1
|
Agarwal R, Gupta M, Sen R, Panchal A, E S N, Raychoudhury R. Investigation into how Odontotermes obesus maintains a predominantly Termitomyces monoculture in their fungus combs suggests a potential partnership with both fungi and bacteria. Commun Biol 2024; 7:1010. [PMID: 39154098 PMCID: PMC11330501 DOI: 10.1038/s42003-024-06708-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Fungus-growing termites, like Odontotermes obesus, cultivate Termitomyces as their sole food source on fungus combs which are continuously maintained with foraged plant materials. This necessary augmentation also increases the threat of introducing non-specific fungi capable of displacing Termitomyces. The magnitude of this threat and how termites prevent the invasion of such fungi remain largely unknown. This study identifies these non-specific fungi by establishing the pan-mycobiota of O. obesus from the fungus comb and termite castes. Furthermore, to maximize the identification of such fungi, the mycobiota of the decaying stages of the unattended fungus comb were also assessed. The simultaneous assessment of the microbiota and the mycobiota of these stages identified possible interactions between the fungal and bacterial members of this community. Based on these findings, we propose possible interactions among the crop fungus Termitomyces, the weedy fungus Pseudoxylaria and some bacterial symbiotes. These possibilities were then tested with in vitro interaction assays which suggest that Termitomyces, Pseudoxylaria and certain potential bacterial symbiotes possess anti-fungal capabilities. We propose a multifactorial interaction model of these microbes, under the care of the termites, to explain how their interactions can maintain a predominantly Termitomyces monoculture.
Collapse
Affiliation(s)
- Renuka Agarwal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali IISER Mohali, Knowledge City, Manauli, Punjab, India
| | - Manisha Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali IISER Mohali, Knowledge City, Manauli, Punjab, India
| | - Ruchira Sen
- PG Department of Zoology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Aanchal Panchal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali IISER Mohali, Knowledge City, Manauli, Punjab, India
| | - Nimisha E S
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali IISER Mohali, Knowledge City, Manauli, Punjab, India
| | - Rhitoban Raychoudhury
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali IISER Mohali, Knowledge City, Manauli, Punjab, India.
| |
Collapse
|
2
|
Zeng W, Shen D, Wu W, Zhang S, Li Z, Zhang D. Involvement of a catalase gene in lignin catalysis and immune defense against pathogenic fungus in Coptotermes formosanus: a potential new target for termite control. PEST MANAGEMENT SCIENCE 2024; 80:3258-3268. [PMID: 38358092 DOI: 10.1002/ps.8029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Detoxifying enzymes are likely involved in lignin feeding and immune defense mechanisms within termites, rendering them potential targets for biological control. However, investigations into the dual functionality of termite detoxification enzymes in vivo have not been documented. RESULTS In this study, the complete cDNA of the catalase gene (Cfcat) derived from Coptotermes formosanus Shiraki was amplified. CFCAT comprises an open reading frame spanning 1527 bp, encoding a 508-amino acid sequence. The highest expression was observed in the epidermal tissues (including the fat body and hemolymph) followed by the foregut/salivary gland. Furthermore, we confirmed the catalase activity of the recombinant Cfcat protein. Using RNA interference (RNAi) technology, the importance of Cfcat in the lignin-feeding of C. formosanus was demonstrated, and the role of Cfcat in innate immunity was investigated. Survival assays showed that Cfcat RNAi significantly increased the susceptibility of C. formosanus to Metarhizium anisopliae. Irrespective of the infection status, Cfcat inhibition had a significant impact on multiple factors of humoral and intestinal immunity in C. formosanus. Notably, Cfcat RNAi exhibited a more pronounced immunosuppressive effect on humoral immunity than on intestinal immunity. CONCLUSION Cfcat plays an important role in the regulation of innate immunity and lignin feeding in C. formosanus. Cfcat RNAi can weaken the immune response of termites against M. anisopliae, which may aid the biocontrol efficiency of M. anisopliae against C. formosanus. This study provides a theoretical basis and technical reference for the development of a novel biocontrol strategy targeting detoxifying enzymes of termites. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenhui Zeng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Danni Shen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenjing Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shijun Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhiqiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Dandan Zhang
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Mamtimin T, Han H, Khan A, Feng P, Zhang Q, Ma X, Fang Y, Liu P, Kulshrestha S, Shigaki T, Li X. Gut microbiome of mealworms (Tenebrio molitor Larvae) show similar responses to polystyrene and corn straw diets. MICROBIOME 2023; 11:98. [PMID: 37147715 PMCID: PMC10161430 DOI: 10.1186/s40168-023-01550-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/16/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Some insects can degrade both natural and synthetic plastic polymers, their host and gut microbes play crucial roles in this process. However, there is still a scientific gap in understanding how the insect adapted to the polystyrene (PS) diet from natural feed. In this study, we analyzed diet consumption, gut microbiota responses, and metabolic pathways of Tenebrio molitor larvae exposed to PS and corn straw (CS). RESULTS T. molitor larvae were incubated under controlled conditions (25 ± 1 °C, 75 ± 5% humidity) for 30 days by using PS foam with weight-, number-, and size-average molecular weight (Mw, Mn, and Mz) of 120.0, 73.2, and 150.7 kDa as a diet, respectively. The larvae exhibited lower PS consumption (32.5%) than CS (52.0%), and these diets had no adverse effects on their survival. The gut microbiota structures, metabolic pathways, and enzymatic profiles of PS- and CS-fed larvae showed similar responses. The gut microbiota of larvae analysis indicated Serratia sp., Staphylococcus sp., and Rhodococcus sp. were associated with both PS and CS diets. Metatranscriptomic analysis revealed that xenobiotics, aromatic compounds, and fatty acid degradation pathways were enriched in PS- and CS-fed groups; laccase-like multicopper oxidases, cytochrome P450, monooxygenase, superoxidase, and dehydrogenase were involved in lignin and PS degradation. Furthermore, the upregulated gene lac640 in both PS- and CS-fed groups was overexpressed in E. coli and exhibited PS and lignin degradation ability. CONCLUSIONS The high similarity of gut microbiomes adapted to biodegradation of PS and CS indicated the plastics-degrading ability of the T. molitor larvae originated through an ancient mechanism that degrades the natural lignocellulose. Video Abstract.
Collapse
Affiliation(s)
- Tursunay Mamtimin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China.
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou, China.
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Pengya Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Qing Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Xiaobiao Ma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Yitian Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | - Toshiro Shigaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China.
| |
Collapse
|
4
|
Coolen S, van der Molen MR, Welte CU. The secret life of insect-associated microbes and how they shape insect-plant interactions. FEMS Microbiol Ecol 2022; 98:6643329. [PMID: 35830517 PMCID: PMC9409087 DOI: 10.1093/femsec/fiac083] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Insects are associated with a plethora of different microbes of which we are only starting to understand their role in shaping insect–plant interactions. Besides directly benefitting from symbiotic microbial metabolism, insects obtain and transmit microbes within their environment, making them ideal vectors and potential beneficiaries of plant diseases and microbes that alter plant defenses. To prevent damage, plants elicit stress-specific defenses to ward off insects and their microbiota. However, both insects and microbes harbor a wealth of adaptations that allow them to circumvent effective plant defense activation. In the past decades, it has become apparent that the enormous diversity and metabolic potential of insect-associated microbes may play a far more important role in shaping insect–plant interactions than previously anticipated. The latter may have implications for the development of sustainable pest control strategies. Therefore, this review sheds light on the current knowledge on multitrophic insect–microbe–plant interactions in a rapidly expanding field of research.
Collapse
Affiliation(s)
- Silvia Coolen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Magda Rogowska- van der Molen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Khan Z, Khan MS, Bawazeer S, Bawazeer N, Suleman, Irfan M, Rauf A, Su XH, Xing LX. A comprehensive review on the documented characteristics of four Reticulitermes termites (Rhinotermitidae, Blattodea) of China. BRAZ J BIOL 2022; 84:e256354. [PMID: 35319619 DOI: 10.1590/1519-6984.256354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/11/2022] [Indexed: 11/22/2022] Open
Abstract
Termites are known as social insects worldwide. Presently in China 473 species, 44 genera and 4 families of termites have been reported. Of them, 111 Reticulitermes species are widely spread in different zones of China. The dispersion flight season of these Chinese Reticulitermes species are usually started from February to June, but in some regions different species are distributed, sharing their boundaries and having overlapping flight seasons. These reasons become important sources of hybridization between two different heterospecific populations of termites. It was confirmed that the fertilized eggs and unfertilized eggs of some Reticulitermes termites have the capacity of cleavage. While the unfertilized eggs of R. aculabialis, R. chinensis and R. labralis cleaved normally and the only R. aculabialis unfertilized eggs develop in embryos. While, the R. flaviceps and R. chinensis were observed with their abnormal embryonic development, and not hatching of eggs parthenogenetically. They were reported more threatening to Chinese resources as they propagate with parthenogenesis, hybridization and sexual reproduction. Eggshell and macrophiles of eggs play important roles in species identification and control. Although, they are severe pests and cause a wide range of damages to wooden structures and products in homes, buildings, building materials, trees, crops, and forests in China's Mainland.
