1
|
Yin J, Chen J, Wang T, Sun H, Yan Y, Zhu C, Huang L, Chen Z. Coinhibitory Molecule VISTA Play an Important Negative Regulatory Role in the Immunopathology of Bronchial Asthma. J Asthma Allergy 2024; 17:813-832. [PMID: 39246611 PMCID: PMC11378793 DOI: 10.2147/jaa.s449867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/01/2024] [Indexed: 09/10/2024] Open
Abstract
Objective To investigate the significance of VISTA in bronchial asthma and its impact on the disease. Methods Human peripheral blood of asthma children was gathered. The expression concentrations of VISTA, IL-4, IL-6, CD25, CD40L, and PD-L2 in peripheral blood plasma were detected by ELISA. We established the mouse model of asthma and intervened with agonistic anti-VISTA mAb (4C11) and VISTA fusion protein. ELISA, flow cytometry, and Western blotting were performed to detect the expression levels of Th1, Th2, and Th17 cell subsets and related characteristic cytokines, as well as the protein levels of MAPKs, NF-κB, and TRAF6 in lung tissues. In addition, the infiltration of eosinophils and inflammatory cells, airway mucus secretion, and VISTA protein expression in lung histopathological sections of different groups of mice were analyzed. Results The concentration of VISTA in human asthma group decreased significantly (p < 0.05); A positive correlation was observed between VISTA and CD40L. The intervention of 4C11 mAb and fusion protein respectively during the induction period increase the differentiation of Th1 cells and the secretion of IFN-γ, and inhibit the differentiation of Th2 and Th17 cells, as well as the secretion of IL-4, IL-5, IL-13 and IL-17, partially reduce the pathological changes of asthma in mouse lungs and correct the progress of asthma. The MAPK, NF-κB, and TRAF6 protein levels were the middle range in the 4C11 mAb and fusion protein groups (p < 0.05). Conclusion The findings suggest VISTA may play a negative regulatory role in the occurrence and development of bronchial asthma.
Collapse
Affiliation(s)
- Jianqun Yin
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jiawei Chen
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ting Wang
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Huiming Sun
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yongdong Yan
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Canhong Zhu
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Li Huang
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhengrong Chen
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
2
|
Hashimoto M, Ramalingam SS, Ahmed R. Harnessing CD8 T cell responses using PD-1-IL-2 combination therapy. Trends Cancer 2024; 10:332-346. [PMID: 38129234 PMCID: PMC11006586 DOI: 10.1016/j.trecan.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
There is considerable interest in developing more effective programmed cell death (PD)-1 combination therapies against cancer. One major obstacle to these efforts is a dysfunctional/exhausted state of CD8 T cells, which PD-1 monotherapy is not able to overcome. Recent studies have highlighted that PD-1+ T cell factor (TCF)-1+ stem-like CD8 T cells are not fate locked into the exhaustion program and their differentiation trajectory can be changed by interleukin (IL)-2 signals. Modifying the CD8 T cell exhaustion program and generating better effectors from stem-like CD8 T cells by IL-2 form the fundamental immunological basis for combining IL-2 with PD-1 therapy. Many versions of IL-2-based products are being tested and each product should be carefully evaluated for its ability to modulate dysfunctional states of anti-tumor CD8 T cells.
Collapse
Affiliation(s)
- Masao Hashimoto
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Suresh S Ramalingam
- Winship Cancer Institute of Emory University, Atlanta, GA, USA; Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| |
Collapse
|
3
|
Liu Y, Yuan Y, Zhou Z, Cui Y, Teng Y, Huang H, Yuan H, Zhang Y, Yang L, Zhao G. Mettl14-mediated m6A modification enhances the function of Foxp3 + regulatory T cells and promotes allograft acceptance. Front Immunol 2022; 13:1022015. [PMID: 36341394 PMCID: PMC9629694 DOI: 10.3389/fimmu.2022.1022015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/30/2022] [Indexed: 01/07/2023] Open
Abstract
N6-methyladenosine (m6A), the most prevalent form of internal mRNA modification, is extensively involved in Treg cells differentiation and function. However, the involvement of m6A in functional Treg cells for transplantation tolerance remains to be elucidated. By using an experimental transplantation mouse model, we found that m6A levels in Treg cells were altered during the induction of transplant tolerance by performing a dot blotting assay. Subsequently, we used the heterogenic Treg-specific Mettl14 knockout mice (Foxp3-Mettl14f/+ cKO) to reduce METTL14 expression and performed islets allograft transplantation. Our result revealed that reduced expression of METTL14 prevented Treg cells expansion and promoted the infiltration of CD4+ and CD8+ T cells around the allograft, which led to rapid allograft rejection in Foxp3-Mettl14 f/+ cKO mice. The expression of regulatory cytokines including IL-10 and TGF-β was significantly decreased in Foxp3-Mettl14 f/+ cKO mice, and the suppressive function of Treg cells was also abrogated. In addition, an analysis of RNA-seq data revealed that the SOCS family (SOCS1, SOCS2 and SOCS3) is the subsequent signaling pathway affected by the METTL14 mediated m6A modification in Treg cells to modulate the suppressive function after transplantation. Taken together, our study showed for the first time that the METTL14-mediated m6A modification is essential for the suppressive function of Treg cells in transplantation and may serve as a regulatory element of Treg cell-based therapy in transplant medicine.
