1
|
Anhalt H, Marzi A. Generation, Recovery, and Propagation of a Recombinant Vesicular Stomatitis Virus Expressing the Marburg Virus Glycoprotein. Methods Mol Biol 2025; 2877:67-74. [PMID: 39585614 DOI: 10.1007/978-1-0716-4256-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Vesicular stomatitis virus (VSV)-based vaccination has shown protective efficacy against filovirus infection. Following the approval of a VSV-based vaccine against Ebola virus, there have been efforts toward applying the same platform for other filoviruses, including Marburg virus (MARV) and Sudan virus. Because these vaccines express filovirus glycoproteins, they are also a valuable tool to study filovirus entry under biosafety level 2 conditions. In the protocol described below, we outline how to genetically manipulate a full-length VSV vector by removing the native VSV glycoprotein and replacing it with the surface-expressed MARV glycoprotein. In addition, we describe the recovery procedure of these recombinant, full-length VSVs and detail the necessary steps of virus propagation.
Collapse
Affiliation(s)
- Hanna Anhalt
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
2
|
Zhou M, Zhang X, Yan H, Xing L, Tao Y, Shen L. Review on the bioanalysis of non-virus-based gene therapeutics. Bioanalysis 2024:1-16. [PMID: 39673530 DOI: 10.1080/17576180.2024.2437418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/29/2024] [Indexed: 12/16/2024] Open
Abstract
Over the past years, gene therapeutics have held great promise for treating many inherited and acquired diseases. The increasing number of approved gene therapeutics and developing clinical pipelines demonstrate the potential to treat diseases by modifying their genetic blueprints in vivo. Compared with conventional treatments targeting proteins rather than underlying causes, gene therapeutics can achieve enduring or curative effects via gene activation, inhibition, and editing. However, the delivery of DNA/RNA to the target cell to alter the gene expression is a complex process that involves, crossing numerous barriers in both the extracellular and intracellular environment. Generally, the delivery strategies can be divided into viral-based and non-viral-based vectors. This review summarizes various bioanalysis strategies that support the non-virus-based gene therapeutics research, including pharmacokinetics (PK)/toxicokinetics (TK), biodistribution, immunogenicity evaluations for the gene cargo, vector, and possible expressed protein, and highlights the challenges and future perspectives of bioanalysis strategies in non-virus-based gene therapeutics. This review may provide new insights and directions for the development of emerging bioanalytical methods, offering technical support and a research foundation for innovative gene therapy treatments.
Collapse
Affiliation(s)
- Maotian Zhou
- DMPK, Lab Testing Division, WuXi AppTec, Suzhou, China
| | - Xue Zhang
- DMPK, Lab Testing Division, WuXi AppTec, Suzhou, China
| | - Huan Yan
- DMPK, Lab Testing Division, WuXi AppTec, Suzhou, China
| | - Lili Xing
- DMPK, Lab Testing Division, WuXi AppTec, Shanghai, China
| | - Yi Tao
- DMPK, Lab Testing Division, WuXi AppTec, Shanghai, China
| | - Liang Shen
- DMPK, Lab Testing Division, WuXi AppTec, Shanghai, China
| |
Collapse
|
3
|
Zhang J, Liu J, Qiao L, Zhang Q, Hu J, Zhang CY. Recent Advance in Single-Molecule Fluorescent Biosensors for Tumor Biomarker Detection. BIOSENSORS 2024; 14:540. [PMID: 39589999 PMCID: PMC11591580 DOI: 10.3390/bios14110540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
The construction of biosensors for specific, sensitive, and rapid detection of tumor biomarkers significantly contributes to biomedical research and early cancer diagnosis. However, conventional assays often involve large sample consumption and poor sensitivity, limiting their further application in real samples. In recent years, single-molecule biosensing has emerged as a robust tool for detecting and characterizing biomarkers due to its unique advantages including simplicity, low sample consumption, ultra-high sensitivity, and rapid assay time. This review summarizes the recent advances in the construction of single-molecule biosensors for the measurement of various tumor biomarkers, including DNAs, DNA modifications, RNAs, and enzymes. We give a comprehensive review about the working principles and practical applications of these single-molecule biosensors. Additionally, we discuss the challenges and limitations of current single-molecule biosensors, and highlight the future directions.
Collapse
Affiliation(s)
- Jie Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China (C.-y.Z.)
| | - Jiawen Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Lixue Qiao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Qian Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Juan Hu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China (C.-y.Z.)
| | - Chun-yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China (C.-y.Z.)
| |
Collapse
|
4
|
Tafere C, Demsie DG, Tefera BB, Yehualaw A, Feyisa K, Yismaw MB, Yayehrad AT. Vaccine skepticism and vaccine development stages; inoculation from "cowpox" lesion to the current mRNA vaccine of COVID-19: review. Ther Adv Vaccines Immunother 2024; 12:25151355241288135. [PMID: 39399302 PMCID: PMC11471007 DOI: 10.1177/25151355241288135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Global pandemics can be tackled by two means: lockdowns and vaccinations. As vaccination has a low impact on economic outcomes and better acceptance by people, it is the preferred method by most governments as a medium- to long-term solution. Vaccines have played a significant role in reducing the global burden of infectious diseases. They are designed to teach the immune system how to fight a particular infection before it causes a disease in subsequent exposures by creating a memory. Although vaccines effectiveness is well known, anti-vaccination movements pose significant challenges, even in high-income settings, leading to outbreaks of life-threatening infectious diseases. Hesitancy to take vaccines is not new and began with the first vaccination of smallpox. At that time, the problem was solved by a regulatory obligation to take vaccines, declared in England and Wales in 1853, which eventually led to its eradication in 1980. Different studies show that there is a decline in awareness of vaccines, hesitancy to take them, and concerns and trust issues regarding healthcare professionals. These problems have been rising over the past few decades for several reasons, notably, because of misinformation spread by social media. Therefore, the objective of this review is to provide a brief overview about vaccine hesitancy and attributable factors, illustrate the different types of vaccines, show the major challenges of vaccine development, and illustrate the pros and cons of each type.
Collapse
Affiliation(s)
- Chernet Tafere
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, P. O. Box. 79, Bahir Dar, Ethiopia
| | - Desalegn Getnet Demsie
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Bereket Bahiru Tefera
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Adane Yehualaw
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Kebede Feyisa
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Malede Berihun Yismaw
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | | |
Collapse
|
5
|
Silva CAT, Kamen AA, Henry O. Fed-batch strategies for intensified rVSV vector production in high cell density cultures of suspension HEK293 cells. Biotechnol Prog 2024:e3506. [PMID: 39286892 DOI: 10.1002/btpr.3506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Vesicular stomatitis virus (VSV) has been increasingly demonstrated as a promising viral vector platform. As the interest over this modality for vaccine and gene therapy applications increases, the need for intensified processes to produce these vectors emerge. In this study, we develop fed-batch-based operations to intensify the production of a recombinant VSV-based vaccine candidate (rVSV-SARS-CoV-2) in suspension cultures of HEK293 cells. A feeding strategy, in which a commercial concentrated medium was added to cultures based on cell growth through a fixed cell specific feeding rate (CSFR), was applied for the development of two different processes using Ambr250 modular bioreactors. Cultures operated in hybrid fed-batch/perfusion (FB/P) or fed-batch (FB) were able to sustain infections performed at 8.0 × 106 cells/mL, respectively resulting in 3.9 and 5.0-fold increase in total yield (YT) and 1.7 and 5.6-fold increase in volumetric productivity (VP) when compared with a batch reference. A maximum viral titer of 4.5 × 1010 TCID50/mL was reached, which is comparable or higher than other processes for VSV production in different cell lines. Overall, our study reports efficient fed-batch options to intensify the production of a rVSV-based vaccine candidate in suspension HEK293 cells.
Collapse
Affiliation(s)
- Cristina A T Silva
- Department of Chemical Engineering, Polytechnique Montréal, Montreal, Quebec, Canada
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Amine A Kamen
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montréal, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Williamson ED, Kilgore PB, Hendrix EK, Neil BH, Sha J, Chopra AK. Progress on the research and development of plague vaccines with a call to action. NPJ Vaccines 2024; 9:162. [PMID: 39242587 PMCID: PMC11379892 DOI: 10.1038/s41541-024-00958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
There is a compelling demand for approved plague vaccines due to the endemicity of Yersinia pestis and its potential for pandemic spread. Whilst substantial progress has been made, we recommend that the global funding and health security systems should work urgently to translate some of the efficacious vaccines reviewed herein to expedite clinical development and to prevent future disastrous plague outbreaks, particularly caused by antimicrobial resistant Y. pestis strains.Content includes material subject to Crown Copyright © 2024.This is an open access article under the Open Government License ( http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/ ).
Collapse
Affiliation(s)
- E Diane Williamson
- Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK.
| | - Paul B Kilgore
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA
| | - Emily K Hendrix
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA
| | - Blake H Neil
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA
| | - Jian Sha
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA
| | - Ashok K Chopra
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA.
- Sealy Institute for Vaccine Sciences, UTMB, Galveston, TX, 77555, USA.
- Institute for Human Infections and Immunity, UTMB, Galveston, TX, 77555, USA.
- Center for Biodefense and Emerging Infectious Diseases, UTMB, Galveston, TX, 77555, USA.
- Galveston National Laboratory, UTMB, Galveston, TX, 77555, USA.
| |
Collapse
|
7
|
Al-Talib M, Dimonte S, Humphreys IR. Mucosal T-cell responses to chronic viral infections: Implications for vaccine design. Cell Mol Immunol 2024; 21:982-998. [PMID: 38459243 PMCID: PMC11364786 DOI: 10.1038/s41423-024-01140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024] Open
Abstract
Mucosal surfaces that line the respiratory, gastrointestinal and genitourinary tracts are the major interfaces between the immune system and the environment. Their unique immunological landscape is characterized by the necessity of balancing tolerance to commensal microorganisms and other innocuous exposures against protection from pathogenic threats such as viruses. Numerous pathogenic viruses, including herpesviruses and retroviruses, exploit this environment to establish chronic infection. Effector and regulatory T-cell populations, including effector and resident memory T cells, play instrumental roles in mediating the transition from acute to chronic infection, where a degree of viral replication is tolerated to minimize immunopathology. Persistent antigen exposure during chronic viral infection leads to the evolution and divergence of these responses. In this review, we discuss advances in the understanding of mucosal T-cell immunity during chronic viral infections and how features of T-cell responses develop in different chronic viral infections of the mucosa. We consider how insights into T-cell immunity at mucosal surfaces could inform vaccine strategies: not only to protect hosts from chronic viral infections but also to exploit viruses that can persist within mucosal surfaces as vaccine vectors.