Collapse
Affiliation(s)
- Z Khan
- Northwest University, College of Life Sciences, Xi'an, China.,University of Swabi, Zoology Department, Khyber Pakhtunkhwa, Pakistan
| | - M S Khan
- University of Swabi, Zoology Department, Khyber Pakhtunkhwa, Pakistan
| | - S Bawazeer
- Umm Al-Qura University, Faculty of Pharmacy, Department of Pharmacognosy, Makkah, Kingdom of Saudi Arabia
| | - N Bawazeer
- Minister of Interior General Directorate of Prison's Health, Pharmacy Department, Kingdom of Saudi Arabia
| | - Suleman
- University of Swabi, Zoology Department, Khyber Pakhtunkhwa, Pakistan
| | - M Irfan
- Abdul Wali Khan University, Department of Botany, Mardan, Pakistan.,University of Swabi, Department of Botany, Swabi, Pakistan.,Missouri Botanical Garden, St. Louis, MO, U.S.A
| | - A Rauf
- University of Swabi, Department of Chemistry, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - X-H Su
- Northwest University, College of Life Sciences, Xi'an, China.,Northwest University, Shaanxi Key Laboratory for Animal Conservation, Xi'an, China.,Northwest University, Key Laboratory of Resource Biology and Biotechnology, Xi'an, China
| | - L-X Xing
- Northwest University, College of Life Sciences, Xi'an, China.,Northwest University, Shaanxi Key Laboratory for Animal Conservation, Xi'an, China.,Northwest University, Key Laboratory of Resource Biology and Biotechnology, Xi'an, China
| |
Collapse
|
6
|
Afzal M, Shaheen N, Shah SAA, Iqbal A, Scharf ME, Qureshi NA. Saccharification of agricultural lignocellulosic feedstocks by endogenous and symbiotic cellulases from the subterranean termites. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Myer A, Myer MH, Trettin CC, Forschler BT. The fate of carbon utilized by the subterranean termite
Reticulitermes flavipes. Ecosphere 2021. [DOI: 10.1002/ecs2.3872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Angela Myer
- Department of Entomology University of Georgia Athens Georgia 30602 USA
| | - Mark H. Myer
- City of New Orleans Mosquito, Termite and Rodent Control Board New Orleans Louisiana 70122 USA
| | - Carl C. Trettin
- Center for Forested Wetlands Research USDA Forest Service Cordesville South Carolina USA
| | | |
Collapse
|
8
|
Collaborative Response of the Host and Symbiotic Lignocellulytic System to Non-Lethal Toxic Stress in Coptotermes formosanus Skiraki. INSECTS 2021; 12:insects12060510. [PMID: 34073040 PMCID: PMC8227567 DOI: 10.3390/insects12060510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Coptotermes formosanus Shiraki is a wood feeding lower termite and is widely distributed in many areas. The dynamic adjustment of the C. formosanus digestive system to unfavorable survival environments was investigated via non-lethal toxic feeding. The toxic stress did not change the dominant role of microbial lignocellulases in cellulose degradation of C. formosanus. The core symbiotic community was stable in abundance during the tolerance to the toxic treatment. However, a large number of low abundance taxa were significantly enriched by the low toxic feeding. These rare bacterial lineages likely contribute to toxic stress tolerance of termite. Above all, these findings add important new knowledge to our understanding of environmental adaptation of the lignocellulose hydrolysis system in termites. Abstract Disturbing the lignocellulose digestive system of termites is considered to be a promising approach for termite control. The research on the tolerance mechanism of the termite lignocellulose digestive system to harmful environment conditions is limited. In this study, we keep Coptotermes formosanus Skiraki under a non-lethal toxic condition by feeding the termites with filter paper containing the kojic acid (a low toxic insecticide). The effects of low toxic stress on the activities and gene expressions of host/symbiotic originated lignocellulases, and on the symbiotic microbial community structure of C. formosanus were explored. Our result showed that the low toxic stress would lead to the synchronous decrease of cellulase and hemicellulase activities, and supplementary increase of corresponding gene expressions. The symbiotic community maintained its role as the main force in the lignocellulolytic system of C. formosanus. Meanwhile, a large number of rare taxa were significantly enriched by kojic acid treatment. These numerically inconspicuous bacterial populations might be responsible for the functions similar to phenoloxidase or insecticide detoxification and enable C. formosanus to tolerate the harmful environment. Overall, our data suggested that the digestive adaptation of C. formosanus to physiotoxic feeding is closely related to the triple collaboration of termites–flagellates–bacteria.
Collapse
|
9
|
Duarte S, Nunes L, Kržišnik D, Humar M, Jones D. Influence of Zwitterionic Buffer Effects with Thermal Modification Treatments of Wood on Symbiotic Protists in Reticulitermes grassei Clément. INSECTS 2021; 12:insects12020139. [PMID: 33562148 PMCID: PMC7915112 DOI: 10.3390/insects12020139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 11/30/2022]
Abstract
Simple Summary Over the past thirty years, the thermal modification of wood has become a universally recognised and commercialised wood modification process. Thermal modifications may affect wood properties, either positively (dimensional stability and decay resistance) or negatively (mechanical properties). The combination of the impregnation of specific reagents with thermal modification may help to overcome the negative effects on wood properties. In this study, we evaluate the effect of a combination of two zwitterionic buffers, bicine and tricine, and thermal modification of two wood species (beech and spruce) against subterranean termites and their symbiotic fauna. Bicine and tricine treatments alone had a clear influence on wood mass loss and termite survival. The flagellate protist symbiotic community was affected by the treatments and responded differently to them, as a highly adaptable community. However, the combination of bicine with the thermal modification showed a negative effect on termites and their symbionts on both wood species. The combination of these different factors should be further investigated, as these results seem to be promising with regard to the enhancement of the termite resistance of wood. Abstract The majority of thermal modification processes are at temperatures greater than 180 °C, resulting in a product with some properties enhanced and some diminished (e.g., mechanical properties). However, the durability of thermally modified wood to termite attack is recognised as low. Recent attempts at combining thermal modification with chemical modification, either prior to or directly after the thermal process, are promising. Buffers, although not influencing the reaction systems, may interact on exposure to certain conditions, potentially acting as promoters of biological changes. In this study, two zwitterionic buffers, bicine and tricine, chosen for their potential to form Maillard-type products with fragmented hemicelluloses/volatiles, were assessed with and without thermal modification for two wood species (spruce and beech), with subsequent evaluation of their effect against subterranean termites (Reticulitermes grassei Clément) and their symbiotic protists. The effect of the wood treatments on termites and their symbionts was visible after four weeks, especially for spruce treated with tricine and bicine and heat treatment (bicine HT), and for beech treated with bicine and bicine and heat treatment (bicine HT). The chemical behaviour of these substances should be further investigated when in contact with wood and also after heat treatment. This is the first study evaluating the effect of potential Maillard reactions with zwitterionic buffers on subterranean termite symbiotic fauna.
Collapse
Affiliation(s)
- Sónia Duarte
- LEAF (Linking Landscape, Environment, Agriculture and Food) Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa. Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Correspondence:
| | - Lina Nunes
- LNEC, National Laboratory for Civil Engineering, Structures Department, Av. do Brasil, 101, 1700-066 Lisbon, Portugal;
- cE3c, Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group, University of the Azores, 9700–042 Angra do Heroísmo, Portugal
| | - Davor Kržišnik
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (D.K.); (M.H.)
| | - Miha Humar
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (D.K.); (M.H.)
| | - Dennis Jones
- Department Wood Science and Engineering, Luleå University of Technology, Forskargatan 1, S-93197 Skellefteå, Sweden;
- Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 1176, 16521 Praha 6–Suchdol, Czech Republic
| |
Collapse
|
10
|
Qadri M, Short S, Gast K, Hernandez J, Wong ACN. Microbiome Innovation in Agriculture: Development of Microbial Based Tools for Insect Pest Management. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.547751] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
11
|
Scharf ME. Challenges and physiological implications of wood feeding in termites. CURRENT OPINION IN INSECT SCIENCE 2020; 41:79-85. [PMID: 32823202 DOI: 10.1016/j.cois.2020.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Termites are fascinating insects for a number of reasons, one of which being their specialization on diets of wood lignocellulose. The goal of this review is to consider stress-inducing characteristics of wood and apparent molecular-physiological adaptations in termite guts to overcome these stressors. Defensive factors present in wood include extractive secondary plant metabolites, lignin and related phenolics, crystalline cellulose, and low nitrogen content. Molecular-physiological adaptations of the termite gut to deal with these factors include robust detoxification and antioxidant machinery, the production of a peritrophic matrix and a wide range of cellulases from host and symbiotic sources, and creation of niches available to nitrogen-fixing bacterial symbionts. Considering termite gut physiology and symbioses in the context of stress-response has applied implications. These outcomes can include development of efficient biomass breakdown strategies, protection of microbes during industrial processing applications, and safeguarding wooden structures from termite damage.
Collapse
Affiliation(s)
- Michael E Scharf
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
12
|
Ayayee PA, Kinney G, Yarnes C, Larsen T, Custer GF, van Diepen LTA, Muñoz-Garcia A. Role of the gut microbiome in mediating standard metabolic rate after dietary shifts in the viviparous cockroach, Diploptera punctata. J Exp Biol 2020; 223:jeb218271. [PMID: 32393544 DOI: 10.1242/jeb.218271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/05/2020] [Indexed: 01/22/2023]
Abstract
Diet may be a significant determinant of insect gut microbiome composition. However, the extent to which dietary shifts shape both the composition and relevant functions of insect gut microbiomes, and ultimately impact host energy balance (i.e. metabolic phenotype), is not well understood. We investigated the impacts of diet switching on Diploptera punctata females maintained on a dog food (DF) diet relative to those fed a comparatively sub-optimal cellulose-amended dog food (CADF) diet for 4 weeks. After this period, dietary shift resulted in a significantly higher average mass-specific standard metabolic rate (SMR) in CADF-fed females compared with DF-fed females. We also uncovered significant 13C-enrichment in DF-fed insect samples relative to CADF-fed insect samples and lowered bacterial essential amino acid (EAA) provisioning in CADF-fed samples. Differences in SMR and EAA provisioning were not accompanied by significant differences in overall microbiome composition between the two groups. However, cellulolytic and nitrogen-fixing bacterial families dominant in wild omnivorous cockroaches and wood-feeding termites were significantly enriched in CADF-fed females than in DF-fed females, at the end of the study. We propose that these changes in microbiome composition after dietary shifts are associated with changes in EAA provisioning and possibly SMR. Further studies are needed to comprehensively understand the relative importance of gut microbial functions among the complexity of factors known to underscore SMR responses in insects under varying dietary conditions.
