Ting Si
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Medical Technology School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jia-Wei Tang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zeeshan Umar
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Xue-Song Xiong
- Department of Laboratory Medicine, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huai'an, Jiangsu, China
| | - Jin-Ting Wang
- Department of Gastroenterology, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huai'an, Jiangsu, China
| | - Quan Yuan
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Alfred Chin Yen Tay
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
- The Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, Western Australia, Australia
- Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Marshall International Digestive Diseases Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Eng Guan Chua
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
- The Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, Western Australia, Australia
- Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Marshall International Digestive Diseases Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Barry J Marshall
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
- The Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, Western Australia, Australia
- Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Marshall International Digestive Diseases Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei-Xuan Yang
- Department of Gastroenterology, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huai'an, Jiangsu, China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Division of Microbiology and Immunology, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- School of Agriculture and Food Sustainability, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Xue ZJ, Gong YN, He LH, Sun L, You YH, Fan DJ, Zhang MJ, Yan XM, Zhang JZ. Amino acid deletions at positions 893 and 894 of cytotoxin-associated gene A protein affect Helicobacter pylori gastric epithelial cell interactions. World J Gastroenterol 2024; 30:4449-4460. [DOI: 10.3748/wjg.v30.i41.4449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) persistently colonizes the human gastric mucosa in more than 50% of the global population, leading to various gastroduodenal diseases ranging from chronic gastritis to gastric carcinoma. Cytotoxin-associated gene A (CagA) protein, an important oncoprotein, has highly polymorphic Glu-Pro-Ile-Tyr-Ala segments at the carboxyl terminus, which play crucial roles in pathogenesis. Our previous study revealed a significant association between amino acid deletions at positions 893 and 894 and gastric cancer.
AIM To investigate the impact of amino acid deletions at positions 893 and 894 on CagA function.
METHODS We selected a representative HZT strain from a gastric cancer patient with amino acid deletions at positions 893 and 894. The cagA gene was amplified and mutated into cagA-NT and cagA-NE (sequence characteristics of strains from nongastric cancer patients), cloned and inserted into pAdtrack-CMV, and then transfected into AGS cells. The expression of cagA and its mutants was examined using real-time polymerase chain reaction and Western blotting, cell elongation via cell counting, F-actin cytoskeleton visualization using fluorescence staining, and interleukin-8 (IL-8) secretion via enzyme-linked immunosorbent assay.
RESULTS The results revealed that pAdtrack/cagA induced a more pronounced hummingbird phenotype than pAdtrack/cagA-NT and pAdtrack/cagA-NE (40.88 ± 3.10 vs 32.50 ± 3.17, P < 0.001 and 40.88 ± 3.10 vs 32.17 ± 3.00, P < 0.001) at 12 hours after transfection. At 24 hours, pAdtrack/cagA-NE induced significantly fewer hummingbird phenotypes than pAdtrack/cagA and pAdtrack/cagA-NT (46.02 ± 2.12 vs 53.90 ± 2.10, P < 0.001 and 46.02 ± 2.12 vs 51.15 ± 3.74, P < 0.001). The total amount of F-actin caused by pAdtrack/cagA was significantly lower than that caused by pAdtrack/cagA-NT and pAdtrack/cagA-NE (27.54 ± 17.37 vs 41.51 ± 11.90, P < 0.001 and 27.54 ± 17.37 vs 41.39 ± 14.22, P < 0.001) at 12 hours after transfection. Additionally, pAdtrack/cagA induced higher IL-8 secretion than pAdtrack/cagA-NT and pAdtrack/cagA-NE at different times after transfection.
CONCLUSION Amino acid deletions at positions 893 and 894 enhance CagA pathogenicity, which is crucial for revealing the pathogenic mechanism of CagA and identifying biomarkers of highly pathogenic H. pylori.
Collapse
Affiliation(s)
- Zhi-Jing Xue
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| | - Ya-Nan Gong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Li-Hua He
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lu Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuan-Hai You
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Dong-Jie Fan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Mao-Jun Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiao-Mei Yan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jian-Zhong Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
3
|
Zhao SQ, Zheng HL, Zhong XT, Wang ZY, Su Y, Shi YY. Effects and mechanisms of Helicobacter pylori infection on the occurrence of extra-gastric tumors. World J Gastroenterol 2024; 30:4090-4103. [DOI: 10.3748/wjg.v30.i37.4090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/23/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Helicobacter pylori (H. pylori) colonizes the human stomach and many studies have discussed the mechanisms of H. pylori infection leading to gastric diseases, including gastric cancer. Additionally, increasing data have shown that the infection of H. pylori may contribute to the development of extra-gastric diseases and tumors. Inflammation, systemic immune responses, microbiome disorders, and hypergastrinemia caused by H. pylori infection are associated with many extra-gastric malignancies. This review highlights recent discoveries; discusses the relationship between H. pylori and various extra-gastric tumors, such as colorectal cancer, lung cancer, cholangiocarcinoma, and gallbladder carcinoma; and explores the mechanisms of extra-gastric carcinogenesis by H. pylori. Overall, these findings refine our understanding of the pathogenic processes of H. pylori, provide guidance for the clinical treatment and management of H. pylori-related extra-gastric tumors, and help improve prognosis.
Collapse
Affiliation(s)
- Shi-Qing Zhao
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
- Health Science Center, Peking University, Beijing 100191, China
| | - Hui-Ling Zheng
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Xiao-Tian Zhong
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
- Health Science Center, Peking University, Beijing 100191, China
| | - Zi-Ye Wang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
- Health Science Center, Peking University, Beijing 100191, China
| | - Yi Su
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
- Health Science Center, Peking University, Beijing 100191, China
| | - Yan-Yan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
4
|
Chen D, Wu L, Liu X, Wang Q, Gui S, Bao L, Wang Z, He X, Zhao Y, Zhou J, Xie Y. Helicobacter pylori CagA mediated mitophagy to attenuate the NLRP3 inflammasome activation and enhance the survival of infected cells. Sci Rep 2024; 14:21648. [PMID: 39289452 PMCID: PMC11408507 DOI: 10.1038/s41598-024-72534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
Helicobacter pylori (H. pylori) is one of the most common bacterial infections in the world, and its key virulence component CagA is the leading cause of gastric cancer. Mitophagy is a form of selective autophagy that eliminates damaged mitochondria and is essential for some viruses and bacteria to evade the immune system. However, the mechanisms by which CagA mediates H. pylori-induced mitophagy and NLRP3 inflammasome activation remain elusive. In this study, we reported that H. pylori primarily uses its CagA to induce mitochondrial oxidative damage, mitochondrial dysfunction, dynamic imbalance, and to block autophagic flux. Inhibition of mitophagy led to an increase in NLRP3 inflammasome activation and apoptosis and a decrease in the viability of H. pylori-infected cells. Our findings suggested that H. pylori induces mitochondrial dysfunction and mitophagy primarily via CagA. It reduces NLRP3 inflammasome activation to evade host immune surveillance and increases the survival and viability of infected cells, potentially leading to gastric cancer initiation and development. Our findings provide new insights into the pathogenesis of H. pylori-induced gastric cancer, and inhibition of mitophagy may be one of the novel techniques for the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Dingyu Chen
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education & Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550004, China
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lixia Wu
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education & Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550004, China
| | - Xi Liu
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education & Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550004, China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education & Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550004, China
| | - Shuqin Gui
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education & Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550004, China
| | - Liya Bao
- Hepatitis Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Zhengrong Wang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
| | - Xiaofeng He
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education & Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education & Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550004, China.
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education & Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550004, China.
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education & Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
5
|
Huang M, Luo S, Yang J, Xiong H, Lu X, Ma X, Zeng J, Efferth T. Optimized therapeutic potential of Sijunzi-similar formulae for chronic atrophic gastritis via Bayesian network meta-analysis. EXCLI JOURNAL 2024; 23:1185-1207. [PMID: 39421026 PMCID: PMC11484511 DOI: 10.17179/excli2024-7618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024]
Abstract
Chronic atrophic gastritis (CAG) is considered as a significant risk factor for triggering gastric cancer incidence, if not effectively treated. Sijunzi decoction (SD) is a well-known classic formula for treating gastric disorders, and Sijunzi-similar formulae (SF) derived from SD have also been highly regarded by Chinese clinical practitioners for their effectiveness in treating chronic atrophic gastritis. Currently, there is a lack of meta-analysis for these formulae, leaving unclear which exhibits optimal efficacy. Therefore, we employed Bayesian network meta-analysis (BNMA) to evaluate the efficacy and safety of SF as an intervention for CAG and to establish a scientific foundation for the clinical utilization of SF. The result of meta-analysis demonstrated that the combination of SF and basic therapy outperformed basic therapy alone in terms of clinical efficacy rate, eradication rate of H. pylori, and incidence of adverse events. As indicated by the SUCRA value, Chaishao Liujunzi decoction (CLD) demonstrated superior efficacy in enhancing clinical effectiveness and ameliorating H. pylori infection, and it also showed remarkable effectiveness in minimizing the occurrence of adverse events. Comprehensive analysis of therapeutic efficacy suggests that CLD is most likely the optimal choice among these six formulations, holding potential value for optimizing clinical treatment strategies. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Meilan Huang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shiman Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayue Yang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Huiling Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- TCM Regulating Metabolic Disease Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
6
|
Paes Dutra JA, Gonçalves Carvalho S, Soares de Oliveira A, Borges Monteiro JR, Rodrigues Pereira de Oliveira Borlot J, Tavares Luiz M, Bauab TM, Rezende Kitagawa R, Chorilli M. Microparticles and nanoparticles-based approaches to improve oral treatment of Helicobacter pylori infection. Crit Rev Microbiol 2024; 50:728-749. [PMID: 37897442 DOI: 10.1080/1040841x.2023.2274835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
Helicobacter pylori is a gram-negative, spiral-shaped, flagellated bacterium that colonizes the stomach of half the world's population. Helicobacter pylori infection causes pathologies of varying severity. Standard oral therapy fails in 15-20% since the barriers of the oral route decrease the bioavailability of antibiotics and the intrinsic factors of bacteria increase the rates of resistance. Nanoparticles and microparticles are promising strategies for drug delivery into the gastric mucosa and targeting H. pylori. The variety of building blocks creates systems with distinct colloidal, surface, and biological properties. These features improve drug-pathogen interactions, eliminate drug depletion and overuse, and enable the association of multiple actives combating H. pylori on several fronts. Nanoparticles and microparticles are successfully used to overcome the barriers of the oral route, physicochemical inconveniences, and lack of selectivity of current therapy. They have proven efficient in employing promising anti-H. pylori compounds whose limitation is oral route instability, such as some antibiotics and natural products. However, the current challenge is the applicability of these strategies in clinical practice. For this reason, strategies employing a rational design are necessary, including in the development of nano- and microsystems for the oral route.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcela Tavares Luiz
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Tais Maria Bauab
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
7
|
Li S, Feng W, Wu J, Cui H, Wang Y, Liang T, An J, Chen W, Guo Z, Lei H. A Narrative Review: Immunometabolic Interactions of Host-Gut Microbiota and Botanical Active Ingredients in Gastrointestinal Cancers. Int J Mol Sci 2024; 25:9096. [PMID: 39201782 PMCID: PMC11354385 DOI: 10.3390/ijms25169096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
The gastrointestinal tract is where the majority of gut microbiota settles; therefore, the composition of the gut microbiota and the changes in metabolites, as well as their modulatory effects on the immune system, have a very important impact on the development of gastrointestinal diseases. The purpose of this article was to review the role of the gut microbiota in the host environment and immunometabolic system and to summarize the beneficial effects of botanical active ingredients on gastrointestinal cancer, so as to provide prospective insights for the prevention and treatment of gastrointestinal diseases. A literature search was performed on the PubMed database with the keywords "gastrointestinal cancer", "gut microbiota", "immunometabolism", "SCFAs", "bile acids", "polyamines", "tryptophan", "bacteriocins", "immune cells", "energy metabolism", "polyphenols", "polysaccharides", "alkaloids", and "triterpenes". The changes in the composition of the gut microbiota influenced gastrointestinal disorders, whereas their metabolites, such as SCFAs, bacteriocins, and botanical metabolites, could impede gastrointestinal cancers and polyamine-, tryptophan-, and bile acid-induced carcinogenic mechanisms. GPRCs, HDACs, FXRs, and AHRs were important receptor signals for the gut microbial metabolites in influencing the development of gastrointestinal cancer. Botanical active ingredients exerted positive effects on gastrointestinal cancer by influencing the composition of gut microbes and modulating immune metabolism. Gastrointestinal cancer could be ameliorated by altering the gut microbial environment, administering botanical active ingredients for treatment, and stimulating or blocking the immune metabolism signaling molecules. Despite extensive and growing research on the microbiota, it appeared to represent more of an indicator of the gut health status associated with adequate fiber intake than an autonomous causative factor in the prevention of gastrointestinal diseases. This study detailed the pathogenesis of gastrointestinal cancers and the botanical active ingredients used for their treatment in the hope of providing inspiration for research into simpler, safer, and more effective treatment pathways or therapeutic agents in the field.