Collapse
Affiliation(s)
- Mohammed Al-Talib
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- Bristol Medical School, University of Bristol, 5 Tyndall Avenue, Bristol, BS8 1UD, UK
| | - Sandra Dimonte
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Ian R Humphreys
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
8
|
Bouazzaoui A, Abdellatif AA. Vaccine delivery systems and administration routes: Advanced biotechnological techniques to improve the immunization efficacy. Vaccine X 2024; 19:100500. [PMID: 38873639 PMCID: PMC11170481 DOI: 10.1016/j.jvacx.2024.100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/21/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Since the first use of vaccine tell the last COVID-19 pandemic caused by spread of SARS-CoV-2 worldwide, the use of advanced biotechnological techniques has accelerated the development of different types and methods for immunization. The last pandemic showed that the nucleic acid-based vaccine, especially mRNA, has an advantage in terms of development time; however, it showed a very critical drawback namely, the higher costs when compared to other strategies, and its inability to protect against new variants. This showed the need of more improvement to reach a better delivery and efficacy. In this review we will describe different vaccine delivery systems including, the most used viral vector, and also variable strategies for delivering of nucleic acid-based vaccines especially lipid-based nanoparticles formulation, polymersomes, electroporation and also the new powerful tools for the delivery of mRNA, which is based on the use of cell-penetrating peptides (CPPs). Additionally, we will also discuss the main challenges associated with each system. Finlay, the efficacy and safety of the vaccines depends not only on the formulations and delivery systems, but also the dosage and route of administration are also important players, therefore we will see the different routes for the vaccine administration including traditionally routes (intramuscular, Transdermal, subcutaneous), oral inhalation or via nasal mucosa, and will describe the advantages and disadvantage of each administration route.
Collapse
Affiliation(s)
- Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
- Science and Technology Unit, Umm Al Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Ahmed A.H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, 51452 Qassim, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, 71524 Assiut, Egypt
| |
Collapse
|
9
|
Montero DA, Vidal RM, Velasco J, Carreño LJ, Torres JP, Benachi O. MA, Tovar-Rosero YY, Oñate AA, O'Ryan M. Two centuries of vaccination: historical and conceptual approach and future perspectives. Front Public Health 2024; 11:1326154. [PMID: 38264254 PMCID: PMC10803505 DOI: 10.3389/fpubh.2023.1326154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
Over the past two centuries, vaccines have been critical for the prevention of infectious diseases and are considered milestones in the medical and public health history. The World Health Organization estimates that vaccination currently prevents approximately 3.5-5 million deaths annually, attributed to diseases such as diphtheria, tetanus, pertussis, influenza, and measles. Vaccination has been instrumental in eradicating important pathogens, including the smallpox virus and wild poliovirus types 2 and 3. This narrative review offers a detailed journey through the history and advancements in vaccinology, tailored for healthcare workers. It traces pivotal milestones, beginning with the variolation practices in the early 17th century, the development of the first smallpox vaccine, and the continuous evolution and innovation in vaccine development up to the present day. We also briefly review immunological principles underlying vaccination, as well as the main vaccine types, with a special mention of the recently introduced mRNA vaccine technology. Additionally, we discuss the broad benefits of vaccines, including their role in reducing morbidity and mortality, and in fostering socioeconomic development in communities. Finally, we address the issue of vaccine hesitancy and discuss effective strategies to promote vaccine acceptance. Research, collaboration, and the widespread acceptance and use of vaccines are imperative for the continued success of vaccination programs in controlling and ultimately eradicating infectious diseases.
Collapse
Affiliation(s)
- David A. Montero
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Roberto M. Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juliana Velasco
- Unidad de Paciente Crítico, Clínica Hospital del Profesor, Santiago, Chile
- Programa de Formación de Especialista en Medicina de Urgencia, Universidad Andrés Bello, Santiago, Chile
| | - Leandro J. Carreño
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan P. Torres
- Departamento de Pediatría y Cirugía Pediátrica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Manuel A. Benachi O.
- Área de Biotecnología, Tecnoacademia Neiva, Servicio Nacional de Aprendizaje, Regional Huila, Neiva, Colombia
| | - Yenifer-Yadira Tovar-Rosero
- Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Popayán, Colombia
| | - Angel A. Oñate
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Miguel O'Ryan
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Kamel MS, Munds RA, Verma MS. The Quest for Immunity: Exploring Human Herpesviruses as Vaccine Vectors. Int J Mol Sci 2023; 24:16112. [PMID: 38003300 PMCID: PMC10671728 DOI: 10.3390/ijms242216112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Herpesviruses are large DNA viruses that have long been used as powerful gene therapy tools. In recent years, the ability of herpesviruses to stimulate both innate and adaptive immune responses has led to their transition to various applications as vaccine vectors. This vaccinology branch is growing at an unprecedented and accelerated rate. To date, human herpesvirus-based vectors have been used in vaccines to combat a variety of infectious agents, including the Ebola virus, foot and mouth disease virus, and human immunodeficiency viruses. Additionally, these vectors are being tested as potential vaccines for cancer-associated antigens. Thanks to advances in recombinant DNA technology, immunology, and genomics, numerous steps in vaccine development have been greatly improved. A better understanding of herpesvirus biology and the interactions between these viruses and the host cells will undoubtedly foster the use of herpesvirus-based vaccine vectors in clinical settings. To overcome the existing drawbacks of these vectors, ongoing research is needed to further advance our knowledge of herpesvirus biology and to develop safer and more effective vaccine vectors. Advanced molecular virology and cell biology techniques must be used to better understand the mechanisms by which herpesviruses manipulate host cells and how viral gene expression is regulated during infection. In this review, we cover the underlying molecular structure of herpesviruses and the strategies used to engineer their genomes to optimize capacity and efficacy as vaccine vectors. Also, we assess the available data on the successful application of herpesvirus-based vaccines for combating diseases such as viral infections and the potential drawbacks and alternative approaches to surmount them.
Collapse
Affiliation(s)
- Mohamed S. Kamel
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Rachel A. Munds
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Krishi Inc., West Lafayette, IN 47906, USA
| | - Mohit S. Verma
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Krishi Inc., West Lafayette, IN 47906, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Park H, Jang MS, Choi JA, Kim W, Kim YB, Kim NH, Choi E, Son HY, Han KH. Nonclinical safety assessment and immunogenicity of rVSVInd(GML)-mspSGtc vaccine for SARS-CoV-2 in rabbits. Vaccine 2023; 41:6842-6851. [PMID: 37821316 DOI: 10.1016/j.vaccine.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
The worldwide health, economic, and societal consequences of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have been devastating. The primary strategy to prevent new infectious diseases is to vaccinate the majority of people worldwide. However, the significant hurdles that are faced include vaccine safety concerns and vaccine reluctance. Among the various types of vaccines, the recombinant vesicular stomatitis virus (rVSV) is a promising candidate owing to its safety and efficacy. Therefore, we investigated the toxicity, immunogenicity, and local tolerance of the rVSVInd(GML)-mspSGtc vaccine against SARS-CoV-2. New Zealand White (NZW) rabbits were administered single or three repeated intramuscular injections of rVSVInd(GML)-mspSGtc every 2 weeks, followed by a 4-week recovery period. Male and female rabbits were randomly assigned into three groups: a control group and two dose-level groups (1 × 109 and 4 × 109 PFU/mL). Treatment-related changes included a temporary increase in body temperature and local inflammation at the injection site. These findings indicated recovery or a trend toward recovery, with no overt systemic toxicity. Immunogenicity analysis results suggested that rVSVInd(GML)-mspSGtc elicited a robust dose-dependent immune response in terms of neutralizing antibodies and IgG antibodies against the SARS-CoV-2 spike protein. In addition, the immune response intensity was increased by repeated vaccine administration. In conclusion, both the approximate lethal dose and the no observed adverse effect level for rVSVInd(GML)-mspSGtc exceeded 4 × 109 PFU/mL in NZW rabbits. Overall, rVSVInd(GML)-mspSGtc induced no adverse effects at the maximum dosage tested; however, its efficacy warrants further clinical evaluation.
Collapse
Affiliation(s)
- Heeseon Park
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea; College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Min Seong Jang
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jung-Ah Choi
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Woojin Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Yong-Bum Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Na Hyung Kim
- Sumagen Co., Ltd., 4F Dongwon Building, Teheran-ro 77-gil, Gangnam-gu, Seoul 06159, Republic of Korea
| | - Eunsil Choi
- Sumagen Co., Ltd., 4F Dongwon Building, Teheran-ro 77-gil, Gangnam-gu, Seoul 06159, Republic of Korea
| | - Hwa-Young Son
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| | - Kang-Hyun Han
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea.
| |
Collapse
|
12
|
Zhang R, Duan X, Liu Y, Xu J, Al-bashari AAG, Ye P, Ye Q, He Y. The Application of Mesenchymal Stem Cells in Future Vaccine Synthesis. Vaccines (Basel) 2023; 11:1631. [PMID: 38005963 PMCID: PMC10675160 DOI: 10.3390/vaccines11111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Vaccines have significant potential in treating and/or preventing diseases, yet there remain challenges in developing effective vaccines against some diseases, such as AIDS and certain tumors. Mesenchymal stem cells (MSCs), a subset of cells with low immunogenicity, high proliferation potential, and an abundant source of extracellular vesicles (EVs), represent one of the novel and promising vaccine platforms. This review describes the unique features and potential mechanisms of MSCs as a novel vaccine platform. We also cover aspects such as the safety and stability of MSCs that warrant future in-depth studies.
Collapse
Affiliation(s)
- Rui Zhang
- Center of Regenerative Medicine & Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.Z.); (X.D.); (Y.L.); (A.A.G.A.-b.)
| | - Xingxiang Duan
- Center of Regenerative Medicine & Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.Z.); (X.D.); (Y.L.); (A.A.G.A.-b.)
| | - Ye Liu
- Center of Regenerative Medicine & Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.Z.); (X.D.); (Y.L.); (A.A.G.A.-b.)
| | - Jia Xu
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia;
| | - Abdullkhaleg Ali Ghaleb Al-bashari
- Center of Regenerative Medicine & Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.Z.); (X.D.); (Y.L.); (A.A.G.A.-b.)