Collapse
Affiliation(s)
- Yanzhuo Liu
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yinglin Yuan
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zili Zhou
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuanyuan Cui
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Teng
- Institute of Neurology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Huang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Yuan
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanling Zhang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Yang
- Institute of Neurology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Lu Yang, ; Gaoping Zhao,
| | - Gaoping Zhao
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Lu Yang, ; Gaoping Zhao,
| |
Collapse
|
4
|
Hashimoto M, Araki K, Cardenas MA, Li P, Jadhav RR, Kissick HT, Hudson WH, McGuire DJ, Obeng RC, Wieland A, Lee J, McManus DT, Ross JL, Im SJ, Lee J, Lin JX, Hu B, West EE, Scharer CD, Freeman GJ, Sharpe AH, Ramalingam SS, Pellerin A, Teichgräber V, Greenleaf WJ, Klein C, Goronzy JJ, Umaña P, Leonard WJ, Smith KA, Ahmed R. PD-1 combination therapy with IL-2 modifies CD8 + T cell exhaustion program. Nature 2022; 610:173-181. [PMID: 36171288 PMCID: PMC9793890 DOI: 10.1038/s41586-022-05257-0] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/22/2022] [Indexed: 12/30/2022]
Abstract
Combination therapy with PD-1 blockade and IL-2 is highly effective during chronic lymphocytic choriomeningitis virus infection1. Here we examine the underlying basis for this synergy. We show that PD-1 + IL-2 combination therapy, in contrast to PD-1 monotherapy, substantially changes the differentiation program of the PD-1+TCF1+ stem-like CD8+ T cells and results in the generation of transcriptionally and epigenetically distinct effector CD8+ T cells that resemble highly functional effector CD8+ T cells seen after an acute viral infection. The generation of these qualitatively superior CD8+ T cells that mediate viral control underlies the synergy between PD-1 and IL-2. Our results show that the PD-1+TCF1+ stem-like CD8+ T cells, also referred to as precursors of exhausted CD8+ T cells, are not fate-locked into the exhaustion program and their differentiation trajectory can be changed by IL-2 signals. These virus-specific effector CD8+ T cells emerging from the stem-like CD8+ T cells after combination therapy expressed increased levels of the high-affinity IL-2 trimeric (CD25-CD122-CD132) receptor. This was not seen after PD-1 blockade alone. Finally, we show that CD25 engagement with IL-2 has an important role in the observed synergy between IL-2 cytokine and PD-1 blockade. Either blocking CD25 with an antibody or using a mutated version of IL-2 that does not bind to CD25 but still binds to CD122 and CD132 almost completely abrogated the synergistic effects observed after PD-1 + IL-2 combination therapy. There is considerable interest in PD-1 + IL-2 combination therapy for patients with cancer2,3, and our fundamental studies defining the underlying mechanisms of how IL-2 synergizes with PD-1 blockade should inform these human translational studies.
Collapse
Affiliation(s)
- Masao Hashimoto
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Koichi Araki
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Maria A Cardenas
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Rohit R Jadhav
- Department of Immunology, Mayo Clinic School of Medicine and Sciences, Rochester, MN, USA
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Haydn T Kissick
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - William H Hudson
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Donald J McGuire
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebecca C Obeng
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pathology and Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andreas Wieland
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Otolaryngology, The Ohio State University College of Medicine, Columbus, OH, USA
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Judong Lee
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel T McManus
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - James L Ross
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Se Jin Im
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Junghwa Lee
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Bin Hu
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Erin E West
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Suresh S Ramalingam
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Jorg J Goronzy
- Department of Immunology, Mayo Clinic School of Medicine and Sciences, Rochester, MN, USA
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Pablo Umaña
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kendall A Smith
- Department of Medicine, Division of Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
5
|
Regulatory T cells and vaccine effectiveness in older adults. Challenges and prospects. Int Immunopharmacol 2021; 96:107761. [PMID: 34162139 DOI: 10.1016/j.intimp.2021.107761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
Since the discovery of lymphocytes with immunosuppressive activity, increasing interest has arisen in their possible influence on the immune response induced by vaccines. Regulatory T cells (Tregs) are essential for maintaining peripheral tolerance, preventing autoimmune diseases, and limiting chronic inflammatory diseases. However, they also limit beneficial immune responses by suppressing anti-infectious and anti-tumor immunity. Mounting evidence suggests that Tregs are involved, at least in part, in the low effectiveness of immunization against various diseases where it has been difficult to obtain protective vaccines. Interestingly, increased activity of Tregs is associated with aging, suggesting a key role for these cells in the lower vaccine effectiveness observed in older people. In this review, we analyze the impact of Tregs on vaccination, with a focus on older adults. Finally, we address an overview of current strategies for Tregs modulation with potential application to improve the effectiveness of future vaccines targeting older populations.
Collapse
|
6
|
Glasner A, Plitas G. Tumor resident regulatory T cells. Semin Immunol 2021; 52:101476. [PMID: 33906820 DOI: 10.1016/j.smim.2021.101476] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023]
Abstract
The immune system mediates powerful effector mechanisms to protect against a diversity of pathogens and equally as important regulatory functions, to limit collateral damage of inflammation, prevent misguided immune responses to "self", and promote tissue repair. Inadequate regulatory control can lead to a variety of inflammatory disorders including autoimmunity, metabolic syndrome, allergies, and progression of malignancies. Cancers evolve complex mechanisms to thwart immune eradication including coopting normal host regulatory processes. This is most evident in the analysis of tumor infiltrating lymphocytes (TILs), where a preponderance of immunosuppressive immune cells, such as regulatory T (Treg) cells are found. Treg cells express the X-chromosome linked transcription factor Foxp3 and play a crucial role in maintaining immune homeostasis by suppressing inflammatory responses in diverse biological settings. Treg cells in the tumor microenvironment promote tumor development and progression by dampening anti-tumor immune responses, directly supporting the survival of transformed cells through elaboration of growth factors, and interacting with accessory cells in tumors such as fibroblasts and endothelial cells. Current insights into the phenotype and function of tumor associated Treg cells have opened up opportunities for their selective targeting in cancer with the goal of alleviating their suppression of anti-tumor immune responses while maintaining overall immune homeostasis. Here, we review Treg cell biology in the context of the tumor microenvironment (TME), and the important role they play in cancer immunotherapy.