Collapse
Affiliation(s)
- Paul A Ayayee
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY 82071, USA
| | - George Kinney
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Chris Yarnes
- Department of Plant Sciences, Stable Isotope Facility, University of California, Davis, Davis, CA 95616, USA
| | - Thomas Larsen
- Max Planck Institute for the Science of Human History, Kahlaische Strasse, 07745 Jena, Germany
| | - Gordon F Custer
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY 82071, USA
| | - Linda T A van Diepen
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY 82071, USA
| | - Agustí Muñoz-Garcia
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University at Mansfield, Mansfield, OH 43210, USA
| |
Collapse
|
13
|
Kaczmarczyk-Ziemba A, Zagaja M, Wagner GK, Pietrykowska-Tudruj E, Staniec B. The microbiota of the Lasius fuliginosus – Pella laticollis myrmecophilous interaction. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1844322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- A. Kaczmarczyk-Ziemba
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - M. Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | - G. K. Wagner
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Lublin, Poland
| | - E. Pietrykowska-Tudruj
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Lublin, Poland
| | - B. Staniec
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Lublin, Poland
| |
Collapse
|
14
|
Michaud C, Hervé V, Dupont S, Dubreuil G, Bézier AM, Meunier J, Brune A, Dedeine F. Efficient but occasionally imperfect vertical transmission of gut mutualistic protists in a wood‐feeding termite. Mol Ecol 2019; 29:308-324. [DOI: 10.1111/mec.15322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Caroline Michaud
- Institut de Recherche sur la Biologie de l'Insecte UMR 7261 CNRS – Université de Tours Tours France
| | - Vincent Hervé
- Research Group Insect Gut Microbiology and Symbiosis Max Planck Institute for Terrestrial Microbiology Marburg Germany
| | - Simon Dupont
- Institut de Recherche sur la Biologie de l'Insecte UMR 7261 CNRS – Université de Tours Tours France
| | - Géraldine Dubreuil
- Institut de Recherche sur la Biologie de l'Insecte UMR 7261 CNRS – Université de Tours Tours France
| | - Annie M. Bézier
- Institut de Recherche sur la Biologie de l'Insecte UMR 7261 CNRS – Université de Tours Tours France
| | - Joël Meunier
- Institut de Recherche sur la Biologie de l'Insecte UMR 7261 CNRS – Université de Tours Tours France
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis Max Planck Institute for Terrestrial Microbiology Marburg Germany
| | - Franck Dedeine
- Institut de Recherche sur la Biologie de l'Insecte UMR 7261 CNRS – Université de Tours Tours France
| |
Collapse
|
15
|
Gene Expression and Diet Breadth in Plant-Feeding Insects: Summarizing Trends. Trends Ecol Evol 2019; 35:259-277. [PMID: 31791830 DOI: 10.1016/j.tree.2019.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 11/20/2022]
Abstract
Transcriptomic studies lend insights into the role of transcriptional plasticity in adaptation and specialization. Recently, there has been growing interest in understanding the relationship between variation in herbivorous insect gene expression and the evolution of diet breadth. We review the studies that have emerged on insect gene expression and host plant use, and outline the questions and approaches in the field. Many candidate genes underlying herbivory and specialization have been identified, and a few key studies demonstrate increased transcriptional plasticity associated with generalist compared with specialist species. Addressing the roles that transcriptional variation plays in insect diet breadth will have important implications for our understanding of the evolution of specialization and the genetic and environmental factors that govern insect-plant interactions.
Collapse
|
16
|
McDonald RC, Watts JEM, Schreier HJ. Effect of Diet on the Enteric Microbiome of the Wood-Eating Catfish Panaque nigrolineatus. Front Microbiol 2019; 10:2687. [PMID: 31849863 PMCID: PMC6895002 DOI: 10.3389/fmicb.2019.02687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/05/2019] [Indexed: 12/26/2022] Open
Abstract
Wood is consistently found in high levels in the gastrointestinal tract of the Amazonian catfish Panaque nigrolineatus, which, depending on environmental conditions, can switch between xylivorous and detritivorous dietary strategies. This is highly unusual among primary wood consumers and provides a unique system to examine the effect of dietary change in a xylivorous system. In this study, microbiome and predictive metagenomic analyses were performed for P. nigrolineatus fed either wood alone or a less refractory mixed diet containing wood and plant nutrition. While diet had an impact on enteric bacterial community composition, there was a high degree of interindividual variability. Members of the Proteobacteria and Planctomycetes were ubiquitous and dominated most communities; Bacteroidetes, Fusobacteria, Actinobacteria, and Verrucomicrobia also contributed in a tissue and diet-specific manner. Although predictive metagenomics revealed functional differences between communities, the relative abundance of predicted lignocellulose-active enzymes remained similar across diets. The microbiomes from both diets appeared highly adapted for hemicellulose hydrolysis as the predicted metagenomes contained several classes of hemicellulases and lignin-modifying enzymes. Enteric communities from both diets appeared to lack the necessary cellobiohydrolases for efficient cellulose hydrolysis, suggesting that cellobiose is not the primary source of dietary carbon for the fish. Our findings suggest that the P. nigrolineatus gut environment selects for an enteric community based on function, rather than a vertically transferred symbiotic relationship. This functional selection strategy may provide an advantage to an organism that switches between dietary strategies to survive a highly variable environment.
Collapse
Affiliation(s)
- Ryan C. McDonald
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, United States
| | - Joy E. M. Watts
- Department of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Harold J. Schreier
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, United States
- Department of Marine Biotechnology, University of Maryland, Baltimore County, Baltimore, MD, United States
| |
Collapse
|
17
|
Gut microbiota dynamics and functionality in Reticulitermes grassei after a 7-day dietary shift and ciprofloxacin treatment. PLoS One 2018; 13:e0209789. [PMID: 30590374 PMCID: PMC6307977 DOI: 10.1371/journal.pone.0209789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022] Open
Abstract
Gut microbial structure in animals depends on the host, dietary habits and local environment. A random event, dietary change or antibiotic treatment may alter the gut environment with possible repercussions for the bacterial community composition and functionality and ultimately host fitness. The present study was focused on the composition, structure and functionality of gut microbiota in Reticulitermes grassei and the data obtained was compared with sequence surveys of three other Reticulitermes species. Each Reticulitermes species had a significantly different bacterial gut microbiota (pairwise significance tests using the Kolmogorov-Smirnov test), but a similar pattern of distribution (P-test in weighted Unifrac). The core gut microbiota from the analyzed Reticulitermes species contained 16 bacterial operational taxonomic units. Enzymes (KO) were detected from 14 pathways related to carbohydrate metabolism. R. grassei and R. hesperus, based on relative abundance of KO, had the most similar carbohydrate pathway patterns. In addition, we described the gut microbiota and functionality pathways in R. grassei after a 7-day dietary shift and antibiotic (ciprofloxacin) treatment. Both factors, but above all the antibiotic, altered the relative abundance of certain microbial groups, although the changes were not statistically significant (P-test in weighted Unifrac). The cellulose diet enhanced the carbohydrate pathways related to propanoate, butanoate, ascorbate, and glyoxylate metabolism. The antibiotic treatment affected galactose metabolism, the citrate cycle and inositol phosphate metabolism. Those functional changes may be related to changes in the abundance of several bacterial groups. Our findings provide insights into the stability of the gut microbiota in R. grassei and a resilience response to dietary shift or antibiotic treatment disturbance after 7 days.
Collapse
|
18
|
Duarte S, Nunes L, Borges PAV, Nobre T. A Bridge Too Far? An Integrative Framework Linking Classical Protist Taxonomy and Metabarcoding in Lower Termites. Front Microbiol 2018; 9:2620. [PMID: 30467496 PMCID: PMC6236014 DOI: 10.3389/fmicb.2018.02620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/12/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sónia Duarte
- National Laboratory for Civil Engineering, Department of Structures, Lisbon, Portugal.,Evolution and Environmental Changes/Azorean Biodiversity Group, cE3c-Center for Ecology, Departamento de Ciências e Engenharia do Ambiente, Universidade dos Açores, Açores, Portugal
| | - Lina Nunes
- National Laboratory for Civil Engineering, Department of Structures, Lisbon, Portugal
| | - Paulo A V Borges
- Evolution and Environmental Changes/Azorean Biodiversity Group, cE3c-Center for Ecology, Departamento de Ciências e Engenharia do Ambiente, Universidade dos Açores, Açores, Portugal
| | - Tania Nobre
- Laboratório de Entomologia, Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Évora, Portugal
| |
Collapse
|
19
|
Myer A, Forschler BT. Evidence for the Role of Subterranean Termites (Reticulitermes spp.) in Temperate Forest Soil Nutrient Cycling. Ecosystems 2018. [DOI: 10.1007/s10021-018-0291-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Duarte S, Nobre T, Borges PAV, Nunes L. Symbiotic flagellate protists as cryptic drivers of adaptation and invasiveness of the subterranean termite Reticulitermes grassei Clément. Ecol Evol 2018; 8:5242-5253. [PMID: 29938049 PMCID: PMC6010709 DOI: 10.1002/ece3.3819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 12/18/2022] Open
Abstract
Changes in flagellate protist communities of subterranean termite Reticulitermes grassei across different locations were evaluated following four predictions: (i) Rural endemic (Portugal mainland) termite populations will exhibit high diversity of symbionts; (ii) invasive urban populations (Horta city, Faial island, Azores), on the contrary, will exhibit lower diversity of symbionts, showing high similarity of symbiont assemblages through environmental filtering; (iii) recent historical colonization of isolated regions-as the case of islands-will imply a loss of symbiont diversity; and (iv) island isolation will trigger a change in colony breeding structure toward a less aggressive behavior. Symbiont flagellate protist communities were morphologically identified, and species richness and relative abundances, as well as biodiversity indices, were used to compare symbiotic communities in colonies from urban and rural environments and between island invasive and mainland endemic populations. To evaluate prediction on the impact of isolation (iv), aggression tests were performed among termites comprising island invasive and mainland endemic populations. A core group of flagellates and secondary facultative symbionts was identified. Termites from rural environments showed, in the majority of observed colonies, more diverse and abundant protist communities, probably confirming prediction (i). Corroborating prediction (ii), the two least diverse communities belong to termites captured inside urban areas. The Azorean invasive termite colonies had more diverse protist communities than expected and prediction (iii) which was not verified within this study. Termites from mainland populations showed a high level of aggressiveness between neighboring colonies, in contrast to the invasive colonies from Horta city, which were not aggressive to neighbors according to prediction (iv). The symbiotic flagellate community of R. grassei showed the ability to change in a way that might be consistent with adaptation to available conditions, possibly contributing to optimization of the colonization of new habitats and spreading of its distribution area, highlighting R. grassei potential as an invasive species.