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Qingsong Ye
- Center of Regenerative Medicine & Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (R.Z.); (X.D.); (Y.L.); (A.A.G.A.-b.)
| | - Yan He
- Institute of Regenerative and Translational Medicine, Department of Stomatology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
13
|
Zhang H, Ren J, Li J, Zhai C, Mao F, Yang S, Zhang Q, Liu Z, Fu X. Comparison of heterologous prime-boost immunization strategies with DNA and recombinant vaccinia virus co-expressing GP3 and GP5 of European type porcine reproductive and respiratory syndrome virus in pigs. Microb Pathog 2023; 183:106328. [PMID: 37661073 DOI: 10.1016/j.micpath.2023.106328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Vaccination is principally used to control and treat porcine reproductive and respiratory syndrome virus (PRRSV) infection. This study investigated immunogenicity and protective efficacy of heterologous prime-boost regimens in pigs, including recombinant DNA and vaccinia virus vectors coexpressing PRRSV European genotype (EU) isolate GP3 and GP5: group A, pVAX1-EU-GP3-GP5 prime and rddVTT-EU-GP3-GP5 boost; group B, rddVTT-EU-GP3-GP5 prime and pVAX1-EU-GP3-GP5 boost; group C, empty vector pVAX1; group D, E3L gene-deleted vaccinia virus E3L- VTT. Vaccine efficacy was tested in an EU-type PRRSV (Lelystad virus strain) challenge pig model based on evaluating PRRSV-specific antibody responses, neutralizing antibodies, cytokines, T lymphocyte proliferation, CD4+ and CD8+ T lymphocytes, clinical symptoms, viremia and tissue virus loads. Plasmid DNA was delivered as chitosan-DNA nanoparticles, and Quil A (Quillaja) was used to increase vaccine efficiency. All piglets were boosted 21 days post the initial inoculation (dpi) and then challenged 14 days later. At 14, 21, 28 and 35 dpi, groups A and B developed significantly higher PRRSV-specific antibody responses compared with control groups C and D. Two weeks after the boost, significant differences in neutralizing antibody and IFN-γ levels were observed between groups A, C, D and B. At 49 dpi, groups A and B had markedly increased peripheral blood CD3+CD4+ T cell levels. Following virus challenge, group A showed viremia, but organ virus loads were lower than those in other groups. Thus, a heterologous prime-boost vaccine regimen (rddVTT-EU-GP3-GP5 prime, pVAX1-EU-GP3-GP5 boost) can improve humoral- and cell-mediated immune responses to provide resistance to EU-type PRRSV infection in vivo.
Collapse
Affiliation(s)
- Hewei Zhang
- The 989th Hospital of the Joint Logistics Support Force of Chinese People's Liberation Army, Luoyang, 471031, China; College of Food and Drugs, Luoyang Polytechnic, Luo Yang, 471000, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Jingqiang Ren
- Institute of Virology, Wenzhou University, Chashan University Town, Wenzhou, 325035, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China; Key Laboratory of Special Animal Epidemic Disease, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| | - Jiachen Li
- College of Food and Drugs, Luoyang Polytechnic, Luo Yang, 471000, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Chongkai Zhai
- College of Food and Drugs, Luoyang Polytechnic, Luo Yang, 471000, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Fuchao Mao
- College of Food and Drugs, Luoyang Polytechnic, Luo Yang, 471000, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Shaozhe Yang
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Qingwei Zhang
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Zhongyu Liu
- The 989th Hospital of the Joint Logistics Support Force of Chinese People's Liberation Army, Luoyang, 471031, China; College of Food and Drugs, Luoyang Polytechnic, Luo Yang, 471000, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China.
| | - Xiuhong Fu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China.
| |
Collapse
|
14
|
Ibrahim A, Humphries UW, Ngiamsunthorn PS, Baba IA, Qureshi S, Khan A. Modeling the dynamics of COVID-19 with real data from Thailand. Sci Rep 2023; 13:13082. [PMID: 37567888 PMCID: PMC10421938 DOI: 10.1038/s41598-023-39798-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
In recent years, COVID-19 has evolved into many variants, posing new challenges for disease control and prevention. The Omicron variant, in particular, has been found to be highly contagious. In this study, we constructed and analyzed a mathematical model of COVID-19 transmission that incorporates vaccination and three different compartments of the infected population: asymptomatic [Formula: see text], symptomatic [Formula: see text], and Omicron [Formula: see text]. The model is formulated in the Caputo sense, which allows for fractional derivatives that capture the memory effects of the disease dynamics. We proved the existence and uniqueness of the solution of the model, obtained the effective reproduction number, showed that the model exhibits both endemic and disease-free equilibrium points, and showed that backward bifurcation can occur. Furthermore, we documented the effects of asymptomatic infected individuals on the disease transmission. We validated the model using real data from Thailand and found that vaccination alone is insufficient to completely eradicate the disease. We also found that Thailand must monitor asymptomatic individuals through stringent testing to halt and subsequently eradicate the disease. Our study provides novel insights into the behavior and impact of the Omicron variant and suggests possible strategies to mitigate its spread.
Collapse
Affiliation(s)
- Alhassan Ibrahim
- Department of Mathematics, Faculty of Science, King Mongkut's University of Technology, Thonburi (KMUTT), 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok, 10140, Thailand
- Department of Mathematical Sciences, Bayero University, Kano, Nigeria
| | - Usa Wannasingha Humphries
- Department of Mathematics, Faculty of Science, King Mongkut's University of Technology, Thonburi (KMUTT), 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok, 10140, Thailand.
| | - Parinya Sa Ngiamsunthorn
- Department of Mathematics, Faculty of Science, King Mongkut's University of Technology, Thonburi (KMUTT), 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok, 10140, Thailand
| | - Isa Abdullahi Baba
- Department of Mathematics, Faculty of Science, King Mongkut's University of Technology, Thonburi (KMUTT), 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok, 10140, Thailand
- Department of Mathematical Sciences, Bayero University, Kano, Nigeria
| | - Sania Qureshi
- Department of mathematics, Near East University TRNC, Mersin 10, Turkey
- Department of Basic Sciences and Related Studies, Mehran University of Engineering & Technology, Jamshoro, 76062, Pakistan
| | - Amir Khan
- Department of Mathematics and Statistics, University of Swat, Khyber Pakhtunkhwa, kpk, Pakistan
| |
Collapse
|
15
|
Pan C, Ye J, Zhang S, Li X, Shi Y, Guo Y, Wang K, Sun P, Wu J, Wang H, Zhu L. Production of a promising modular proteinaceous self-assembled delivery system for vaccination. NANOSCALE 2023. [PMID: 37326289 DOI: 10.1039/d2nr06718h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recently, there have been enormous advances in nano-delivery materials, especially safer and more biocompatible protein-based nanoparticles. Generally, proteinaceous nanoparticles (such as ferritin and virus-like particles) are self-assembled from some natural protein monomers. However, to ensure their capability of assembly, it is difficult to upgrade the protein structure through major modifications. Here, we have developed an efficient orthogonal modular proteinaceous self-assembly delivery system that could load antigens with an attractive coupling strategy. In brief, we constructed a nanocarrier by fusing two orthogonal domains-a pentameric cholera toxin B subunit and a trimer forming peptide-and an engineered streptavidin monomer for binding biotinylated antigens. After successfully preparing the nanoparticles, the receptor-binding domain of SARS-CoV-2 spike protein and influenza virus haemagglutination antigen are used as model antigens for further evaluation. We found that the biotinylated antigen is able to bind to the nanoparticles with high affinity and achieve efficient lymph node drainage when loaded on the nanoparticles. Then, T cells are greatly activated and the formation of germinal centers is observed. Experiments of two mouse models demonstrate the strong antibody responses and prophylactic effects of these nanovaccines. Thus, we establish a proof-of-concept for the delivery system with the potential to load diverse antigen cargos to generate high-performance nanovaccines, thereby offering an attractive platform technology for nanovaccine preparation.
Collapse
Affiliation(s)
- Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Jingqin Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Millitary Medical Sciences, Beijing, 100071, PR China
| | - Xiang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Yixin Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Kangfeng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
- College of Life Science, Hebei University, Baoding, 071002, PR China
| | - Peng Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
- School of Medicine, Tsinghua University, Beijing, 100084, PR China
| | - Jun Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| |
Collapse
|
16
|
Witt KD. Role of MHC class I pathways in Mycobacterium tuberculosis antigen presentation. Front Cell Infect Microbiol 2023; 13:1107884. [PMID: 37009503 PMCID: PMC10050577 DOI: 10.3389/fcimb.2023.1107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
MHC class I antigen processing is an underappreciated area of nonviral host–pathogen interactions, bridging both immunology and cell biology, where the pathogen’s natural life cycle involves little presence in the cytoplasm. The effective response to MHC-I foreign antigen presentation is not only cell death but also phenotypic changes in other cells and stimulation of the memory cells ready for the next antigen reoccurrence. This review looks at the MHC-I antigen processing pathway and potential alternative sources of the antigens, focusing on Mycobacterium tuberculosis (Mtb) as an intracellular pathogen that co-evolved with humans and developed an array of decoy strategies to survive in a hostile environment by manipulating host immunity to its own advantage. As that happens via the selective antigen presentation process, reinforcement of the effective antigen recognition on MHC-I molecules may stimulate subsets of effector cells that act earlier and more locally. Vaccines against tuberculosis (TB) could potentially eliminate this disease, yet their development has been slow, and success is limited in the context of this global disease’s spread. This review’s conclusions set out potential directions for MHC-I-focused approaches for the next generation of vaccines.
Collapse
Affiliation(s)
- Karolina D. Witt
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- *Correspondence: Karolina D. Witt,
| |
Collapse
|
17
|
Recent Advances in the Development of Adenovirus-Vectored Vaccines for Parasitic Infections. Pharmaceuticals (Basel) 2023; 16:ph16030334. [PMID: 36986434 PMCID: PMC10058461 DOI: 10.3390/ph16030334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Vaccines against parasites have lagged centuries behind those against viral and bacterial infections, despite the devastating morbidity and widespread effects of parasitic diseases across the globe. One of the greatest hurdles to parasite vaccine development has been the lack of vaccine strategies able to elicit the complex and multifaceted immune responses needed to abrogate parasitic persistence. Viral vectors, especially adenovirus (AdV) vectors, have emerged as a potential solution for complex disease targets, including HIV, tuberculosis, and parasitic diseases, to name a few. AdVs are highly immunogenic and are uniquely able to drive CD8+ T cell responses, which are known to be correlates of immunity in infections with most protozoan and some helminthic parasites. This review presents recent developments in AdV-vectored vaccines targeting five major human parasitic diseases: malaria, Chagas disease, schistosomiasis, leishmaniasis, and toxoplasmosis. Many AdV-vectored vaccines have been developed for these diseases, utilizing a wide variety of vectors, antigens, and modes of delivery. AdV-vectored vaccines are a promising approach for the historically challenging target of human parasitic diseases.