Collapse
Affiliation(s)
- Ariella Glasner
- Immunology Program and Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - George Plitas
- Immunology Program and Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
7
|
Carter TJ, Agliardi G, Lin FY, Ellis M, Jones C, Robson M, Richard-Londt A, Southern P, Lythgoe M, Zaw Thin M, Ryzhov V, de Rosales RTM, Gruettner C, Abdollah MRA, Pedley RB, Pankhurst QA, Kalber TL, Brandner S, Quezada S, Mulholland P, Shevtsov M, Chester K. Potential of Magnetic Hyperthermia to Stimulate Localized Immune Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005241. [PMID: 33734595 DOI: 10.1002/smll.202005241] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/20/2021] [Indexed: 05/27/2023]
Abstract
Magnetic hyperthermia (MH) harnesses the heat-releasing properties of superparamagnetic iron oxide nanoparticles (SPIONs) and has potential to stimulate immune activation in the tumor microenvironment whilst sparing surrounding normal tissues. To assess feasibility of localized MH in vivo, SPIONs are injected intratumorally and their fate tracked by Zirconium-89-positron emission tomography, histological analysis, and electron microscopy. Experiments show that an average of 49% (21-87%, n = 9) of SPIONs are retained within the tumor or immediately surrounding tissue. In situ heating is subsequently generated by exposure to an externally applied alternating magnetic field and monitored by thermal imaging. Tissue response to hyperthermia, measured by immunohistochemical image analysis, reveals specific and localized heat-shock protein expression following treatment. Tumor growth inhibition is also observed. To evaluate the potential effects of MH on the immune landscape, flow cytometry is used to characterize immune cells from excised tumors and draining lymph nodes. Results show an influx of activated cytotoxic T cells, alongside an increase in proliferating regulatory T cells, following treatment. Complementary changes are found in draining lymph nodes. In conclusion, results indicate that biologically reactive MH is achievable in vivo and can generate localized changes consistent with an anti-tumor immune response.
Collapse
Affiliation(s)
- Thomas J Carter
- UCL Cancer Institute, University College London (UCL), Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Giulia Agliardi
- UCL Cancer Institute, University College London (UCL), Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Fang-Yu Lin
- UCL Healthcare Biomagnetics Laboratory, 21 Albermarle Street, London, W1S 4BS, UK
| | - Matthew Ellis
- Division of Neuropathology, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Cancer Sciences Unit, Cancer Research UK Centre, University of Southampton, Somers Building, Southampton, SO16 6YD, UK
| | - Clare Jones
- School of Biomedical Engineering and Imaging Sciences, King's College London (KCL), St Thomas' Hospital, London, SE1 7EH, UK
| | - Mathew Robson
- UCL Cancer Institute, University College London (UCL), Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Angela Richard-Londt
- Division of Neuropathology, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Paul Southern
- UCL Healthcare Biomagnetics Laboratory, 21 Albermarle Street, London, W1S 4BS, UK
- Resonant Circuits Limited (RCL), London, W1S 4BS, UK
| | - Mark Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK
| | - May Zaw Thin
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK
| | - Vyacheslav Ryzhov
- NRC "Kurchatov Institute", Petersburg Nuclear Physics Institute, Gatchina, 188300, Russia
| | - Rafael T M de Rosales
- School of Biomedical Engineering and Imaging Sciences, King's College London (KCL), St Thomas' Hospital, London, SE1 7EH, UK
| | - Cordula Gruettner
- Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, Rostock, D-18119, Germany
| | - Maha R A Abdollah
- UCL Cancer Institute, University College London (UCL), Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt (BUE), El Shorouk City, Misr- Ismalia Desert Road, 11873, Cairo, Egypt
| | - R Barbara Pedley
- UCL Cancer Institute, University College London (UCL), Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Quentin A Pankhurst
- UCL Healthcare Biomagnetics Laboratory, 21 Albermarle Street, London, W1S 4BS, UK
- Resonant Circuits Limited (RCL), London, W1S 4BS, UK
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK
| | - Sebastian Brandner
- Division of Neuropathology, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Sergio Quezada
- UCL Cancer Institute, University College London (UCL), Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Paul Mulholland
- UCL Cancer Institute, University College London (UCL), Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Maxim Shevtsov
- NRC "Kurchatov Institute", Petersburg Nuclear Physics Institute, Gatchina, 188300, Russia
- Technical University of Munich, Klinikum Rechts der Isar, Ismaninger str. 22, Munich, 81675, Germany
| | - Kerry Chester
- UCL Cancer Institute, University College London (UCL), Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| |
Collapse
|
8
|
Camacho V, Matkins VR, Patel SB, Lever JM, Yang Z, Ying L, Landuyt AE, Dean EC, George JF, Yang H, Ferrell PB, Maynard CL, Weaver CT, Turnquist HR, Welner RS. Bone marrow Tregs mediate stromal cell function and support hematopoiesis via IL-10. JCI Insight 2020; 5:135681. [PMID: 33208555 PMCID: PMC7710301 DOI: 10.1172/jci.insight.135681] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 10/07/2020] [Indexed: 12/31/2022] Open
Abstract
The nonimmune roles of Tregs have been described in various tissues, including the BM. In this study, we comprehensively phenotyped marrow Tregs, elucidating their key features and tissue-specific functions. We show that marrow Tregs are migratory and home back to the marrow. For trafficking, marrow Tregs use S1P gradients, and disruption of this axis allows for specific targeting of the marrow Treg pool. Following Treg depletion, the function and phenotype of both mesenchymal stromal cells (MSCs) and hematopoietic stem cells (HSCs) was impaired. Transplantation also revealed that a Treg-depleted niche has a reduced capacity to support hematopoiesis. Finally, we found that marrow Tregs are high producers of IL-10 and that Treg-secreted IL-10 has direct effects on MSC function. This is the first report to our knowledge revealing that Treg-secreted IL-10 is necessary for stromal cell maintenance, and our work outlines an alternative mechanism by which this cytokine regulates hematopoiesis.
