1
|
Liu J, Park K, Shen Z, Lee H, Geetha P, Pakyari M, Chai L. Immunotherapy, targeted therapy, and their cross talks in hepatocellular carcinoma. Front Immunol 2023; 14:1285370. [PMID: 38173713 PMCID: PMC10762788 DOI: 10.3389/fimmu.2023.1285370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a challenging malignancy with limited treatment options beyond surgery and chemotherapy. Recent advancements in targeted therapies and immunotherapy, including PD-1 and PD-L1 monoclonal antibodies, have shown promise, but their efficacy has not met expectations. Biomarker testing and personalized medicine based on genetic mutations and other biomarkers represent the future direction for HCC treatment. To address these challenges and opportunities, this comprehensive review discusses the progress made in targeted therapies and immunotherapies for HCC, focusing on dissecting the rationales, opportunities, and challenges for combining these modalities. The liver's unique physiology and the presence of fibrosis in many HCC patients pose additional challenges to drug delivery and efficacy. Ongoing efforts in biomarker development and combination therapy design, especially in the context of immunotherapies, hold promise for improving outcomes in advanced HCC. Through exploring the advancements in biomarkers and targeted therapies, this review provides insights into the challenges and opportunities in the field and proposes strategies for rational combination therapy design.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Kevin Park
- Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Ziyang Shen
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Hannah Lee
- University of California, San Diego, CA, United States
| | | | - Mohammadreza Pakyari
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Li Chai
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
2
|
Kurebayashi Y, Tsujikawa H, Sugimoto K, Yunaiyama D, Araki Y, Saito K, Takahashi H, Kakegawa T, Wada T, Tomita Y, Abe M, Yoshimasu Y, Takeuchi H, Hirata T, Sakamaki K, Kakimi K, Nagao T, Itoi T, Sakamoto M. Tumor steatosis and glutamine synthetase expression in patients with advanced hepatocellular carcinoma receiving atezolizumab plus bevacizumab therapy. Hepatol Res 2023; 53:1008-1020. [PMID: 37300323 DOI: 10.1111/hepr.13933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
AIM The anti-programmed death-ligand 1 antibody atezolizumab and vascular endothelial growth factor-neutralizing antibody bevacizumab in combination (Atezo + Bev) have become the first-line therapy in advanced hepatocellular carcinoma (HCC). Distinct types of tumor immune microenvironment (TIME) and their associations with specific molecular subclasses and driver gene mutations have been identified in HCC; however, these insights are mainly based on surgically resected early-stage tumors. The current study aimed to reveal the biology and TIME of advanced HCC and their significance in predicting clinical outcomes of Atezo + Bev therapy. METHODS Thirty-three patients with advanced HCC who were scheduled for treatment with Atezo + Bev therapy were included in this study. Pretreatment tumor biopsy, pre- and posttreatment diffusion-weighted magnetic resonance imaging (MRI) with nine b values (0-1500 s/mm2 ), and other clinicopathologic factors were analyzed. RESULTS Compared with resectable HCC, advanced HCC was characterized by higher proliferative activity, a higher frequency of Wnt/β-catenin-activated HCC, and lower lymphocytic infiltration. Prognostically, two metabolism-related factors, histopathologically determined tumor steatosis and/or glutamine synthetase (GS) expression, and MRI-determined tumor steatosis, were the most significant prognostic indicators for progression-free survival (PFS) and overall survival after Atezo + Bev therapy. Furthermore, changes in the pre- and posttreatment true diffusion coefficients on MRI, which might reflect changes in TIME after treatment, were significantly associated with better PFS. CONCLUSIONS The biology and TIME of HCC were strikingly different in advanced HCC compared with those of surgically resected HCC. Two metabolism-related factors, pathologically determined tumor steatosis and/or GS expression, and MRI-determined tumor steatosis, were found to be the most significant prognostic indicators for Atezo + Bev therapy in advanced HCC.
Collapse
Affiliation(s)
- Yutaka Kurebayashi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Hanako Tsujikawa
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- Department of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan
| | - Katsutoshi Sugimoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | | | - Yoichi Araki
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
| | - Kazuhiro Saito
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
| | - Hiroshi Takahashi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Tatsuya Kakegawa
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Takuya Wada
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Yusuke Tomita
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Masakazu Abe
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Yu Yoshimasu
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Hirohito Takeuchi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Taiki Hirata
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Kentaro Sakamaki
- Center for Data Science, Yokohama City University, Yokohama, Japan
| | - Kazuhiro Kakimi
- Department of Immuno-therapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Toshitaka Nagao
- Department of Anatomical Pathology, Tokyo Medical University, Tokyo, Japan
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Tian C, Li L, Fan L, Brown A, Norris EJ, Morrison M, Glazer ES, Zhu L. A hepatoprotective role of peritumoral non-parenchymal cells in early liver tumorigenesis. Dis Model Mech 2023; 16:286886. [PMID: 36728410 PMCID: PMC10040241 DOI: 10.1242/dmm.049750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Various 3D models of hepatocytes (HCs) have been established to assess liver functions in vitro. The contribution of the hepatic non-parenchymal cells (NPCs), however, is largely neglected in these models. Here, we report a comparative study of hepatic spheroids generated from freshly isolated mouse whole liver cells (WLCs) and HCs (referred to as SphWLC and SphHC, respectively). We found that HC differentiation was preserved better in SphWLC than in SphHC, and, when co-cultured with liver tumor spheroids (SphT), SphWLC showed more potent suppression of SphT growth compared to SphHC. Histological characterization revealed marked activation and accumulation of hepatic stellate cells (HSCs) at the SphWLC:SphT interface. We found that mixing HSCs in both 3D and 2D HC:tumor co-cultures provided potent protection to HCs against tumor-induced cell death. Activation of HSCs at the tumor border was similarly found in liver tumors from both mice and patients. Overall, our study suggests a hepatoprotective role of peritumoral HSCs in liver tumorigenesis and the potential application of SphWLC as a useful 3D model for dissecting the liver's response to tumorigenesis in vitro.
Collapse
Affiliation(s)
- Cheng Tian
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Liyuan Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Li Fan
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anthony Brown
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Eric J Norris
- STEMCELL Technologies, Vancouver, BC V6A 1B6, Canada
| | - Michelle Morrison
- Department of Surgery and Cancer Center, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Evan S Glazer
- Department of Surgery and Cancer Center, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Liqin Zhu
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
4
|
Mima K, Hayashi H, Yumoto S, Matsumoto T, Tsukamoto M, Miyata T, Nakagawa S, Nitta H, Baba H. Disability in perioperative activities of daily living is associated with worse survival outcomes following hepatic resection in patients with intrahepatic cholangiocarcinoma. Hepatol Res 2023; 53:135-144. [PMID: 36305859 DOI: 10.1111/hepr.13849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/17/2022] [Accepted: 10/23/2022] [Indexed: 02/04/2023]
Abstract
AIM Intrahepatic cholangiocarcinoma (ICC) is a rare disease; however, its incidence and mortality are increasing worldwide. The rapid aging of populations around the world is leading to an increased number of patients with cancer who develop disability in activities of daily living (ADL). This study was conducted to investigate the associations of perioperative ADL with patient survival after hepatic resection for ICC. METHODS We included 70 consecutive patients who underwent hepatectomy for ICC from 2010 to 2021 in the current study. Preoperative and postoperative ADL were evaluated based on the Barthel index, which yields a score of 0-100 points, with higher scores indicating greater independence. A preoperative or postoperative Barthel index score of <100 was defined as disability in perioperative ADL. Cox proportional hazards regression was used to calculate hazard ratios after adjusting for potential confounders. RESULTS Among the 70 patients, seven (10%) had a preoperative Barthel index score of <100, and 23 (33%) showed a postoperative Barthel index score of <100. Multivariate analyses revealed that disability in perioperative ADL was associated with shorter recurrence-free survival (multivariable hazard ratios 2.38, 95% confidence interval 1.22-4.57; p = 0.011) and overall survival (multivariable hazard ratio 2.49, 95% confidence interval 1.09-5.70; p = 0.031). CONCLUSIONS Disability in perioperative ADL is associated with shorter recurrence-free and overall survival after hepatic resection for ICC. Upon validation, perioperative measurement of ADL may improve risk assessment, and improvement of perioperative ADL may lead to favorable clinical outcomes in patients with ICC.