Collapse
|
18
|
Sumiya K, Izumi H, Sakurai K. Enhanced Therapeutic Efficacy of Immunostimulatory CpG-ODN by Silencing SOCS-1 with Polysaccharide/miR-155 Complexes. ACS APPLIED BIO MATERIALS 2023; 6:774-783. [PMID: 36632777 DOI: 10.1021/acsabm.2c00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
For the induction of antigen-specific immune responses, adjuvants as well as antigens are essential. CpG-ODN is a potent agonist of toll-like receptor 9 (TLR9) and is known as an adjuvant to induce cellular immune responses. We previously developed a therapeutic oligonucleotide delivery system based on the formation of a complex between schizophyllan (SPG), a kind of β-1,3-glucan, and poly(dA), which actively delivered CpG-ODN to antigen-presenting cells (APCs) in the draining lymph nodes and induced antigen-specific immune responses. However, unfortunately, the signaling pathway of TLR9 is negatively regulated by an intracellular protein called suppressor of cytokine signaling-1 (SOCS-1), which suppresses the adjuvant effect of CpG-ODN. To solve this, we focused on microRNA-155 (miR-155), which regulates innate and autoimmune processes by targeting SOCS-1. In this study, we proposed a strategy of combining miR-155 and CpG-ODN, each complexed with SPG (denoted as SPG/miR-155 and SPG/CpG, respectively), to induce a more potent immune response. As a result, we showed that the efficient delivery of miR-155 to APCs by a complex form could induce much more potent cellular immune responses than SPG/CpG alone. Furthermore, the mice treated with the combination of SPG/miR-155 and SPG/CpG showed a long delay in tumor growth occurrence and improved survival after tumor inoculation. These results indicate the possibility of therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Kazuki Sumiya
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka808-0135, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Isegaoka, Yahatanishi-ku, Kitakyushu, Fukuoka807-8555, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka808-0135, Japan
| |
Collapse
|
19
|
Chavda VP, Bezbaruah R, Valu D, Patel B, Kumar A, Prasad S, Kakoti BB, Kaushik A, Jesawadawala M. Adenoviral Vector-Based Vaccine Platform for COVID-19: Current Status. Vaccines (Basel) 2023; 11:432. [PMID: 36851309 PMCID: PMC9965371 DOI: 10.3390/vaccines11020432] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/16/2023] Open
Abstract
The coronavirus disease (COVID-19) breakout had an unimaginable worldwide effect in the 21st century, claiming millions of lives and putting a huge burden on the global economy. The potential developments in vaccine technologies following the determination of the genetic sequence of SARS-CoV-2 and the increasing global efforts to bring potential vaccines and therapeutics into the market for emergency use have provided a small bright spot to this tragic event. Several intriguing vaccine candidates have been developed using recombinant technology, genetic engineering, and other vaccine development technologies. In the last decade, a vast amount of the vaccine development process has diversified towards the usage of viral vector-based vaccines. The immune response elicited by such vaccines is comparatively higher than other approved vaccine candidates that require a booster dose to provide sufficient immune protection. The non-replicating adenoviral vectors are promising vaccine carriers for infectious diseases due to better yield, cGMP-friendly manufacturing processes, safety, better efficacy, manageable shipping, and storage procedures. As of April 2022, the WHO has approved a total of 10 vaccines around the world for COVID-19 (33 vaccines approved by at least one country), among which three candidates are adenoviral vector-based vaccines. This review sheds light on the developmental summary of all the adenoviral vector-based vaccines that are under emergency use authorization (EUA) or in the different stages of development for COVID-19 management.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Disha Valu
- Drug Product Development Laboratory, Biopharma Division, Intas Pharmaceutical Ltd., Moraiya, Ahmedabad 382213, Gujarat, India
| | - Bindra Patel
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Anup Kumar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Sanjay Prasad
- Cell and Gene Therapy Drug Product Development Laboratory, Biopharma Division, Intas Pharmaceutical Ltd., Moraiya, Ahmedabad 382213, Gujarat, India
| | - Bibhuti Bhusan Kakoti
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805-8531, USA
| | - Mariya Jesawadawala
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
20
|
Chen S, Pounraj S, Sivakumaran N, Kakkanat A, Sam G, Kabir MT, Rehm BHA. Precision-engineering of subunit vaccine particles for prevention of infectious diseases. Front Immunol 2023; 14:1131057. [PMID: 36817419 PMCID: PMC9935699 DOI: 10.3389/fimmu.2023.1131057] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Vaccines remain the best approach for the prevention of infectious diseases. Protein subunit vaccines are safe compared to live-attenuated whole cell vaccines but often show reduced immunogenicity. Subunit vaccines in particulate format show improved vaccine efficacy by inducing strong immune responses leading to protective immunity against the respective pathogens. Antigens with proper conformation and function are often required to induce functional immune responses. Production of such antigens requiring post-translational modifications and/or composed of multiple complex domains in bacterial hosts remains challenging. Here, we discuss strategies to overcome these limitations toward the development of particulate vaccines eliciting desired humoral and cellular immune responses. We also describe innovative concepts of assembling particulate vaccine candidates with complex antigens bearing multiple post-translational modifications. The approaches include non-covalent attachments (e.g. biotin-avidin affinity) and covalent attachments (e.g. SpyCatcher-SpyTag) to attach post-translationally modified antigens to particles.
Collapse
Affiliation(s)
- Shuxiong Chen
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia,*Correspondence: Bernd H. A. Rehm, ; Shuxiong Chen,
| | - Saranya Pounraj
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Nivethika Sivakumaran
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Anjali Kakkanat
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Gayathri Sam
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Md. Tanvir Kabir
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia,Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast, QLD, Australia,*Correspondence: Bernd H. A. Rehm, ; Shuxiong Chen,
| |
Collapse
|
21
|
Romano M, Squeglia F, Kramarska E, Barra G, Choi HG, Kim HJ, Ruggiero A, Berisio R. A Structural View at Vaccine Development against M. tuberculosis. Cells 2023; 12:317. [PMID: 36672252 PMCID: PMC9857197 DOI: 10.3390/cells12020317] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Tuberculosis (TB) is still the leading global cause of death from an infectious bacterial agent. Limiting tuberculosis epidemic spread is therefore an urgent global public health priority. As stated by the WHO, to stop the spread of the disease we need a new vaccine, with better coverage than the current Mycobacterium bovis BCG vaccine. This vaccine was first used in 1921 and, since then, there are still no new licensed tuberculosis vaccines. However, there is extremely active research in the field, with a steep acceleration in the past decades, due to the advance of technologies and more rational vaccine design strategies. This review aims to gather latest updates in vaccine development in the various clinical phases and to underline the contribution of Structural Vaccinology (SV) to the development of safer and effective antigens. In particular, SV and the development of vaccine adjuvants is making the use of subunit vaccines, which are the safest albeit the less antigenic ones, an achievable goal. Indeed, subunit vaccines overcome safety concerns but need to be rationally re-engineered to enhance their immunostimulating effects. The larger availability of antigen structural information as well as a better understanding of the complex host immune response to TB infection is a strong premise for a further acceleration of TB vaccine development.
Collapse
Affiliation(s)
- Maria Romano
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Eliza Kramarska
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Giovanni Barra
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Han-Gyu Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| |
Collapse
|
22
|
Yuan M, Yang X, Zhang X, Zhao X, Abid M, Qiu HJ, Li Y. Different Types of Vaccines against Pestiviral Infections: "Barriers" for " Pestis". Viruses 2022; 15:2. [PMID: 36680043 PMCID: PMC9860862 DOI: 10.3390/v15010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The genus Pestivirus of the family Flaviviridae mainly comprises classical swine fever virus (CSFV), bovine viral diarrhea virus 1 (BVDV-1), BVDV-2, border disease virus (BDV), and multiple new pestivirus species such as atypical porcine pestivirus (APPV), giraffe pestivirus, and antelope pestivirus. Pestiviruses cause infectious diseases, resulting in tremendous economic losses to animal husbandry. Different types of pestivirus vaccines have been developed to control and prevent these important animal diseases. In recent years, pestiviruses have shown great potential as viral vectors for developing multivalent vaccines. This review analyzes the advantages and disadvantages of various pestivirus vaccines, including live attenuated pestivirus strains, genetically engineered marker pestiviruses, and pestivirus-based multivalent vaccines. This review provides new insights into the development of novel vaccines against emerging pestiviruses, such as APPV and ovine pestivirus.
Collapse
Affiliation(s)
- Mengqi Yuan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaoke Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaotian Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Muhammad Abid
- Viral Oncogenesis Group, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
23
|
Sun Y, Shi X, Lu F, Fu H, Yin Y, Xu J, Jin C, Han ET, Huang X, Chen Y, Dong C, Cheng Y. Vesicular stomatitis virus-based vaccine targeting plasmodium blood-stage antigens elicits immune response and protects against malaria with protein booster strategy. Front Microbiol 2022; 13:1042414. [PMID: 36504817 PMCID: PMC9731671 DOI: 10.3389/fmicb.2022.1042414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Merozoite invasion of the erythrocytes in humans is a key step in the pathogenesis of malaria. The proteins involved in the merozoite invasion could be potential targets for the development of malaria vaccines. Novel viral-vector-based malaria vaccine regimens developed are currently under clinical trials. Vesicular stomatitis virus (VSV) is a single-stranded negative-strand RNA virus widely used as a vector for virus or cancer vaccines. Whether the VSV-based malarial vaccine is more effective than conventional vaccines based on proteins involved in parasitic invasion is still unclear. In this study, we have used the reverse genetics system to construct recombinant VSVs (rVSVs) expressing apical membrane protein 1 (AMA1), rhoptry neck protein 2 (RON2), and reticulocyte-binding protein homolog 5 (RH5), which are required for Plasmodium falciparum invasion. Our results showed that VSV-based viral vaccines significantly increased Plasmodium-specific IgG levels and lymphocyte proliferation. Also, VSV-PyAMA1 and VSV-PyRON2sp prime-boost regimens could significantly increase the levels of IL-2 and IFN-γ-producing by CD4+ and CD8+ T cells and suppress invasion in vitro. The rVSV prime-protein boost regimen significantly increase Plasmodium antigen-specific IgG levels in the serum of mice compared to the homologous rVSV prime-boost. Furthermore, the protective efficacy of rVSV prime protein boost immunization in the mice challenged with P. yoelii 17XL was better compared to traditional antigen immunization. Together, our results show that VSV vector is a novel strategy for malarial vaccine development and preventing the parasitic diseases.
Collapse
Affiliation(s)
- Yifan Sun
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China,Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaodan Shi
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Feng Lu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Haitian Fu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China,Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yi Yin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Jiahui Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Cheng Jin
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Eun-taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, South Korea
| | - Xuan Huang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yongquan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China,*Correspondence: Chunsheng Dong,
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China,Yang Cheng,
| |
Collapse
|
24
|
Gong X, Gao Y, Shu J, Zhang C, Zhao K. Chitosan-Based Nanomaterial as Immune Adjuvant and Delivery Carrier for Vaccines. Vaccines (Basel) 2022; 10:1906. [PMID: 36423002 PMCID: PMC9696061 DOI: 10.3390/vaccines10111906] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 08/26/2023] Open
Abstract
With the support of modern biotechnology, vaccine technology continues to iterate. The safety and efficacy of vaccines are some of the most important areas of development in the field. As a natural substance, chitosan is widely used in numerous fields-such as immune stimulation, drug delivery, wound healing, and antibacterial procedures-due to its good biocompatibility, low toxicity, biodegradability, and adhesion. Chitosan-based nanoparticles (NPs) have attracted extensive attention with respect to vaccine adjuvants and delivery systems due to their excellent properties, which can effectively enhance immune responses. Here, we list the classifications and mechanisms of action of vaccine adjuvants. At the same time, the preparation methods of chitosan, its NPs, and their mechanism of action in the delivery system are introduced. The extensive applications of chitosan and its NPs in protein vaccines and nucleic acid vaccines are also introduced. This paper reviewed the latest research progress of chitosan-based NPs in vaccine adjuvant and drug delivery systems.