Collapse
Affiliation(s)
| | | | | | - Jeremie M. Lever
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, and
| | - Zhengqin Yang
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Li Ying
- Cancer Science Institute of Singapore & Department of Biochemistry, National University of Singapore, Singapore
| | - Ashley E. Landuyt
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Emma C. Dean
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James F. George
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Henry Yang
- Cancer Science Institute of Singapore & Department of Biochemistry, National University of Singapore, Singapore
| | - Paul Brent Ferrell
- Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Craig L. Maynard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Casey T. Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Heth R. Turnquist
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
9
|
Hayes ET, Hagan CE, Khoryati L, Gavin MA, Campbell DJ. Regulatory T Cells Maintain Selective Access to IL-2 and Immune Homeostasis despite Substantially Reduced CD25 Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2667-2678. [PMID: 33055282 PMCID: PMC7657993 DOI: 10.4049/jimmunol.1901520] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 09/12/2020] [Indexed: 11/19/2022]
Abstract
IL-2 is a critical regulator of immune homeostasis through its impact on both regulatory T (Treg) and effector T cells. However, the precise role of IL-2 in the maintenance and function of Treg cells in the adult peripheral immune system remains unclear. In this study, we report that neutralization of IL-2 in mice abrogated all IL-2R signaling in Treg cells, but was well tolerated and only gradually impacted Treg cell function and immune homeostasis. By contrast, despite substantially reduced IL-2 sensitivity, Treg cells maintained selective IL-2 signaling and prevented immune dysregulation following treatment with the inhibitory anti-CD25 Ab PC61. Reduction of Treg cells with a depleting version of the same CD25 Ab permitted CD8+ effector T cell proliferation before progressing to more widespread immune dysregulation. Thus, despite severely curtailed CD25 expression and function, Treg cells retain selective access to IL-2 that supports their anti-inflammatory functions in vivo. Ab-mediated targeting of CD25 is being actively pursued for treatment of autoimmune disease and prevention of allograft rejection, and our findings help inform therapeutic manipulation and design for optimal patient outcomes.
Collapse
Affiliation(s)
- Erika T Hayes
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; and
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195
| | - Cassidy E Hagan
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; and
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195
| | - Liliane Khoryati
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; and
| | - Marc A Gavin
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; and
| | - Daniel J Campbell
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; and
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195
| |
Collapse
|
10
|
McIntyre LL, Greilach SA, Othy S, Sears-Kraxberger I, Wi B, Ayala-Angulo J, Vu E, Pham Q, Silva J, Dang K, Rezk F, Steward O, Cahalan MD, Lane TE, Walsh CM. Regulatory T cells promote remyelination in the murine experimental autoimmune encephalomyelitis model of multiple sclerosis following human neural stem cell transplant. Neurobiol Dis 2020. [PMID: 32276110 DOI: 10.1016/j.nbd.2020.14868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory autoimmune disease that affects the central nervous system (CNS) for which there is no cure. In MS, encephalitogenic T cells infiltrate the CNS causing demyelination and neuroinflammation; however, little is known about the role of regulatory T cells (Tregs) in CNS tissue repair. Transplantation of neural stem and progenitor cells (NSCs and NPCs) is a promising therapeutic strategy to promote repair through cell replacement, although recent findings suggest transplanted NSCs also instruct endogenous repair mechanisms. We have recently described that dampened neuroinflammation and increased remyelination is correlated with emergence of Tregs following human NPC transplantation in a murine viral model of immune-mediated demyelination. In the current study we utilized the prototypic murine autoimmune model of demyelination experimental autoimmune encephalomyelitis (EAE) to test the efficacy of hNSC transplantation. Eight-week-old, male EAE mice receiving an intraspinal transplant of hNSCs during the chronic phase of disease displayed remyelination, dampened neuroinflammation, and an increase in CNS CD4+CD25+FoxP3+ regulatory T cells (Tregs). Importantly, ablation of Tregs abrogated histopathological improvement. Tregs are essential for maintenance of T cell homeostasis and prevention of autoimmunity, and an emerging role for Tregs in maintenance of tissue homeostasis through interactions with stem and progenitor cells has recently been suggested. The data presented here provide direct evidence for collaboration between CNS Tregs and hNSCs promoting remyelination.
Collapse
Affiliation(s)
- Laura L McIntyre
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, United States of America.
| | - Scott A Greilach
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Shivashankar Othy
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, United States of America
| | - Ilse Sears-Kraxberger
- Reeve-Irvine Research Center, Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Brian Wi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Julio Ayala-Angulo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Estelle Vu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Quan Pham
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Jorge Silva
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Kody Dang
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Fady Rezk
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Oswald Steward
- Reeve-Irvine Research Center, Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, United States of America
| | - Thomas E Lane
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697, United States of America
| | - Craig M Walsh
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, United States of America.
| |
Collapse
|
11
|
Jukić T, Jurin Martić A, Ivanković S, Antica M, Pavan Jukić D, Rotim C, Jurin M. The role of regulatory T lymphocytes in immune control of MC-2 fibrosarcoma. Acta Clin Croat 2020; 59:351-358. [PMID: 33456124 PMCID: PMC7808230 DOI: 10.20471/acc.2020.59.02.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The role of T regulatory lymphocytes (Treg) particularly in cancer is well known. The goal of the present study was to determine the contribution of these lymphocytes in the regulation of anti-tumor immunity of CBA/HZgr mice against MC-2 fibrosarcoma (4th generation of methylcholanthrene induced tumor). The levels of T lymphocytes (CD4+, CD8+ and CD4+CD25+) were determined 8 and 20 days after tumor transplantation. Further, the role of CD4+CD25+ (Tregs) in tumor-host interaction was evaluated in vitro and in vivo by using specific monoclonal antibodies. We found that splenocytes of both control and Treg depleted tumor bearing mice strongly but differently inhibited growth of tumor cells in vitro. While splenocytes of untreated mice exhibited significant decrease of this activity (from 74.4% to 62.6% and 32.95%), the splenocytes of Treg depleted mice showed increase of this activity (from 79.5% to 84.3% and 86.2%) from day 6 to day 13 and day 21 after tumor grafting, respectively. Further, upon i.v. injecting specific monoclonal anti-Treg antibody tumor immediately prior to tumor cell intracutaneous transplantation, the tumor was rejected after initial growth. In treated mice, the incidence of Treg cells was very low initially, reaching normal values two weeks later. These animals were shown to be resistant to tumor transplantation four months later.