Collapse
Affiliation(s)
- Shanlan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Jiaqi Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Herong Cui
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Yiting Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Tianzhen Liang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Jin An
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wanling Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Zhuoqian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| |
Collapse
|
8
|
Hurtado-Monzón EG, Valencia-Mayoral P, Silva-Olivares A, Bañuelos C, Velázquez-Guadarrama N, Betanzos A. The Helicobacter pylori infection alters the intercellular junctions on the pancreas of gerbils (Meriones unguiculatus). World J Microbiol Biotechnol 2024; 40:273. [PMID: 39030443 PMCID: PMC11271430 DOI: 10.1007/s11274-024-04081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Helicobacter pylori is a common resident in the stomach of at least half of the world's population and recent evidence suggest its emergence in other organs such as the pancreas. In this organ, the presence of H. pylori DNA has been reported in cats, although the functional implications remain unknown. In this work, we determined distinct features related to the H. pylori manifestation in pancreas in a rodent model, in order to analyse its functional and structural effect. Gerbils inoculated with H. pylori exhibited the presence of this bacterium, as revealed by the expression of some virulence factors, as CagA and OMPs in stomach and pancreas, and confirmed by urease activity, bacterial culture, PCR and immunofluorescence assays. Non-apparent morphological changes were observed in pancreatic tissue of infected animals; however, delocalization of intercellular junction proteins (claudin-1, claudin-4, occludin, ZO-1, E-cadherin, β-catenin, desmoglein-2 and desmoplakin I/II) and rearrangement of the actin-cytoskeleton were exhibited. This structural damage was consistent with alterations in the distribution of insulin and glucagon, and a systemic inflammation, event demonstrated by elevated IL-8 levels. Overall, these findings indicate that H. pylori can reach the pancreas, possibly affecting its function and contributing to the development of pancreatic diseases.
Collapse
Affiliation(s)
- Edgar G Hurtado-Monzón
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, México
| | - Pedro Valencia-Mayoral
- Departamento de Patología Clínica y Experimental del Hospital Infantil de México Federico Gómez, Ciudad de Mexico, México
| | - Angélica Silva-Olivares
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, México
| | - Cecilia Bañuelos
- Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico Para La Sociedad, CINVESTAV-IPN, Ciudad de Mexico, México
| | - Norma Velázquez-Guadarrama
- Laboratorio de Investigación en Enfermedades Infecciosas, Área de Genética Bacteriana del Hospital Infantil de México Federico Gómez, Ciudad de Mexico, México.
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, México.
| |
Collapse
|
9
|
Zhang Z, Cui M, Ji X, Su G, Zhang YX, Du L. Candidate Antigens and the Development of Helicobacter pylori Vaccines. Helicobacter 2024; 29:e13128. [PMID: 39177204 DOI: 10.1111/hel.13128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Infection with Helicobacter pylori (Hp) mostly occurs during childhood, and persistent infection may lead to severe gastric diseases and even gastric cancer. Currently, the primary method for eradicating Hp is through antibiotic treatment. However, the increasing multidrug resistance in Hp strains has diminished the effectiveness of antibiotic treatments. Vaccination could potentially serve as an effective intervention to resolve this issue. AIMS Through extensive research and analysis of the vital protein characteristics involved in Hp infection, we aim to provide references for subsequent vaccine antigen selection. Additionally, we summarize the current research and development of Hp vaccines in order to provide assistance for future research. MATERIALS AND METHODS Utilizing the databases PubMed and the Web of Science, a comprehensive search was conducted to compile articles pertaining to Hp antigens and vaccines. The salient aspects of these articles were then summarized to provide a detailed overview of the current research landscape in this field. RESULTS Several potential antigens have been identified and introduced through a thorough understanding of the infection process and pathogenic mechanisms of Hp. The conserved and widely distributed candidate antigens in Hp, such as UreB, HpaA, GGT, and NAP, are discussed. Proteins such as CagA and VacA, which have significant virulence effects but relatively poor conservatism, require further evaluation. Emerging antigens like HtrA and dupA have significant research value. In addition, vaccines based on these candidate antigens have been compiled and summarized. CONCLUSIONS Vaccines are a promising method for preventing and treating Hp. While some Hp vaccines have achieved promising results, mature products are not yet available on the market. Great efforts have been directed toward developing various types of vaccines, underscoring the need for developers to select appropriate antigens and vaccine formulations to improve success rates.
Collapse
Affiliation(s)
- Zhanhua Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Man Cui
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Xiaohui Ji
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Guimin Su
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Lin Du
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| |
Collapse
|
10
|
Sukthaworn S, Moungthard H, Sirisai C, Anuponganan W, Peerathippayamongkol C, Mus-U-Dee M, Taengchaiyaphum S. Helicobacter pylori Cytotoxin-Associated Gene A (cagA) and Vacuolating Cytotoxin Gene A (vacA) Genotypes in Gastrointestinal Patients From Central Thailand. Cureus 2024; 16:e64164. [PMID: 39119398 PMCID: PMC11309081 DOI: 10.7759/cureus.64164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction The development of diseases associated with Helicobacter pylori (H. pylori) infection is closely linked to its virulence genes, which vary by geographic region. This study aimed to determine the prevalence of H. pylori cytotoxin-associated gene A (cagA) and vacuolating cytotoxin gene A (vacA) genes and their genotypes in patients with gastrointestinal diseases. Methods Patients diagnosed with gastrointestinal disease based on endoscopic findings were recruited for the study. Gastric biopsies were collected to screen for H. pylori infection using polymerase chain reaction (PCR). Subsequently, infected samples were tested for cagA and vacA genes, and their genotypes were analyzed by sequencing. Results Among 250 cases, 56% (140/250) exhibited gastrointestinal diseases. Of these cases, 32.1% (45/140) were infected with H. pylori. Regarding gene detection, 40 (88.9%) samples were positive for cagA, while all samples were positive for vacA. For cagA, the Western type with the ABC pattern was the most prominent. There was a statistically significant association between cagA genotypes and clinical outcomes, with the Western type being more prevalent in gastritis patients. For vacA, there was a high prevalence of the s1 and i1, while the m1 and m2 showed similar prevalence. In our combined analysis, the dominant vacA genotype combinations were s1m1i1 (46.7%). There were no statistical differences between the vacA genotypes and clinical outcomes (P > 0.05). Conclusion This study revealed a high prevalence of H. pylori cagA and vacA genes, but there were variations in their genotypes. A correlation was observed between the Western-type cagA and gastritis; however, no association was found between vacA genotypes and clinical outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | - Maneerut Mus-U-Dee
- Department of Anatomical Pathology, National Cancer Institute, Bangkok, THA
| | - Suparat Taengchaiyaphum
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Bangkok, THA
| |
Collapse
|
11
|
Hao N, Liu B, Zhao M, Lu M, Chen F, Kang J, Tang X, Zhang Y, Dang C. Real-world evidence of a novel tetravalent immunoglobulin Y effectiveness and safety in patients with the refractory Helicobacter pylori infection. BMC Infect Dis 2024; 24:647. [PMID: 38937679 PMCID: PMC11210110 DOI: 10.1186/s12879-024-09498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Refractory Helicobacter pylori (H. pylori) infection inevitably increase the difficulty of drug selection. Here, we described our experience with the use of a novel tetravalent IgY against H. pylori for the treatment of patients with refractory H. pylori infection. METHODS Patients were randomly assigned to receive the standard quadruple therapy (amoxicillin, clarithromycin, omeprazole and bismuth potassium citrate ) for 2 weeks or 250 mg of avian polyclonal IgY orally twice a day for 4 weeks. The binding efficacy of IgY to H. pylori antigens was detected by western blotting13. C-urea breath test was performed to evaluate the eradication therap's efficacy. The side effects of IgY were evaluated via various routine tests. The questionnaire was used to gather clinical symptoms and adverse reactions. RESULTS Western blot analysis showed that tetravalent IgY simultaneously bind to VacA, HpaA, CagA and UreB of H. pylori. Tetravalent IgY had an eradication rate of 50.74% in patients with refractory H. pylori and an inhibition rate of 50.04% against DOB (delta over baseline) of 13C-urea. The symptom relief rate was 61.76% in thirty-four patients with clinical symptoms, and no adverse reactions were observed during tetravalent IgY treatment period. CONCLUSIONS Polyclonal avian tetravalent IgY reduced H. pylori infection, and showed good efficacy and safety in the treatment of refractory H. pylori infection patients, which represented an effective therapeutic option of choice for patients with refractory H. pylori infection.
Collapse
Affiliation(s)
- Nan Hao
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Liu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Meng Zhao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mingming Lu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Feiyi Chen
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jialu Kang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaojun Tang
- Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
12
|
He X, Huang T, Wang Q, Bao L, Wang Z, Song H, Li Y, Zhou J, Zhao Y, Xie Y. A prominent role of LncRNA H19 in H. pylori CagA induced DNA damage response and cell malignancy. Sci Rep 2024; 14:14185. [PMID: 38902391 PMCID: PMC11190245 DOI: 10.1038/s41598-024-65221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
Helicobacter pylori (H. pylori), together with its CagA, has been implicated in causing DNA damage, cell cycle arrest, apoptosis, and the development of gastric cancer. Although lncRNA H19 is abundantly expressed in gastric cancer and functions as a pro-oncogene, it remains unclear whether lncRNA H19 contributes to the oncogenic process of H. pylori CagA. This study investigates the role of H19 in the DNA damage response and malignancy induced by H. pylori. It was observed that cells infected with CagA+ H. pylori strain (GZ7/cagA) showed significantly higher H19 expression, resulting in increased γH2A.X and p-ATM expression and decreased p53 and Rad51 expression. Faster cell migration and invasion was also observed, which was reversed by H19 knockdown in H. pylori. YWHAZ was identified as an H19 target protein, and its expression was increased in H19 knockdown cells. GZ7/cagA infection responded to the increased YWHAZ expression induced by H19 knockdown. In addition, H19 knockdown stimulated cells to enter the G2-phase and attenuated the effect of GZ7/cagA infection on the cellular S-phase barrier. The results suggest that H. pylori CagA can upregulate H19 expression, participate in the DNA damage response and promote cell migration and invasion, and possibly affect cell cycle arrest via regulation of YWHAZ.
Collapse
Affiliation(s)
- Xiaofeng He
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China
- Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, People's Republic of China
| | - Tingting Huang
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Liya Bao
- Hepatitis Laboratory, Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
| | - Zhengrong Wang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
| | - Hui Song
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Yanhong Li
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China.
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China.