Collapse
Affiliation(s)
- Xiaochen Gong
- Institute of Nanobiomaterials and Immunology, School of Pharmaceutical Sciences & School of Life Science, Taizhou University, Taizhou 318000, China
- School of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China
| | - Yuan Gao
- Institute of Nanobiomaterials and Immunology, School of Pharmaceutical Sciences & School of Life Science, Taizhou University, Taizhou 318000, China
| | - Jianhong Shu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Hom-Sun Biotechnology Co., Ltd., Shaoxing 312366, China
| | - Chunjing Zhang
- School of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China
| | - Kai Zhao
- Institute of Nanobiomaterials and Immunology, School of Pharmaceutical Sciences & School of Life Science, Taizhou University, Taizhou 318000, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Hom-Sun Biotechnology Co., Ltd., Shaoxing 312366, China
| |
Collapse
|
25
|
Rabies Vaccine: Recent Update and Comprehensive Review of in vitro and in vivo Studies. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Kumar S, Basu M, Ghosh P, Ansari A, Ghosh MK. COVID-19: Clinical status of vaccine development to date. Br J Clin Pharmacol 2022; 89:114-149. [PMID: 36184710 PMCID: PMC9538545 DOI: 10.1111/bcp.15552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-induced COVID-19 is a complicated disease. Clinicians are continuously facing difficulties to treat infected patients using the principle of repurposing of drugs as no specific drugs are available to treat COVID-19. To minimize the severity and mortality, global vaccination is the only hope as a potential preventive measure. After a year-long global research and clinical struggle, 165 vaccine candidates have been developed and some are currently still in the pipeline. A total of 28 candidate vaccines have been approved for use and the remainder are in different phases of clinical trials. In this comprehensive report, the authors aim to demonstrate, classify and provide up-to-date clinical trial status of all the vaccines discovered to date and specifically focus on the approved candidates. Finally, the authors specifically focused on the vaccination of different types of medically distinct populations.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder DivisionCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB), TRUE CampusKolkataIndia
| | - Malini Basu
- Department of MicrobiologyDhruba Chand Halder CollegeIndia
| | - Pratyasha Ghosh
- Department of Economics, Bethune CollegeUniversity of CalcuttaKolkataIndia
| | - Aafreen Ansari
- Cancer Biology and Inflammatory Disorder DivisionCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB), TRUE CampusKolkataIndia
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder DivisionCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB), TRUE CampusKolkataIndia
| |
Collapse
|
27
|
Deng S, Liang H, Chen P, Li Y, Li Z, Fan S, Wu K, Li X, Chen W, Qin Y, Yi L, Chen J. Viral Vector Vaccine Development and Application during the COVID-19 Pandemic. Microorganisms 2022; 10:microorganisms10071450. [PMID: 35889169 PMCID: PMC9317404 DOI: 10.3390/microorganisms10071450] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 12/14/2022] Open
Abstract
With the accumulation of mutations in SARS-CoV-2 and the continuous emergence of new variants, the importance of developing safer and effective vaccines has become more prominent in combating the COVID-19 pandemic. Both traditional and genetically engineered vaccines have contributed to the prevention and control of the pandemic. However, in recent years, the trend of vaccination research has gradually transitioned from traditional to genetically engineered vaccines, with the development of viral vector vaccines attracting increasing attention. Viral vector vaccines have several unique advantages compared to other vaccine platforms. The spread of Omicron has also made the development of intranasal viral vector vaccines more urgent, as the infection site of Omicron is more prominent in the upper respiratory tract. Therefore, the present review focuses on the development of viral vector vaccines and their application during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Shaofeng Deng
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hui Liang
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
| | - Pin Chen
- Oriental Fortune Capital Post-Doctoral Innovation Center, Shenzhen 518055, China;
- Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwei Qin
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (L.Y.); (J.C.)
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (L.Y.); (J.C.)
| |
Collapse
|
28
|
Lorenzo MM, Nogales A, Chiem K, Blasco R, Martínez-Sobrido L. Vaccinia Virus Attenuation by Codon Deoptimization of the A24R Gene for Vaccine Development. Microbiol Spectr 2022; 10:e0027222. [PMID: 35583360 PMCID: PMC9241885 DOI: 10.1128/spectrum.00272-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Poxviruses have large DNA genomes, and they are able to infect multiple vertebrate and invertebrate animals, including humans. Despite the eradication of smallpox, poxvirus infections still remain a significant public health concern. Vaccinia virus (VV) is the prototypic member in the poxviridae family and it has been used extensively for different prophylactic applications, including the generation of vaccines against multiple infectious diseases and/or for oncolytic treatment. Many attempts have been pursued to develop novel attenuated forms of VV with improved safety profiles for their implementation as vaccines and/or vaccines vectors. We and others have previously demonstrated how RNA viruses encoding codon-deoptimized viral genes are attenuated, immunogenic and able to protect, upon a single administration, against challenge with parental viruses. In this study, we employed the same experimental approach based on the use of misrepresented codons for the generation of a recombinant (r)VV encoding a codon-deoptimized A24R gene, which is a key component of the viral RNA polymerase. Similar to our previous studies with RNA viruses, the A24R codon-deoptimized rVV (v-A24cd) was highly attenuated in vivo but able to protect, after a single intranasal dose administration, against an otherwise lethal challenge with parental VV. These results indicate that poxviruses can be effectively attenuated by synonymous codon deoptimization and open the possibility of using this methodology alone or in combination with other experimental approaches for the development of attenuated vaccines for the treatment of poxvirus infection, or to generate improved VV-based vectors. Moreover, this approach could be applied to other DNA viruses. IMPORTANCE The family poxviridae includes multiple viruses of medical and veterinary relevance, being vaccinia virus (VV) the prototypic member in the family. VV was used during the smallpox vaccination campaign to eradicate variola virus (VARV), which is considered a credible bioterrorism threat. Because of novel innovations in genetic engineering and vaccine technology, VV has gained popularity as a viral vector for the development of vaccines against several infectious diseases. Several approaches have been used to generate attenuated VV for its implementation as vaccine and/or vaccine vector. Here, we generated a rVV containing a codon-deoptimized A24R gene (v-A24cd), which encodes a key component of the viral RNA polymerase. v-A24cd was stable in culture cells and highly attenuated in vivo but able to protect against a subsequent lethal challenge with parental VV. Our findings support the use of this approach for the development of safe, stable, and protective live-attenuated VV and/or vaccine vectors.
Collapse
Affiliation(s)
- María M. Lorenzo
- Departamento de Biotecnología, Centro Nacional INIA, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- Animal Health Research Centre (CISA), National Institute for Agriculture and Food Research and Technology (INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Kevin Chiem
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Rafael Blasco
- Departamento de Biotecnología, Centro Nacional INIA, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
29
|
Luria-Pérez R, Sánchez-Vargas LA, Muñoz-López P, Mellado-Sánchez G. Mucosal Vaccination: A Promising Alternative Against Flaviviruses. Front Cell Infect Microbiol 2022; 12:887729. [PMID: 35782117 PMCID: PMC9241634 DOI: 10.3389/fcimb.2022.887729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
The Flaviviridae are a family of positive-sense, single-stranded RNA enveloped viruses, and their members belong to a single genus, Flavivirus. Flaviviruses are found in mosquitoes and ticks; they are etiological agents of: dengue fever, Japanese encephalitis, West Nile virus infection, Zika virus infection, tick-borne encephalitis, and yellow fever, among others. Only a few flavivirus vaccines have been licensed for use in humans: yellow fever, dengue fever, Japanese encephalitis, tick-borne encephalitis, and Kyasanur forest disease. However, improvement is necessary in vaccination strategies and in understanding of the immunological mechanisms involved either in the infection or after vaccination. This is especially important in dengue, due to the immunological complexity of its four serotypes, cross-reactive responses, antibody-dependent enhancement, and immunological interference. In this context, mucosal vaccines represent a promising alternative against flaviviruses. Mucosal vaccination has several advantages, as inducing long-term protective immunity in both mucosal and parenteral tissues. It constitutes a friendly route of antigen administration because it is needle-free and allows for a variety of antigen delivery systems. This has promoted the development of several ways to stimulate immunity through the direct administration of antigens (e.g., inactivated virus, attenuated virus, subunits, and DNA), non-replicating vectors (e.g., nanoparticles, liposomes, bacterial ghosts, and defective-replication viral vectors), and replicating vectors (e.g., Salmonella enterica, Lactococcus lactis, Saccharomyces cerevisiae, and viral vectors). Because of these characteristics, mucosal vaccination has been explored for immunoprophylaxis against pathogens that enter the host through mucosae or parenteral areas. It is suitable against flaviviruses because this type of immunization can stimulate the parenteral responses required after bites from flavivirus-infected insects. This review focuses on the advantages of mucosal vaccine candidates against the most relevant flaviviruses in either humans or animals, providing supporting data on the feasibility of this administration route for future clinical trials.
Collapse
Affiliation(s)
- Rosendo Luria-Pérez
- Hospital Infantil de México Federico Gómez, Unidad de Investigación en Enfermedades Hemato-Oncológicas, Ciudad de México, Mexico
| | - Luis A. Sánchez-Vargas
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Paola Muñoz-López
- Hospital Infantil de México Federico Gómez, Unidad de Investigación en Enfermedades Hemato-Oncológicas, Ciudad de México, Mexico
- Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gabriela Mellado-Sánchez
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Ciudad de México, Mexico
| |
Collapse
|
30
|
mRNA Vaccines: Past, Present, Future. Asian J Pharm Sci 2022; 17:491-522. [PMID: 36105317 PMCID: PMC9459002 DOI: 10.1016/j.ajps.2022.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/11/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
mRNA vaccines have emerged as promising alternative platforms to conventional vaccines. Their ease of production, low cost, safety profile and high potency render them ideal candidates for prevention and treatment of infectious diseases, especially in the midst of pandemics. The challenges that face in vitro transcribed RNA were partially amended by addition of tethered adjuvants or co-delivery of naked mRNA with an adjuvant-tethered RNA. However, it wasn't until recently that the progress made in nanotechnology helped enhance mRNA stability and delivery by entrapment in novel delivery systems of which, lipid nanoparticles. The continuous advancement in the fields of nanotechnology and tissue engineering provided novel carriers for mRNA vaccines such as polymeric nanoparticles and scaffolds. Various studies have shown the advantages of adopting mRNA vaccines for viral diseases and cancer in animal and human studies. Self-amplifying mRNA is considered today the next generation of mRNA vaccines and current studies reveal promising outcomes. This review provides a comprehensive overview of mRNA vaccines used in past and present studies, and discusses future directions and challenges in advancing this vaccine platform to widespread clinical use.