Collapse
Affiliation(s)
- Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromitsu Hayashi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinsei Yumoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Matsumoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayo Tsukamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tatsunori Miyata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shigeki Nakagawa
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidetoshi Nitta
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
5
|
Reprograming immune microenvironment modulates CD47 cancer stem cells in hepatocellular carcinoma. Int Immunopharmacol 2022; 113:109475. [PMID: 36435064 DOI: 10.1016/j.intimp.2022.109475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
|
6
|
Chung A, Nasralla D, Quaglia A. Understanding the Immunoenvironment of Primary Liver Cancer: A Histopathology Perspective. J Hepatocell Carcinoma 2022; 9:1149-1169. [PMID: 36349146 PMCID: PMC9637345 DOI: 10.2147/jhc.s382310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
One of the most common cancers worldwide, primary liver cancer remains a major cause of cancer-related mortality. Hepatocellular carcinoma and cholangiocarcinoma represent the majority of primary liver cancer cases. Despite advances in the development of novel anti-cancer therapies that exploit targets within the immune system, survival rates from liver cancer remain poor. Furthermore, responses to immunotherapies, such as immune checkpoint inhibitors, have revealed limited and variable responses amongst patients with hepatocellular carcinoma, although combination immunotherapies have shown recent breakthroughs in clinical trials. This has shifted the focus towards improving our understanding of the underlying immune and molecular characteristics of liver tumours that may influence their response to immune-modulating treatments. In this review, we outline the complex interactions that occur in the tumour microenvironment of hepatocellular carcinoma and cholangiocarcinoma, respectively, from a histopathological perspective. We explore the potential role of a classification system based on immune-specific characteristics within each cancer type, the importance of understanding inter- and intra-tumoural heterogeneity and consider the future role of histopathology and novel technologies within this field.
Collapse
Affiliation(s)
- Annabelle Chung
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| | - David Nasralla
- Department of Hepato-Pancreato-Biliary Surgery, Royal Free Hospital, London, UK
| | - Alberto Quaglia
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| |
Collapse
|
7
|
Latacz E, Höppener D, Bohlok A, Leduc S, Tabariès S, Fernández Moro C, Lugassy C, Nyström H, Bozóky B, Floris G, Geyer N, Brodt P, Llado L, Van Mileghem L, De Schepper M, Majeed AW, Lazaris A, Dirix P, Zhang Q, Petrillo SK, Vankerckhove S, Joye I, Meyer Y, Gregorieff A, Roig NR, Vidal-Vanaclocha F, Denis L, Oliveira RC, Metrakos P, Grünhagen DJ, Nagtegaal ID, Mollevi DG, Jarnagin WR, D’Angelica MI, Reynolds AR, Doukas M, Desmedt C, Dirix L, Donckier V, Siegel PM, Barnhill R, Gerling M, Verhoef C, Vermeulen PB. Histopathological growth patterns of liver metastasis: updated consensus guidelines for pattern scoring, perspectives and recent mechanistic insights. Br J Cancer 2022; 127:988-1013. [PMID: 35650276 PMCID: PMC9470557 DOI: 10.1038/s41416-022-01859-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 04/19/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023] Open
Abstract
The first consensus guidelines for scoring the histopathological growth patterns (HGPs) of liver metastases were established in 2017. Since then, numerous studies have applied these guidelines, have further substantiated the potential clinical value of the HGPs in patients with liver metastases from various tumour types and are starting to shed light on the biology of the distinct HGPs. In the present guidelines, we give an overview of these studies, discuss novel strategies for predicting the HGPs of liver metastases, such as deep-learning algorithms for whole-slide histopathology images and medical imaging, and highlight liver metastasis animal models that exhibit features of the different HGPs. Based on a pooled analysis of large cohorts of patients with liver-metastatic colorectal cancer, we propose a new cut-off to categorise patients according to the HGPs. An up-to-date standard method for HGP assessment within liver metastases is also presented with the aim of incorporating HGPs into the decision-making processes surrounding the treatment of patients with liver-metastatic cancer. Finally, we propose hypotheses on the cellular and molecular mechanisms that drive the biology of the different HGPs, opening some exciting preclinical and clinical research perspectives.
