1
|
Acevedo N, Lozano A, Zakzuk J, Llinás-Caballero K, Brodin D, Nejsum P, Williams AR, Caraballo L. Cystatin from the helminth Ascaris lumbricoides upregulates mevalonate and cholesterol biosynthesis pathways and immunomodulatory genes in human monocyte-derived dendritic cells. Front Immunol 2024; 15:1328401. [PMID: 38481989 PMCID: PMC10936004 DOI: 10.3389/fimmu.2024.1328401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/06/2024] [Indexed: 04/08/2024] Open
Abstract
Background Ascaris lumbricoides cystatin (Al-CPI) prevents the development of allergic airway inflammation and dextran-induced colitis in mice models. It has been suggested that helminth-derived cystatins inhibit cathepsins in dendritic cells (DC), but their immunomodulatory mechanisms are unclear. We aimed to analyze the transcriptional profile of human monocyte-derived DC (moDC) upon stimulation with Al-CPI to elucidate target genes and pathways of parasite immunomodulation. Methods moDC were generated from peripheral blood monocytes from six healthy human donors of Denmark, stimulated with 1 µM of Al-CPI, and cultured for 5 hours at 37°C. RNA was sequenced using TrueSeq RNA libraries and the NextSeq 550 v2.5 (75 cycles) sequencing kit (Illumina, Inc). After QC, reads were aligned to the human GRCh38 genome using Spliced Transcripts Alignment to a Reference (STAR) software. Differential expression was calculated by DESEq2 and expressed in fold changes (FC). Cell surface markers and cytokine production by moDC were evaluated by flow cytometry. Results Compared to unstimulated cells, Al-CPI stimulated moDC showed differential expression of 444 transcripts (|FC| ≥1.3). The top significant differences were in Kruppel-like factor 10 (KLF10, FC 3.3, PBH = 3 x 10-136), palladin (FC 2, PBH = 3 x 10-41), and the low-density lipoprotein receptor (LDLR, FC 2.6, PBH = 5 x 10-41). Upregulated genes were enriched in regulation of cholesterol biosynthesis by sterol regulatory element-binding proteins (SREBP) signaling pathways and immune pathways. Several genes in the cholesterol biosynthetic pathway showed significantly increased expression upon Al-CPI stimulation, even in the presence of lipopolysaccharide (LPS). Regarding the pathway of negative regulation of immune response, we found a significant decrease in the cell surface expression of CD86, HLA-DR, and PD-L1 upon stimulation with 1 µM Al-CPI. Conclusion Al-CPI modifies the transcriptome of moDC, increasing several transcripts encoding enzymes involved in cholesterol biosynthesis and SREBP signaling. Moreover, Al-CPI target several transcripts in the TNF-alpha signaling pathway influencing cytokine release by moDC. In addition, mRNA levels of genes encoding KLF10 and other members of the TGF beta and the IL-10 families were also modified by Al-CPI stimulation. The regulation of the mevalonate pathway and cholesterol biosynthesis suggests new mechanisms involved in DC responses to helminth immunomodulatory molecules.
Collapse
Affiliation(s)
- Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Ana Lozano
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | - David Brodin
- Bioinformatics and Expression Analysis Core Facility (BEA), Karolinska Institutet, Huddinge, Sweden
| | - Peter Nejsum
- Department of Clinical Medicine. Aarhus University, Aarhus, Denmark
| | - Andrew R. Williams
- Department of Veterinary and Animal Sciences. University of Copenhagen, Frederiksberg, Denmark
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
2
|
Brook B, Fatou B, Kumar Checkervarty A, Barman S, Sweitzer C, Bosco AN, Sherman AC, Baden LR, Morrocchi E, Sanchez-Schmitz G, Palma P, Nanishi E, O'Meara TR, McGrath ME, Frieman MB, Soni D, van Haren SD, Ozonoff A, Diray-Arce J, Steen H, Dowling DJ, Levy O. The mRNA vaccine BNT162b2 demonstrates impaired T H1 immunogenicity in human elders in vitro and aged mice in vivo. RESEARCH SQUARE 2022:rs.3.rs-2395118. [PMID: 36597547 PMCID: PMC9810224 DOI: 10.21203/rs.3.rs-2395118/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
mRNA vaccines have been key to addressing the SARS-CoV-2 pandemic but have impaired immunogenicity and durability in vulnerable older populations. We evaluated the mRNA vaccine BNT162b2 in human in vitro whole blood assays with supernatants from adult (18-50 years) and elder (≥60 years) participants measured by mass spectrometry and proximity extension assay proteomics. BNT162b2 induced increased expression of soluble proteins in adult blood (e.g., C1S, PSMC6, CPN1), but demonstrated reduced proteins in elder blood (e.g., TPM4, APOF, APOC2, CPN1, and PI16), including 30-85% lower induction of TH1-polarizing cytokines and chemokines (e.g., IFNγ, and CXCL10). Elder TH1 impairment was validated in mice in vivo and associated with impaired humoral and cellular immunogenicity. Our study demonstrates the utility of a human in vitro platform to model age-specific mRNA vaccine activity, highlights impaired TH1 immunogenicity in older adults, and provides rationale for developing enhanced mRNA vaccines with greater immunogenicity in vulnerable populations.