Collapse
|
31
|
Guetl K, Raggam RB, Gary T. Thrombotic Complications after COVID-19 Vaccination: Diagnosis and Treatment Options. Biomedicines 2022; 10:1246. [PMID: 35740269 PMCID: PMC9220036 DOI: 10.3390/biomedicines10061246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) vaccines were developed a few months after the emergence of the pandemic. The first cases of vaccine-induced thrombotic complications after the use of adenoviral vector vaccines ChAdOx1 nCoV-19 by AstraZeneca, and Ad26.COV2.S by Johnson & Johnson/Janssen, were announced shortly after the initiation of a global vaccination program. In these cases, the occurrence of thrombotic events at unusual sites-predominantly located in the venous vascular system-in association with concomitant thrombocytopenia were observed. Since this new entity termed vaccine-induced thrombotic thrombocytopenia (VITT) shows similar pathophysiologic mechanisms as heparin-induced thrombocytopenia (HIT), including the presence of antibodies against heparin/platelet factor 4 (PF4), standard routine treatment for thrombotic events-arterial or venous-are not appropriate and may also cause severe harm in affected patients. Thrombotic complications were also rarely documented after vaccination with mRNA vaccines, but a typical VITT phenomenon has, to date, not been established for these vaccines. The aim of this review is to give a concise and feasible overview of diagnostic and therapeutic strategies in COVID-19 vaccine-induced thrombotic complications.
Collapse
Affiliation(s)
- Katharina Guetl
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, 08036 Graz, Austria; (R.B.R.); (T.G.)
| | | | | |
Collapse
|
32
|
Lothert K, Eilts F, Wolff MW. Quantification methods for viruses and virus-like particles applied in biopharmaceutical production processes. Expert Rev Vaccines 2022; 21:1029-1044. [PMID: 35483057 DOI: 10.1080/14760584.2022.2072302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Effective cell-based production processes of virus particles are the foundation for the global availability of classical vaccines, gene therapeutic vectors, and viral oncolytic treatments. Their production is subject to regulatory standards ensuring the safety and efficacy of the pharmaceutical product. Process analytics must be fast and reliable to provide an efficient process development and a robust process control during production. Additionally, for the product release, the drug compound and the contaminants must be quantified by assays specified by regulatory authorities. AREAS COVERED This review summarizes analytical methods suitable for the quantification of viruses or virus-like particles. The different techniques are grouped by the analytical question that may be addressed. Accordingly, methods focus on the infectivity of the drug component on the one hand, and on particle counting and the quantification of viral elements on the other hand. The different techniques are compared regarding their advantages, drawbacks, required assay time, and sample throughput. EXPERT OPINION Among the technologies summarized, a tendency toward fast methods, allowing a high throughput and a wide applicability, can be foreseen. Driving forces for this progress are miniaturization and automation, and the continuous enhancement of process-relevant databases for a successful future process control.
Collapse
Affiliation(s)
- Keven Lothert
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Friederike Eilts
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Michael W Wolff
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany.,Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| |
Collapse
|
33
|
Najafi S, Tan SC, Aghamiri S, Raee P, Ebrahimi Z, Jahromi ZK, Rahmati Y, Sadri Nahand J, Piroozmand A, Jajarmi V, Mirzaei H. Therapeutic potentials of CRISPR-Cas genome editing technology in human viral infections. Biomed Pharmacother 2022; 148:112743. [PMID: 35228065 PMCID: PMC8872819 DOI: 10.1016/j.biopha.2022.112743] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
Viral infections are a common cause of morbidity worldwide. The emergence of Coronavirus Disease 2019 (COVID-19) has led to more attention to viral infections and finding novel therapeutics. The CRISPR-Cas9 system has been recently proposed as a potential therapeutic tool for the treatment of viral diseases. Here, we review the research progress in the use of CRISPR-Cas technology for treating viral infections, as well as the strategies for improving the delivery of this gene-editing tool in vivo. Key challenges that hinder the widespread clinical application of CRISPR-Cas9 technology are also discussed, and several possible directions for future research are proposed.
Collapse
Affiliation(s)
- Sajad Najafi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Ebrahimi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Kargar Jahromi
- Central Research Laboratory, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Yazdan Rahmati
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Piroozmand
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Correspondence to: Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19395-4818, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,Corresponding author at: Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
34
|
Garbuglia AR, Minosse C, Del Porto P. mRNA- and Adenovirus-Based Vaccines against SARS-CoV-2 in HIV-Positive People. Viruses 2022; 14:v14040748. [PMID: 35458478 PMCID: PMC9031858 DOI: 10.3390/v14040748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
About two years have passed since the identification of SARS-CoV-2 in China. The rapid spread of this virus all over the world and its high transmissibility and pathogenicity in humans have resulted in a global pandemic. The negative impact of COVID-19 on health, society and the economy at the global level has pushed researchers and pharmaceutical companies to develop effective vaccines to fight SARS-CoV-2. Thanks to this collaborative effort, the first COVID-19 vaccine was developed in less than a year. Since then, several COVID-19 vaccines have been validated for use by the World Health Organization. Among these, mRNA- (BNT162b2 and mRNA1273) and adenovirus-based (ChAdOx1) vaccines were developed through the use of novel technologies. While all three of these vaccines have shown effectiveness against the COVID-19 disease and their immunogenicity was characterized in clinical trials in the general population, data on their efficacy and immunogenicity in people living with HIV (PLWH) are limited. In this review, we provide a description of the characteristics of mRNA- and adenovirus-based vaccines and of the immune response elicited in the general population by vaccination. Then we describe the use of these vaccines and their efficacy and immunogenicity in people living with HIV and we conclude with a discussion regarding some open questions concerning the use of mRNA- and adenovirus-based COVID-19 vaccines in PLWH.
Collapse
Affiliation(s)
- Anna Rosa Garbuglia
- Laboratory of Virology, “Lazzaro Spallanzani” National Institute for Infectious Diseases, IRCCS, 00149 Rome, Italy;
- Correspondence:
| | - Claudia Minosse
- Laboratory of Virology, “Lazzaro Spallanzani” National Institute for Infectious Diseases, IRCCS, 00149 Rome, Italy;
| | - Paola Del Porto
- Department of Biology and Biotechnology ‘C. Darwin’, Sapienza University, 00100 Rome, Italy;
| |
Collapse
|
35
|
Liu Y, Ye Q. Safety and Efficacy of the Common Vaccines against COVID-19. Vaccines (Basel) 2022; 10:vaccines10040513. [PMID: 35455262 PMCID: PMC9027683 DOI: 10.3390/vaccines10040513] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The worldwide pandemic of coronavirus disease 2019 (COVID-19) has imposed a challenge on human health worldwide, and vaccination represents a vital strategy to control the pandemic. To date, multiple COVID-19 vaccines have been granted emergency use authorization, including inactivated vaccines, adenovirus-vectored vaccines, and nucleic acid vaccines. These vaccines have different technical principles, which will necessarily lead to differences in safety and efficacy. Therefore, we aim to implement a systematic review by synthesizing clinical experimental data combined with mass vaccination data and conducting a synthesis to evaluate the safety and efficacy of COVID-19 vaccines. Compared with other vaccines, adverse reactions after vaccination with inactivated vaccines are relatively low. The efficacy of inactivated vaccines is approximately 60%, adenovirus-vectored vaccines are 65%, and mRNA vaccines are 90%, which are always efficient against asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, symptomatic COVID-19, COVID-19 hospitalization, severe or critical hospitalization, and death. RNA-based vaccines have a number of advantages and are one of the most promising vaccines identified to date and are particularly important during a pandemic. However, further improvements are required. In time, all the antibody levels weaken gradually, so a booster dose is needed to maintain immunity. Compared with homologous prime-boost immunization, heterologous prime-boost immunization prompts more robust humoral and cellular immune responses.
Collapse
|
36
|
Borman P, Campa C, Delpierre G, Hook E, Jackson P, Kelley W, Protz M, Vandeputte O. Selection of Analytical Technology and Development of Analytical Procedures Using the Analytical Target Profile. Anal Chem 2021; 94:559-570. [PMID: 34928590 DOI: 10.1021/acs.analchem.1c03854] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A structured approach to method development can help to ensure an analytical procedure is robust across the lifecycle of its use. The analytical target profile (ATP), which describes the required quality of the reportable value to be produced by the analytical procedure, enables the analytical scientist to select the best analytical technology on which to develop their procedure(s). Once the technology has been identified, screening of potentially fit for purpose analytical procedures should take place. Analytical procedures that have been demonstrated to meet the ATP should be evaluated against business drivers (e.g., operational constraints) to determine the most suitable analytical procedure. Three case studies are covered from across small molecules, vaccines, and biotherapeutics. The case studies cover different aspects of the analytical procedure selection process, such as the use of platform method development processes and procedures, the development of multiattribute analytical procedures, and the use of analytical technologies to provide product characterization knowledge in order to define or redefine the ATP. Challenges associated with method selection are discussed such as where existing pharmacopoeial monographs link acceptance criteria to specific types of analytical technology.
Collapse
Affiliation(s)
- Phil Borman
- Product Development and Supply, GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Cristiana Campa
- Technical Research & Development, Vaccines, GSK, Via Fiorentina 1, 53100 Siena, Italy
| | | | - Elliot Hook
- Global Pharma Analytical Science and Technology, Pharma Supply Chain, GSK, Priory Street, Ware, SG12 0DJ, U.K
| | - Patrick Jackson
- Product Development and Supply, GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Wayne Kelley
- Product Development and Supply, GSK, King of Prussia, Pennsylvania 19406, United States
| | - Michel Protz
- Analytical Research and Development, GSK, 1330 Rixensart, Belgium
| | | |
Collapse
|
37
|
Ghattas M, Dwivedi G, Lavertu M, Alameh MG. Vaccine Technologies and Platforms for Infectious Diseases: Current Progress, Challenges, and Opportunities. Vaccines (Basel) 2021; 9:1490. [PMID: 34960236 PMCID: PMC8708925 DOI: 10.3390/vaccines9121490] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 01/09/2023] Open
Abstract
Vaccination is a key component of public health policy with demonstrated cost-effective benefits in protecting both human and animal populations. Vaccines can be manufactured under multiple forms including, inactivated (killed), toxoid, live attenuated, Virus-like Particles, synthetic peptide, polysaccharide, polysaccharide conjugate (glycoconjugate), viral vectored (vector-based), nucleic acids (DNA and mRNA) and bacterial vector/synthetic antigen presenting cells. Several processes are used in the manufacturing of vaccines and recent developments in medical/biomedical engineering, biology, immunology, and vaccinology have led to the emergence of innovative nucleic acid vaccines, a novel category added to conventional and subunit vaccines. In this review, we have summarized recent advances in vaccine technologies and platforms focusing on their mechanisms of action, advantages, and possible drawbacks.