Collapse
Affiliation(s)
- Emily Latacz
- grid.5284.b0000 0001 0790 3681Translational Cancer Research Unit, GZA Hospitals, Iridium Netwerk and University of Antwerp, Antwerp, Belgium
| | - Diederik Höppener
- grid.508717.c0000 0004 0637 3764Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ali Bohlok
- grid.418119.40000 0001 0684 291XDepartment of Surgical Oncology, Institut Jules Bordet, Brussels, Belgium
| | - Sophia Leduc
- grid.5596.f0000 0001 0668 7884Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sébastien Tabariès
- grid.14709.3b0000 0004 1936 8649Department of Medicine, Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QC Canada
| | - Carlos Fernández Moro
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Huddinge, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Huddinge, Sweden
| | - Claire Lugassy
- grid.418596.70000 0004 0639 6384Department of Translational Research, Institut Curie, Paris, France
| | - Hanna Nyström
- grid.12650.300000 0001 1034 3451Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Béla Bozóky
- grid.24381.3c0000 0000 9241 5705Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Huddinge, Sweden
| | - Giuseppe Floris
- grid.5596.f0000 0001 0668 7884Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research and University Hospitals Leuven, KU Leuven, Leuven, Belgium ,grid.410569.f0000 0004 0626 3338Department of Pathology, University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Natalie Geyer
- grid.4714.60000 0004 1937 0626Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Pnina Brodt
- grid.63984.300000 0000 9064 4811Department of Surgery, Oncology and Medicine, McGill University and the Research Institute, McGill University Health Center, Montreal, QC Canada
| | - Laura Llado
- grid.418284.30000 0004 0427 2257HBP and Liver Transplantation Unit, Department of Surgery, Hospital Universitari de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Catalonia Spain
| | - Laura Van Mileghem
- grid.5284.b0000 0001 0790 3681Translational Cancer Research Unit, GZA Hospitals, Iridium Netwerk and University of Antwerp, Antwerp, Belgium
| | - Maxim De Schepper
- grid.5596.f0000 0001 0668 7884Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ali W. Majeed
- grid.31410.370000 0000 9422 8284Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Anthoula Lazaris
- grid.63984.300000 0000 9064 4811Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC Canada
| | - Piet Dirix
- grid.5284.b0000 0001 0790 3681Translational Cancer Research Unit, GZA Hospitals, Iridium Netwerk and University of Antwerp, Antwerp, Belgium
| | - Qianni Zhang
- grid.4868.20000 0001 2171 1133School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK
| | - Stéphanie K. Petrillo
- grid.63984.300000 0000 9064 4811Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC Canada
| | - Sophie Vankerckhove
- grid.418119.40000 0001 0684 291XDepartment of Surgical Oncology, Institut Jules Bordet, Brussels, Belgium
| | - Ines Joye
- grid.5284.b0000 0001 0790 3681Translational Cancer Research Unit, GZA Hospitals, Iridium Netwerk and University of Antwerp, Antwerp, Belgium
| | - Yannick Meyer
- grid.508717.c0000 0004 0637 3764Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Alexander Gregorieff
- grid.63984.300000 0000 9064 4811Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Pathology, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Regenerative Medicine Network, McGill University, Montreal, QC Canada
| | - Nuria Ruiz Roig
- grid.411129.e0000 0000 8836 0780Department of Pathology, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Catalonia Spain ,grid.418284.30000 0004 0427 2257Tumoral and Stromal Chemoresistance Group, Oncobell Program, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Catalonia Spain ,grid.5841.80000 0004 1937 0247Human Anatomy and Embryology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Catalonia Spain
| | - Fernando Vidal-Vanaclocha
- grid.253615.60000 0004 1936 9510GWU-Cancer Center, Department of Biochemistry and Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, USA
| | - Larsimont Denis
- grid.418119.40000 0001 0684 291XDepartment of Pathology, Institut Jules Bordet, Brussels, Belgium
| | - Rui Caetano Oliveira
- grid.28911.330000000106861985Pathology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Peter Metrakos
- grid.63984.300000 0000 9064 4811Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC Canada
| | - Dirk J. Grünhagen
- grid.508717.c0000 0004 0637 3764Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Iris D. Nagtegaal
- grid.10417.330000 0004 0444 9382Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
| | - David G. Mollevi
- grid.418284.30000 0004 0427 2257Tumoral and Stromal Chemoresistance Group, Oncobell Program, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Catalonia Spain ,grid.418701.b0000 0001 2097 8389Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d’Oncologia, L’Hospitalet de Llobregat, Barcelona, Catalonia Spain
| | - William R. Jarnagin
- grid.51462.340000 0001 2171 9952Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Michael I D’Angelica
- grid.51462.340000 0001 2171 9952Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Andrew R. Reynolds
- grid.417815.e0000 0004 5929 4381Oncology R&D, AstraZeneca, Cambridge, UK
| | - Michail Doukas
- grid.5645.2000000040459992XDepartment of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Christine Desmedt
- grid.5596.f0000 0001 0668 7884Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Luc Dirix
- grid.5284.b0000 0001 0790 3681Translational Cancer Research Unit, GZA Hospitals, Iridium Netwerk and University of Antwerp, Antwerp, Belgium
| | - Vincent Donckier
- grid.418119.40000 0001 0684 291XDepartment of Surgical Oncology, Institut Jules Bordet, Brussels, Belgium
| | - Peter M. Siegel
- grid.14709.3b0000 0004 1936 8649Department of Medicine, Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Departments of Medicine, Biochemistry, Anatomy & Cell Biology, McGill University, Montreal, QC Canada
| | - Raymond Barnhill
- grid.418596.70000 0004 0639 6384Department of Translational Research, Institut Curie, Paris, France ,Université de Paris l’UFR de Médecine, Paris, France
| | - Marco Gerling
- grid.4714.60000 0004 1937 0626Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden ,grid.24381.3c0000 0000 9241 5705Theme Cancer, Karolinska University Hospital, Solna, Sweden
| | - Cornelis Verhoef
- grid.508717.c0000 0004 0637 3764Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Peter B. Vermeulen
- grid.5284.b0000 0001 0790 3681Translational Cancer Research Unit, GZA Hospitals, Iridium Netwerk and University of Antwerp, Antwerp, Belgium
| |
Collapse
|
8
|
Lin L, Zeng X, Liang S, Wang Y, Dai X, Sun Y, Wu Z. Construction of a co-expression network and prediction of metastasis markers in colorectal cancer patients with liver metastasis. J Gastrointest Oncol 2022; 13:2426-2438. [PMID: 36388701 PMCID: PMC9660078 DOI: 10.21037/jgo-22-965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common global malignancy associated with high invasiveness, high metastasis, and poor prognosis. CRC commonly metastasizes to the liver, where the treatment of metastasis is both difficult and an important topic in current CRC management. METHODS Microarrays data of human CRC with liver metastasis (CRCLM) were downloaded from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database to identify potential key genes. Differentially expressed (DE) genes (DEGs) and DEmiRNAs of primary CRC tumor tissues and metastatic liver tissues were identified. Microenvironment Cell Populations (MCP)-counter was used to estimate the abundance of immune cells in the tumor micro-environment (TME), and weighted gene correlation network analysis (WGCNA) was used to construct the co-expression network analysis. Gene Ontology and Kyoto Encyclopaedia of Gene and Genome (KEGG) pathway enrichment analyses were conducted, and the protein-protein interaction (PPI) network for the DEGs were constructed and gene modules were screened. RESULTS Thirty-five pairs of matched colorectal primary cancer and liver metastatic gene expression profiles were screened, and 610 DEGs (265 up-regulated and 345 down-regulated) and 284 DEmiRNAs were identified. The DEGs were mainly enriched in the complement and coagulation cascade pathways and renin secretion. Immune infiltrating cells including neutrophils, monocytic lineage, and cancer-associated fibroblasts (CAFs) differed significantly between primary tumor tissues and metastatic liver tissues. WGCN analysis obtained 12 modules and identified 62 genes with significant interactions which were mainly related to complement and coagulation cascade and the focal adhesion pathway. The best subset regression analysis and backward stepwise regression analysis were performed, and eight genes were determined, including F10, FGG, KNG1, MBL2, PROC, SERPINA1, CAV1, and SPP1. Further analysis showed four genes, including FGG, KNG1, CAV1, and SPP1 were significantly associated with CRCLM. CONCLUSIONS Our study implies complement and coagulation cascade and the focal adhesion pathway play a significant role in the development and progression of CRCLM, and FGG, KNG1, CAV1, and SPP1 may be metastatic markers for its early diagnosis.