Collapse
Affiliation(s)
- Sónia Duarte
- Structures DepartmentLNECLisbonPortugal
- Faculty of Agrarian and Environmental SciencescE3c – Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity GroupUniversity of the AzoresAzoresPortugal
| | - Tânia Nobre
- Laboratory of EntomologyICAAM ‐ Instituto de Ciências Agrárias e Ambientais MediterrânicasUniversity of ÉvoraÉvoraPortugal
| | - Paulo A. V. Borges
- Faculty of Agrarian and Environmental SciencescE3c – Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity GroupUniversity of the AzoresAzoresPortugal
| | - Lina Nunes
- Structures DepartmentLNECLisbonPortugal
- Faculty of Agrarian and Environmental SciencescE3c – Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity GroupUniversity of the AzoresAzoresPortugal
| |
Collapse
|
21
|
Ivens ABF, Gadau A, Kiers ET, Kronauer DJC. Can social partnerships influence the microbiome? Insights from ant farmers and their trophobiont mutualists. Mol Ecol 2018; 27:1898-1914. [PMID: 29411455 PMCID: PMC5935579 DOI: 10.1111/mec.14506] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 01/02/2023]
Abstract
Mutualistic interactions with microbes have played a crucial role in the evolution and ecology of animal hosts. However, it is unclear what factors are most important in influencing particular host–microbe associations. While closely related animal species may have more similar microbiota than distantly related species due to phylogenetic contingencies, social partnerships with other organisms, such as those in which one animal farms another, may also influence an organism's symbiotic microbiome. We studied a mutualistic network of Brachymyrmex and Lasius ants farming several honeydew‐producing Prociphilus aphids and Rhizoecus mealybugs to test whether the mutualistic microbiomes of these interacting insects are primarily correlated with their phylogeny or with their shared social partnerships. Our results confirm a phylogenetic signal in the microbiomes of aphid and mealybug trophobionts, with each species harbouring species‐specific endosymbiont strains of Buchnera (aphids), Tremblaya and Sodalis (mealybugs), and Serratia (both mealybugs and aphids) despite being farmed by the same ants. This is likely explained by strict vertical transmission of trophobiont endosymbionts between generations. In contrast, our results show the ants’ microbiome is possibly shaped by their social partnerships, with ants that farm the same trophobionts also sharing strains of sugar‐processing Acetobacteraceae bacteria, known from other honeydew‐feeding ants and which likely reside extracellularly in the ants’ guts. These ant–microbe associations are arguably more “open” and subject to horizontal transmission or social transmission within ant colonies. These findings suggest that the role of social partnerships in shaping a host's symbiotic microbiome can be variable and is likely dependent on how the microbes are transmitted across generations.
Collapse
Affiliation(s)
- Aniek B F Ivens
- Animal Ecology Section, Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands.,Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Alice Gadau
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - E Toby Kiers
- Animal Ecology Section, Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| |
Collapse
|
22
|
Geng A, Cheng Y, Wang Y, Zhu D, Le Y, Wu J, Xie R, Yuan JS, Sun J. Transcriptome analysis of the digestive system of a wood-feeding termite ( Coptotermes formosanus) revealed a unique mechanism for effective biomass degradation. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:24. [PMID: 29434667 PMCID: PMC5797411 DOI: 10.1186/s13068-018-1015-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/10/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Wood-feeding termite, Coptotermes formosanus Shiraki, represents a highly efficient system for biomass deconstruction and utilization. However, the detailed mechanisms of lignin modification and carbohydrate degradation in this system are still largely elusive. RESULTS In order to reveal the inherent mechanisms for efficient biomass degradation, four different organs (salivary glands, foregut, midgut, and hindgut) within a complete digestive system of a lower termite, C. formosanus, were dissected and collected. Comparative transcriptomics was carried out to analyze these organs using high-throughput RNA sequencing. A total of 71,117 unigenes were successfully assembled, and the comparative transcriptome analyses revealed significant differential distributions of GH (glycosyl hydrolase) genes and auxiliary redox enzyme genes in different digestive organs. Among the GH genes in the salivary glands, the most abundant were GH9, GH22, and GH1 genes. The corresponding enzymes may have secreted into the foregut and midgut to initiate the hydrolysis of biomass and to achieve a lignin-carbohydrate co-deconstruction system. As the most diverse GH families, GH7 and GH5 were primarily identified from the symbiotic protists in the hindgut. These enzymes could play a synergistic role with the endogenous enzymes from the host termite for biomass degradation. Moreover, twelve out of fourteen genes coding auxiliary redox enzymes from the host termite origin were induced by the feeding of lignin-rich diets. This indicated that these genes may be involved in lignin component deconstruction with its redox network during biomass pretreatment. CONCLUSION These findings demonstrate that the termite digestive system synergized the hydrolysis and redox reactions in a programmatic process, through different parts of its gut system, to achieve a maximized utilization of carbohydrates. The detailed unique mechanisms identified from the termite digestive system may provide new insights for advanced design of future biorefinery.
Collapse
Affiliation(s)
- Alei Geng
- Biofuels Institute of Jiangsu University, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Yanbing Cheng
- Synthetic and Systems Biology Innovation Hub, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843 USA
| | - Yongli Wang
- Biofuels Institute of Jiangsu University, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Daochen Zhu
- Biofuels Institute of Jiangsu University, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Yilin Le
- Biofuels Institute of Jiangsu University, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Jian Wu
- Biofuels Institute of Jiangsu University, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Rongrong Xie
- Biofuels Institute of Jiangsu University, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Joshua S. Yuan
- Biofuels Institute of Jiangsu University, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, 212013 Jiangsu China
- Synthetic and Systems Biology Innovation Hub, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843 USA
| | - Jianzhong Sun
- Biofuels Institute of Jiangsu University, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| |
Collapse
|
23
|
Wu T, Dhami GK, Thompson GJ. Soldier‐biased gene expression in a subterranean termite implies functional specialization of the defensive caste. Evol Dev 2017; 20:3-16. [DOI: 10.1111/ede.12243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Tian Wu
- Biology DepartmentWestern UniversityLondonOntarioCanada
| | | | | |
Collapse
|
24
|
Marynowska M, Goux X, Sillam-Dussès D, Rouland-Lefèvre C, Roisin Y, Delfosse P, Calusinska M. Optimization of a metatranscriptomic approach to study the lignocellulolytic potential of the higher termite gut microbiome. BMC Genomics 2017; 18:681. [PMID: 28863779 PMCID: PMC5580439 DOI: 10.1186/s12864-017-4076-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022] Open
Abstract
Background Thanks to specific adaptations developed over millions of years, the efficiency of lignin, cellulose and hemicellulose decomposition of higher termite symbiotic system exceeds that of many other lignocellulose utilizing environments. Especially, the examination of its symbiotic microbes should reveal interesting carbohydrate-active enzymes, which are of primary interest for the industry. Previous metatranscriptomic reports (high-throughput mRNA sequencing) highlight the high representation and overexpression of cellulose and hemicelluloses degrading genes in the termite hindgut digestomes, indicating the potential of this technology in search for new enzymes. Nevertheless, several factors associated with the material sampling and library preparation steps make the metatranscriptomic studies of termite gut prokaryotic symbionts challenging. Methods In this study, we first examined the influence of the sampling strategy, including the whole termite gut and luminal fluid, on the diversity and the metatranscriptomic profiles of the higher termite gut symbiotic bacteria. Secondly, we evaluated different commercially available kits combined in two library preparative pipelines for the best bacterial mRNA enrichment strategy. Results We showed that the sampling strategy did not significantly impact the generated results, both in terms of the representation of the microbes and their transcriptomic profiles. Nevertheless collecting luminal fluid reduces the co-amplification of unwanted RNA species of host origin. Furthermore, for the four studied higher termite species, the library preparative pipeline employing Ribo-Zero Gold rRNA Removal Kit “Epidemiology” in combination with Poly(A) Purist MAG kit resulted in a more efficient rRNA and poly-A-mRNAdepletion (up to 98.44% rRNA removed) than the pipeline utilizing MICROBExpress and MICROBEnrich kits. High correlation of both Ribo-Zero and MICROBExpresse depleted gene expression profiles with total non-depleted RNA-seq data has been shown for all studied samples, indicating no systematic skewing of the studied pipelines. Conclusions We have extensively evaluated the impact of the sampling strategy and library preparation steps on the metatranscriptomic profiles of the higher termite gut symbiotic bacteria. The presented methodological approach has great potential to enhance metatranscriptomic studies of the higher termite intestinal flora and to unravel novel carbohydrate-active enzymes. Electronic supplementary material The online version of this article (10.1186/s12864-017-4076-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martyna Marynowska
- Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422, Belvaux, Luxembourg
| | - Xavier Goux
- Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422, Belvaux, Luxembourg
| | - David Sillam-Dussès
- Institute of Research for Development - Sorbonne Universités, Institute of Ecology and Environmental Sciences - Paris, U242, 32 avenue Henri Varagnat, F-93140, Bondy, France.,University Paris 13 - Sorbonne Paris Cité, Laboratory of Experimental and Comparative Ethology, EA4443, 99 avenue Jean-Baptiste Clément, F-93430, Villetaneuse, France
| | - Corinne Rouland-Lefèvre
- Institute of Research for Development - Sorbonne Universités, Institute of Ecology and Environmental Sciences - Paris, U242, 32 avenue Henri Varagnat, F-93140, Bondy, France
| | - Yves Roisin
- Université Libre de Bruxelles, 50 Avenue F.D. Roosevelt, B-1050, Brussels, Belgium
| | - Philippe Delfosse
- Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422, Belvaux, Luxembourg
| | - Magdalena Calusinska
- Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422, Belvaux, Luxembourg.