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China.
| |
Collapse
|
13
|
Johnston EL, Guy-Von Stieglitz S, Zavan L, Cross J, Greening DW, Hill AF, Kaparakis-Liaskos M. The effect of altered pH growth conditions on the production, composition, and proteomes of Helicobacter pylori outer membrane vesicles. Proteomics 2024; 24:e2300269. [PMID: 37991474 DOI: 10.1002/pmic.202300269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 11/23/2023]
Abstract
Gram-negative bacteria release outer membrane vesicles (OMVs) that contain cargo derived from their parent bacteria. Helicobacter pylori is a Gram-negative human pathogen that produces urease to increase the pH of the surrounding environment to facilitate colonization of the gastric mucosa. However, the effect of acidic growth conditions on the production and composition of H. pylori OMVs is unknown. In this study, we examined the production, composition, and proteome of H. pylori OMVs produced during acidic and neutral pH growth conditions. H. pylori growth in acidic conditions reduced the quantity and size of OMVs produced. Additionally, OMVs produced during acidic growth conditions had increased protein, DNA, and RNA cargo compared to OMVs produced during neutral conditions. Proteomic analysis comparing the proteomes of OMVs to their parent bacteria demonstrated significant differences in the enrichment of beta-lactamases and outer membrane proteins between bacteria and OMVs, supporting that differing growth conditions impacts OMV composition. We also identified differences in the enrichment of proteins between OMVs produced during different pH growth conditions. Overall, our findings reveal that growth of H. pylori at different pH levels is a factor that alters OMV proteomes, which may affect their subsequent functions.
Collapse
Affiliation(s)
- Ella L Johnston
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
| | - Sebastian Guy-Von Stieglitz
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
| | - Lauren Zavan
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
| | - Jonathon Cross
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - David W Greening
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Andrew F Hill
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Maria Kaparakis-Liaskos
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
| |
Collapse
|
14
|
Liu Z, Zhang D, Chen S. Unveiling the gastric microbiota: implications for gastric carcinogenesis, immune responses, and clinical prospects. J Exp Clin Cancer Res 2024; 43:118. [PMID: 38641815 PMCID: PMC11027554 DOI: 10.1186/s13046-024-03034-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/29/2024] [Indexed: 04/21/2024] Open
Abstract
High-throughput sequencing has ushered in a paradigm shift in gastric microbiota, breaking the stereotype that the stomach is hostile to microorganisms beyond H. pylori. Recent attention directed toward the composition and functionality of this 'community' has shed light on its potential relevance in cancer. The microbial composition in the stomach of health displays host specificity which changes throughout a person's lifespan and is subject to both external and internal factors. Distinctive alterations in gastric microbiome signature are discernible at different stages of gastric precancerous lesions and malignancy. The robust microbes that dominate in gastric malignant tissue are intricately implicated in gastric cancer susceptibility, carcinogenesis, and the modulation of immunosurveillance and immune escape. These revelations offer fresh avenues for utilizing gastric microbiota as predictive biomarkers in clinical settings. Furthermore, inter-individual microbiota variations partially account for differential responses to cancer immunotherapy. In this review, we summarize current literature on the influence of the gastric microbiota on gastric carcinogenesis, anti-tumor immunity and immunotherapy, providing insights into potential clinical applications.
Collapse
Affiliation(s)
- Zhiyi Liu
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Dachuan Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Siyu Chen
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
15
|
Bhattacharjee A, Sahoo OS, Sarkar A, Bhattacharya S, Chowdhury R, Kar S, Mukherjee O. Infiltration to infection: key virulence players of Helicobacter pylori pathogenicity. Infection 2024; 52:345-384. [PMID: 38270780 DOI: 10.1007/s15010-023-02159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
PURPOSE This study aims to comprehensively review the multifaceted factors underlying the successful colonization and infection process of Helicobacter pylori (H. pylori), a prominent Gram-negative pathogen in humans. The focus is on elucidating the functions, mechanisms, genetic regulation, and potential cross-interactions of these elements. METHODS Employing a literature review approach, this study examines the intricate interactions between H. pylori and its host. It delves into virulence factors like VacA, CagA, DupA, Urease, along with phase variable genes, such as babA, babC, hopZ, etc., giving insights about the bacterial perspective of the infection The association of these factors with the infection has also been added in the form of statistical data via Funnel and Forest plots, citing the potential of the virulence and also adding an aspect of geographical biasness to the virulence factors. The biochemical characteristics and clinical relevance of these factors and their effects on host cells are individually examined, both comprehensively and statistically. RESULTS H. pylori is a Gram-negative, spiral bacterium that successfully colonises the stomach of more than half of the world's population, causing peptic ulcers, gastric cancer, MALT lymphoma, and other gastro-duodenal disorders. The clinical outcomes of H. pylori infection are influenced by a complex interplay between virulence factors and phase variable genes produced by the infecting strain and the host genetic background. A meta-analysis of the prevalence of all the major virulence factors has also been appended. CONCLUSION This study illuminates the diverse elements contributing to H. pylori's colonization and infection. The interplay between virulence factors, phase variable genes, and host genetics determines the outcome of the infection. Despite biochemical insights into many factors, their comprehensive regulation remains an understudied area. By offering a panoramic view of these factors and their functions, this study enhances understanding of the bacterium's perspective, i.e. H. pylori's journey from infiltration to successful establishment within the host's stomach.
Collapse
Affiliation(s)
- Arghyadeep Bhattacharjee
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
- Department of Microbiology, Kingston College of Science, Beruanpukuria, Barasat, West Bengal, 700219, India
| | - Om Saswat Sahoo
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Ahana Sarkar
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Saurabh Bhattacharya
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001, Jerusalem, Israel
| | - Rukhsana Chowdhury
- School of Biological Sciences, RKM Vivekananda Educational and Research Institute Narendrapur, Kolkata, India
| | - Samarjit Kar
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Oindrilla Mukherjee
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
16
|
Lei C, Xu Y, Zhang S, Huang C, Qin J. The role of microbiota in gastric cancer: A comprehensive review. Helicobacter 2024; 29:e13071. [PMID: 38643366 DOI: 10.1111/hel.13071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Gastric cancer (GC) continues to pose a significant global threat in terms of cancer-related fatalities. Despite notable advancements in medical research and therapies, further investigation is warranted to elucidate its underlying etiology and risk factors. Recent times have witnessed an escalated emphasis on comprehending the role of the microbiota in cancer development. METHODS This review briefly delves into recent developments in microbiome-related research pertaining to gastric cancer. RESULTS According to studies, the microbiota can influence GC growth by inciting inflammation, disrupting immunological processes, and generating harmful microbial metabolites. Furthermore, there is ongoing research into how the microbiome can impact a patient's response to chemotherapy and immunotherapy. CONCLUSION The utilization of the microbiome for detecting, preventing, and managing stomach cancer remains an active area of exploration.
Collapse
Affiliation(s)
- Changzhen Lei
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yitian Xu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shaopeng Zhang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Qin
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Mofidifar S, Yadegar A, Karimi-Jafari MH. A reconstructed genome-scale metabolic model of Helicobacter pylori for predicting putative drug targets in clarithromycin and rifampicin resistance conditions. Helicobacter 2024; 29:e13074. [PMID: 38615332 DOI: 10.1111/hel.13074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Helicobacter pylori is considered a true human pathogen for which rising drug resistance constitutes a drastic concern globally. The present study aimed to reconstruct a genome-scale metabolic model (GSMM) to decipher the metabolic capability of H. pylori strains in response to clarithromycin and rifampicin along with identification of novel drug targets. MATERIALS AND METHODS The iIT341 model of H. pylori was updated based on genome annotation data, and biochemical knowledge from literature and databases. Context-specific models were generated by integrating the transcriptomic data of clarithromycin and rifampicin resistance into the model. Flux balance analysis was employed for identifying essential genes in each strain, which were further prioritized upon being nonhomologs to humans, virulence factor analysis, druggability, and broad-spectrum analysis. Additionally, metabolic differences between sensitive and resistant strains were also investigated based on flux variability analysis and pathway enrichment analysis of transcriptomic data. RESULTS The reconstructed GSMM was named as HpM485 model. Pathway enrichment and flux variability analyses demonstrated reduced activity in the ribosomal pathway in both clarithromycin- and rifampicin-resistant strains. Also, a significant decrease was detected in the activity of metabolic pathways of clarithromycin-resistant strain. Moreover, 23 and 16 essential genes were exclusively detected in clarithromycin- and rifampicin-resistant strains, respectively. Based on prioritization analysis, cyclopropane fatty acid synthase and phosphoenolpyruvate synthase were identified as putative drug targets in clarithromycin- and rifampicin-resistant strains, respectively. CONCLUSIONS We present a robust and reliable metabolic model of H. pylori. This model can predict novel drug targets to combat drug resistance and explore the metabolic capability of H. pylori in various conditions.
Collapse
Affiliation(s)
- Sepideh Mofidifar
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
18
|
Yang K, Ding Y, Chen J, Sun X. No potential causal link between HP infection and IBD: A 2way Mendelian randomization study. Medicine (Baltimore) 2024; 103:e37175. [PMID: 38394482 PMCID: PMC11309638 DOI: 10.1097/md.0000000000037175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Recent epidemiological research suggests a possible negative correlation between Helicobacter pylori infection and inflammatory bowel disease (IBD). However, conflicting studies have provided unclear evidence regarding these causal relationships. Therefore, recommending specific prevention and treatment strategies for H. pylori infection and IBD is challenging. We used various antibodies (anti-H. pylori IgG, VacA, and GroEl) related to H. pylori infection as indicators. We acquired relevant genetic variants from public databases within the Genome-wide Association Studies (GWAS) dataset using IBDs tool variables from 2 different GWAS datasets. We thoroughly examined the data and screened for IVs that fulfilled these criteria. Subsequently, Bidirectional Mendelian randomization (MR) was conducted to predict the potential causality between the 2. To ensure the accuracy and robustness of our results, we conducted a series of sensitivity analyses. Based on our comprehensive MR analysis, no potential causal relationship was observed between H. pylori infection and IBD. Across various methodologies, including IVW, MR-Egger, and weighted median, our findings showed P values > .05. The only exception was observed in the reverse MR analysis using the MR-Egger method, which yielded a P value of < .05. However, because the IVW method is considered the most statistically significant method for MR, and its P value was > .05, we do not believe that a potential causal relationship exists between them. Our sensitivity analysis did not suggest significant horizontal pleiotropism. Although heterogeneity was detected in the analysis of IBD (IIBDGC source) versus H. pylori GroEL antibody levels (MR-Egger, Qp = 0.038; IVW, Qp = 0.043), the results remained reliable because we selected IVW as a random-effects model in our MR analysis method. Based on our MR research, no direct correlation was observed between H. pylori infection and IBD risk. This implies that eradicating H. pylori may not provide substantial benefits in preventing or treating regional IBD, and vice versa. Nevertheless, the use of H. pylori serological index substitution has limitations, and further research using histological diagnosis and additional MR studies is required to comprehensively assess the link between H. pylori infection and IBD.
Collapse
Affiliation(s)
- Kaiqi Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Yuchen Ding
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Jinlong Chen
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Xiujing Sun
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| |
Collapse
|
19
|
Ciarambino T, Crispino P, Minervini G, Giordano M. Role of Helicobacter pylori Infection in Pathogenesis, Evolution, and Complication of Atherosclerotic Plaque. Biomedicines 2024; 12:400. [PMID: 38398002 PMCID: PMC10886498 DOI: 10.3390/biomedicines12020400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/11/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The therapeutic management of atherosclerosis focuses almost exclusively on the reduction of plasma cholesterol levels. An important role in the genesis and evolution of atherosclerosis is played by chronic inflammation in promoting thrombosis phenomena after atheroma rupture. This review aims to take stock of the knowledge so far accumulated on the role of endemic HP infection in atherosclerosis. The studies produced so far have demonstrated a causal relationship between Helicobacter pylori (HP) and CVD. In a previous study, we demonstrated in HP-positive patients that thrombin and plasma fragment 1 + 2 production was proportionally related to tumor necrosis factor-alpha levels and that eradication of the infection resulted in a reduction of inflammation. At the end of our review, we can state that HP slightly affects the risk of CVD, particularly if the infection is associated with cytotoxic damage, and HP screening could have a clinically significant role in patients with a high risk of CVD. Considering the high prevalence of HP infection, an infection screening could be of great clinical utility in patients at high risk of CVD.