Collapse
Affiliation(s)
- Lihong Lin
- Department of Anorectal Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Xiuxiu Zeng
- Department of Anorectal Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Shanyan Liang
- Department of Anorectal Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Yunzhi Wang
- School of Health Sciences, University of Sydney, Lidcombe, NSW, Australia
| | - Xiaoyu Dai
- Department of Anorectal Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Yuechao Sun
- Department of Anorectal Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China;,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Zhou Wu
- Department of Anorectal Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
9
|
Xu L, Yan M, Long J, liu M, Yang H, Li W. Identification of macrophage correlated biomarkers to predict the prognosis in patients with intrahepatic cholangiocarcinoma. Front Oncol 2022; 12:967982. [PMID: 36158683 PMCID: PMC9497456 DOI: 10.3389/fonc.2022.967982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
Background It has been shown that tumor-associated immune cells, particularly macrophages, play a fundamental role in the development and treatment response of intrahepatic cholangiocarcinoma (ICC). However, little is known about macrophages at the single cellular level of ICC patients. Methods ScRNA-seq from Zhang et al. was used in the present study to identify the genes differentially expressed in ICCs. Furthermore, transcriptomic data from TCGA datasets, IHC and flowcytometry from our cohort were used to confirm the findings. Kaplan-Meier and TIDE scores were also used for prognostic analysis and ICB responses. Results A significant number of macrophages were found in ICCs as compared to adjacent tissues. We then extracted, processed, and classified the macrophages from the ICCs and adjacent tissues into 12 clusters. Significantly, the macrophages from the ICC exhibited an immunosuppressed state in terms of both signature gene expression and functional enrichment. Furthermore, our results indicate that, of the 10 selective tumor-promoting genes of macrophages, only MMP19 and SIRPα can predict ICB responses in ICCs. Although a higher expression of MMP19 and SIRPα predict a poor prognosis for ICCs without immunotherapy after surgery, patients with high SIRPα expression were more sensitive to immunotherapy, whereas those with high MMP19 expression were not sensitive to immunotherapy. To define the mechanisms, we found that SIRPαhi ICCs exhibited an increased enrichment KEGG pathway of leukocyte transendothelial migration and neutrophil extracellular trap formation. The increased immune cell infiltration will increase sensitivity to immunotherapy. Conclusion Collectively, macrophages are critical to the immune status of ICCs, and MMP19 and SIRPα can predict prognosis and ICB responses for ICCs.
Collapse
Affiliation(s)
- Linping Xu
- Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Linping Xu,
| | - Meimei Yan
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Jianpeng Long
- Department of Breast and Thyroid Surgery, Gansu Provincial Central Hospital, Lan Zhou, China
| | - Mengmeng liu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Hui Yang
- Department of Gastroenterology, Zhengzhou University People’s Hospital and Henan Provincial People’s Hospital, Zhengzhou, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Utsumi M, Inagaki M, Kitada K, Tokunaga N, Kondo M, Sakurai Y, Yunoki K, Hamano R, Miyasou H, Tsunemitsu Y, Otsuka S. Preoperative lymphocyte-to-C-reactive protein ratio predicts hepatocellular carcinoma recurrence after surgery. Ann Surg Treat Res 2022; 103:72-80. [PMID: 36017137 PMCID: PMC9365642 DOI: 10.4174/astr.2022.103.2.72] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose This study was performed to determine the prognostic value of lymphocyte-to-CRP ratio after curative resection for hepatocellular carcinoma. Methods Between July 2010 and October 2021, 173 consecutive patients (144 male, 29 female) who underwent surgical resection for pathologically confirmed hepatocellular carcinoma were included in this retrospective study. Cox regression analysis was used to evaluate the relationship between clinicopathological characteristics and recurrence-free survival (RFS) and overall survival (OS). A P-value of <0.05 was considered statistically significant. Results The patients (mean age, 71 years) were stratified into high (≥9,500, n = 108) and low (<9,500, n = 65) lymphocyte-to-CRP ratio groups. The low lymphocyte-to-CRP ratio group had significantly worse RFS and OS. Low lymphocyte-to-CRP ratio (hazard ratio [HR], 1.865; 95% confidence interval [CI], 1.176–2.960; P = 0.008), multiple tumors (HR, 3.333; 95% CI, 2.042–5.343; P < 0.001), and microvascular invasion (HR, 1.934; 95% CI, 1.178–3.184; P = 0.009) were independently associated with RFS, whereas low albumin-to-globulin ratio (HR, 2.270; 95% CI, 1.074–4.868; P = 0.032), α-FP of ≥25 ng/mL (HR, 2.187; 95% CI, 1.115–4.259; P = 0.023), and poor tumor differentiation (HR, 2.781; 95% CI, 1.041–6.692; P = 0.042) were independently associated with OS. Lymphocyte-to-CRP ratio had a higher area under the curve (0.635) than other inflammation-based markers (0.51–0.63). Conclusion Lymphocyte-to-CRP ratio is superior to other inflammation-based markers as a predictor of RFS in patients with surgically resected hepatocellular carcinoma.
Collapse
Affiliation(s)
- Masashi Utsumi
- Department of Surgery, National Hospital Organization Fukuyama Medical Center, Fukuyama, Japan
| | - Masaru Inagaki
- Department of Surgery, National Hospital Organization Fukuyama Medical Center, Fukuyama, Japan
| | - Koji Kitada
- Department of Surgery, National Hospital Organization Fukuyama Medical Center, Fukuyama, Japan
| | - Naoyuki Tokunaga
- Department of Surgery, National Hospital Organization Fukuyama Medical Center, Fukuyama, Japan
| | - Midori Kondo
- Department of Surgery, National Hospital Organization Fukuyama Medical Center, Fukuyama, Japan
| | - Yuya Sakurai
- Department of Surgery, National Hospital Organization Fukuyama Medical Center, Fukuyama, Japan
| | - Kosuke Yunoki
- Department of Surgery, National Hospital Organization Fukuyama Medical Center, Fukuyama, Japan
| | - Ryosuke Hamano
- Department of Surgery, National Hospital Organization Fukuyama Medical Center, Fukuyama, Japan
| | - Hideaki Miyasou
- Department of Surgery, National Hospital Organization Fukuyama Medical Center, Fukuyama, Japan
| | - Yousuke Tsunemitsu
- Department of Surgery, National Hospital Organization Fukuyama Medical Center, Fukuyama, Japan
| | - Shinya Otsuka
- Department of Surgery, National Hospital Organization Fukuyama Medical Center, Fukuyama, Japan
| |
Collapse
|
11
|
Mima K, Imai K, Kaida T, Matsumoto T, Nakagawa S, Sawayama H, Hayashi H, Yamashita YI, Baba H. Impairment of perioperative activities of daily living is associated with poor prognosis following hepatectomy for hepatocellular carcinoma. J Surg Oncol 2022; 126:995-1002. [PMID: 35796726 DOI: 10.1002/jso.26996] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/06/2022] [Accepted: 06/17/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND The number of cancer patients with impairment of activities of daily living (ADLs) has increased. This study aimed to examine associations of perioperative Barthel index score, a validated measure of ADLs, with survival outcomes following hepatectomy for hepatocellular carcinoma (HCC). METHODS We analyzed data of 492 consecutive patients who underwent hepatectomy for HCC between 2010 and 2018. Pre- and postoperative ADLs were assessed using the Barthel index (range, 0-100; higher scores indicate greater independence). Preoperative Barthel index score ≤85 or postoperative Barthel index score ≤85 was defined as impairment of perioperative ADLs. Cox proportional hazards regression was used to calculate hazard ratios (HRs) after adjusting for potential confounders. RESULTS Among the 492 patients, 26 (5.2%) had a preoperative Barthel index score ≤85 and 95 (19%) had a postoperative Barthel index score ≤85. Impairment of perioperative ADLs was independently associated with shorter overall survival (multivariable HR: 1.75, 95% confidence interval [CI]: 1.06-2.81, p = 0.028). The association of impairment of perioperative ADLs with recurrence-free survival was not statistically significant. CONCLUSION Impairment of perioperative ADLs is associated with poor prognosis following hepatectomy for HCC. Maintenance and improvement of perioperative ADLs would be important to provide favorable long-term outcomes in patients with HCC.