| |
Collapse
|
25
|
Scharf ME, Cai Y, Sun Y, Sen R, Raychoudhury R, Boucias DG. A meta-analysis testing eusocial co-option theories in termite gut physiology and symbiosis. Commun Integr Biol 2017; 10:e1295187. [PMID: 28428832 PMCID: PMC5390826 DOI: 10.1080/19420889.2017.1295187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 01/17/2023] Open
Abstract
The termite gut accomplishes key physiologic functions that underlie termite symbiosis and sociality. However, potential candidate functions of the host-symbiont holobiome have not yet been explored across seemingly divergent processes such as digestion, immunity, caste differentiation, and xenobiotic tolerance. This study took a meta-analysis approach for concurrently studying host and symbiont gut metatranscriptome responses of the lower termite Reticulitermes flavipes, which has ancestral characteristics and hosts a diverse mix of eukaryotic and bacterial symbionts. Thirteen treatments were compared from 5 categories (dietary, social, hormonal, immunological, and xenobiotic), revealing 3 main insights. First, each of the 5 tested colonies had distinct magnitudes of transcriptome response, likely as a result of unique symbiont profiles, which highlights the uniqueness of individual termite colonies. Second, after normalization to standardize colony response magnitudes, unique treatment-linked metatranscriptome topologies became apparent. Third, despite colony and topology differences, 4 co-opted master genes emerged that were universally responsive across diverse treatments. These master genes encode host functions related to protein translation and symbiont functions related to protein degradation and pore formation in microbial cell walls. Three of the 4 master genes were from co-evolved protist symbionts, highlighting potentially co-evolved roles for gut symbiota in coordinating functional responses of the collective host-symbiont holobiome. Lastly, for host genes identified, these results provide annotations of recent termite genome sequences. By revealing conserved domain genes, as well as apparent roles for gut symbiota in holobiome regulation, this study provides new insights into co-opted eusocial genes and symbiont roles in termite sociobiology.
Collapse
Affiliation(s)
- Michael E Scharf
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - Yunpeng Cai
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Yijun Sun
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Ruchira Sen
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | | | - Drion G Boucias
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
26
|
Tramontina R, Franco Cairo JPL, Liberato MV, Mandelli F, Sousa A, Santos S, Rabelo SC, Campos B, Ienczak J, Ruller R, Damásio ARL, Squina FM. The Coptotermes gestroi aldo-keto reductase: a multipurpose enzyme for biorefinery applications. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:4. [PMID: 28053664 PMCID: PMC5209882 DOI: 10.1186/s13068-016-0688-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/14/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND In nature, termites can be considered as a model biological system for biofuel research based on their remarkable efficiency for lignocellulosic biomass conversion. Redox enzymes are of interest in second-generation ethanol production because they promote synergic enzymatic activity with classical hydrolases for lignocellulose saccharification and inactivate fermentation inhibitory compounds produced after lignocellulose pretreatment steps. RESULTS In the present study, the biochemical and structural characteristics of the Coptotermes gestroi aldo-keto reductase (CgAKR-1) were comprehensively investigated. CgAKR-1 displayed major structural differences compared with others AKRs, including the differences in the amino acid composition of the substrate-binding site, providing basis for classification as a founding member of a new AKR subfamily (family AKR1 I). Immunolocalization assays with anti-CgAKR-1 antibodies resulted in strong fluorescence in the salivary gland, proventriculus, and foregut. CgAKR-1 supplementation caused a 32% reduction in phenolic aldehydes, such as furfural, which act as fermentation inhibitors of hemicellulosic hydrolysates, and improved ethanol fermentation by the xylose-fermenting yeast Scheffersomyces stipitis by 45%. We observed synergistic enzymatic interactions between CgAKR-1 and commercial cellulosic cocktail for sugarcane bagasse saccharification, with a maximum synergism degree of 2.17 for sugar release. Our data indicated that additive enzymatic activity could be mediated by reactive oxygen species because CgAKR-1 could produce hydrogen peroxide. CONCLUSION In summary, we identified the founding member of an AKRI subfamily with a potential role in the termite digestome. CgAKR-1 was found to be a multipurpose enzyme with potential biotechnological applications. The present work provided a basis for the development and application of integrative and multipurpose enzymes in the bioethanol production chain.
Collapse
Affiliation(s)
- Robson Tramontina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
- Programa de Pós Graduação em Biociências e Tecnologia de Produtos Bioativos (BTPB)-Instituto de Biologia-CP 6109, Universidade Estadual de Campinas-UNICAMP, 13083-970 Campinas, SP Brazil
| | - João Paulo L. Franco Cairo
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
| | - Marcelo V. Liberato
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
| | - Fernanda Mandelli
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
| | - Amanda Sousa
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
- Programa de Pós Graduação em Biociências e Tecnologia de Produtos Bioativos (BTPB)-Instituto de Biologia-CP 6109, Universidade Estadual de Campinas-UNICAMP, 13083-970 Campinas, SP Brazil
| | - Samantha Santos
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
| | - Sarita Cândida Rabelo
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
| | - Bruna Campos
- Brazilian Biosciences National Laboratory (LNBio), from the Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Jaciane Ienczak
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
| | - Roberto Ruller
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
| | - André R. L. Damásio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Fabio Marcio Squina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
| |
Collapse
|
27
|
Su L, Yang L, Huang S, Li Y, Su X, Wang F, Bo C, Wang ET, Song A. Variation in the Gut Microbiota of Termites (Tsaitermes ampliceps) Against Different Diets. Appl Biochem Biotechnol 2016; 181:32-47. [PMID: 27457759 DOI: 10.1007/s12010-016-2197-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/13/2016] [Indexed: 11/29/2022]
Abstract
Termites are well recognized for their thriving on recalcitrant lignocellulosic diets through nutritional symbioses with gut-dwelling microbiota; however, the effects of diet changes on termite gut microbiota are poorly understood, especially for the lower termites. In this study, we employed high-throughput 454 pyrosequencing of 16S V1-V3 amplicons to compare gut microbiotas of Tsaitermes ampliceps fed with lignin-rich and lignin-poor cellulose diets after a 2-week-feeding period. As a result, the majority of bacterial taxa were shared across the treatments with different diets, but their relative abundances were modified. In particular, the relative abundance was reduced for Spirochaetes and it was increased for Proteobacteria and Bacteroides by feeding the lignin-poor diet. The evenness of gut microbiota exhibited a significant difference in response to the diet type (filter paper diets < corn stover diets < wood diets), while their richness was constant, which may be related to the lower recalcitrance of this biomass to degradation. These results have important implications for sampling and analysis strategies to probe the lignocellulose degradation features of termite gut microbiota and suggest that the dietary lignocellulose composition could cause shifting rapidly in the termite gut microbiota.
Collapse
Affiliation(s)
- Lijuan Su
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Lele Yang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Shi Huang
- BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Yan Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Xiaoquan Su
- BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Fengqin Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450002, China
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, Henan, 450002, China
| | - Cunpei Bo
- BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, México D.F., Mexico.
| | - Andong Song
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450002, China.
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, Henan, 450002, China.
- , No. 93, Nongye Road, Zhengzhou, Henan Province, China.
| |
Collapse
|
28
|
Pachiadaki MG, Rédou V, Beaudoin DJ, Burgaud G, Edgcomb VP. Fungal and Prokaryotic Activities in the Marine Subsurface Biosphere at Peru Margin and Canterbury Basin Inferred from RNA-Based Analyses and Microscopy. Front Microbiol 2016; 7:846. [PMID: 27375571 PMCID: PMC4899926 DOI: 10.3389/fmicb.2016.00846] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/22/2016] [Indexed: 11/13/2022] Open
Abstract
The deep sedimentary biosphere, extending 100s of meters below the seafloor harbors unexpected diversity of Bacteria, Archaea, and microbial eukaryotes. Far less is known about microbial eukaryotes in subsurface habitats, albeit several studies have indicated that fungi dominate microbial eukaryotic communities and fungal molecular signatures (of both yeasts and filamentous forms) have been detected in samples as deep as 1740 mbsf. Here, we compare and contrast fungal ribosomal RNA gene signatures and whole community metatranscriptomes present in sediment core samples from 6 and 95 mbsf from Peru Margin site 1229A and from samples from 12 and 345 mbsf from Canterbury Basin site U1352. The metatranscriptome analyses reveal higher relative expression of amino acid and peptide transporters in the less nutrient rich Canterbury Basin sediments compared to the nutrient rich Peru Margin, and higher expression of motility genes in the Peru Margin samples. Higher expression of genes associated with metals transporters and antibiotic resistance and production was detected in Canterbury Basin sediments. A poly-A focused metatranscriptome produced for the Canterbury Basin sample from 345 mbsf provides further evidence for active fungal communities in the subsurface in the form of fungal-associated transcripts for metabolic and cellular processes, cell and membrane functions, and catalytic activities. Fungal communities at comparable depths at the two geographically separated locations appear dominated by distinct taxa. Differences in taxonomic composition and expression of genes associated with particular metabolic activities may be a function of sediment organic content as well as oceanic province. Microscopic analysis of Canterbury Basin sediment samples from 4 and 403 mbsf produced visualizations of septate fungal filaments, branching fungi, conidiogenesis, and spores. These images provide another important line of evidence supporting the occurrence and activity of fungi in the deep subseafloor biosphere.
Collapse
Affiliation(s)
- Maria G Pachiadaki
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| | - Vanessa Rédou
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, EA 3882, ESIAB, Technopôle de Brest Iroise, Université de Brest Plouzané, France
| | - David J Beaudoin
- Department of Biology, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| | - Gaëtan Burgaud
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, EA 3882, ESIAB, Technopôle de Brest Iroise, Université de Brest Plouzané, France
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| |
Collapse
|
29
|
Peterson BF, Scharf ME. Lower Termite Associations with Microbes: Synergy, Protection, and Interplay. Front Microbiol 2016; 7:422. [PMID: 27092110 PMCID: PMC4824777 DOI: 10.3389/fmicb.2016.00422] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/16/2016] [Indexed: 11/15/2022] Open
Abstract
Lower-termites are one of the best studied symbiotic systems in insects. Their ability to feed on a nitrogen-poor, wood-based diet with help from symbiotic microbes has been under investigation for almost a century. A unique microbial consortium living in the guts of lower termites is essential for wood-feeding. Host and symbiont cellulolytic enzymes synergize each other in the termite gut to increase digestive efficiency. Because of their critical role in digestion, gut microbiota are driving forces in all aspects of termite biology. Social living also comes with risks for termites. The combination of group living and a microbe-rich habitat makes termites potentially vulnerable to pathogenic infections. However, the use of entomopathogens for termite control has been largely unsuccessful. One mechanism for this failure may be symbiotic collaboration; i.e., one of the very reasons termites have thrived in the first place. Symbiont contributions are thought to neutralize fungal spores as they pass through the termite gut. Also, when the symbiont community is disrupted pathogen susceptibility increases. These recent discoveries have shed light on novel interactions for symbiotic microbes both within the termite host and with pathogenic invaders. Lower termite biology is therefore tightly linked to symbiotic associations and their resulting physiological collaborations.