Collapse
Affiliation(s)
- Tiziana Ciarambino
- Internal Medicine Department, Hospital of Marcianise, ASL Caserta, 81037 Caserta, Italy
| | - Pietro Crispino
- Internal Medicine Department, Hospital of Latina, ASL Latina, 04100 Latina, Italy;
| | - Giovanni Minervini
- Internal Medicine Department, Hospital of Lagonegro, AOR San Carlo, 85042 Lagonegro, Italy;
| | - Mauro Giordano
- Department of Advanced Medical and Surgical Sciences, University of Campania “L. Vanvitelli”, 81100 Naples, Italy;
| |
Collapse
|
20
|
Ali A, AlHussaini KI. Helicobacter pylori: A Contemporary Perspective on Pathogenesis, Diagnosis and Treatment Strategies. Microorganisms 2024; 12:222. [PMID: 38276207 PMCID: PMC10818838 DOI: 10.3390/microorganisms12010222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium that colonizes the gastric mucosa and is associated with various gastrointestinal disorders. H. pylori is a pervasive pathogen, infecting nearly 50% of the world's population, and presents a substantial concern due to its link with gastric cancer, ranking as the third most common cause of global cancer-related mortality. This review article provides an updated and comprehensive overview of the current understanding of H. pylori infection, focusing on its pathogenesis, diagnosis, and treatment strategies. The intricate mechanisms underlying its pathogenesis, including the virulence factors and host interactions, are discussed in detail. The diagnostic methods, ranging from the traditional techniques to the advanced molecular approaches, are explored, highlighting their strengths and limitations. The evolving landscape of treatment strategies, including antibiotic regimens and emerging therapeutic approaches, is thoroughly examined. Through a critical synthesis of the recent research findings, this article offers valuable insights into the contemporary knowledge of Helicobacter pylori infection, guiding both clinicians and researchers toward effective management and future directions in combating this global health challenge.
Collapse
Affiliation(s)
- Asghar Ali
- Clinical Biochemistry Laboratory, Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Khalid I. AlHussaini
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 4233-13317, Saudi Arabia
| |
Collapse
|
21
|
Liao OL, Xie SY, Ye J, Du Q, Lou GC. Association between inflammatory bowel disease and all-cause dementia: A two-sample Mendelian randomization study. World J Psychiatry 2024; 14:15-25. [PMID: 38327884 PMCID: PMC10845233 DOI: 10.5498/wjp.v14.i1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/03/2023] [Accepted: 12/26/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Numerous observational studies have documented a correlation between inflammatory bowel disease (IBD) and an increased risk of dementia. However, the causality of their associations remains elusive. AIM To assess the causal relationship between IBD and the occurrence of all-cause dementia using the two-sample Mendelian randomization (MR) method. METHODS Genetic variants extracted from the large genome-wide association study (GWAS) for IBD (the International IBD Genetics Consortium, n = 34652) were used to identify the causal link between IBD and dementia (FinnGen, n = 306102). The results of the study were validated via another IBD GWAS (United Kingdom Biobank, n = 463372). Moreover, MR egger intercept, MR pleiotropy residual sum and outlier, and Cochran's Q test were employed to evaluate pleiotropy and heterogeneity. Finally, multiple MR methods were performed to estimate the effects of genetically predicted IBD on dementia, with the inverse variance wei-ghted approach adopted as the primary analysis. RESULTS The results of the pleiotropy and heterogeneity tests revealed an absence of significant pleiotropic effects or heterogeneity across all genetic variants in outcome GWAS. No evidence of a causal effect between IBD and the risk of dementia was identified in the inverse variance weighted [odds ratio (OR) = 0.980, 95%CI : 0.942-1.020, P value = 0.325], weighted median (OR = 0.964, 95%CI : 0.914-1.017, P value = 0.180), and MR-Egger (OR = 0.963, 95%CI : 0.867-1.070, P value = 0.492) approaches. Consistent results were observed in validation analyses. Reverse MR analysis also showed no effect of dementia on the development of IBD. Furthermore, MR analysis suggested that IBD and its subtypes did not causally affect all-cause dementia and its four subtypes, including dementia in Alzheimer's disease, vascular dementia, dementia in other diseases classified elsewhere, and unspecified dementia. CONCLUSION Taken together, our MR study signaled that IBD and its subentities were not genetically associated with all-cause dementia or its subtypes. Further large prospective studies are warranted to elucidate the impact of intestinal inflammation on the development of dementia.
Collapse
Affiliation(s)
- Ou-Lan Liao
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
- Department of Gastroenterology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang Province, China
| | - Si-Yuan Xie
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Jun Ye
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Qin Du
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
- Department of Gastroenterology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang Province, China
| | - Guo-Chun Lou
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| |
Collapse
|
22
|
Liu M, Gao H, Miao J, Zhang Z, Zheng L, Li F, Zhou S, Zhang Z, Li S, Liu H, Sun J. Helicobacter pylori infection in humans and phytotherapy, probiotics, and emerging therapeutic interventions: a review. Front Microbiol 2024; 14:1330029. [PMID: 38268702 PMCID: PMC10806011 DOI: 10.3389/fmicb.2023.1330029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
The global prevalence of Helicobacter pylori (H. pylori) infection remains high, indicating a persistent presence of this pathogenic bacterium capable of infecting humans. This review summarizes the population demographics, transmission routes, as well as conventional and novel therapeutic approaches for H. pylori infection. The prevalence of H. pylori infection exceeds 30% in numerous countries worldwide and can be transmitted through interpersonal and zoonotic routes. Cytotoxin-related gene A (CagA) and vacuolar cytotoxin A (VacA) are the main virulence factors of H. pylori, contributing to its steep global infection rate. Preventative measures should be taken from people's living habits and dietary factors to reduce H. pylori infection. Phytotherapy, probiotics therapies and some emerging therapies have emerged as alternative treatments for H. pylori infection, addressing the issue of elevated antibiotic resistance rates. Plant extracts primarily target urease activity and adhesion activity to treat H. pylori, while probiotics prevent H. pylori infection through both immune and non-immune pathways. In the future, the primary research focus will be on combining multiple treatment methods to effectively eradicate H. pylori infection.
Collapse
Affiliation(s)
- Mengkai Liu
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Hui Gao
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Jinlai Miao
- First Institute of Oceanography Ministry of Natural Resources, Qingdao, China
| | - Ziyan Zhang
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Lili Zheng
- National Engineering Research Centre for Intelligent Electrical Vehicle Power System (Qingdao), College of Mechanical and Electronic Engineering, Qingdao University, Qingdao, China
| | - Fei Li
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Sen Zhou
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Zhiran Zhang
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Shengxin Li
- College of Life Sciences, Qingdao University, Qingdao, China
| | - He Liu
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Jie Sun
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
23
|
Zhang H, Huang X, Wang G, Liu Y. Huangqi Jianzhong Tang treats chronic atrophic gastritis rats by regulating intestinal flora and conjugated bile acid metabolism. Biomed Chromatogr 2023; 37:e5721. [PMID: 37591498 DOI: 10.1002/bmc.5721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/19/2023]
Abstract
Huangqi Jianzhong Tang (HQJZ) is effective for treating chronic atrophic gastritis (CAG). The present study was carried out to reveal the mechanism of HQJZ in CAG rats. The metabolism and microbial composition of the cecal contents in CAG rats were analyzed through the integration of an untargeted metabolomic approach using ultra-high-performance liquid chromatography coupled with the quadrupole-time of flight mass spectrometry (UHPLC-QTOF-MS) and 16S rRNA gene sequencing, respectively. Finally, MetOrigin analyses were performed to explore the relationship between differential metabolites and intestinal flora. The results showed that HQJZ could significantly regulate metabolic disorders, especially conjugated acid metabolites. 16S rRNA gene sequencing analysis illustrated that HQJZ decreased the abundance of Acetobacter, Desulfovibrio, Escherichia, and Shigella. MetOrigin metabolite traceability analysis showed that the six bile acids associated with HQJZ efficacy included three bacteria-host cometabolites, which were involved in the primary bile acid biosynthesis pathway. Research presented here confirmed that conjugated bile acid metabolism was key to the treatment of CAG by HQJZ and correlates strongly with Bacteroides acidifaciens and Prevotella copri. These findings provide new insights into the mechanisms to explain the efficacy of HQJZ.
Collapse
Affiliation(s)
- Hui Zhang
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, Shanxi, China
| | - Xingyue Huang
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, Shanxi, China
| | - Guohong Wang
- Department of Pharmacy, Shanxi Traditional Chinese Medicine Hospital, Taiyuan, China
| | - Yuetao Liu
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, Shanxi, China
| |
Collapse
|
24
|
Saxena K, Deshwal A, Pudake RN, Jain U, Tripathi RM. Recent progress in biomarker-based diagnostics of Helicobacter pylori, gastric cancer-causing bacteria. Biomark Med 2023; 17:679-691. [PMID: 37934044 DOI: 10.2217/bmm-2023-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
The progression of any disease and its outcomes depend on the complicated interaction between pathogens, host and environmental factors. Thus, complete knowledge of bacterial toxins involved in pathogenesis is necessary to develop diagnostic methods and alternative therapies, including vaccines. This review summarizes recently employed biomarkers to diagnose the presence of Helicobacter pylori bacteria. The authors review distinct types of disease-associated biomarkers such as urease, DNA, miRNA, aptamers and bacteriophages that can be utilized as targets to detect Helicobacter pylori and, moreover, gastric cancer in its early stage. A detailed explanation is also given in the context of the recent utilization of these biomarkers in the development of a highly specific and sensitive biosensing platform.
Collapse
Affiliation(s)
- Kirti Saxena
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector 125, Noida, 201313, India
| | - Akanksha Deshwal
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector 125, Noida, 201313, India
| | - Ramesh Namdeo Pudake
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector 125, Noida, 201313, India
| | - Utkarsh Jain
- School of Health Sciences & Technology (SoHST), University of Petroleum & Energy Studies (UPES), Bidholi, Dehradun, 248007, India
| | - Ravi Mani Tripathi
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector 125, Noida, 201313, India
| |
Collapse
|
25
|
Verbeke J, De Bolle X, Arnould T. To eat or not to eat mitochondria? How do host cells cope with mitophagy upon bacterial infection? PLoS Pathog 2023; 19:e1011471. [PMID: 37410705 DOI: 10.1371/journal.ppat.1011471] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
Mitochondria fulfil a plethora of cellular functions ranging from energy production to regulation of inflammation and cell death control. The fundamental role of mitochondria makes them a target of choice for invading pathogens, with either an intracellular or extracellular lifestyle. Indeed, the modulation of mitochondrial functions by several bacterial pathogens has been shown to be beneficial for bacterial survival inside their host. However, so far, relatively little is known about the importance of mitochondrial recycling and degradation pathways through mitophagy in the outcome (success or failure) of bacterial infection. On the one hand, mitophagy could be considered as a defensive response triggered by the host upon infection to maintain mitochondrial homeostasis. However, on the other hand, the pathogen itself may initiate the host mitophagy to escape from mitochondrial-mediated inflammation or antibacterial oxidative stress. In this review, we will discuss the diversity of various mechanisms of mitophagy in a general context, as well as what is currently known about the different bacterial pathogens that have developed strategies to manipulate the host mitophagy.