Collapse
Affiliation(s)
| | - Ana Jurin Martić
- 1Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia; 2Čakovec County Hospital, Čakovec, Croatia; 3Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia; 4Rudjer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia; 5Rudjer Bošković Institute, Division of Molecular Biology, Zagreb, Croatia; 6Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Department of Gynecology and Obstetrics, Osijek, Croatia; 7Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia
| | - Siniša Ivanković
- 1Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia; 2Čakovec County Hospital, Čakovec, Croatia; 3Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia; 4Rudjer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia; 5Rudjer Bošković Institute, Division of Molecular Biology, Zagreb, Croatia; 6Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Department of Gynecology and Obstetrics, Osijek, Croatia; 7Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia
| | - Mariastefania Antica
- 1Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia; 2Čakovec County Hospital, Čakovec, Croatia; 3Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia; 4Rudjer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia; 5Rudjer Bošković Institute, Division of Molecular Biology, Zagreb, Croatia; 6Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Department of Gynecology and Obstetrics, Osijek, Croatia; 7Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia
| | - Doroteja Pavan Jukić
- 1Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia; 2Čakovec County Hospital, Čakovec, Croatia; 3Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia; 4Rudjer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia; 5Rudjer Bošković Institute, Division of Molecular Biology, Zagreb, Croatia; 6Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Department of Gynecology and Obstetrics, Osijek, Croatia; 7Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia
| | - Cecilija Rotim
- 1Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia; 2Čakovec County Hospital, Čakovec, Croatia; 3Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia; 4Rudjer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia; 5Rudjer Bošković Institute, Division of Molecular Biology, Zagreb, Croatia; 6Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Department of Gynecology and Obstetrics, Osijek, Croatia; 7Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia
| | - Mislav Jurin
- 1Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia; 2Čakovec County Hospital, Čakovec, Croatia; 3Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia; 4Rudjer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia; 5Rudjer Bošković Institute, Division of Molecular Biology, Zagreb, Croatia; 6Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Department of Gynecology and Obstetrics, Osijek, Croatia; 7Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia
| |
Collapse
|
12
|
Regulatory T cells promote remyelination in the murine experimental autoimmune encephalomyelitis model of multiple sclerosis following human neural stem cell transplant. Neurobiol Dis 2020; 140:104868. [PMID: 32276110 DOI: 10.1016/j.nbd.2020.104868] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/05/2020] [Accepted: 04/05/2020] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory autoimmune disease that affects the central nervous system (CNS) for which there is no cure. In MS, encephalitogenic T cells infiltrate the CNS causing demyelination and neuroinflammation; however, little is known about the role of regulatory T cells (Tregs) in CNS tissue repair. Transplantation of neural stem and progenitor cells (NSCs and NPCs) is a promising therapeutic strategy to promote repair through cell replacement, although recent findings suggest transplanted NSCs also instruct endogenous repair mechanisms. We have recently described that dampened neuroinflammation and increased remyelination is correlated with emergence of Tregs following human NPC transplantation in a murine viral model of immune-mediated demyelination. In the current study we utilized the prototypic murine autoimmune model of demyelination experimental autoimmune encephalomyelitis (EAE) to test the efficacy of hNSC transplantation. Eight-week-old, male EAE mice receiving an intraspinal transplant of hNSCs during the chronic phase of disease displayed remyelination, dampened neuroinflammation, and an increase in CNS CD4+CD25+FoxP3+ regulatory T cells (Tregs). Importantly, ablation of Tregs abrogated histopathological improvement. Tregs are essential for maintenance of T cell homeostasis and prevention of autoimmunity, and an emerging role for Tregs in maintenance of tissue homeostasis through interactions with stem and progenitor cells has recently been suggested. The data presented here provide direct evidence for collaboration between CNS Tregs and hNSCs promoting remyelination.
Collapse
|
13
|
Abstract
The immune system has evolved complex effector mechanisms to protect the host against a diversity of pathogenic organisms and regulatory adaptations that can curtail pathological sequelae of inflammatory events, prevent autoimmunity, and assist in tissue repair. Cancers, by virtue of their local manifestations of tissue dysfunction and destruction, inflammation, and genomic instability, can evoke these protective mechanisms, which support the progression of tumors and prevent their immune eradication. Central to these processes is a subset of CD4+ T cells, known as regulatory T (Treg) cells, that express the X chromosome–linked transcription factor FOXP3. In addition to their critical role in controlling autoimmunity and suppressing inflammatory responses in diverse biological settings, Treg cells are ubiquitously present in the tumor microenvironment where they promote tumor development and progression by dampening antitumor immune responses. Furthermore, Treg cells can directly support the survival of transformed cells through the elaboration of growth factors and interacting with accessory cells in tumors such as fibroblasts and endothelial cells. Current insights into the biology of tumor-associated Treg cells have opened up opportunities for their selective targeting in cancer, with the goal of alleviating their suppression of antitumor immune responses while maintaining overall immune homeostasis.
Collapse
Affiliation(s)
- George Plitas
- Immunology Program and Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;,
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexander Y. Rudensky
- Immunology Program and Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;,
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
14
|
Hu ZQ, Yao YM, Chen W, Bian JL, Zhao LJ, Chen LW, Hong GL, Lu ZQ, Zhao GJ. Partial Depletion of Regulatory T Cells Enhances Host Inflammatory Response Against Acute Pseudomonas aeruginosa Infection After Sepsis. Inflammation 2019; 41:1780-1790. [PMID: 29956070 DOI: 10.1007/s10753-018-0821-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Immune dysfunction contributes to secondary infection and worse outcomes in sepsis. Regulatory T cells (Tregs) have been implicated in sepsis-induced immunosuppression. Nevertheless, the role of Tregs in secondary infection after sepsis remains to be determined. In the present study, a two-hit model which mimics clinical conditions was used and the potential role of Tregs in secondary Pseudomonas aeruginosa infection post-sepsis was investigated. Results showed that mice were susceptible to secondary P. aeruginosa infection 3 days, but not 7 days, post-cecal ligation and puncture (CLP). The levels of IL-17A, IL-1β, and IL-6 remained low in CLP mice after P. aeruginosa infection, while the levels of IL-10 increased significantly. Additionally, increased number of Tregs in both lung and spleen was observed in "two-hit" mice. Injection with PC61 (anti-CD25) mAb reduced the number of Tregs by 50% in spleen and 60% in lung of septic mice. This partial depletion of Tregs elevated IL-17A, IL-1β, and IL-6 production and decreased IL-10 levels in septic mice with P. aeruginosa infection, leading to lower bacterial load, attenuation of lung injury, and improvement of survival. The present findings demonstrate that Tregs play a crucial role in secondary P. aeruginosa infection after sepsis by modulating the inflammatory response.