Collapse
Affiliation(s)
- Majed Ghattas
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada;
- Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| | - Garima Dwivedi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Marc Lavertu
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada;
- Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| | - Mohamad-Gabriel Alameh
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- AexeRNA Therapeutics, Washington, DC 20001, USA
| |
Collapse
|
38
|
Tsakiri M, Naziris N, Demetzos C. Innovative vaccine platforms against infectious diseases: Under the scope of the COVID-19 pandemic. Int J Pharm 2021; 610:121212. [PMID: 34687816 PMCID: PMC8527590 DOI: 10.1016/j.ijpharm.2021.121212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 12/30/2022]
Abstract
While classic vaccines have proved greatly efficacious in eliminating serious infectious diseases, innovative vaccine platforms open a new pathway to overcome dangerous pandemics via the development of safe and effective formulations. Such platforms play a key role either as antigen delivery systems or as immune-stimulators that induce both innate and adaptive immune responses. Liposomes or lipid nanoparticles, virus-like particles, nanoemulsions, polymeric or inorganic nanoparticles, as well as viral vectors, all belong to the nanoscale and are the main categories of innovative vaccines that are currently on the market or in clinical and preclinical phases. In this paper, we review the above formulations used in vaccinology and we discuss their connection with the development of safe and effective prophylactic vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Maria Tsakiri
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Nikolaos Naziris
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
39
|
Cordeiro AS, Patil-Sen Y, Shivkumar M, Patel R, Khedr A, Elsawy MA. Nanovaccine Delivery Approaches and Advanced Delivery Systems for the Prevention of Viral Infections: From Development to Clinical Application. Pharmaceutics 2021; 13:2091. [PMID: 34959372 PMCID: PMC8707864 DOI: 10.3390/pharmaceutics13122091] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Viral infections causing pandemics and chronic diseases are the main culprits implicated in devastating global clinical and socioeconomic impacts, as clearly manifested during the current COVID-19 pandemic. Immunoprophylaxis via mass immunisation with vaccines has been shown to be an efficient strategy to control such viral infections, with the successful and recently accelerated development of different types of vaccines, thanks to the advanced biotechnological techniques involved in the upstream and downstream processing of these products. However, there is still much work to be done for the improvement of efficacy and safety when it comes to the choice of delivery systems, formulations, dosage form and route of administration, which are not only crucial for immunisation effectiveness, but also for vaccine stability, dose frequency, patient convenience and logistics for mass immunisation. In this review, we discuss the main vaccine delivery systems and associated challenges, as well as the recent success in developing nanomaterials-based and advanced delivery systems to tackle these challenges. Manufacturing and regulatory requirements for the development of these systems for successful clinical and marketing authorisation were also considered. Here, we comprehensively review nanovaccines from development to clinical application, which will be relevant to vaccine developers, regulators, and clinicians.
Collapse
Affiliation(s)
- Ana Sara Cordeiro
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| | - Yogita Patil-Sen
- Wrightington, Wigan and Leigh Teaching Hospitals NHS Foundation Trust, National Health Service, Wigan WN6 0SZ, UK;
| | - Maitreyi Shivkumar
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| | - Ronak Patel
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Abdulwahhab Khedr
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A. Elsawy
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| |
Collapse
|
40
|
Sterilizing Immunity against COVID-19: Developing Helper T cells I and II activating vaccines is imperative. Biomed Pharmacother 2021; 144:112282. [PMID: 34624675 PMCID: PMC8486642 DOI: 10.1016/j.biopha.2021.112282] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 01/04/2023] Open
Abstract
Six months after the publication of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) sequence, a record number of vaccine candidates were listed, and quite a number of them have since been approved for emergency use against the novel coronavirus disease 2019 (COVID-19). This unprecedented pharmaceutical feat did not only show commitment, creativity and collaboration of the scientific community, but also provided a swift solution that prevented global healthcare system breakdown. Notwithstanding, the available data show that most of the approved COVID-19 vaccines protect only a proportion of recipients against severe disease but do not prevent clinical manifestation of COVID-19. There is therefore the need to probe further to establish whether these vaccines can induce sterilizing immunity, otherwise, COVID-19 vaccination would have to become a regular phenomenon. The emergence of SARS-CoV-2 variants could further affect the capability of the available COVID-19 vaccines to prevent infection and protect recipients from a severe form of the disease. These notwithstanding, data about which vaccine(s), if any, can confer sterilizing immunity are unavailable. Here, we discuss the immune responses to viral infection with emphasis on COVID-19, and the specific adaptive immune response to SARS-CoV-2 and how it can be harnessed to develop COVID-19 vaccines capable of conferring sterilizing immunity. We further propose factors that could be considered in the development of COVID-19 vaccines capable of stimulating sterilizing immunity. Also, an old, but effective vaccine development technology that can be applied in the development of COVID-19 vaccines with sterilizing immunity potential is reviewed.
Collapse
|
41
|
Milota T, Strizova Z, Smetanova J, Sediva A. An immunologist's perspective on anti-COVID-19 vaccines. Curr Opin Allergy Clin Immunol 2021; 21:545-552. [PMID: 34545040 DOI: 10.1097/aci.0000000000000788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW Antisevere acute respiratory syndrome-corona virus 2 (SARS-CoV-2) vaccines may provide prompt, effective, and safe solution for the COVID-19 pandemic. Several vaccine candidates have been evaluated in randomized clinical trials (RCTs). Furthermore, data from observational studies mimicking real-life practice and studies on specific groups, such as pregnant women or immunocompromised patients who were excluded from RCTs, are currently available. The main aim of the review is to summarize and provide an immunologist's view on mechanism of action, efficacy and safety, and future challenges in vaccination against SARS-CoV-2. RECENT FINDINGS mRNA and recombinant viral vector-based vaccines have been approved for conditional use in Europe and the USA. They show robust humoral and cellular responses, high with efficacy in prevention of COVID-19 infection (66.9 95%) and favorable safety profile in RCTs. High efficacy of 80-92% was observed in real-life practice. A pilot study also confirmed good safety profile of the mRNA vaccines in pregnant women. Unlike in those with secondary immunodeficiencies where postvaccination responses did not occur, encouraging results were obtained in patients with inborn errors of immunity. SUMMARY Although both RCTs and observational studies suggest good efficacy and safety profiles of the vaccines, their long-term efficacy and safety are still being discussed. Despite the promising results, clinical evidence for specific groups such as children, pregnant and breastfeeding women, and immunocompromised patients, and for novel virus variants are lacking. VIDEO ABSTRACT http://links.lww.com/COAI/A21.
Collapse
Affiliation(s)
- Tomas Milota
- Department of Immunology, Second Faculty of Medicine, Charles University
- Department of Pediatric and Adult Rheumatology, Motol University Hospital, Prague, Czech Republic
| | - Zuzana Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University
| | - Jitka Smetanova
- Department of Immunology, Second Faculty of Medicine, Charles University
| | - Anna Sediva
- Department of Immunology, Second Faculty of Medicine, Charles University
| |
Collapse
|
42
|
Kandimalla R, Chakraborty P, Vallamkondu J, Chaudhary A, Samanta S, Reddy PH, De Feo V, Dewanjee S. Counting on COVID-19 Vaccine: Insights into the Current Strategies, Progress and Future Challenges. Biomedicines 2021; 9:1740. [PMID: 34829969 PMCID: PMC8615473 DOI: 10.3390/biomedicines9111740] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022] Open
Abstract
The emergence of a novel coronavirus viz., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019 and its subsequent substantial spread produced the coronavirus disease 2019 (COVID-19) pandemic worldwide. Given its unprecedented infectivity and pathogenicity, the COVID-19 pandemic had a devastating impact on human health, and its clinical management has been a great challenge, which has led to the development and speedy trials of several vaccine candidates against SARS-CoV-2 at an exceptional pace. As a result, several COVID-19 vaccines were made commercially available in the first half of 2021. Although several COVID-19 vaccines showed promising results, crucial insights into their epidemiology, protective mechanisms, and the propensities of reinfection are not largely reviewed. In the present report, we provided insights into the prospects of vaccination against COVID-19 and assessed diverse vaccination strategies including DNA, mRNA, protein subunits, vector-based, live attenuated, and inactivated whole/viral particle-based vaccines. Next, we reviewed major aspects of various available vaccines approved by the World Health Organization and by the local administrations to use against COVID-19. Moreover, we comprehensively assessed the success of these approved vaccines and also their untoward effects, including the possibility of reinfection. We also provided an update on the vaccines that are under development and could be promising candidates in the future. Conclusively, we provided insights into the COVID-19 vaccine epidemiology, their potency, and propensity for SARS-CoV-2 reinfection, while a careful review of their current status, strategies, success, and future challenges was also presented.
Collapse
Affiliation(s)
- Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, Telangana, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India;
| | | | - Anupama Chaudhary
- Orinin-BioSystems, LE-52, Lotus Road 4, CHD City, Karnal 132001, Haryana, India;
| | - Sonalinandini Samanta
- Department of Dermatology (Skin & Venereology), ESIC Medical College & Hospital, Patna 801103, Bihar, India;
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Department of Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India;
| |
Collapse
|
43
|
Daian e Silva DSDO, da Fonseca FG. The Rise of Vectored Vaccines: A Legacy of the COVID-19 Global Crisis. Vaccines (Basel) 2021; 9:1101. [PMID: 34696209 PMCID: PMC8538930 DOI: 10.3390/vaccines9101101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic represents a milestone in vaccine research and development in a global context. A worldwide effort, as never seen before, involved scientists from all over the world in favor of the fast, accurate and precise construction and testing of immunogens against the new coronavirus, SARS-CoV-2. Among all the vaccine strategies put into play for study and validation, those based on recombinant viral vectors gained special attention due to their effectiveness, ease of production and the amplitude of the triggered immune responses. Some of these new vaccines have already been approved for emergency/full use, while others are still in pre- and clinical trials. In this article we will highlight what is behind adeno-associated vectors, such as those presented by the immunogens ChaAdOx1, Sputnik, Convidecia (CanSino, Tianjin, China), and Janssen (Johnson & Johnson, New Jersey, EUA), in addition to other promising platforms such as Vaccinia virus MVA, influenza virus, and measles virus, among others.