Collapse
Affiliation(s)
- Jérémy Verbeke
- Research Unit in Cell Biology, Laboratory of Biochemistry and Cell Biology URBC)-Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Xavier De Bolle
- Research Unit in Microorganisms Biology (URBM)-Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Thierry Arnould
- Research Unit in Cell Biology, Laboratory of Biochemistry and Cell Biology URBC)-Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| |
Collapse
|
26
|
Azizimoghaddam Y, Kermanpour S, Mirzaei N, Houri H, Nabavi-Rad A, Asadzadeh Aghdaei H, Yadegar A, Zali MR. Genetic diversity of Helicobacter pylori type IV secretion system cagI and cagN genes and their association with clinical diseases. Sci Rep 2023; 13:10264. [PMID: 37355714 PMCID: PMC10290643 DOI: 10.1038/s41598-023-37392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023] Open
Abstract
A number of cagPAI genes in the Helicobacter pylori genome are considered the most evolved genes under a diversifying selection and evolutionary pressure. Among them, cagI and cagN are described as a part of the two different-operon of cagPAI that are involved in the T4SS machinery, but the definite association of these factors with clinical manifestations is still unclear. A total of 70 H. pylori isolates were obtained from different gastroduodenal patients. All isolates were examined for the presence of primary H. pylori virulence genes by PCR analysis. Direct DNA sequence analysis was performed for the cagI and cagN genes. The results were compared with the reference strain. The cagI, cagN, cagA, cagL, vacA s1m1, vacA s1m2, vacA s2m2, babA2, sabA, and dupA genotypes were detected in 80, 91.4, 84, 91.4, 32.8, 42.8, 24.4, 97.1, 84.3, and 84.3% of the total isolates, respectively. The most variable codon usage in cagI was observed at residues 20-25, 55-60, 94, 181-199, 213-221, 241-268, and 319-320, while the most variable codon usage in CagN hypervariable motif (CagNHM) was observed at residues 53 to 63. Sequencing data analysis of cagN revealed a hypothetical hexapeptide motif (EAKDEN/K) in residues of 278-283 among six H. pylori isolates, which needs further studies to evaluate its putative function. The present study demonstrated a high prevalence of cagI and cagN genes among Iranian H. pylori isolates with gastroduodenal diseases. Furthermore, no significant correlation between cagI and cagN variants and clinical diseases was observed in the present study. However, all patients had a high prevalence of cagPAI genes including cagI, cagN, cagA, and cagL, which indicates more potential role of these genes in disease outcome.
Collapse
Affiliation(s)
- Yasaman Azizimoghaddam
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadaf Kermanpour
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasrin Mirzaei
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Li S, Zhao W, Xia L, Kong L, Yang L. How Long Will It Take to Launch an Effective Helicobacter pylori Vaccine for Humans? Infect Drug Resist 2023; 16:3787-3805. [PMID: 37342435 PMCID: PMC10278649 DOI: 10.2147/idr.s412361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
Helicobacter pylori infection often occurs in early childhood, and can last a lifetime if not treated with medication. H. pylori infection can also cause a variety of stomach diseases, which can only be treated with a combination of antibiotics. Combinations of antibiotics can cure H. pylori infection, but it is easy to relapse and develop drug resistance. Therefore, a vaccine is a promising strategy for prevention and therapy for the infection of H. pylori. After decades of research and development, there has been no appearance of any H. pylori vaccine reaching the market, unfortunately. This review summarizes the aspects of candidate antigens, immunoadjuvants, and delivery systems in the long journey of H. pylori vaccine research, and also introduces some clinical trials that have displayed encouraging or depressing results. Possible reasons for the inability of an H. pylori vaccine to be available over the counter are cautiously discussed and some propositions for the future of H. pylori vaccines are outlined.
Collapse
Affiliation(s)
- Songhui Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| | - Wenfeng Zhao
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| | - Lei Xia
- Bloomage Biotechnology Corporation Limited, Jinan, People’s Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| |
Collapse
|
28
|
Lim MCC, Jantaree P, Naumann M. The conundrum of Helicobacter pylori-associated apoptosis in gastric cancer. Trends Cancer 2023:S2405-8033(23)00080-8. [PMID: 37230895 DOI: 10.1016/j.trecan.2023.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Helicobacter pylori is a human microbial pathogen that colonizes the gastric epithelium and causes type B gastritis with varying degrees of active inflammatory infiltrates. The underlying chronic inflammation induced by H. pylori and other environmental factors may promote the development of neoplasms and adenocarcinoma of the stomach. Dysregulation of various cellular processes in the gastric epithelium and in different cells of the microenvironment is a hallmark of H. pylori infection. We address the conundrum of H. pylori-associated apoptosis and review distinct mechanisms induced in host cells that either promote or suppress apoptosis in gastric epithelial cells, often simultaneously. We highlight key processes in the microenvironment that contribute to apoptosis and gastric carcinogenesis.
Collapse
Affiliation(s)
- Michelle C C Lim
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Phatcharida Jantaree
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
29
|
El Filaly H, Desterke C, Outlioua A, Badre W, Rabhi M, Karkouri M, Riyad M, Khalil A, Arnoult D, Akarid K. CXCL-8 as a signature of severe Helicobacter pylori infection and a stimulator of stomach region-dependent immune response. Clin Immunol 2023; 252:109648. [PMID: 37209806 DOI: 10.1016/j.clim.2023.109648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Helicobacter pylori infection is involved in development of diverse gastro-pathologies. Our aim is to investigate potential signature of cytokines-chemokine levels (IL-17A, IL-1β, and CXCL-8) in H. pylori-infected patients and their impact on immune response in both corpus and antrum. Multivariate level analysis with machine learning model were carried out using cytokines/chemokine levels of infected Moroccan patients. In addition, Geo dataset was used to run enrichment analysis following CXCL-8 upregulation. Our analysis showed that combination of cytokines-chemokine levels allowed prediction of positive H. pylori density score with <5% of miss-classification error, with fundus CXCL-8 being the most important variable for this discrimination. Furthermore, CXCL-8 dependent expression profile was mainly associated to IL6/JAK/STAT3 signaling in the antrum, interferons alpha and gamma responses in the corpus and commonly induced transcriptional /proliferative activities. To conclude, CXCL-8 level might be a signature of Moroccan H. pylori-infected patients and an inducer of regional-dependent immune response at the gastric level. Larger trials must be carried out to validate the relevance of these results for diverse populations.
Collapse
Affiliation(s)
- Hajar El Filaly
- Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco
| | - Christophe Desterke
- INSERM UMRS-1311, Faculty of Medicine, University of Paris-Saclay, Villejuif, France; Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ahmed Outlioua
- Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco
| | - Wafaa Badre
- Gastroenterology Department, CHU IbnRochd, Casablanca, Morocco
| | - Moncef Rabhi
- Diagnostic Center, Hôpital Militaire d'Instruction Mohammed V, Mohammed V University, Rabat, Morocco
| | - Mehdi Karkouri
- Laboratory of Pathological Anatomy, CHU Ibn Rochd/Faculty of Medicine and Pharmacy, UH2C, Casablanca, Morocco
| | - Myriam Riyad
- Research Team on Immunopathology of Infectious and Systemic Diseases, Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, UH2C, Casablanca, Morocco
| | - Abdelouahed Khalil
- Research Center on Aging, Faculty of Medicine and Health Sciences, Department of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Damien Arnoult
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France; Université Paris-Saclay, Paris, France
| | - Khadija Akarid
- Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco.
| |
Collapse
|
30
|
Lopes C, Almeida TC, Pimentel-Nunes P, Dinis-Ribeiro M, Pereira C. Linking dysbiosis to precancerous stomach through inflammation: Deeper than and beyond imaging. Front Immunol 2023; 14:1134785. [PMID: 37063848 PMCID: PMC10102473 DOI: 10.3389/fimmu.2023.1134785] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Upper gastrointestinal endoscopy is considered the gold standard for gastric lesions detection and surveillance, but it is still associated with a non-negligible rate of missing conditions. In the Era of Personalized Medicine, biomarkers could be the key to overcome missed lesions or to better predict recurrence, pushing the frontier of endoscopy to functional endoscopy. In the last decade, microbiota in gastric cancer has been extensively explored, with gastric carcinogenesis being associated with progressive dysbiosis. Helicobacter pylori infection has been considered the main causative agent of gastritis due to its interference in disrupting the acidic environment of the stomach through inflammatory mediators. Thus, does inflammation bridge the gap between gastric dysbiosis and the gastric carcinogenesis cascade and could the microbiota-inflammation axis-derived biomarkers be the answer to the unmet challenge of functional upper endoscopy? To address this question, in this review, the available evidence on the role of gastric dysbiosis and chronic inflammation in precancerous conditions of the stomach is summarized, particularly targeting the nuclear factor-κB (NF-κB), toll-like receptors (TLRs) and cyclooxygenase-2 (COX-2) pathways. Additionally, the potential of liquid biopsies as a non-invasive source and the clinical utility of studied biomarkers is also explored. Overall, and although most studies offer a mechanistic perspective linking a strong proinflammatory Th1 cell response associated with, but not limited to, chronic infection with Helicobacter pylori, promising data recently published highlights not only the diagnostic value of microbial biomarkers but also the potential of gastric juice as a liquid biopsy pushing forward the concept of functional endoscopy and personalized care in gastric cancer early diagnosis and surveillance.
Collapse
Affiliation(s)
- Catarina Lopes
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- CINTESIS – Center for Health Technology and Services Research, University of Porto, Porto, Portugal
- ICBAS-UP – Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Tatiana C. Almeida
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
| | - Pedro Pimentel-Nunes
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- Department of Gastroenterology, Unilabs, Porto, Portugal
| | - Mário Dinis-Ribeiro
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- Department of Gastroenterology, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Carina Pereira
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- CINTESIS – Center for Health Technology and Services Research, University of Porto, Porto, Portugal
- *Correspondence: Carina Pereira,
| |
Collapse
|
31
|
Chen R, Li Y, Chen X, Chen J, Song J, Yang X, Ye L, Wu Z, Xie P, Zhong Q, Yang R, Wu J. dupA+H. pylori reduces diversity of gastric microbiome and increases risk of erosive gastritis. Front Cell Infect Microbiol 2023; 13:1103909. [PMID: 37009501 PMCID: PMC10063918 DOI: 10.3389/fcimb.2023.1103909] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Helicobacter pylori is believed to induce gastropathy; however, the exact pathogenic molecules involved in this process have not been elucidated. Duodenal ulcer promoting gene A (DupA) is a virulence factor with a controversial role in gastric inflammation and carcinogenesis. To explore and confirm the function of DupA in gastropathy from the perspective of the microbiome, we investigated the microbial characteristics of 48 gastritis patients through 16S rRNA amplicon sequencing. In addition, we isolated 21 H. pylori strains from these patients and confirmed the expression of dupA using PCR and qRT-PCR. Bioinformatics analysis identified diversity loss and compositional changes as the key features of precancerous lesions in the stomach, and H. pylori was a characteristic microbe present in the stomach of the gastritis patients. Co-occurrence analysis revealed that H. pylori infection inhibits growth of other gastric inhabiting microbes, which weakened the degradation of xenobiotics. Further analysis showed that dupA+ H. pylori were absent in precancerous lesions and were more likely to appear in erosive gastritis, whereas dupA− H. pylori was highly abundant in precancerous lesions. The presence of dupA in H. pylori caused less disturbance to the gastric microbiome, maintaining the relatively richness of gastric microbiome. Overall, our findings suggest that high dupA expression in H. pylori is correlated with a high risk of erosive gastritis and a lower level of disturbance to the gastric microbiome, indicating that DupA should be considered a risk factor of erosive gastritis rather than gastric cancer.