Collapse
Affiliation(s)
- Zhi-Qiang Hu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Wenzhou Key Laboratory of Emergency, Critical Care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Intensive Care Unit, Ningbo First Hospital, Ningbo, 315000, China
| | - Yong-Ming Yao
- Burns Institute, First Affiliated Hospital of PLA General Hospital, Beijing, 100048, China
| | - Wei Chen
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Wenzhou Key Laboratory of Emergency, Critical Care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jia-Lan Bian
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Wenzhou Key Laboratory of Emergency, Critical Care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lin-Jun Zhao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Wenzhou Key Laboratory of Emergency, Critical Care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Long-Wang Chen
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Wenzhou Key Laboratory of Emergency, Critical Care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Guang-Liang Hong
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Wenzhou Key Laboratory of Emergency, Critical Care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhong-Qiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,Wenzhou Key Laboratory of Emergency, Critical Care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,College of Nursing, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Guang-Ju Zhao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,Wenzhou Key Laboratory of Emergency, Critical Care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
15
|
Fischer L, Herkner C, Kitte R, Dohnke S, Riewaldt J, Kretschmer K, Garbe AI. Foxp3 + Regulatory T Cells in Bone and Hematopoietic Homeostasis. Front Endocrinol (Lausanne) 2019; 10:578. [PMID: 31551927 PMCID: PMC6746882 DOI: 10.3389/fendo.2019.00578] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/08/2019] [Indexed: 12/29/2022] Open
Abstract
The bone represents surprisingly dynamic structures that are subject to constant remodeling by the concerted action of bone-forming osteoblasts and bone-resorbing osteoclasts - two cell subsets of distinct developmental origin that are key in maintaining skeletal integrity throughout life. In general, abnormal bone remodeling due to dysregulated bone resorption and formation is an early event in the manifestation of various human bone diseases, such as osteopetrosis/osteoporosis and arthritis. But bone remodeling is also closely interrelated with lympho-hematopoietic homeostasis, as the bone marrow niche is formed by solid and trabecular bone structures that provide a framework for the long-term maintenance and differentiation of HSCs (>blood lineage cells and osteoclasts) and MSCs (>osteoblasts). Numerous studies in mice and humans have implicated innate and adaptive immune cells in the dynamic regulation of bone homeostasis, but despite considerable clinical relevance, the exact mechanisms of such immuno-bone interplay have remained incompletely understood. This holds particularly true for CD4+ regulatory T (Treg) cells expressing the lineage specification factor Foxp3: Foxp3+ Treg cells have been shown to play an indispensable role in maintaining immune homeostasis, but may also exert critical non-immune functions, which includes the control of metabolic and regenerative processes, as well as the differentiation of HSCs and function of osteoclasts. Here, we summarize our current knowledge on the T cell/bone interplay, with a particular emphasis on our own efforts to dissect the role of Foxp3+ Treg cells in bone and hematopoietic homeostasis, employing experimental settings of gain- and loss-of-Treg cell function. These data make a strong case that Foxp3+ Treg cells impinge on lympho-hematopoiesis through indirect mechanisms, i.e., by acting on osteoclast development and function, which translates into changes in niche size. Furthermore, we propose that, besides disorders that involve inflammatory bone loss, the modulation of Foxp3+ Treg cell function in vivo may represent a suitable approach to reinstate bone homeostasis in non-autoimmune settings of aberrant bone remodeling.
Collapse
Affiliation(s)
- Luise Fischer
- Osteoimmunology, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Caroline Herkner
- Osteoimmunology, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Reni Kitte
- Osteoimmunology, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Sebastian Dohnke
- Osteoimmunology, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Julia Riewaldt
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Annette I. Garbe
- Osteoimmunology, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- *Correspondence: Annette I. Garbe
| |
Collapse
|
16
|
He R, Li L, Kong Y, Tian L, Tian X, Fang P, Bian M, Liu Z. Preventing murine transfusion-related acute lung injury by expansion of CD4 + CD25 + FoxP3 + Tregs using IL-2/anti-IL-2 complexes. Transfusion 2018; 59:534-544. [PMID: 30499590 DOI: 10.1111/trf.15064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Transfusion-related acute lung injury (TRALI) is one of the most serious adverse events following transfusion, and there is no specific treatment in clinical practice. However, regulatory T cells (Tregs) have been suggested to play a potential role in the treatment of TRALI. This study investigated whether interleukin (IL)-2 or IL-2/anti-IL-2 complexes (IL-2c), which are mediators of Treg expansion, can modulate the severity of antibody-mediated TRALI in vivo. STUDY DESIGN AND METHODS This study utilized a mouse model of the "two-hit" mechanism: BALB/c mice were primed with lipopolysaccharide (LPS) as the first hit, and then TRALI was induced by injecting major histocompatibility complex Class I antibodies. Mice injected with LPS only or LPS combined with isotype control antibodies served as controls. For the Treg-depleted groups, mice were infused with anti-mouse IL-2Rα first and then subjected to the same treatments as the TRALI group. Regarding IL-2- and IL-2c-treated mice, recombinant murine IL-2 or IL-2c was intraperitoneally administered to mice for 5 consecutive days before induction of the TRALI model. Samples were collected 2 hours after TRALI induction. RESULTS Prophylactic administration of IL-2 or IL-2c to mice prevented the onset of edema, pulmonary protein levels, and proinflammatory factors that inhibited polymorphonuclear neutrophil aggregation in the lungs. Furthermore, the percentage of CD4+ CD25+ FoxP3+ Tregs was expanded in vivo using IL-2 and IL-2c compared to TRALI mice, as was confirmed through analysis of the spleen, blood, and lung. CONCLUSION This study validates that the protective mechanisms against TRALI involve CD4+ CD25+ FoxP3+ Tregs, which can be expanded in vivo by IL-2 and IL-2c. This results in increased IL-10 levels and decreased IL-17A, thereby prophylactically preventing antibody-mediated murine TRALI.