Collapse
Affiliation(s)
- Danielle Soares de Oliveira Daian e Silva
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
- CT Vacinas, BH-TEC Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil
| |
Collapse
|
44
|
Application of Non-Viral Vectors in Drug Delivery and Gene Therapy. Polymers (Basel) 2021; 13:polym13193307. [PMID: 34641123 PMCID: PMC8512075 DOI: 10.3390/polym13193307] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 12/13/2022] Open
Abstract
Vectors and carriers play an indispensable role in gene therapy and drug delivery. Non-viral vectors are widely developed and applied in clinical practice due to their low immunogenicity, good biocompatibility, easy synthesis and modification, and low cost of production. This review summarized a variety of non-viral vectors and carriers including polymers, liposomes, gold nanoparticles, mesoporous silica nanoparticles and carbon nanotubes from the aspects of physicochemical characteristics, synthesis methods, functional modifications, and research applications. Notably, non-viral vectors can enhance the absorption of cargos, prolong the circulation time, improve therapeutic effects, and provide targeted delivery. Additional studies focused on recent innovation of novel synthesis techniques for vector materials. We also elaborated on the problems and future research directions in the development of non-viral vectors, which provided a theoretical basis for their broad applications.
Collapse
|
45
|
Perera DJ, Ndao M. Promising Technologies in the Field of Helminth Vaccines. Front Immunol 2021; 12:711650. [PMID: 34489961 PMCID: PMC8418310 DOI: 10.3389/fimmu.2021.711650] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022] Open
Abstract
Helminths contribute a larger global burden of disease than both malaria and tuberculosis. These eukaryotes have caused human infections since before our earliest recorded history (i.e.: earlier than 1200 B.C. for Schistosoma spp.). Despite the prevalence and importance of these infections, helminths are considered a neglected tropical disease for which there are no vaccines approved for human use. Similar to other parasites, helminths are complex organisms which employ a plethora of features such as: complex life cycles, chronic infections, and antigenic mimicry to name a few, making them difficult to target by conventional vaccine strategies. With novel vaccine strategies such as viral vectors and genetic elements, numerous constructs are being defined for a wide range of helminth parasites; however, it has yet to be discussed which of these approaches may be the most effective. With human trials being conducted, and a pipeline of potential anti-helminthic antigens, greater understanding of helminth vaccine-induced immunity is necessary for the development of potent vaccine platforms and their optimal design. This review outlines the conventional and the most promising approaches in clinical and preclinical helminth vaccinology.
Collapse
Affiliation(s)
- Dilhan J. Perera
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Program of Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Momar Ndao
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Program of Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- National Reference Centre for Parasitology, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
46
|
Zhao K, Sun B, Shi C, Sun Y, Jin Z, Hu G. Intranasal immunization with O-2'-Hydroxypropyl trimethyl ammonium chloride chitosan nanoparticles loaded with Newcastle disease virus DNA vaccine enhances mucosal immune response in chickens. J Nanobiotechnology 2021; 19:240. [PMID: 34380522 PMCID: PMC8359106 DOI: 10.1186/s12951-021-00983-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/01/2021] [Indexed: 11/16/2022] Open
Abstract
Background There has been a great interest in developing strategies for enhancing antigen delivery to the mucosal immune system as well as identifying mucosal active immunostimulating agents. To elevate the potential of O-2ʹ-Hydroxypropyl trimethyl ammonium chloride chitosan (O-2ʹ-HACC) as an adjuvant and mucosal immune delivery carrier for DNA vaccine, we prepared the O-2ʹ-HACC loaded with Newcastle disease virus (NDV) F gene plasmid DNA and C3d6 molecular adjuvant (O-2ʹ-HACC/pFDNA microparticles). Results The O-2ʹ-HACC/pFDNA exhibited a regular spherical morphology with a particle size of 202.3 ± 0.52 nm, a zeta potential of 50.8 ± 8.21 mV, encapsulation efficiency of 90.74 ± 1.10%, and a loading capacity of 49.84 ± 1.20%. The plasmid DNA could be sustainably released from the O-2ʹ-HACC/pFDNA after an initial burst release. Intranasal vaccination of chickens immunized with O-2ʹ-HACC/pFDNA not only induced higher anti-NDV IgG and sIgA antibody titers but also significantly promoted lymphocyte proliferation and produced higher levels of IL-2, IL-4, IFN-γ, CD4+, and CD8 + T lymphocytes compared with the NDV commercial live attenuated vaccine. Intranasal delivery of the O-2ʹ-HACC/pFDNA enhanced humoral, cellular, and mucosal immune responses and protected chickens from the infection of highly virulent NDV compared with the intramuscular delivery. Conclusions Collectively, our findings indicated that the O-2ʹ-HACC could be used as a vaccine adjuvant and delivery system for mucosal immunity and have an immense application promise. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Kai Zhao
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Taizhou, 318000, China. .,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, 150080, China.
| | - Beini Sun
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, 150080, China
| | - Ci Shi
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, 150080, China
| | - Yanwei Sun
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, 150080, China
| | - Zheng Jin
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Taizhou, 318000, China.,Key Laboratory of Chemical Engineering Process and Technology for High-Efficiency Conversion, College of Chemistry and Material Sciences, Heilongjiang University, Harbin, 150080, China
| | - Gaowei Hu
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Taizhou, 318000, China
| |
Collapse
|
47
|
Chujo K, Jo JI, Tabata Y. Intracellular controlled release prolongs the time period of siRNA-based gene suppression. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2088-2102. [PMID: 34348600 DOI: 10.1080/09205063.2021.1958183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
RNA interference (RNAi) is a gene silencing process by inhibiting a target messenger RNA (mRNA) in the sequence-specific manner in the cell cytoplasm. Small interfering RNA (siRNA) cleaves the target mRNA. However, siRNA is not generally internalized into cells in the native state. The objective of this study is to prepare cationized gelatin nanospheres (cGNS) incorporating small interfering RNA (siRNA) and to prolong the time period of gene expression suppression. The cGNS with different degradabilities were prepared to evaluate the effect on the suppression of gene expression. There was no difference in the apparent size and zeta potential of cGNS among the amounts of glutaraldehyde (GA) added for crosslinking. The degradation of cGNS tended to become slowly with an increase of GA amounts used in preparation. After MC3T3-E1 cells were incubated with cGNS incorporating siRNA, the gene expression of cells was evaluated by real-time polymerase chain reaction (PCR). The time period of gene suppression increased with an increased amount of siRNA incorporated in cGNS. Moreover, the significant gene suppression was extended over 4 days. It is concluded that the intracellular controlled release with the cGNS enabled siRNA to prolong the time period of gene expression suppression.
Collapse
Affiliation(s)
- Kazuki Chujo
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jun-Ichiro Jo
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
48
|
Negahdaripour M, Shafiekhani M, Moezzi SMI, Amiri S, Rasekh S, Bagheri A, Mosaddeghi P, Vazin A. Administration of COVID-19 vaccines in immunocompromised patients. Int Immunopharmacol 2021; 99:108021. [PMID: 34352567 PMCID: PMC8316069 DOI: 10.1016/j.intimp.2021.108021] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 12/23/2022]
Abstract
Since the beginning of vaccination programs against COVID-19 in different countries, several populations such as patients with specific immunological conditions have been considered as the priorities for immunization. In this regard, patients with autoimmune diseases or those receiving immunosuppressive agents and anti-cancer therapies, need special attention. However, no confirmed data is presently available regarding COVID-19 vaccines in these populations due to exclusion from the conducted clinical trials. Given the probable suppression or over-activation of the immune system in such patients, reaching a consensus for their vaccination is critical, besides gathering data and conducting trials, which could probably clarify this matter in the future. In this review, besides a brief on the available COVID-19 vaccines, considerations and available knowledge about administering similar vaccines in patients with cancer, hematopoietic stem cell transplantation, solid organ transplantation, multiple sclerosis (MS), inflammatory bowel disease (IBD), and rheumatologic and dermatologic autoimmune disorders are summarized to help in decision making. As discussed, live-attenuated viruses, which should be avoided in these groups, are not employed in the present COVID-19 vaccines. Thus, the main concern regarding efficacy could be met using a potent COVID-19 vaccine. Moreover, the vaccination timing for maximum efficacy could be decided according to the patient’s condition, indicated medications, and the guides provided here. Post-vaccination monitoring is also advised to ensure an adequate immune response. Further studies in this area are urgently warranted.
Collapse
Affiliation(s)
- Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Shafiekhani
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Iman Moezzi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sogand Amiri
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rasekh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ashkan Bagheri
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pouria Mosaddeghi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsaneh Vazin
- Clinical Pharmacy Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
49
|
Chakraborty C, Sharma AR, Bhattacharya M, Lee SS. From COVID-19 to Cancer mRNA Vaccines: Moving From Bench to Clinic in the Vaccine Landscape. Front Immunol 2021; 12:679344. [PMID: 34305909 PMCID: PMC8293291 DOI: 10.3389/fimmu.2021.679344] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, mRNA vaccines have become a significant type of therapeutic and have created new fields in the biopharmaceutical industry. mRNA vaccines are promising next-generation vaccines that have introduced a new age in vaccinology. The recent approval of two COVID-19 mRNA vaccines (mRNA-1273 and BNT162b2) has accelerated mRNA vaccine technology and boosted the pharmaceutical and biotechnology industry. These mRNA vaccines will help to tackle COVID-19 pandemic through immunization, offering considerable hope for future mRNA vaccines. Human trials with data both from mRNA cancer vaccines and mRNA infectious disease vaccines have provided encouraging results, inspiring the pharmaceutical and biotechnology industries to focus on this area of research. In this article, we discuss current mRNA vaccines broadly in two parts. In the first part, mRNA vaccines in general and COVID-19 mRNA vaccines are discussed. We presented the mRNA vaccine structure in general, the different delivery systems, the immune response, and the recent clinical trials for mRNA vaccines (both for cancer mRNA vaccines and different infectious diseases mRNA vaccines). In the second part, different COVID-19 mRNA vaccines are explained. Finally, we illustrated a snapshot of the different leading mRNA vaccine developers, challenges, and future prospects of mRNA vaccines.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-do, South Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-do, South Korea
| | | | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-do, South Korea
| |
Collapse
|
50
|
Kang HM, Choi EH, Kim YJ. Updates on the coronavirus disease 2019 vaccine and consideration in children. Clin Exp Pediatr 2021; 64:328-338. [PMID: 34148333 PMCID: PMC8255510 DOI: 10.3345/cep.2021.00696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/03/2021] [Indexed: 12/22/2022] Open
Abstract
Humanity has been suffering from the global severe acute respiratory syndrome coronavirus 2 pandemic that began late in 2019. In 2020, for the first time in history, new vaccine platforms-including mRNA vaccines and viral vector-based DNA vaccines-have been given emergency use authorization, leading to mass vaccinations. The purpose of this article is to review the currently most widely used coronavirus disease 2019 vaccines, investigate their immunogenicity and efficacy data, and analyze the vaccine safety profiles that have been published, to date.
Collapse
Affiliation(s)
- Hyun Mi Kang
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun Hwa Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Yae-Jean Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Seoul, Korea
| |
Collapse
|