Collapse
Affiliation(s)
| | - Michael E Scharf
- Department of Entomology, Purdue University, West Lafayette IN, USA
| |
Collapse
|
30
|
Poelchau MF, Coates BS, Childers CP, Peréz de León AA, Evans JD, Hackett K, Shoemaker D. Agricultural applications of insect ecological genomics. CURRENT OPINION IN INSECT SCIENCE 2016; 13:61-69. [PMID: 27436554 DOI: 10.1016/j.cois.2015.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/07/2015] [Accepted: 12/13/2015] [Indexed: 06/06/2023]
Abstract
Agricultural entomology is poised to benefit from the application of ecological genomics, particularly the fields of biofuels generation and pest control. Metagenomic methods can characterize microbial communities of termites, wood-boring beetles and livestock pests, and transcriptomic approaches reveal molecular bases behind wood-digesting capabilities of these insects, leading to potential mechanisms for biofuel generation. Genome sequences are being exploited to develop new pest control methods, identify candidate antigens to vaccinate livestock, and discover RNAi target sequences and potential non-target effects in other insects. Gene content analyses of pest genome sequences and their endosymbionts suggest metabolic interdependencies between organisms, exposing potential gene targets for insect control. Finally, genome-wide association studies and genotyping by high-throughput sequencing promise to improve management of pesticide resistance.
Collapse
Affiliation(s)
- Monica F Poelchau
- USDA-ARS, National Agricultural Library, Beltsville, MD 20705, United States.
| | - Brad S Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA 50011, United States
| | | | - Adalberto A Peréz de León
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville, TX 78028, United States
| | - Jay D Evans
- USDA-ARS, Bee Research Laboratory, Beltsville, MD 20705, United States
| | - Kevin Hackett
- USDA-ARS, Office of National Programs, Crop Production and Protection, Beltsville, MD 20705, United States
| | - DeWayne Shoemaker
- USDA-ARS, Imported Fire Ant and Household Insects Research Unit, Gainesville, FL 32608, United States.
| |
Collapse
|
31
|
Kameshwar AKS, Qin W. Recent Developments in Using Advanced Sequencing Technologies for the Genomic Studies of Lignin and Cellulose Degrading Microorganisms. Int J Biol Sci 2016; 12:156-71. [PMID: 26884714 PMCID: PMC4737673 DOI: 10.7150/ijbs.13537] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/03/2015] [Indexed: 01/23/2023] Open
Abstract
Lignin is a complex polyphenyl aromatic compound which exists in tight associations with cellulose and hemicellulose to form plant primary and secondary cell wall. Lignocellulose is an abundant renewable biomaterial present on the earth. It has gained much attention in the scientific community in recent years because of its potential applications in bio-based industries. Microbial degradation of lignocellulose polymers was well studied in wood decaying fungi. Based on the plant materials they degrade these fungi were classified as white rot, brown rot and soft rot. However, some groups of bacteria belonging to the actinomycetes, α-proteobacteria and β-proteobacteria were also found to be efficient in degrading lignocellulosic biomass but not well understood unlike the fungi. In this review we focus on recent advancements deployed for finding and understanding the lignocellulose degradation by microorganisms. Conventional molecular methods like sequencing 16s rRNA and Inter Transcribed Spacer (ITS) regions were used for identification and classification of microbes. Recent progression in genomics mainly next generation sequencing technologies made the whole genome sequencing of microbes possible in a great ease. The whole genome sequence studies reveals high quality information about genes and canonical pathways involved in the lignin and other cell wall components degradation.
Collapse
Affiliation(s)
| | - Wensheng Qin
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| |
Collapse
|
32
|
Dedeine F, Weinert LA, Bigot D, Josse T, Ballenghien M, Cahais V, Galtier N, Gayral P. Comparative Analysis of Transcriptomes from Secondary Reproductives of Three Reticulitermes Termite Species. PLoS One 2015; 10:e0145596. [PMID: 26698123 PMCID: PMC4689415 DOI: 10.1371/journal.pone.0145596] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 12/07/2015] [Indexed: 01/24/2023] Open
Abstract
Termites are eusocial insects related to cockroaches that feed on lignocellulose. These insects are key species in ecosystems since they recycle a large amount of nutrients but also are pests, exerting major economic impacts. Knowledge on the molecular pathways underlying reproduction, caste differentiation or lignocellulose digestion would largely benefit from additional transcriptomic data. This study focused on transcriptomes of secondary reproductive females (nymphoid neotenics). Thirteen transcriptomes were used: 10 of Reticulitermes flavipes and R. grassei sequenced from a previous study, and two transcriptomes of R. lucifugus sequenced for the present study. After transcriptome assembly and read mapping, we examined interspecific variations of genes expressed by termites or gut microorganisms. A total of 18,323 orthologous gene clusters were detected. Functional annotation and taxonomic assignment were performed on a total of 41,287 predicted contigs in the three termite species. Between the termite species studied, functional categories of genes were comparable. Gene ontology (GO) terms analysis allowed the discovery of 9 cellulases and a total of 79 contigs potentially involved in 11 enzymatic activities used in wood metabolism. Altogether, results of this study illustrate the strong potential for the use of comparative interspecific transcriptomes, representing a complete resource for future studies including differentially expressed genes between castes or SNP analysis for population genetics.
Collapse
Affiliation(s)
- Franck Dedeine
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université François Rabelais, 37200, Tours, France
| | - Lucy A. Weinert
- Institut des Sciences de l’Evolution, UMR 5554, Université de Montpellier—CNRS—IRD—EPHE, Montpellier, France
| | - Diane Bigot
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université François Rabelais, 37200, Tours, France
| | - Thibaut Josse
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université François Rabelais, 37200, Tours, France
| | - Marion Ballenghien
- Institut des Sciences de l’Evolution, UMR 5554, Université de Montpellier—CNRS—IRD—EPHE, Montpellier, France
| | - Vincent Cahais
- Institut des Sciences de l’Evolution, UMR 5554, Université de Montpellier—CNRS—IRD—EPHE, Montpellier, France
| | - Nicolas Galtier
- Institut des Sciences de l’Evolution, UMR 5554, Université de Montpellier—CNRS—IRD—EPHE, Montpellier, France
| | - Philippe Gayral
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université François Rabelais, 37200, Tours, France
| |
Collapse
|
33
|
Brune A, Dietrich C. The Gut Microbiota of Termites: Digesting the Diversity in the Light of Ecology and Evolution. Annu Rev Microbiol 2015. [DOI: 10.1146/annurev-micro-092412-155715] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andreas Brune
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; ,
| | - Carsten Dietrich
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; ,
| |
Collapse
|
34
|
Karl ZJ, Scharf ME. EFFECTS OF FIVE DIVERSE LIGNOCELLULOSIC DIETS ON DIGESTIVE ENZYME BIOCHEMISTRY IN THE TERMITE Reticulitermes flavipes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 90:89-103. [PMID: 25980379 DOI: 10.1002/arch.21246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Termites have recently drawn much attention as models for biomass processing, mainly due to their lignocellulose digestion capabilities and mutualisms with cellulolytic gut symbionts. This research used the lower termite Reticulitermes flavipes to investigate gut enzyme activity changes in response to feeding on five diverse lignocellulosic diets (cellulose filter paper [FP], pine wood [PW], beech wood xylan [X], corn stover [CS], and soybean residue [SB]). Our objectives were to compare whole-gut digestive enzyme activity and host versus symbiont contributions to enzyme activity after feeding on these diets. Our hypothesis was that enzyme activities would vary among diets as an adaptive mechanism enabling termites and symbiota to optimally utilize variable resources. Results support our "diet-adaptation" hypothesis and further indicate that, in most cases, host contributions are greater than those of symbionts with respect to the enzymes and activities studied. The results obtained thus provide indications as to which types of transcriptomic resources, termite or symbiont, are most relevant for developing recombinant enzyme cocktails tailored to specific feedstocks. With regard to the agricultural feedstocks tested (CS and SB), our results suggest endoglucanase and exoglucanase (cellobiohydrolase) activities are most relevant for CS breakdown; whereas endoglucanase and xylosidase activities are relevant for SB breakdown. However, other unexplored activities than those tested may also be important for breakdown of these two feedstocks. These findings provide new protein-level insights into diet adaptation by termites, and also complement host-symbiont metatranscriptomic studies that have been completed for R. flavipes after FP, PW, CS, and SB feeding.