Collapse
Affiliation(s)
- Rui He
- Department of Blood Transfusion, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ling Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yujie Kong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Li Tian
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xue Tian
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| | - Peng Fang
- Department of Blood Transfusion, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Maohong Bian
- Department of Blood Transfusion, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhong Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
17
|
Zhou X, Zhao S, He Y, Geng S, Shi Y, Wang B. Precise Spatiotemporal Interruption of Regulatory T-cell-Mediated CD8 + T-cell Suppression Leads to Tumor Immunity. Cancer Res 2018; 79:585-597. [PMID: 30254146 DOI: 10.1158/0008-5472.can-18-1250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/12/2018] [Accepted: 09/21/2018] [Indexed: 11/16/2022]
Abstract
Tumors can develop despite the presence of competent host immunity via a complex system of immune evasion. One of the most studied factors originating from the host is immune suppression by regulatory T cells (Treg). Ample laboratory and clinical evidence suggests that Treg ablation leads to robust antitumor immune activation. However, how Tregs specifically achieve their suppression in the context of tumor progression is not entirely clear, particularly with regard to the timing and location where Treg inhibition takes place. In this work, we report that Tregs migrate to tumor-draining lymph nodes (TDLN) and block expression of sphingosine-1-phosphate receptor 1 (S1P1) on CD8+ T cells. This event trapped the CD8+ T cells in the TDLN and served as a facilitating factor for tumor growth. Intriguingly, minimalistic depletion of Tregs in TDLN in a short window following tumor inoculation was sufficient to restore CD8+ T-cell activities, which resulted in significant tumor reduction. Similar treatments outside this time frame had no such effect. Our work therefore reveals a subtle feature in tumor biology whereby Tregs appear to be driven by newly established tumors for a programmed encounter with newly activated CD8+ T cells in TDLN. Our results suggest the possibility that clinical interception of this step can be tested as a new strategy of cancer therapy, with expected high efficacy and low systemic side effects. SIGNIFICANCE: These findings reveal a strong tumor suppressive effect invoked by minimal blockade of tumor draining lymph node regulatory T cells during early versus late tumorigenesis.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and Ministry of Education, School of Basic Medical Sciences, Shanghai Basic Medical College and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shushu Zhao
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and Ministry of Education, School of Basic Medical Sciences, Shanghai Basic Medical College and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yue He
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and Ministry of Education, School of Basic Medical Sciences, Shanghai Basic Medical College and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuang Geng
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and Ministry of Education, School of Basic Medical Sciences, Shanghai Basic Medical College and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Biodynamics Optical Imaging Center, Peking University, Beijing, China
| | - Yan Shi
- Institute for Immunology, Department of Basic Medical Sciences, Center for Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China. .,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Canada
| | - Bin Wang
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and Ministry of Education, School of Basic Medical Sciences, Shanghai Basic Medical College and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Wilkinson DS, Ghosh D, Nickle RA, Moorman CD, Mannie MD. Partial CD25 Antagonism Enables Dominance of Antigen-Inducible CD25 high FOXP3 + Regulatory T Cells As a Basis for a Regulatory T Cell-Based Adoptive Immunotherapy. Front Immunol 2017; 8:1782. [PMID: 29312311 PMCID: PMC5735073 DOI: 10.3389/fimmu.2017.01782] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/29/2017] [Indexed: 02/02/2023] Open
Abstract
FOXP3+ regulatory T cells (Tregs) represent a promising platform for effective adoptive immunotherapy of chronic inflammatory disease, including autoimmune diseases such as multiple sclerosis. Successful Treg immunotherapy however requires new technologies to enable long-term expansion of stable, antigen-specific FOXP3+ Tregs in cell culture. Antigen-specific activation of naïve T cells in the presence of TGF-β elicits the initial differentiation of the FOXP3+ lineage, but these Treg lines lack phenotypic stability and rapidly transition to a conventional T cell (Tcon) phenotype during in vitro propagation. Because Tregs and Tcons differentially express CD25, we hypothesized that anti-CD25 monoclonal antibodies (mAbs) would only partially block IL-2 signaling in CD25high FOXP3+ Tregs while completely blocking IL-2 responses of CD25low-intermediate Tcons to enable preferential outgrowth of Tregs during in vitro propagation. Indeed, murine TGF-β-induced MOG-specific Treg lines from 2D2 transgenic mice that were maintained in IL-2 with the anti-CD25 PC61 mAb rapidly acquired and indefinitely maintained a FOXP3high phenotype during long-term in vitro propagation (>90% FOXP3+ Tregs), whereas parallel cultures lacking PC61 rapidly lost FOXP3. These results pertained to TGF-β-inducible "iTregs" because Tregs from 2D2-FIG Rag1-/- mice, which lack thymic or natural Tregs, were stabilized by continuous culture in IL-2 and PC61. MOG-specific and polyclonal Tregs upregulated the Treg-associated markers Neuropilin-1 (NRP1) and Helios (IKZF2). Just as PC61 stabilized FOXP3+ Tregs during expansion in IL-2, TGF-β fully stabilized FOXP3+ Tregs during cellular activation in the presence of dendritic cells and antigen/mitogen. Adoptive transfer of blastogenic CD25high FOXP3+ Tregs from MOG35-55-specific 2D2 TCR transgenic mice suppressed experimental autoimmune encephalomyelitis in pretreatment and therapeutic protocols. In conclusion, low IL-2 concentrations coupled with high PC61 concentrations constrained IL-2 signaling to a low-intensity range that enabled dominant stable outgrowth of suppressive CD25high FOXP3+ Tregs. The ability to indefinitely expand stable Treg lines will provide insight into FOXP3+ Treg physiology and will be foundational for Treg-based immunotherapy.