Collapse
Affiliation(s)
- Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsunori Imai
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takayoshi Kaida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Matsumoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shigeki Nakagawa
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Sawayama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromitsu Hayashi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yo-Ichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
12
|
Kurebayashi Y, Matsuda K, Ueno A, Tsujikawa H, Yamazaki K, Masugi Y, Kwa WT, Effendi K, Hasegawa Y, Yagi H, Abe Y, Kitago M, Ojima H, Sakamoto M. Immunovascular classification of HCC reflects reciprocal interaction between immune and angiogenic tumor microenvironments. Hepatology 2022; 75:1139-1153. [PMID: 34657298 DOI: 10.1002/hep.32201] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/27/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Immune cells and tumor vessels constitute important elements in tumor tissue; however, their detailed relationship in human tumors, including HCC, is still largely unknown. Consequently, we expanded our previous study on the immune microenvironment of HCC and analyzed the relationship among the immune microenvironment, inflammatory/angiostatic factor expression, angiogenic factor expression, and tumor vessel findings, including vessels encapsulating tumor clusters (VETC) and macrotrabecular-massive (MTM) patterns. APPROACH AND RESULTS We classified HCC into four distinct immunovascular subtypes (immune-high/angiostatic [IH/AS], immune-mid/angio-mid [IM/AM], immune-low/angiogenic [IL/AG], and immune-low/angio-low [IL/AL]). IH/AS, IM/AM, and IL/AG subtypes were associated with decreasing lymphocytic infiltration and increasing angiogenic factor expression and VETC/MTM positivity, reflecting their reciprocal interaction in the tumor microenvironment of HCC. IL/AG subtype was further characterized by CTNNB1 mutation and activation of Wnt/β-catenin pathway. IL/AL subtype was not associated with increased lymphocyte infiltration or angiogenic factor expression. Prognostically, IH/AS subtype and VETC/MTM positivity were independently significant in two independent cohorts. Increased angiogenic factor expression was not necessarily associated with VETC/MTM positivity and poor prognosis, especially when inflammatory/angiostatic milieu coexisted around tumor vessels. These results may provide insights on the therapeutic effects of immunotherapy, antiangiogenic therapies, and their combinations. The potential of evaluating the immunovascular microenvironment in predicting the clinical effect of these therapies in nonresectable HCC needs to be analyzed in the future study. CONCLUSIONS HCC can be classified into four distinct immunovascular subtypes (IH/AS, IM/AM, IL/AG, and IL/AL) that reflect the reciprocal interaction between the antitumor immune microenvironment and tumor angiogenesis. In addition to its clinicopathological significance, immunovascular classification may also provide pathological insights on the therapeutic effect of immunotherapy, antiangiogenic therapy, and their combination.
Collapse
Affiliation(s)
| | - Kosuke Matsuda
- Department of PathologyKeio University School of MedicineTokyoJapan
| | - Akihisa Ueno
- Department of PathologyKeio University School of MedicineTokyoJapan
- Division of Diagnostic PathologyKeio University HospitalTokyoJapan
| | - Hanako Tsujikawa
- Department of PathologyKeio University School of MedicineTokyoJapan
- Division of Diagnostic PathologyKeio University HospitalTokyoJapan
| | - Ken Yamazaki
- Department of PathologyKeio University School of MedicineTokyoJapan
| | - Yohei Masugi
- Department of PathologyKeio University School of MedicineTokyoJapan
- Division of Diagnostic PathologyKeio University HospitalTokyoJapan
| | - Wit Thun Kwa
- Department of PathologyKeio University School of MedicineTokyoJapan
| | - Kathryn Effendi
- Department of PathologyKeio University School of MedicineTokyoJapan
| | - Yasushi Hasegawa
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Hiroshi Yagi
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Yuta Abe
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Minoru Kitago
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Hidenori Ojima
- Department of PathologyKeio University School of MedicineTokyoJapan
| | - Michiie Sakamoto
- Department of PathologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
13
|
Lei M, Du X, Li X, Wang F, Gu L, Guo F. LINC00665 regulates hepatocellular carcinoma by modulating mRNA via the m6A enzyme. Open Life Sci 2022; 17:71-80. [PMID: 35233461 PMCID: PMC8847717 DOI: 10.1515/biol-2022-0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/05/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to reveal the mechanism by which long noncoding RNAs (lncRNAs) modulate hepatocellular carcinoma (HCC) by regulating mRNA via the N6-methyladenosine (m6A) enzyme. The expression and clinical data of 365 HCC patients and 50 healthy control samples were downloaded from the the Cancer Genome Atlas (TCGA) database. Differentially expressed lncRNAs (DElncRNAs) and differentially expressed mRNAs (DEmRNAs) screened using limma packages from the R. m6A2Target database were used to predict the relationship between m6A enzyme-lncRNA and m6A enzyme-mRNA. The mRNAs in the lncRNA-m6A enzyme-mRNA network were subjected to enrichment analysis. Cox regression analysis was used to screen for RNAs significantly related to HCC prognosis. The expression of differentially expressed RNAs (DERs) was verified using the TCGA dataset and GSE55092. Eighty-five DElncRNAs and 747 DEmRNAs were identified. The mRNAs in the lncRNA-m6A enzyme-mRNA network were primarily involved in mitotic cell division, the p53 signaling pathway, and the cell cycle. Three lncRNAs and 14 mRNAs were significantly associated with HCC prognosis. Furthermore, the expression of 12 DERs differed significantly between patients in the early and advanced stages. LINC00665 was predicted to regulate 11 mRNAs by modulating IGF2BP1, IGF2BP2, and YTHDF1. Thus, this study provides new insights into the roles of lncRNA and m6A enzymes in HCC.