Collapse
Affiliation(s)
- Ruiyan Chen
- Digestive Endoscopy Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaodong Chen
- Digestive Endoscopy Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jianhui Chen
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jie Song
- Digestive Endoscopy Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaoqiao Yang
- Digestive Endoscopy Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lifang Ye
- Digestive Endoscopy Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zizhong Wu
- Digestive Endoscopy Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Peng Xie
- Digestive Endoscopy Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qiong Zhong
- Department of Gastroenterology, Longnan Hospital of Traditional Chinese Medicine, Longnan, China
| | - Runshi Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiachuan Wu
- Digestive Endoscopy Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- *Correspondence: Jiachuan Wu,
| |
Collapse
|
32
|
Innate immune activation and modulatory factors of Helicobacter pylori towards phagocytic and nonphagocytic cells. Curr Opin Immunol 2023; 82:102301. [PMID: 36933362 DOI: 10.1016/j.coi.2023.102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023]
Abstract
Helicobacter pylori is an intriguing obligate host-associated human pathogen with a specific host interaction biology, which has been shaped by thousands of years of host-pathogen coevolution. Molecular mechanisms of interaction of H. pylori with the local immune cells in the human system are less well defined than epithelial cell interactions, although various myeloid cells, including neutrophils and other phagocytes, are locally present or attracted to the sites of infection and interact with H. pylori. We have recently addressed the question of novel bacterial innate immune stimuli, including bacterial cell envelope metabolites, that can activate and modulate cell responses via the H. pylori Cag type IV secretion system. This review article gives an overview of what is currently known about the interaction modes and mechanisms of H. pylori with diverse human cell types, with a focus on bacterial metabolites and cells of the myeloid lineage including phagocytic and antigen-presenting cells.
Collapse
|
33
|
Saxena K, Chauhan N, Malhotra BD, Jain U. A molecularly imprinted polymer-based electrochemical biosensor for detection of VacA virulence factor of H. pylori causing gastric cancer. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
34
|
Ramesh P, Babu S, Ammankallu S, Codi JAK, Prasad TSK, Raju R. Helicobacter pylori regulated microRNA map of human gastric cells. Helicobacter 2023; 28:e12941. [PMID: 36468839 DOI: 10.1111/hel.12941] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Helicobacter pylori is an infection of concern for its chronic colonization leading to peptic ulcers and gastric cancer. In recent times, microRNAs have been extensively studied to understand their role in the pathogenesis of this bacteria in diverse contexts of gastric diseases. The current analysis reports the microRNA-mRNA interactions that are associated with effective survival and virulence of this pathogen. MATERIALS AND METHODS We convened differentially regulated human microRNAs responsive to H. pylori infection (HP-hDEmiRs) at different multiplicity of infection and time points in human gastric cell lines through retrospective data mining of experimental studies. In view of the molecular disparity of clinical samples and animal models, data from tissue, serum/plasma, urine, and ascites were excluded. Further, we utilized diverse bioinformatics approaches to retrieve experimentally validated, high-confidence targets of the HP-hDEmiRs to analyze the microRNA-mRNA interactions that are relevant to H. pylori pathogenesis. RESULTS A total of 39 HP-hDEmiRs that showed unidirectional expression of either overexpression or downregulation were identified to modulate 23 targets explicitly studied under this infection. We also identified 476 experimentally validated targets regulated by at least 4 of the HP-hDEmiRs. In addition to the pathways prior-associated with H. pylori infection, the microRNA-mRNA interactome analysis identified several cellular processes and pathways highly associated with cell cycle, cell division, migration, and carcinogenesis. CONCLUSION This study generated a platform to study the mechanisms utilized by this pathogen using microRNAs as surrogate.
Collapse
Affiliation(s)
- Poornima Ramesh
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sreeranjini Babu
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Shruthi Ammankallu
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | | | | - Rajesh Raju
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India.,Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
35
|
Reuter S, Raspe J, Uebner H, Contoyannis A, Pastille E, Westendorf AM, Caso GC, Cover TL, Müller A, Taube C. Treatment with Helicobacter pylori-derived VacA attenuates allergic airway disease. Front Immunol 2023; 14:1092801. [PMID: 36761723 PMCID: PMC9902502 DOI: 10.3389/fimmu.2023.1092801] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Background Asthma is an incurable heterogeneous disease with variations in clinical and underlying immunological phenotype. New approaches could help to support existing therapy concepts. Neonatal infection of mice with Helicobacter pylori or administration of H. pylori-derived extracts or molecules after birth have been shown to prevent the development of allergic airway disease later in life. This study evaluated the potential therapeutic efficacy of H. pylori vacuolating cytotoxin A (VacA) in allergic airway inflammation and investigated the underlying immunological mechanisms for its actions. Methods Murine models of allergic airway diseases, and murine and human in vitro models were used. Results In both an acute model and a therapeutic house dust mite model of allergic airway disease, treatment with H. pylori-derived VacA reduced several asthma hallmarks, including airway hyperresponsiveness, inflammation and goblet cell metaplasia. Flow cytometry and ELISA analyses revealed induction of tolerogenic dendritic cells (DC) and FoxP3 positive regulatory T cells (Tregs), and a shift in the composition of allergen-specific immunoglobulins. Depletion of Tregs during treatment with VacA reversed treatment-mediated suppression of allergic airway disease. Human monocyte derived DCs (moDC) that were exposed to VacA induced Tregs in co-cultured naïve autologous T cells, replicating key observations made in vivo. Conclusion H. pylori-derived VacA suppressed allergic airway inflammation via induction of Tregs in both allergic airway disease models. These data suggest that the immunomodulatory activity of VacA could potentially be exploited for the prevention and treatment of allergic airway disease.
Collapse
Affiliation(s)
- Sebastian Reuter
- Department of Pulmonary Medicine, Experimental Pneumology, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Jonas Raspe
- Department of Pulmonary Medicine, Experimental Pneumology, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Hendrik Uebner
- Department of Pulmonary Medicine, Experimental Pneumology, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Alexandros Contoyannis
- Department of Pulmonary Medicine, Experimental Pneumology, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Eva Pastille
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Astrid M. Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Georgia C. Caso
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Timothy L. Cover
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Veterans Affairs Tennessee Valley Healthcare System Nashville, Nashville, TN, United States
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Christian Taube
- Department of Pulmonary Medicine, Experimental Pneumology, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| |
Collapse
|
36
|
Xu X, Shu C, Wu X, Ouyang Y, Cheng H, Zhou Y, Wang H, He C, Xie C, He X, Hong J, Lu N, Ge Z, Zhu Y, Li N. A positive feedback loop of the TAZ/β-catenin axis promotes Helicobacter pylori-associated gastric carcinogenesis. Front Microbiol 2022; 13:1065462. [PMID: 36620008 PMCID: PMC9816148 DOI: 10.3389/fmicb.2022.1065462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background Helicobacter pylori infection is the strongest known risk factor for gastric cancer. The Hippo signaling pathway controls organ size and maintains tissue homeostasis by coordinately regulating cell growth and proliferation. Here, we demonstrate the interactive role of TAZ, the transcriptional coactivator of the Hippo pathway, and beta-catenin in promoting the pathogenesis of H. pylori infection. Methods TAZ expression was evaluated in human gastric tissues and H. pylori-infected insulin-gastrin (INS-GAS) mice. Western blot, immunofluorescence, immunohistochemistry, and RT-PCR assays were performed. Coimmunoprecipitation was performed to examine the interaction between TAZ and β-catenin. TAZ and β-catenin were silenced using small interfering RNAs. HA-β-catenin and Flag-TAZ were constructed. Results Increased TAZ was noted in human gastric cancer tissues compared to chronic gastritis tissues and in H. pylori-positive gastritis tissues compared to H. pylori-negative gastritis tissues. In addition, H. pylori infection induced TAZ expression and nuclear accumulation in the gastric tissue of INS-GAS mice and cultured gastric epithelial cells, which was dependent on the virulence factor CagA. Moreover, TAZ or β-catenin knockdown significantly suppressed H. pylori infection-induced cell growth, survival, and invasion. Furthermore, the interactive regulation of TAZ and β-catenin activation was revealed. Finally, β-catenin was required for H. pylori-induced TAZ activation. Conclusion These findings suggest the existence of a positive feedback loop of activation between TAZ and β-catenin that could play an important role in CagA+ H. pylori infection-induced gastric carcinogenesis. TAZ inhibition represents a potential target for the prevention of H. pylori infection-associated gastric cancer.
Collapse
Affiliation(s)
- Xinbo Xu
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China,Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chunxi Shu
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China,Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xidong Wu
- Department of Drug Safety Evaluation, Jiangxi Testing Center of Medical Instruments, Nanchang, China
| | - Yaobin Ouyang
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China,Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong Cheng
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China,Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanan Zhou
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China,Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huan Wang
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China,Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cong He
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China,Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chuan Xie
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China,Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xingxing He
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China,Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Junbo Hong
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China,Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nonghua Lu
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China,Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Yin Zhu
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China,Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China,*Correspondence: Yin Zhu,
| | - Nianshuang Li
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China,Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China,Nianshuang Li,
| |
Collapse
|
37
|
Yang J, Yang H, Dai Y, Jiang Y, Long Y, Zeng J, Ma X. Evidence construction of Chinese herbal formulae for the treatment of H. pylori positive peptic ulcer: A Bayesian network Meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154327. [PMID: 35905565 DOI: 10.1016/j.phymed.2022.154327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/17/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE Helicobacter pylori (H. pylori) positive peptic ulcer disease (PUD) is a highly prevalent digestive disease with serious consequences of poor prognosis without rational medical intervention. Apparent advantages of Chinese herbal formulae application in PUDs have been appreciated by clinical practitioners recently in China. However, there is no enough viewpoint of evidence-based medicine for them to reach a broad consensus at the more favorable formulae. Therefore, we adopted the method of Bayesian network Meta-analysis (BNMA) in order to get a solution. METHOD Literature retrieval of clinical randomized controlled trials (RCTs) was conducted with eight databases of PubMed, Embase, Cochrane Library, Web of Science, Chinese National Knowledge Infrastructure, the VIP medicine information system, the Wanfang Data Knowledge Service Platform and Chinese Biomedical Literature Service System. Review Manager 5.4 software, R project 4.1.1 software and STATA16.0 software were used to carry out this BNMA. The primary outcome indicator is H. pylori eradicated rate. The secondary outcome indicator is clinical effectiveness rate, recurrence rate and adverse reaction report. RESULT A total of fifty-one RCTs involving 5172 patients and ten therapeutic strategies were included in this BNMA. The results showed that supplementation with Chinese herbal formulae significantly improved the eradication rate, clinical efficiency and reduced recurrence rate of H. pylori compared with the single conventional triple therapy (CON) group in a relatively safe manner. Comprehensive therapeutic efficacy analysis of H. pylori eradicated rate and clinical effectiveness rate showed that CON combined with Xiangsha Liujunzi decoction (XSD) manifests at the first grade among these ten therapeutic strategies. CONCLUSION The efficacy and safety of Chinese herbal formulae and conventional triple therapy were validated by this BNMA. CON+XSD appears to be the most satisfactory therapeutic strategy for H. pylori-positive PUD, reminding clinicians of the potential value of the combination of Chinese herbal formulae and conventional chemotherapy. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42021268574.
Collapse
Affiliation(s)
- Jiayue Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Heng Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yao Dai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yinxiao Jiang
- College of Pharmacy, Anhui University of Chinese Medicine, 230012 Hefei, China; Yangtze Delta Drug Advanced Research Institute, 226100, Nantong, China
| | - Yuhao Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
38
|
Zhang Y, Wang M, Zhang K, Zhang J, Yuan X, Zou G, Cao Z, Zhang C. 6'-O-Galloylpaeoniflorin attenuates Helicobacter pylori-associated gastritis via modulating Nrf2 pathway. Int Immunopharmacol 2022; 111:109122. [PMID: 35964411 DOI: 10.1016/j.intimp.2022.109122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 12/14/2022]
Abstract
As a common disease of the digestive system, chronic gastritis is inflammation of the gastric mucosa caused by various factors. Helicobacter pylori (H. pylori) is one of the main causes of chronic gastritis, which can lead to gastric mucosal damage and gland atrophy, thereby promoting gastrocarcinogenesis. Oxidative stress and the inflammatory response are important mechanisms of H. pylori-induced gastritis. 6'-O-Galloylpaeoniflorin (GPF) is a substance isolated from peony root with antioxidant and anti-inflammatory activities. However, its role and mechanism in the pathogenesis of H. pylori-induced chronic gastritis remain unclear. This study explored the effects of GPF on H. pylori-induced gastric mucosal oxidative stress and inflammation using flow cytometry, western blotting, real-time quantitative PCR, and immunohistochemistry. We found that H. pylori infection increased oxidative stress and expression of inflammatory cytokines in vitro and in vivo and that these outcomes were inhibited by GPF. Furthermore, GPF activated nuclear factor erythroid-related factor-2 (Nrf2) and its downstream target genes in H. pylori-infected GES-1 cells and mice. The anti-inflammatory and antioxidant effects of GPF on H. pylori-infected cells were attenuated by an Nrf2 inhibitor. Taken together, these data suggest that GPF reduces H. pylori-induced gastric mucosa injury by activating Nrf2 signaling and that GPF is a potential candidate for the treatment of H. pylori-associated gastritis.