Collapse
Affiliation(s)
- Zachary J Karl
- Department of Entomology, Purdue University, West Lafayette, Indiana, USA
| | - Michael E Scharf
- Department of Entomology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
35
|
Rajarapu SP, Shreve JT, Bhide KP, Thimmapuram J, Scharf ME. Metatranscriptomic profiles of Eastern subterranean termites, Reticulitermes flavipes (Kollar) fed on second generation feedstocks. BMC Genomics 2015; 16:332. [PMID: 25896921 PMCID: PMC4411656 DOI: 10.1186/s12864-015-1502-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Second generation lignocellulosic feedstocks are being considered as an alternative to first generation biofuels that are derived from grain starches and sugars. However, the current pre-treatment methods for second generation biofuel production are inefficient and expensive due to the recalcitrant nature of lignocellulose. In this study, we used the lower termite Reticulitermes flavipes (Kollar), as a model to identify potential pretreatment genes/enzymes specifically adapted for use against agricultural feedstocks. RESULTS Metatranscriptomic profiling was performed on worker termite guts after feeding on corn stover (CS), soybean residue (SR), or 98% pure cellulose (paper) to identify (i) microbial community, (ii) pathway level and (iii) gene-level responses. Microbial community profiles after CS and SR feeding were different from the paper feeding profile, and protist symbiont abundance decreased significantly in termites feeding on SR and CS relative to paper. Functional profiles after CS feeding were similar to paper and SR; whereas paper and SR showed different profiles. Amino acid and carbohydrate metabolism pathways were downregulated in termites feeding on SR relative to paper and CS. Gene expression analyses showed more significant down regulation of genes after SR feeding relative to paper and CS. Stereotypical lignocellulase genes/enzymes were not differentially expressed, but rather were among the most abundant/constitutively-expressed genes. CONCLUSIONS These results suggest that the effect of CS and SR feeding on termite gut lignocellulase composition is minimal and thus, the most abundantly expressed enzymes appear to encode the best candidate catalysts for use in saccharification of these and related second-generation feedstocks. Further, based on these findings we hypothesize that the most abundantly expressed lignocellulases, rather than those that are differentially expressed have the best potential as pretreatment enzymes for CS and SR feedstocks.
Collapse
Affiliation(s)
| | - Jacob T Shreve
- Bioinformatics Core, Purdue University, West Lafayette, 47907-2089, Indiana.
| | - Ketaki P Bhide
- Bioinformatics Core, Purdue University, West Lafayette, 47907-2089, Indiana.
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, West Lafayette, 47907-2089, Indiana.
| | - Michael E Scharf
- Department of Entomology, Purdue University, West Lafayette, 47907-2089, Indiana.
| |
Collapse
|
36
|
Sen R, Raychoudhury R, Cai Y, Sun Y, Lietze VU, Peterson BF, Scharf ME, Boucias DG. Molecular signatures of nicotinoid-pathogen synergy in the termite gut. PLoS One 2015; 10:e0123391. [PMID: 25837376 PMCID: PMC4383478 DOI: 10.1371/journal.pone.0123391] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/18/2015] [Indexed: 11/19/2022] Open
Abstract
Previous studies in lower termites revealed unexpected synergies between nicotinoid insecticides and fungal entomopathogens. The present study investigated molecular mechanisms of nicotinoid-pathogen synergy in the lower termite Reticulitermes flavipes, using the nicotinoid, imidacloprid, in combination with fungal and bacterial entomopathogens. Particular focus was placed on metatranscriptome composition and microbial dynamics in the symbiont-rich termite gut, which houses diverse mixes of protists and bacteria. cDNA microarrays containing a mix of host and protist symbiont oligonucleotides were used to simultaneously assess termite and protist gene expression. Five treatments were compared that included single challenges with sublethal doses of fungi (Metharizium anisopliae), bacteria (Serratia marcescens) or imidacloprid, and dual challenges with fungi + imidacloprid or bacteria + imidacloprid. Our findings point towards protist dysbiosis and compromised social behavior, rather than suppression of stereotypical immune defense mechanisms, as the dominant factors underlying nicotinoid-pathogen synergy in termites. Also, greater impacts observed for the fungal pathogen than for the bacterial pathogen suggest that the rich bacterial symbiont community in the R. flavipes gut (>5000 species-level phylotypes) exists in an ecological balance that effectively excludes exogenous bacterial pathogens. These findings significantly advance our understanding of antimicrobial defenses in this important eusocial insect group, as well as provide novel insights into how nicotinoids can exert deleterious effects on social insect colonies.
Collapse
Affiliation(s)
- Ruchira Sen
- Dept. of Entomology, Purdue University, West Lafayette, IN, United States of America
| | - Rhitoban Raychoudhury
- Dept. of Entomology, Purdue University, West Lafayette, IN, United States of America
| | - Yunpeng Cai
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States of America
| | - Yijun Sun
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States of America
| | - Verena-Ulrike Lietze
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States of America
| | - Brittany F. Peterson
- Dept. of Entomology, Purdue University, West Lafayette, IN, United States of America
| | - Michael E. Scharf
- Dept. of Entomology, Purdue University, West Lafayette, IN, United States of America
| | - Drion G. Boucias
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
37
|
Scharf ME. Omic research in termites: an overview and a roadmap. Front Genet 2015; 6:76. [PMID: 25821456 PMCID: PMC4358217 DOI: 10.3389/fgene.2015.00076] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/13/2015] [Indexed: 11/13/2022] Open
Abstract
Many recent breakthroughs in our understanding of termite biology have been facilitated by "omics" research. Omic science seeks to collectively catalog, quantify, and characterize pools of biological molecules that translate into structure, function, and life processes of an organism. Biological molecules in this context include genomic DNA, messenger RNA, proteins, and other biochemicals. Other permutations of omics that apply to termites include sociogenomics, which seeks to define social life in molecular terms (e.g., behavior, sociality, physiology, symbiosis, etc.) and digestomics, which seeks to define the collective pool of host and symbiont genes that collaborate to achieve high-efficiency lignocellulose digestion in the termite gut. This review covers a wide spectrum of termite omic studies from the past 15 years. Topics covered include a summary of terminology, the various kinds of omic efforts that have been undertaken, what has been revealed, and to a degree, what the results mean. Although recent omic efforts have contributed to a better understanding of many facets of termite and symbiont biology, and have created important new resources for many species, significant knowledge gaps still remain. Crossing these gaps can best be done by applying new omic resources within multi-dimensional (i.e., functional, translational, and applied) research programs.
Collapse
Affiliation(s)
- Michael E Scharf
- Department of Entomology, Purdue University, West Lafayette, IN USA
| |
Collapse
|
38
|
Barah P, Bones AM. Multidimensional approaches for studying plant defence against insects: from ecology to omics and synthetic biology. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:479-93. [PMID: 25538257 DOI: 10.1093/jxb/eru489] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The biggest challenge for modern biology is to integrate multidisciplinary approaches towards understanding the organizational and functional complexity of biological systems at different hierarchies, starting from the subcellular molecular mechanisms (microscopic) to the functional interactions of ecological communities (macroscopic). The plant-insect interaction is a good model for this purpose with the availability of an enormous amount of information at the molecular and the ecosystem levels. Changing global climatic conditions are abruptly resetting plant-insect interactions. Integration of discretely located heterogeneous information from the ecosystem to genes and pathways will be an advantage to understand the complexity of plant-insect interactions. This review will present the recent developments in omics-based high-throughput experimental approaches, with particular emphasis on studying plant defence responses against insect attack. The review highlights the importance of using integrative systems approaches to study plant-insect interactions from the macroscopic to the microscopic level. We analyse the current efforts in generating, integrating and modelling multiomics data to understand plant-insect interaction at a systems level. As a future prospect, we highlight the growing interest in utilizing the synthetic biology platform for engineering insect-resistant plants.
Collapse
Affiliation(s)
- Pankaj Barah
- Cell Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology (NTNU), N 7491 Trondheim, Norway
| | - Atle M Bones
- Cell Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology (NTNU), N 7491 Trondheim, Norway
| |
Collapse
|
39
|
Abstract
Termites have many unique evolutionary adaptations associated with their eusocial lifestyles. Recent omics research has created a wealth of new information in numerous areas of termite biology (e.g., caste polyphenism, lignocellulose digestion, and microbial symbiosis) with wide-ranging applications in diverse biotechnological niches. Termite biotechnology falls into two categories: (a) termite-targeted biotechnology for pest management purposes, and (b) termite-modeled biotechnology for use in various industrial applications. The first category includes several candidate termiticidal modes of action such as RNA interference, digestive inhibition, pathogen enhancement, antimicrobials, endocrine disruption, and primer pheromone mimicry. In the second category, termite digestomes are deep resources for host and symbiont lignocellulases and other enzymes with applications in a variety of biomass, industrial, and processing applications. Moving forward, one of the most important approaches for accelerating advances in both termite-targeted and termite-modeled biotechnology will be to consider host and symbiont together as a single functional unit.
Collapse
Affiliation(s)
- Michael E Scharf
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907;
| |
Collapse
|
40
|
The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Appl Environ Microbiol 2014; 81:1059-70. [PMID: 25452280 DOI: 10.1128/aem.02945-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hindguts of lower termites and Cryptocercus cockroaches are home to a distinct community of archaea, bacteria, and protists (primarily parabasalids and some oxymonads). Within a host species, the composition of these hindgut communities appears relatively stable, but the evolutionary and ecological factors structuring community composition and stability are poorly understood, as are differential impacts of these factors on protists, bacteria, and archaea. We analyzed the microbial composition of parabasalids and bacteria in the hindguts of Cryptocercus punctulatus and 23 species spanning 4 families of lower termites by pyrosequencing variable regions of the small-subunit rRNA gene. Especially for the parabasalids, these data revealed undiscovered taxa and provided a phylogenetic basis for a more accurate understanding of diversity, diversification, and community composition. The composition of the parabasalid communities was found to be strongly structured by the phylogeny of their hosts, indicating the importance of historical effects, although exceptions were also identified. Particularly, spirotrichonymphids and trichonymphids likely were transferred between host lineages. In contrast, host phylogeny was not sufficient to explain the majority of bacterial community composition, but the compositions of the Bacteroidetes, Elusimicrobia, Tenericutes, Spirochaetes, and Synergistes were structured by host phylogeny perhaps due to their symbiotic associations with protists. All together, historical effects probably resulting from vertical inheritance have had a prominent role in structuring the hindgut communities, especially of the parabasalids, but dispersal and environmental acquisition have played a larger role in community composition than previously expected.