Collapse
Affiliation(s)
- Ming Lei
- Nursing Health Sciences College, Yunnan Open University , Kunming , Yunnan, 650500 , China
| | - Xinghua Du
- Laboratory Medicine Department, The Integrated Traditional Chinese and Western Medicine Hospital of Yunnan Province , Kunming , Yunnan, 650224 , China
| | - Xiaokai Li
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Kunming Medical University , Kunming , Yunnan, 650032 , China
| | - Fuke Wang
- Sport Medicine Department, The First Affiliated Hospital of Kunming Medical University , Kunming , Yunnan, 650032 , China
| | - Ling Gu
- Pain Department, The First Affiliated Hospital of Kunming Medical University , Kunming , Yunnan, 650032 , China
| | - Feng Guo
- The Clinical Skills Training Center, Kunming Medical University, No. 1168 Chunrongxi Road Chenggong District , Kunming , Yunnan, 650500 , China
| |
Collapse
|
14
|
He RQ, Li JD, He WY, Chen G, Huang ZG, Li MF, Wu WZ, Chen JT, Pan YQ, Jiang H, Dang YW, Yang LH. Prognosis prediction ability and prospective biological mechanisms of WDHD1 in hepatocellular carcinoma tissues. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
15
|
Yugawa K, Maeda T, Kinjo N, Kawata K, Ikeda S, Edahiro K, Edagawa M, Omine T, Kometani T, Yamaguchi S, Konishi K, Tsutsui S, Matsuda H. Prognostic Impact of Lymphocyte-C-Reactive Protein Ratio in Patients Who Underwent Surgical Resection for Hepatocellular Carcinoma. J Gastrointest Surg 2022; 26:104-112. [PMID: 34258673 DOI: 10.1007/s11605-021-05085-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/12/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Systemic inflammation-related factors, either independently or in combination, are recognized as prognostic factors for various cancers. The ratio of lymphocyte count to C-reactive protein concentration (lymphocyte-CRP ratio; LCR) is a recently identified prognostic marker for several cancers. Here, we examined the prognostic value of the LCR in patients with hepatocellular carcinoma (HCC). METHODS This was a single-center retrospective study of patients who underwent surgical resection for HCC between 2004 and 2017. Patients were divided into high- and low-LCR status groups, and the relationships between LCR status, prognosis, and other clinicopathological characteristics were analyzed. RESULTS A total of 454 patients with HCC were enrolled and assigned to the high- (n=245) or low- (n=209) LCR groups. Compared with the high-LCR group, patients in the low-LCR group had a significantly lower serum albumin level (median 4.1 vs. 3.9 g/dL, P <0.0001), lower platelet count (median 14.0 vs. 12.0 ×104/μL, P=0.0468), lower prothrombin time (median 93.2 vs. 89.6 %, P=0.0006), and larger tumor size (median 2.3 vs. 2.5 cm, P=0.0056). Patients with low-LCR status had significantly worse outcomes of overall survival and disease-free survival than patients with high-LCR status (P=0.0003 and P=0.0069, respectively). Low-LCR status was significantly associated with worse overall survival in multivariate analysis (hazard ratio 1.57, 95% confidence interval 1.14-2.17, P=0.0058). CONCLUSIONS Low-LCR status may predict worse outcomes in patients with HCC. Measurement of LCR is routine and can easily be applied for risk stratification in the assessment of patients with HCC.
Collapse
Affiliation(s)
- Kyohei Yugawa
- Department of Surgery, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, 730-0052, Japan
| | - Takashi Maeda
- Department of Surgery, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, 730-0052, Japan.
| | - Nao Kinjo
- Department of Surgery, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, 730-0052, Japan
| | - Koto Kawata
- Department of Surgery, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, 730-0052, Japan
| | - Shinichiro Ikeda
- Department of Surgery, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, 730-0052, Japan
| | - Keitaro Edahiro
- Department of Surgery, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, 730-0052, Japan
| | - Makoto Edagawa
- Department of Surgery, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, 730-0052, Japan
| | - Takahiro Omine
- Department of Surgery, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, 730-0052, Japan
| | - Takuro Kometani
- Department of Surgery, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, 730-0052, Japan
| | - Shohei Yamaguchi
- Department of Surgery, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, 730-0052, Japan
| | - Kozo Konishi
- Department of Surgery, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, 730-0052, Japan
| | - Shinichi Tsutsui
- Department of Surgery, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, 730-0052, Japan
| | - Hiroyuki Matsuda
- Department of Surgery, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, 730-0052, Japan
| |
Collapse
|
16
|
Sirbe C, Simu G, Szabo I, Grama A, Pop TL. Pathogenesis of Autoimmune Hepatitis-Cellular and Molecular Mechanisms. Int J Mol Sci 2021; 22:13578. [PMID: 34948375 PMCID: PMC8703580 DOI: 10.3390/ijms222413578] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023] Open
Abstract
Pediatric autoimmune liver disorders include autoimmune hepatitis (AIH), autoimmune sclerosing cholangitis (ASC), and de novo AIH after liver transplantation. AIH is an idiopathic disease characterized by immune-mediated hepatocyte injury associated with the destruction of liver cells, causing inflammation, liver failure, and fibrosis, typically associated with autoantibodies. The etiology of AIH is not entirely unraveled, but evidence supports an intricate interaction among genetic variants, environmental factors, and epigenetic modifications. The pathogenesis of AIH comprises the interaction between specific genetic traits and molecular mimicry for disease development, impaired immunoregulatory mechanisms, including CD4+ T cell population and Treg cells, alongside other contributory roles played by CD8+ cytotoxicity and autoantibody production by B cells. These findings delineate an intricate pathway that includes gene to gene and gene to environment interactions with various drugs, viral infections, and the complex microbiome. Epigenetics emphasizes gene expression through hereditary and reversible modifications of the chromatin architecture without interfering with the DNA sequence. These alterations comprise DNA methylation, histone transformations, and non-coding small (miRNA) and long (lncRNA) RNA transcriptions. The current first-line therapy comprises prednisolone plus azathioprine to induce clinical and biochemical remission. Further understanding of the cellular and molecular mechanisms encountered in AIH may depict their impact on clinical aspects, detect biomarkers, and guide toward novel, effective, and better-targeted therapies with fewer side effects.
Collapse
Affiliation(s)
- Claudia Sirbe
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Gelu Simu
- Cardiology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Cardiology Department, Rehabilitation Hospital, 400066 Cluj-Napoca, Romania
| | - Iulia Szabo
- Department of Rheumatology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Alina Grama
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Tudor Lucian Pop
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| |
Collapse
|
17
|
Fan C, Kam S, Ramadori P. Metabolism-Associated Epigenetic and Immunoepigenetic Reprogramming in Liver Cancer. Cancers (Basel) 2021; 13:cancers13205250. [PMID: 34680398 PMCID: PMC8534280 DOI: 10.3390/cancers13205250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/28/2022] Open
Abstract
Metabolic reprogramming and epigenetic changes have been characterized as hallmarks of liver cancer. Independently of etiology, oncogenic pathways as well as the availability of different energetic substrates critically influence cellular metabolism, and the resulting perturbations often cause aberrant epigenetic alterations, not only in cancer cells but also in the hepatic tumor microenvironment. Metabolic intermediates serve as crucial substrates for various epigenetic modulations, from post-translational modification of histones to DNA methylation. In turn, epigenetic changes can alter the expression of metabolic genes supporting on the one hand, the increased energetic demand of cancer cells and, on the other hand, influence the activity of tumor-associated immune cell populations. In this review, we will illustrate the most recent findings about metabolic reprogramming in liver cancer. We will focus on the metabolic changes characterizing the tumor microenvironment and on how these alterations impact on epigenetic mechanisms involved in the malignant progression. Furthermore, we will report our current knowledge about the influence of cancer-specific metabolites on epigenetic reprogramming of immune cells and we will highlight how this favors a tumor-permissive immune environment. Finally, we will review the current strategies to target metabolic and epigenetic pathways and their therapeutic potential in liver cancer, alone or in combinatorial approaches.