Collapse
Affiliation(s)
- Daniel S Wilkinson
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Debjani Ghosh
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Rebecca A Nickle
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Cody D Moorman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
19
|
Liu Y, Li L, Xia Y. BP180 Is Critical in the Autoimmunity of Bullous Pemphigoid. Front Immunol 2017; 8:1752. [PMID: 29276517 PMCID: PMC5727044 DOI: 10.3389/fimmu.2017.01752] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022] Open
Abstract
Bullous pemphigoid (BP) is by far the most common autoimmune blistering dermatosis that mainly occurs in the elderly. The BP180 is a transmembrane glycoprotein, which is highly immunodominant in BP. The structure and location of BP180 indicate that it is a significant autoantigen and plays a key role in blister formation. Autoantibodies from BP patients react with BP180, which leads to its degradation and this has been regarded as the central event in BP pathogenesis. The consequent blister formation involves the activation of complement-dependent or -independent signals, as well as inflammatory pathways induced by BP180/anti-BP180 autoantibody interaction. As a multi-epitope molecule, BP180 can cause dermal-epidermal separation via combining each epitope with specific immunoglobulin, which also facilitates blister formation. In addition, some inflammatory factors can directly deplete BP180, thereby leading to fragility of the dermal-epidermal junction and blister formation. This review summarizes recent investigations on the role of BP180 in BP pathogenesis to determine the potential targets for the treatment of patients with BP.
Collapse
Affiliation(s)
- Yale Liu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Liang Li
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
20
|
Khaliq F, Afzal N, Kashif M, Shahzad F. Relationship between percentage of regulatory T-cells and dental amalgam fillings. JOURNAL OF ORAL RESEARCH 2016. [DOI: 10.17126/joralres.2016.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
21
|
Plaisted WC, Zavala A, Hingco E, Tran H, Coleman R, Lane TE, Loring JF, Walsh CM. Remyelination Is Correlated with Regulatory T Cell Induction Following Human Embryoid Body-Derived Neural Precursor Cell Transplantation in a Viral Model of Multiple Sclerosis. PLoS One 2016; 11:e0157620. [PMID: 27310015 PMCID: PMC4911106 DOI: 10.1371/journal.pone.0157620] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 06/02/2016] [Indexed: 02/06/2023] Open
Abstract
We have recently described sustained clinical recovery associated with dampened neuroinflammation and remyelination following transplantation of neural precursor cells (NPCs) derived from human embryonic stem cells (hESCs) in a viral model of the human demyelinating disease multiple sclerosis. The hNPCs used in that study were derived by a novel direct differentiation method (direct differentiation, DD-NPCs) that resulted in a unique gene expression pattern when compared to hNPCs derived by conventional methods. Since the therapeutic potential of human NPCs may differ greatly depending on the method of derivation and culture, we wanted to determine whether NPCs differentiated using conventional methods would be similarly effective in improving clinical outcome under neuroinflammatory demyelinating conditions. For the current study, we utilized hNPCs differentiated from a human induced pluripotent cell line via an embryoid body intermediate stage (EB-NPCs). Intraspinal transplantation of EB-NPCs into mice infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV) resulted in decreased accumulation of CD4+ T cells in the central nervous system that was concomitant with reduced demyelination at the site of injection. Dampened neuroinflammation and remyelination was correlated with a transient increase in CD4+FOXP3+ regulatory T cells (Tregs) concentrated within the peripheral lymphatics. However, compared to our earlier study, pathological improvements were modest and did not result in significant clinical recovery. We conclude that the genetic signature of NPCs is critical to their effectiveness in this model of viral-induced neurologic disease. These comparisons will be useful for understanding what factors are critical for the sustained clinical improvement.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- CD4 Antigens/genetics
- CD4 Antigens/immunology
- Cell Differentiation
- Cell- and Tissue-Based Therapy/methods
- Coronavirus Infections/immunology
- Coronavirus Infections/pathology
- Coronavirus Infections/therapy
- Coronavirus Infections/virology
- Disease Models, Animal
- Embryoid Bodies/cytology
- Embryoid Bodies/immunology
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Gene Expression
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/pathology
- Hepatitis, Viral, Animal/therapy
- Hepatitis, Viral, Animal/virology
- Human Embryonic Stem Cells/cytology
- Human Embryonic Stem Cells/immunology
- Humans
- Lymphocyte Activation
- Male
- Mice
- Mice, Inbred C57BL
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Multiple Sclerosis/therapy
- Murine hepatitis virus/growth & development
- Murine hepatitis virus/pathogenicity
- Myelin Sheath/immunology
- Neural Stem Cells/cytology
- Neural Stem Cells/immunology
- Neural Stem Cells/transplantation
- Organ Specificity
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- Warren C. Plaisted
- Department of Molecular Biology & Biochemistry, Sue and Bill Gross Stem Cell Center, Multiple Sclerosis Research Center, Institute for Immunology, University of California Irvine, Irvine, California, United States of America
| | - Angel Zavala
- Department of Molecular Biology & Biochemistry, Sue and Bill Gross Stem Cell Center, Multiple Sclerosis Research Center, Institute for Immunology, University of California Irvine, Irvine, California, United States of America
| | - Edna Hingco
- Department of Molecular Biology & Biochemistry, Sue and Bill Gross Stem Cell Center, Multiple Sclerosis Research Center, Institute for Immunology, University of California Irvine, Irvine, California, United States of America
| | - Ha Tran
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ronald Coleman
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Thomas E. Lane
- Department of Pathology, University of Utah, School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail: (CMW); (JFL); (TEL)
| | - Jeanne F. Loring
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (CMW); (JFL); (TEL)
| | - Craig M. Walsh
- Department of Molecular Biology & Biochemistry, Sue and Bill Gross Stem Cell Center, Multiple Sclerosis Research Center, Institute for Immunology, University of California Irvine, Irvine, California, United States of America
- * E-mail: (CMW); (JFL); (TEL)
| |
Collapse
|