Collapse
Affiliation(s)
- Yun Zhang
- Department of General Surgery, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of General Surgery, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Maihuan Wang
- Department of General Surgery, The First Medical Center of Chinese, PLA General Hospital, Beijing 100853, China
| | - Kebin Zhang
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Junze Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of General Surgery, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Xinpu Yuan
- Department of General Surgery, The First Medical Center of Chinese, PLA General Hospital, Beijing 100853, China
| | - Guijun Zou
- Department of General Surgery, The First Medical Center of Chinese, PLA General Hospital, Beijing 100853, China
| | - Zhen Cao
- Department of General Surgery, The First Medical Center of Chinese, PLA General Hospital, Beijing 100853, China.
| | - Chaojun Zhang
- Department of General Surgery, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of General Surgery, The First Medical Center of Chinese, PLA General Hospital, Beijing 100853, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of General Surgery, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
39
|
Kaneko K, Zaitoun AM, Letley DP, Rhead JL, Torres J, Spendlove I, Atherton JC, Robinson K. The active form of Helicobacter pylori vacuolating cytotoxin induces decay-accelerating factor CD55 in association with intestinal metaplasia in the human gastric mucosa. J Pathol 2022; 258:199-209. [PMID: 35851954 PMCID: PMC9543990 DOI: 10.1002/path.5990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/27/2022] [Accepted: 07/15/2022] [Indexed: 11/19/2022]
Abstract
High-level expression of decay-accelerating factor, CD55, has previously been found in human gastric cancer (GC) and intestinal metaplasia (IM) tissues. Therapeutic effects of CD55 inhibition in cancer have been reported. However, the role of Helicobacter pylori infection and virulence factors in the induction of CD55 and its association with histological changes of the human gastric mucosa remain incompletely understood. We hypothesised that CD55 would be increased during infection with more virulent strains of H. pylori, and with more marked gastric mucosal pathology. RT-qPCR and immunohistochemical analyses of gastric biopsy samples from 42 H. pylori-infected and 42 uninfected patients revealed that CD55 mRNA and protein were significantly higher in the gastric antrum of H. pylori-infected patients, and this was associated with the presence of IM, but not atrophy, or inflammation. Increased gastric CD55 and IM were both linked with colonisation by vacA i1-type strains independently of cagA status, and in vitro studies using isogenic mutants of vacA confirmed the ability of VacA to induce CD55 and sCD55 in gastric epithelial cell lines. siRNA experiments to investigate the function of H. pylori-induced CD55 showed that CD55 knockdown in gastric epithelial cells partially reduced IL-8 secretion in response to H. pylori, but this was not due to modulation of bacterial adhesion or cytotoxicity. Finally, plasma samples taken from the same patients were analysed for the soluble form of CD55 (sCD55) by ELISA. sCD55 levels were not influenced by IM and did not correlate with gastric CD55 mRNA levels. These results suggest a new link between active vacA i1-type H. pylori, IM, and CD55, and identify CD55 as a molecule of potential interest in the management of IM as well as GC treatment. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Kazuyo Kaneko
- Nottingham Digestive Diseases Biomedical Research CentreNottingham University Hospitals NHS Trust and University of NottinghamNottinghamUK
| | - Abed M Zaitoun
- Department of Cellular PathologyNottingham University Hospitals NHS Trust, Queen's Medical Centre CampusNottinghamUK
| | - Darren P Letley
- Nottingham Digestive Diseases Biomedical Research CentreNottingham University Hospitals NHS Trust and University of NottinghamNottinghamUK
| | - Joanne L Rhead
- Nottingham Digestive Diseases Biomedical Research CentreNottingham University Hospitals NHS Trust and University of NottinghamNottinghamUK
| | - Javier Torres
- Unidad de Investigación en Enfermedades InfecciosasHospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSSMexico CityMexico
| | - Ian Spendlove
- Division of Cancer and Stem Cells, School of MedicineUniversity of Nottingham Biodiscovery InstituteNottinghamUK
| | - John C Atherton
- Nottingham Digestive Diseases Biomedical Research CentreNottingham University Hospitals NHS Trust and University of NottinghamNottinghamUK
| | - Karen Robinson
- Nottingham Digestive Diseases Biomedical Research CentreNottingham University Hospitals NHS Trust and University of NottinghamNottinghamUK
| |
Collapse
|
40
|
Xia X, Yin Z, Yang Y, Li S, Wang L, Cai X, Xu Y, Ma C, Qiu Y, Chen Z, Tan W. In Situ Upregulating Heat Shock Protein 70 via Gastric Nano-Heaters for the Interference of Helicobacter pylori Infection. ACS NANO 2022; 16:14043-14054. [PMID: 35993384 DOI: 10.1021/acsnano.2c03911] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Taking inspiration from the mechanism of Helicobacter pylori infection can lead to innovative antibacterial ways to fight antibiotics resistance. Herein, a gastric nano-heater iron-cobalt alloy shielded with graphitic shells (FeCo@G) is developed to interfere with H. pylori infection under an alternating magnetic field. FeCo@G shows a high and stable specific loss power (SLP = 534.1 W g-1) in the acidic environment and provides efficient magnetothermal stimulation in the stomach. Such stimulation upregulates the cytoprotective heat shock protein 70 (HSP70) in gastric epithelial cells, which antagonizes the infection of H. pylori. This finding is further supported by the transcriptomic analysis verifying the upregulation of HSP70 in the stomach. Moreover, the nano-heater shows a high inhibition rate of H. pylori in vivo with good biocompatibility; 95% of FeCo@G is excreted from the mouse's gastrointestinal tract within 12 h. In summary, FeCo@G allows magnetothermal therapy to be used in harsh gastric environments, providing an approach for the therapy against H. pylori.
Collapse
Affiliation(s)
- Xin Xia
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Zhiwei Yin
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Yanxia Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Shengkai Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Linlin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Xinqi Cai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Yiting Xu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Ye Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
41
|
Saxena K, Kumar A, Chauhan N, Khanuja M, Malhotra BD, Jain U. Electrochemical Immunosensor for Detection of H. pylori Secretory Protein VacA on g-C 3N 4/ZnO Nanocomposite-Modified Au Electrode. ACS OMEGA 2022; 7:32292-32301. [PMID: 36120075 PMCID: PMC9476209 DOI: 10.1021/acsomega.2c03627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 05/25/2023]
Abstract
A g-C3N4/ZnO (graphitic carbon nitride/zinc oxide) nanocomposite-decorated gold electrode was employed to design an antigen-antibody-based electrochemical biosensor to detect Helicobacter pylori specific toxin, vacuolating cytotoxin A (VacA). The thermal condensation method was used to synthesize the g-C3N4/ZnO nanocomposite, and the nanocomposite was deposited electrochemically on a gold electrode. The morphology as well as the structure of the synthesized nanocomposite were confirmed by scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction, and Fourier transform infrared techniques. The nanocomposite efficiently increased the sensor performance by amplifying the signals. EDC-NHS chemistry was exploited for attachment of VacA antibodies covalently with the g-C3N4/ZnO-modified gold electrode. This modified electrode was exploited for immunosensing of H. pylori-specific VacA antigen. The immunosensor was stable for up to 30 days and exhibited good sensitivity of 0.3 μA-1 ng mL-1 in a linear detection range of 0.1 to 12.8 ng mL-1. Apart from this, the fabricated sensor showed unprecedented reproducibility and remarkable selectivity toward the H. pylori toxin VacA. Thus, the highly sensitive immunosensor is a desirable platform for H. pylori detection in practical applications and clinical diagnosis.
Collapse
Affiliation(s)
- Kirti Saxena
- Amity
Institute of Nanotechnology, Amity University
Uttar Pradesh (AUUP), Sector-125, Noida 201313, India
| | - Arun Kumar
- Centre
for Nanoscience and Nanotechnology, Jamia
Millia Islamia, New Delhi 110025, India
| | - Nidhi Chauhan
- Amity
Institute of Nanotechnology, Amity University
Uttar Pradesh (AUUP), Sector-125, Noida 201313, India
| | - Manika Khanuja
- Centre
for Nanoscience and Nanotechnology, Jamia
Millia Islamia, New Delhi 110025, India
| | - Bansi D. Malhotra
- Nanobioelectronics
Laboratory, Department of Biotechnology, Delhi Technological University, Delhi 110042, India
| | - Utkarsh Jain
- Amity
Institute of Nanotechnology, Amity University
Uttar Pradesh (AUUP), Sector-125, Noida 201313, India
| |
Collapse
|
42
|
Shatila M, Thomas AS. Current and Future Perspectives in the Diagnosis and Management of Helicobacter pylori Infection. J Clin Med 2022; 11:jcm11175086. [PMID: 36079015 PMCID: PMC9456682 DOI: 10.3390/jcm11175086] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/03/2022] Open
Abstract
Helicobacter pylori (Hp) is a prevalent organism infecting almost half the global population. It is a significant concern, given its associated risk of gastric cancer, which is the third leading cause of cancer death globally. Infection can be asymptomatic or present with dyspeptic symptoms. It may also present with alarm symptoms in the case of progression to cancer. Diagnosis can be achieved non-invasively (breath tests, stool studies, or serology) or invasively (rapid urease test, biopsy, or culture). Treatment involves acid suppression and regimens containing several antibiotics and is guided by resistance rates. Eradication is essential, as it lowers the risk of complications and progression to cancer. Follow-up after eradication is similarly important, as the risk of cancer progression remains. There have been many recent advances in both diagnosis and treatment of Hp. In particular, biosensors may be effective diagnostic tools, and nanotechnology, vaccines, and potassium-competitive acid blockers may prove effective in enhancing eradication rates.