Collapse
|
18
|
Lam M, Reales-Calderon JA, Ow JR, Adriani G, Pavesi A. In vitro 3D liver tumor microenvironment models for immune cell therapy optimization. APL Bioeng 2021; 5:041502. [PMID: 34632251 PMCID: PMC8492081 DOI: 10.1063/5.0057773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Despite diagnostic and therapeutic advances, liver cancer kills more than 18 million people every year worldwide, urging new strategies to model the disease and to improve the current therapeutic options. In vitro tumor models of human cancer continue to evolve, and they represent an important screening tool. However, there is a tremendous need to improve the physiological relevance and reliability of these in vitro models to fulfill today's research requirements for better understanding of cancer progression and treatment options at different stages of the disease. This review describes the hepatocellular carcinoma microenvironmental characteristics and illustrates the current immunotherapy strategy to fight the disease. Moreover, we present a recent collection of 2D and 3D in vitro liver cancer models and address the next generation of in vitro systems recapitulating the tumor microenvironment complexity in more detail.
Collapse
Affiliation(s)
- Maxine Lam
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Jose Antonio Reales-Calderon
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Jin Rong Ow
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
19
|
Granito A, Muratori L, Lalanne C, Quarneti C, Ferri S, Guidi M, Lenzi M, Muratori P. Hepatocellular carcinoma in viral and autoimmune liver diseases: Role of CD4+ CD25+ Foxp3+ regulatory T cells in the immune microenvironment. World J Gastroenterol 2021; 27:2994-3009. [PMID: 34168403 PMCID: PMC8192285 DOI: 10.3748/wjg.v27.i22.2994] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/09/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
More than 90% of cases of hepatocellular carcinoma (HCC) occurs in patients with cirrhosis, of which hepatitis B virus and hepatitis C virus are the leading causes, while the tumor less frequently arises in autoimmune liver diseases. Advances in understanding tumor immunity have led to a major shift in the treatment of HCC, with the emergence of immunotherapy where therapeutic agents are used to target immune cells rather than cancer cells. Regulatory T cells (Tregs) are the most abundant suppressive cells in the tumor microenvironment and their presence has been correlated with tumor progression, invasiveness, as well as metastasis. Tregs are characterized by the expression of the transcription factor Foxp3 and various mechanisms ranging from cell-to-cell contact to secretion of inhibitory molecules have been implicated in their function. Notably, Tregs amply express checkpoint molecules such as cytotoxic T lymphocyte-associated antigen 4 and programmed cell-death 1 receptor and therefore represent a direct target of immune checkpoint inhibitor (ICI) immunotherapy. Taking into consideration the critical role of Tregs in maintenance of immune homeostasis as well as avoidance of autoimmunity, it is plausible that targeting of Tregs by ICI immunotherapy results in the development of immune-related adverse events (irAEs). Since the use of ICI becomes common in oncology, with an increasing number of new ICI currently under clinical trials for cancer treatment, the occurrence of irAEs is expected to dramatically rise. Herein, we review the current literature focusing on the role of Tregs in HCC evolution taking into account their opposite etiological function in viral and autoimmune chronic liver disease, and we discuss their involvement in irAEs due to the new immunotherapies.
Collapse
Affiliation(s)
- Alessandro Granito
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna 40138, Italy
- Center for the Study and Treatment of Autoimmune Diseases of the Liver and Biliary System, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Luigi Muratori
- Division of Internal Medicine and Immunorheumatology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Center for the Study and Treatment of Autoimmune Diseases of the Liver and Biliary System, University of Bologna, Bologna 40138, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Claudine Lalanne
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Center for the Study and Treatment of Autoimmune Diseases of the Liver and Biliary System, Bologna 40138, Italy
| | - Chiara Quarneti
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Center for the Study and Treatment of Autoimmune Diseases of the Liver and Biliary System, Bologna 40138, Italy
| | - Silvia Ferri
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Center for the Study and Treatment of Autoimmune Diseases of the Liver and Biliary System, Bologna 40138, Italy
| | - Marcello Guidi
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Center for the Study and Treatment of Autoimmune Diseases of the Liver and Biliary System, Bologna 40138, Italy
| | - Marco Lenzi
- Division of Internal Medicine and Immunorheumatology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Center for the Study and Treatment of Autoimmune Diseases of the Liver and Biliary System, University of Bologna, Bologna 40138, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Paolo Muratori
- Division of Internal Medicine, Morgagni-Pierantoni Hospital, Forlì 47100, Italy
- Department of Science for the Quality of Life, University of Bologna, Bologna 40138, Italy
| |
Collapse
|
20
|
Yugawa K, Itoh S, Yoshizumi T, Morinaga A, Iseda N, Toshima T, Harada N, Kohashi K, Oda Y, Mori M. Lymphocyte-C-reactive protein ratio as a prognostic marker associated with the tumor immune microenvironment in intrahepatic cholangiocarcinoma. Int J Clin Oncol 2021; 26:1901-1910. [PMID: 34117554 DOI: 10.1007/s10147-021-01962-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/03/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Changes in immune cell and inflammation-associated protein levels, either independently or in combination, are commonly used as prognostic factors for various cancers. The ratio of lymphocyte count to C-reactive protein concentration (lymphocyte-CRP ratio; LCR) is a recently identified prognostic marker for several cancers. Here, we examined the prognostic value of LCR and its relationship to various aspects of the tumor immune microenvironment in patients with intrahepatic cholangiocarcinoma (ICC). METHODS This was a single-center, retrospective study of patients who underwent surgical resection for ICC between 1998 and 2018. Patients were dichotomized into high- and low-LCR status groups, and the relationships between LCR status, prognosis, and other clinicopathological characteristics were analyzed. Tumor-infiltrating CD8+ and FOXP3s+ lymphocytes and tumor expression of CD34 and programmed death-ligand 1 were evaluated by immunohistochemical staining of resected tumors. RESULTS A total of 78 ICC patients were enrolled and assigned to the high (n = 44)- and low (n = 34)-LCR groups. Compared with the high-LCR group, patients in the low-LCR group had a significantly higher serum CA19-9 level (median 20.6 vs. 77.3 U/mL, P = 0.0017) and larger tumor size (median 3.5 vs. 5.5 cm, P = 0.0018). LCR correlated significantly with tumor microvessel density (r = 0.369, P = 0.0009) and CD8+ T lymphocyte infiltration (r = 0.377, P = 0.0007) but not with FOXP3+ T lymphocyte infiltration or tumor PD-L1 expression. Low-LCR status was significantly associated with worse overall survival by multivariate analysis (P = 0.0348). CONCLUSIONS Low-LCR status may reflect a poor anti-tumor immune response and predict worse outcomes in ICC patients.