Collapse
|
41
|
Simmons CW, Reddy AP, D’haeseleer P, Khudyakov J, Billis K, Pati A, Simmons BA, Singer SW, Thelen MP, VanderGheynst JS. Metatranscriptomic analysis of lignocellulolytic microbial communities involved in high-solids decomposition of rice straw. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:495. [PMID: 25648696 PMCID: PMC4296540 DOI: 10.1186/s13068-014-0180-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 12/04/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND New lignocellulolytic enzymes are needed that maintain optimal activity under the harsh conditions present during industrial enzymatic deconstruction of biomass, including high temperatures, the absence of free water, and the presence of inhibitors from the biomass. Enriching lignocellulolytic microbial communities under these conditions provides a source of microorganisms that may yield robust lignocellulolytic enzymes tolerant to the extreme conditions needed to improve the throughput and efficiency of biomass enzymatic deconstruction. Identification of promising enzymes from these systems is challenging due to complex substrate-enzyme interactions and requirements to assay for activity. In this study, metatranscriptomes from compost-derived microbial communities enriched on rice straw under thermophilic and mesophilic conditions were sequenced and analyzed to identify lignocellulolytic enzymes overexpressed under thermophilic conditions. To determine differential gene expression across mesophilic and thermophilic treatments, a method was developed which pooled gene expression by functional category, as indicated by Pfam annotations, since microbial communities performing similar tasks are likely to have overlapping functions even if they share no specific genes. RESULTS Differential expression analysis identified enzymes from glycoside hydrolase family 48, carbohydrate binding module family 2, and carbohydrate binding module family 33 domains as significantly overexpressed in the thermophilic community. Overexpression of these protein families in the thermophilic community resulted from expression of a small number of genes not currently represented in any protein database. Genes in overexpressed protein families were predominantly expressed by a single Actinobacteria genus, Micromonospora. CONCLUSIONS Coupling measurements of deconstructive activity with comparative analyses to identify overexpressed enzymes in lignocellulolytic communities provides a targeted approach for discovery of candidate enzymes for more efficient biomass deconstruction. Glycoside hydrolase family 48 cellulases and carbohydrate binding module family 33 polysaccharide monooxygenases with carbohydrate binding module family 2 domains may improve saccharification of lignocellulosic biomass under high-temperature and low moisture conditions relevant to industrial biofuel production.
Collapse
Affiliation(s)
- Christopher W Simmons
- />Joint BioEnergy Institute, Emeryville, CA 94608 USA
- />Department of Food Science and Technology, University of California, Davis, CA 95616 USA
| | - Amitha P Reddy
- />Joint BioEnergy Institute, Emeryville, CA 94608 USA
- />Department of Biological and Agricultural Engineering, University of California, One Shields Ave, Davis, CA 95616 USA
| | - Patrik D’haeseleer
- />Joint BioEnergy Institute, Emeryville, CA 94608 USA
- />Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551 USA
| | - Jane Khudyakov
- />Joint BioEnergy Institute, Emeryville, CA 94608 USA
- />Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551 USA
| | | | - Amrita Pati
- />Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Blake A Simmons
- />Joint BioEnergy Institute, Emeryville, CA 94608 USA
- />Biological and Materials Science Center, Sandia National Laboratories, Livermore, CA 94551 USA
| | - Steven W Singer
- />Joint BioEnergy Institute, Emeryville, CA 94608 USA
- />Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Michael P Thelen
- />Joint BioEnergy Institute, Emeryville, CA 94608 USA
- />Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551 USA
| | - Jean S VanderGheynst
- />Joint BioEnergy Institute, Emeryville, CA 94608 USA
- />Department of Biological and Agricultural Engineering, University of California, One Shields Ave, Davis, CA 95616 USA
| |
Collapse
|
42
|
Lucey KS, Leadbetter JR. Catechol 2,3-dioxygenase and othermeta-cleavage catabolic pathway genes in the ‘anaerobic’ termite gut spirocheteTreponema primitia. Mol Ecol 2013; 23:1531-1543. [DOI: 10.1111/mec.12598] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Kaitlyn S. Lucey
- Ronald and Maxine Linde Center for Global Environmental Science; California Institute of Technology; Mail Code 100-23 Pasadena CA 91125 USA
| | - Jared R. Leadbetter
- Ronald and Maxine Linde Center for Global Environmental Science; California Institute of Technology; Mail Code 100-23 Pasadena CA 91125 USA
| |
Collapse
|
43
|
Sethi A, Kovaleva ES, Slack JM, Brown S, Buchman GW, Scharf ME. A GHF7 cellulase from the protist symbiont community of Reticulitermes flavipes enables more efficient lignocellulose processing by host enzymes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 84:175-193. [PMID: 24186432 DOI: 10.1002/arch.21135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Termites and their gut microbial symbionts efficiently degrade lignocellulose into fermentable monosaccharides. This study examined three glycosyl hydrolase family 7 (GHF7) cellulases from protist symbionts of the termite Reticulitermes flavipes. We tested the hypotheses that three GHF7 cellulases (GHF7-3, GHF7-5, and GHF7-6) can function synergistically with three host digestive enzymes and a fungal cellulase preparation. Full-length cDNA sequences of the three GHF7s were assembled and their protist origins confirmed through a combination of quantitative PCR and cellobiohydrolase (CBH) activity assays. Recombinant versions of the three GHF7s were generated using a baculovirus-insect expression system and their activity toward several model substrates compared with and without metallic cofactors. GHF7-3 was the most active of the three cellulases; it exhibited a combination of CBH, endoglucanase (EGase), and β-glucosidase activities that were optimal around pH 7 and 30°C, and enhanced by calcium chloride and zinc sulfate. Lignocellulose saccharification assays were then done using various combinations of the three GHF7s along with a host EGase (Cell-1), beta-glucosidase (β-glu), and laccase (LacA). GHF7-3 was the only GHF7 to enhance glucose release by Cell-1 and β-glu. Finally, GHF7-3, Cell-1, and β-glu were individually tested with a commercial fungal cellulase preparation in lignocellulose saccharification assays, but only β-glu appreciably enhanced glucose release. Our hypothesis that protist GHF7 cellulases are capable of synergistic interactions with host termite digestive enzymes is supported only in the case of GHF7-3. These findings suggest that not all protist cellulases will enhance saccharification by cocktails of other termite or fungal lignocellulases.
Collapse
Affiliation(s)
- Amit Sethi
- Department of Entomology, Purdue University, West Lafayette, Indiana
| | | | | | | | | | | |
Collapse
|
44
|
Sen R, Raychoudhury R, Cai Y, Sun Y, Lietze VU, Boucias DG, Scharf ME. Differential impacts of juvenile hormone, soldier head extract and alternate caste phenotypes on host and symbiont transcriptome composition in the gut of the termite Reticulitermes flavipes. BMC Genomics 2013; 14:491. [PMID: 23870282 PMCID: PMC3731027 DOI: 10.1186/1471-2164-14-491] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/09/2013] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Termites are highly eusocial insects and show a division of labor whereby morphologically distinct individuals specialize in distinct tasks. In the lower termite Reticulitermes flavipes (Rhinotermitidae), non-reproducing individuals form the worker and soldier castes, which specialize in helping (e.g., brood care, cleaning, foraging) and defense behaviors, respectively. Workers are totipotent juveniles that can either undergo status quo molts or develop into soldiers or neotenic reproductives. This caste differentiation can be regulated by juvenile hormone (JH) and primer pheromones contained in soldier head extracts (SHE). Here we offered worker termites a cellulose diet treated with JH or SHE for 24-hr, or held them with live soldiers (LS) or live neotenic reproductives (LR). We then determined gene expression profiles of the host termite gut and protozoan symbionts concurrently using custom cDNA oligo-microarrays containing 10,990 individual ESTs. RESULTS JH was the most influential treatment (501 total ESTs affected), followed by LS (24 ESTs), LR (12 ESTs) and SHE treatments (6 ESTs). The majority of JH up- and downregulated ESTs were of host and symbiont origin, respectively; in contrast, SHE, LR and LS treatments had more uniform impacts on host and symbiont gene expression. Repeat "follow-up" bioassays investigating combined JH + SHE impacts in relation to individual JH and SHE treatments on a subset of array-positive genes revealed (i) JH and SHE treatments had opposite impacts on gene expression and (ii) JH + SHE impacts on gene expression were generally intermediate between JH and SHE. CONCLUSIONS Our results show that JH impacts hundreds of termite and symbiont genes within 24-hr, strongly suggesting a role for the termite gut in JH-dependent caste determination. Additionally, differential impacts of SHE and LS treatments were observed that are in strong agreement with previous studies that specifically investigated soldier caste regulation. However, it is likely that gene expression outside the gut may be of equal or greater importance than gut gene expression.
Collapse
Affiliation(s)
- Ruchira Sen
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | | | - Yunpeng Cai
- Interdisciplinary Center for Biotechnology Research, University of Florida,
Gainesville, FL, USA
- Current Address: Research Center for Biomedical Information Technology,
Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences,
Shenzhen, China
| | - Yijun Sun
- Interdisciplinary Center for Biotechnology Research, University of Florida,
Gainesville, FL, USA
- Current Address: Department of Microbiology and Immunology & New York
State Center of Excellence in Bioinformatics and Life Sciences, The State
University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Verena-Ulrike Lietze
- Entomology and Nematology Department, University of Florida, Gainesville, FL,
USA
| | - Drion G Boucias
- Entomology and Nematology Department, University of Florida, Gainesville, FL,
USA
| | - Michael E Scharf
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
45
|
Boucias DG, Cai Y, Sun Y, Lietze VU, Sen R, Raychoudhury R, Scharf ME. The hindgut lumen prokaryotic microbiota of the termiteReticulitermes flavipesand its responses to dietary lignocellulose composition. Mol Ecol 2013; 22:1836-53. [PMID: 23379767 DOI: 10.1111/mec.12230] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 12/12/2012] [Accepted: 12/18/2012] [Indexed: 12/27/2022]
Affiliation(s)
- Drion G. Boucias
- Department of Entomology and Nematology; University of Florida; Gainesville FL 32610-3622 USA
| | - Yunpeng Cai
- Shenzhen Institute of Advanced Technology; Chinese Academy of Science; Shenzhen China
| | - Yijun Sun
- Interdisciplinary Center for Biotechnology Research; University of Florida; Gainesville FL 32610-3622 USA
| | - Verena-Ulrike Lietze
- Department of Entomology and Nematology; University of Florida; Gainesville FL 32610-3622 USA
| | - Ruchira Sen
- Department of Entomology; Purdue University; West Lafayette IN 47907-2089 USA
| | | | - Michael E. Scharf
- Department of Entomology; Purdue University; West Lafayette IN 47907-2089 USA
| |
Collapse
|