Collapse
|
43
|
Sharafutdinov I, Ekici A, Vieth M, Backert S, Linz B. Early and late genome-wide gastric epithelial transcriptome response during infection with the human carcinogen Helicobacterpylori. CELL INSIGHT 2022; 1:100032. [PMID: 37193047 PMCID: PMC10120309 DOI: 10.1016/j.cellin.2022.100032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 05/18/2023]
Abstract
Infection of the stomach by Helicobacter pylori is a major risk factor for the development of gastric cancer. Colonization of the gastric epithelium leads to the activation of multiple disease-related signaling pathways. Serine protease HtrA represents an important secreted virulence factor that mediates cleavage of cellular junctions. However, its potential role in nuclear responses is unknown. Here, we performed a genome-wide RNA-seq analysis of polarized gastric epithelial cells infected by wild-type (wt) and ΔhtrA mutant bacteria. Fluorescence microscopy showed that H. pylori wt, but not ΔhtrA bacteria, preferably localized at cellular junctions. Our results pinpointed early (2 h) and late (6 h) transcriptional responses, with most differentially expressed genes at 6 h post infection. The transcriptomes revealed HtrA-dependent targeting of genes associated with inflammation and apoptosis (e.g. IL8, ZFP36, TNF). Accordingly, infection with the ΔhtrA mutant induced increased apoptosis rates in host cells, which was associated with reduced H. pylori CagA expression. In contrast, transcription of various carcinogenesis-associated genes (e.g. DKK1, DOCK8) was affected by H. pylori independent of HtrA. These findings suggest that H. pylori disturbs previously unknown molecular pathways in an HtrA-dependent and HtrA-independent manner, and provide valuable new insights of this significant pathogen in humans and thus potential targets for better controlling the risk of malignant transformation.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| | - Arif Ekici
- Institute of Human Genetics, University Hospital, Friedrich Alexander Universität Erlangen-Nürnberg, Schwabachanlage 10, D-91054, Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Klinikum Bayreuth, Preuschwitzer Str 101, D-95445, Bayreuth, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| | - Bodo Linz
- Department of Biology, Division of Microbiology, Friedrich Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| |
Collapse
|
44
|
El Hafa F, Wang T, Ndifor VM, Jin G. Association between Helicobacter pylori antibodies determined by multiplex serology and gastric cancer risk: A meta-analysis. Helicobacter 2022; 27:e12881. [PMID: 35212073 DOI: 10.1111/hel.12881] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/17/2022] [Accepted: 01/30/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Previous studies have reported the association between limited number of Helicobacter pylori (H. pylori) antigens and gastric cancer (GC) risk. The present study evaluated the association between serum antibodies against 15 different H. pylori proteins measured by using multiplex serology assay and GC risk. METHODS We searched PubMed databases, Embase, Web of Science, and Cochrane Library for relevant articles. A meta-analysis was used to pool studies and to estimate odds ratios (ORs) with 95% confidence intervals (95%CIs) of different H. pylori antigens associated with GC risk. Heterogeneity was investigated using Cochran's Q test and I-squared statistic. RESULTS Nine studies were identified, with a total of 3209 GC cases and 6964 controls. Five H. pylori virulence factors were significantly associated with non-cardia GC risk at p-value <0.0033 including: CagA (OR = 3.22, 95%CI: 2.10-4.94), HP0305 (OR = 1.72, 95%CI: 1.32-2.25), HyuA (OR = 1.42, 95%CI: 1.13-1.79), Omp (OR = 1.83, 95%CI: 1.30-2.58), and VacA (OR = 2.05, 95%CI: 1.67-2.52). However, none of the 15 antigens was associated with cardia GC risk. In subgroup analysis by ethnicity, we identified 7 antigens associated with the risk of non-cardia GC among East Asian while only two antigens were identified in European population. Nevertheless, CagA and GroEL showed a stronger association in Caucasian (CagA OR = 5.83, 95%CI: 3.31-10.26; GroEL OR = 3.66, 95%CI: 1.58-8.50) compared with East Asian (CagA OR = 2.20, 95% CI: 1.85-2.61; GroEL OR = 1.47, 95%CI: 1.29-1.68). CONCLUSIONS This study determined that H. pylori infection increases the risk of non-cardia GC with differential effects by its virulence factors and with different patterns among East Asian and European populations. These results advance the understanding of the effect of H. pylori on GC.
Collapse
Affiliation(s)
- Fadoua El Hafa
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China.,Public Health Institute of Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Valerie Mbuhnwi Ndifor
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China.,Public Health Institute of Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
The role of non-Helicobacter pylori bacteria in the pathogenesis of gastroduodenal diseases. Gut Pathog 2022; 14:19. [PMID: 35606878 PMCID: PMC9125830 DOI: 10.1186/s13099-022-00494-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the development of next-generation sequencing for human microbiota has led to remarkable discoveries. The characterization of gastric microbiota has enabled the examination of genera associated with several diseases, including gastritis, precancerous lesions, and gastric cancer. Helicobacter pylori (H. pylori) is well known to cause gastric dysbiosis by reducing diversity, because this bacterium is the predominant bacterium. However, as the diseases developed into more severe stages, such as atrophic gastritis, premalignant lesion, and gastric adenocarcinoma, the dominance of H. pylori began to be displaced by other bacteria, including Streptococcus, Prevotella, Achromobacter, Citrobacter, Clostridium, Rhodococcus, Lactobacillus, and Phyllobacterium. Moreover, a massive reduction in H. pylori in cancer sites was observed as compared with noncancer tissue in the same individual. In addition, several cases of H. pylori-negative gastritis were found. Among these individuals, there was an enrichment of Paludibacter, Dialister, Streptococcus, Haemophilus parainfluenzae, and Treponema. These remarkable findings suggest the major role of gastric microbiota in the development of gastroduodenal diseases and led us to the hypothesis that H. pylori might not be the only gastric pathogen. The gastric microbiota point of view of disease development should lead to a more comprehensive consideration of this relationship.
Collapse
|
46
|
Oster P, Vaillant L, McMillan B, Velin D. The Efficacy of Cancer Immunotherapies Is Compromised by Helicobacter pylori Infection. Front Immunol 2022; 13:899161. [PMID: 35677057 PMCID: PMC9168074 DOI: 10.3389/fimmu.2022.899161] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori infects the gastric mucosa of a large number of humans. Although asymptomatic in the vast majority of cases, H pylori infection can lead to the development of peptic ulcers gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. Using a variety of mechanisms, H pylori locally suppresses the function of the host immune system to establish chronic infection. Systemic immunomodulation has been observed in both clinical and pre-clinical studies, which have demonstrated that H pylori infection is associated with reduced incidence of inflammatory diseases, such as asthma and Crohn’s disease. The introduction of immunotherapies in the arsenal of anti-cancer drugs has revealed a new facet of H pylori-induced immune suppression. In this review, we will describe the intimate interactions between H pylori and its host, and formulate hypothtyeses describing the detrimental impact of H pylori infection on the efficacy of cancer immunotherapies.
Collapse
|
47
|
Nath AN, Retnakumar RJ, Francis A, Chhetri P, Thapa N, Chattopadhyay S. Peptic Ulcer and Gastric Cancer: Is It All in the Complex Host-Microbiome Interplay That Is Encoded in the Genomes of "Us" and "Them"? Front Microbiol 2022; 13:835313. [PMID: 35547123 PMCID: PMC9083406 DOI: 10.3389/fmicb.2022.835313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
It is increasingly being recognized that severe gastroduodenal diseases such as peptic ulcer and gastric cancer are not just the outcomes of Helicobacter pylori infection in the stomach. Rather, both diseases develop and progress due to the perfect storms created by a combination of multiple factors such as the expression of different H. pylori virulence proteins, consequent human immune responses, and dysbiosis in gastrointestinal microbiomes. In this mini review, we have discussed how the genomes of H. pylori and other gastrointestinal microbes as well as the genomes of different human populations encode complex and variable virulome–immunome interplay, which influences gastroduodenal health. The heterogeneities that are encrypted in the genomes of different human populations and in the genomes of their respective resident microbes partly explain the inconsistencies in clinical outcomes among the H. pylori-infected people.
Collapse
Affiliation(s)
- Angitha N Nath
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - R J Retnakumar
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, India.,Manipal Academy of Higher Education, Manipal, India
| | - Ashik Francis
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Prakash Chhetri
- Department of Zoology, Biotech Hub, Nar Bahadur Bhandari Degree College, Tadong, India
| | - Namrata Thapa
- Department of Zoology, Biotech Hub, Nar Bahadur Bhandari Degree College, Tadong, India
| | | |
Collapse
|
48
|
Vital JS, Tanoeiro L, Lopes-Oliveira R, Vale FF. Biomarker Characterization and Prediction of Virulence and Antibiotic Resistance from Helicobacter pylori Next Generation Sequencing Data. Biomolecules 2022; 12:691. [PMID: 35625618 PMCID: PMC9138241 DOI: 10.3390/biom12050691] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
The Gram-negative bacterium Helicobacter pylori colonizes c.a. 50% of human stomachs worldwide and is the major risk factor for gastric adenocarcinoma. Its high genetic variability makes it difficult to identify biomarkers of early stages of infection that can reliably predict its outcome. Moreover, the increasing antibiotic resistance found in H. pylori defies therapy, constituting a major human health problem. Here, we review H. pylori virulence factors and genes involved in antibiotic resistance, as well as the technologies currently used for their detection. Furthermore, we show that next generation sequencing may lead to faster characterization of virulence factors and prediction of the antibiotic resistance profile, thus contributing to personalized treatment and management of H. pylori-associated infections. With this new approach, more and permanent data will be generated at a lower cost, opening the future to new applications for H. pylori biomarker identification and antibiotic resistance prediction.
Collapse
Affiliation(s)
- Joana S. Vital
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.S.V.); (L.T.); (R.L.-O.)
| | - Luís Tanoeiro
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.S.V.); (L.T.); (R.L.-O.)
| | - Ricardo Lopes-Oliveira
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.S.V.); (L.T.); (R.L.-O.)
| | - Filipa F. Vale
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.S.V.); (L.T.); (R.L.-O.)
| |
Collapse
|
49
|
Association of Progranulin Gene Expression from Dyspeptic Patients with Virulent Helicobacter pylori Strains; In Vivo Model. Microorganisms 2022; 10:microorganisms10050998. [PMID: 35630441 PMCID: PMC9145319 DOI: 10.3390/microorganisms10050998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Gastric cancer, the fourth most common cause of death from tumors in the world, is closely associated with Helicobacter pylori. Timely diagnosis, therefore, is essential to achieve a higher survival rate. In Chile, deaths from gastric cancer are high, mainly due to late diagnosis. Progranulin has reflected the evolution of some cancers, but has been poorly studied in gastric lesions. Aiming to understand the role of progranulin in H. pylori infection and its evolution in development of gastric lesions, we evaluated the genic expression of progranulin in gastric tissue from infected and non-infected patients, comparing it according to the epithelial status and virulence of H. pylori strains. (2) Methods: The genic expression of progranulin by q-PCR was quantified in gastric biopsies from Chilean dyspeptic patients (n = 75) and individuals who were uninfected (n = 75) by H. pylori, after receiving prior informed consent. Bacteria were grown on a medium Columbia agar with equine-blood 7%, antibiotics (Dent 2%, OxoidTM), in a microaerophilic environment, and genetically characterized for the ureC, vacA, cagA, and iceA genes by PCR. The status of the tissue was determined by endoscopic observation. (3) Results: Minor progranulin expression was detected in atrophic tissue, with a sharp drop in the tissue colonized by H. pylori that carried greater virulence, VacAs1m1+CagA+IceA1+. (4) Conclusions: Progranulin shows a differential behavior according to the lesions and virulence of H. pylori, affecting the response of progranulin against gastric inflammation.
Collapse
|
50
|
Effect of Probiotic-Assisted Eradication of cagA+/vacA s1m1 Helicobacter pylori on Intestinal Flora. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8607671. [PMID: 35528160 PMCID: PMC9076325 DOI: 10.1155/2022/8607671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 12/14/2022]
Abstract
Objective. We attempted to evaluate the effects of probiotic-assisted eradication of cytotoxin-associated gene A (cagA)+/vacuolating cytotoxin A (vacA) s1m1 Helicobacter pylori (H. pylori) on the intestinal flora, inflammatory factors, and clinical outcomes. Methods. A total of 180 patients with cagA+/vacA s1m1 H. pylori were randomly divided into two groups. Group A was treated with bismuth quadruple therapy (BQT). Group B was treated with S. boulardii in addition to BQT. The distribution of intestinal flora, serum interleukin-8 (IL-8), IL-17, tumor necrosis factor-α (TNF-α) levels, recovery time of clinical symptoms, total effective rate of clinical symptoms, H. pylori eradication rate, and adverse reactions were observed. Results. 2 weeks after treatment, the contents of Bifidobacterium, Bacteroides, and Lactobacillus in the intestinal tract of Group A decreased, while the amounts of Enterococcus and Enterobacter increased. In Group B, the contents of Bifidobacterium, Bacteroides, and Lactobacillus increased, while the amounts of Enterococcus and Enterobacter did not change significantly. Moreover, the trend of this flora change was still present at 4 weeks after treatment. Compared with Group A, Group B had lower IL-8, IL-17, and TNF-α levels, shorter recovery time of clinical symptoms, higher overall efficiency of clinical symptoms, and lower occurrence of adverse reactions. The eradication rate did not differ significantly between the two groups. Conclusion. BQT can lead to intestinal flora disorders in cagA+/vacA s1m1 H. pylori patients. S. boulardii can improve the distribution of intestinal flora, downregulate immune-inflammatory mediators, and modify clinical symptoms in patients.
Collapse
|