Collapse
Affiliation(s)
- Kyohei Yugawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Akinari Morinaga
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Norifumi Iseda
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takeo Toshima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Noboru Harada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
21
|
Kurebayashi Y, Olkowski CP, Lane KC, Vasalatiy OV, Xu BC, Okada R, Furusawa A, Choyke PL, Kobayashi H, Sato N. Rapid Depletion of Intratumoral Regulatory T Cells Induces Synchronized CD8 T- and NK-cell Activation and IFNγ-Dependent Tumor Vessel Regression. Cancer Res 2021; 81:3092-3104. [PMID: 33574087 PMCID: PMC8178213 DOI: 10.1158/0008-5472.can-20-2673] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/08/2020] [Accepted: 02/10/2021] [Indexed: 11/16/2022]
Abstract
Regulatory T cells (Tregs) are known to inhibit antitumor immunity, yet the specific mechanism by which intratumoral Tregs promote tumor growth remains unclear. To better understand the roles of intratumoral Tregs, we selectively depleted tumor-infiltrating Tregs using anti-CD25-F(ab')2 near-infrared photoimmunotherapy. Depletion of tumor-infiltrating Tregs induced transient but synchronized IFNγ expression in CD8 T and natural killer (NK) cells. Despite the small fraction of CD8 T and NK cells contained within examined tumors, IFNγ produced by these CD8 T and NK cells led to efficient and rapid tumor vessel regression, intratumoral ischemia, and tumor necrosis/apoptosis and growth suppression. IFNγ receptor expression on vascular endothelial cells was required for these effects. Similar findings were observed in the early phase of systemic Treg depletion in tumor-bearing Foxp3DTR mice; combination with IL15 therapy further inhibited tumor growth and achieved increased complete regression. These results indicate the pivotal roles of intratumoral Tregs in maintaining tumor vessels and tumor growth by suppressing CD8 T and NK cells from producing IFNγ, providing insight into the mechanism of Treg-targeting therapies. SIGNIFICANCE: Intratumoral Treg depletion induces synchronized intratumoral CD8 T- and NK-cell activation, IFNγ-dependent tumor vessel regression, and ischemic tumor necrosis/apoptosis, indicating the roles of intratumoral Tregs to support the tumor vasculature. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/11/3092/F1.large.jpg.
Collapse
Affiliation(s)
- Yutaka Kurebayashi
- Molecular Imaging Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Colleen P Olkowski
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research Sponsored by the NCI, Frederick, Maryland
| | - Kelly C Lane
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, Maryland
| | - Olga V Vasalatiy
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, Maryland
| | - Biying C Xu
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, Maryland
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
22
|
Barcena-Varela M, Lujambio A. The Endless Sources of Hepatocellular Carcinoma Heterogeneity. Cancers (Basel) 2021; 13:2621. [PMID: 34073538 PMCID: PMC8198457 DOI: 10.3390/cancers13112621] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) represents a global health problem. The incidence keeps increasing and current therapeutic options confer limited benefits to the patients. Tumor heterogeneity plays a central role in this context, limiting the availability of predictive biomarkers and complicating the criteria used to choose the most suitable therapeutic option. HCC heterogeneity occurs at different levels: within the population (inter-patient heterogeneity) and within tumors from the same patient (intra-patient and intra-tumor heterogeneity). Experts in the field have made many efforts to classify the patients based on clinicopathological characteristics and molecular signatures; however, there is still much work ahead to be able to integrate the extra-tumor heterogeneity that emerges from the complexity of the tumor microenvironment, which plays a critical role in the pathogenesis of the disease and therapy responses. In this review, we summarize tumor intrinsic and extrinsic sources of heterogeneity of the most common etiologies of HCC and summarize the most recent discoveries regarding the evolutionary trajectory of liver cancer cells and the influence of tumor-extrinsic factors such as the microbiome and the host immune system. We further highlight the potential of novel high-throughput methodologies to contribute to a better understanding of this devastating disease and to the improvement of the clinical management of patients.
Collapse
Affiliation(s)
- Marina Barcena-Varela
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
23
|
Garcia-Vicién G, Mezheyeuski A, Bañuls M, Ruiz-Roig N, Molleví DG. The Tumor Microenvironment in Liver Metastases from Colorectal Carcinoma in the Context of the Histologic Growth Patterns. Int J Mol Sci 2021; 22:ijms22041544. [PMID: 33546502 PMCID: PMC7913731 DOI: 10.3390/ijms22041544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal carcinoma (CRC) is the third most common cancer. Likewise, it is a disease that has a long survival if it is prematurely detected. However, more than 50% of patients will develop metastases, mainly in the liver (LM-CRC), throughout the evolution of their disease, which accounts for most CRC-related deaths. Treatment it is certainly a controversial issue, since it has not been shown to increase overall survival in the adjuvant setting, although it does improve disease free survival (DFS). Moreover, current chemotherapy combinations are administered based on data extrapolated from primary tumors (PT), not considering that LM-CRC present a very particular tumor microenvironment that can radically condition the effectiveness of treatments designed for a PT. The liver has a particular histology and microenvironment that can determine tumor growth and response to treatments: double blood supply, vascularization through fenestrated sinusoids and the presence of different mesenchymal cell types, among other particularities. Likewise, the liver presents a peculiar immune response against tumor cells, a fact that correlates with the poor response to immunotherapy. All these aspects will be addressed in this review, putting them in the context of the histological growth patterns of LM-CRC, a particular pathologic feature with both prognostic and predictive repercussions.
Collapse
Affiliation(s)
- Gemma Garcia-Vicién
- Tumoral and Stromal Chemoresistance Group, Molecular Mechanisms and Experimental Therapy in Oncology Program (ONCOBELL), Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (G.G.-V.); (M.B.); (N.R.-R.)
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 08908 L’Hospitalet de Llobregat, Spain
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden;
| | - María Bañuls
- Tumoral and Stromal Chemoresistance Group, Molecular Mechanisms and Experimental Therapy in Oncology Program (ONCOBELL), Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (G.G.-V.); (M.B.); (N.R.-R.)
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 08908 L’Hospitalet de Llobregat, Spain
| | - Núria Ruiz-Roig
- Tumoral and Stromal Chemoresistance Group, Molecular Mechanisms and Experimental Therapy in Oncology Program (ONCOBELL), Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (G.G.-V.); (M.B.); (N.R.-R.)
- Department of Pathology, Hospital Universitari de Bellvitge, 08908 L’Hospitalet de Llobregat, Spain
| | - David G. Molleví
- Tumoral and Stromal Chemoresistance Group, Molecular Mechanisms and Experimental Therapy in Oncology Program (ONCOBELL), Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08908 L’Hospitalet de Llobregat, Spain; (G.G.-V.); (M.B.); (N.R.-R.)
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 08908 L’Hospitalet de Llobregat, Spain
- Correspondence:
| |
Collapse
|
24
|
Yu X, Zhu L, Liu J, Xie M, Chen J, Li J. Emerging Role of Immunotherapy for Colorectal Cancer with Liver Metastasis. Onco Targets Ther 2020; 13:11645-11658. [PMID: 33223838 PMCID: PMC7671511 DOI: 10.2147/ott.s271955] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/29/2020] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in the world and the second leading cause of cancer-related deaths, with the liver as the most common site of distant metastasis. The prognosis of CRC with liver metastasis is poor, and most patients cannot undergo surgery. In addition, conventional antitumor approaches such as chemotherapy, radiotherapy, targeted therapy, and surgery result in unsatisfactory outcomes. In recent years, immunotherapy has shown good prospects in the treatment of assorted tumors by enhancing the host's antitumor immune function, and it may become a new effective treatment for liver metastasis of CRC. However, challenges remain in applying immunotherapy to CRC with liver metastasis. This review examines how the microenvironment and immunosuppressive landscape of the liver favor tumor progression. It also highlights the latest research advances in immunotherapy for colorectal liver metastasis and identifies immunotherapy as a treatment regimen with a promising future in clinical applications.
Collapse
Affiliation(s)
- Xianzhe Yu
- Gastrointestinal Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, People’s Republic of China
| | - Lingling Zhu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Jiewei Liu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Ming Xie
- Gastrointestinal Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, People’s Republic of China
| | - Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jianguo Li
- Gastrointestinal Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, People’s Republic of China
| |
Collapse
|