Collapse
Affiliation(s)
- Byron Brook
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Benoit Fatou
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Abhinav Kumar Checkervarty
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Prevention of Organ Failure (PROOF) Centre of Excellence, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
- UBC Centre for Heart Lung Innovation, Providence Research, St Paul's Hospital, Vancouver, BC, Canada
| | - Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Cali Sweitzer
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Anna-Nicole Bosco
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Amy C Sherman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Lindsey R Baden
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Elena Morrocchi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Guzman Sanchez-Schmitz
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Paolo Palma
- Bambino Gesù Children's Hospital, Rome, Italy
- Chair of Pediatrics, University of Rome, Tor Vergata, Italy
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Timothy R O'Meara
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Marisa E McGrath
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew B Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Simon D van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Joann Diray-Arce
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hanno Steen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| |
Collapse
|
3
|
Hamid B, Ebner F, Bechtold L, Kundik A, Rausch S, Hartmann S. Ascaris suum excretory/secretory products differentially modulate porcine dendritic cell subsets. Front Immunol 2022; 13:1012717. [DOI: 10.3389/fimmu.2022.1012717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Helminths produce excretory/secretory products (E/S) which can modulate the immune responses of their hosts. Dendritic cells (DC) are essential for initiating the host T cell response and are thus potential targets for modulation by helminth E/S. Here we study immunomodulation of porcine peripheral blood DC subsets following ex vivo stimulation with E/S from Ascaris suum, a common helminth of pigs with considerable public health and economic importance. Our data showed that the relative frequencies of DC subsets in porcine blood differ, with plasmacytoid DC (pDC) being the most prominent in healthy 6-month-old pigs. pDC are an important cytokine source, and we found that A. suum E/S suppressed production of the type 1 cytokines IL-12p40 and TNF-α by this subset following toll-like receptor (TLR) ligation. In contrast, conventional DC (cDC) are more efficient antigen presenters, and the expression of CD80/86, costimulatory molecules essential for efficient antigen presentation, were modulated differentially by A. suum E/S between cDC subsets. CD80/86 expression by type 1 cDC (cDC1) following TLR ligation was greatly suppressed by the addition of A. suum E/S, while CD80/86 expression by type 2 cDC (cDC2) was upregulated by A. suum E/S. Further, we found that IFN-γ production by natural killer (NK) cells following IL-12 and IL-18 stimulation was suppressed by A. suum E/S. Finally, in the presence of E/S, IFN-γ production by CD4+ T cells co-cultured with autologous blood-derived DC was significantly impaired. Together, these data provide a coherent picture regarding the regulation of type 1 responses by A. suum E/S. Responsiveness of pDC and cDC1 to microbial ligands is reduced in the presence of E/S, effector functions of Th1 cells are impaired, and cytokine-driven IFN-γ release by NK cells is limited.
Collapse
|
4
|
Terra-Long MT, Pietruska A, McCrea BA, Hauck R. Infection with Ascaridia galli Does Not Significantly Alter Intestinal Microbiota and Is Cleared After Changes in the Expression of Cytokines. Avian Dis 2022; 66:186-192. [PMID: 35838751 DOI: 10.1637/aviandiseases-d-22-00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022]
Abstract
Because of the trend of cage-free egg production, infections with the nematode Ascaridia galli are receiving increased attention. The aim of this study was to establish a timeline for the influence of A. galli on the expression of key cytokines related to a parasitic immune response, and on the composition of the jejunal microbiota. Twenty-eight male layer-type birds were challenged at 24, 25, and 26 days of age. An additional 28 birds were kept as uninfected controls. Starting on Day 31, three birds of each group were euthanized every week until 8 wk postinfection (PI). The number of larvae isolated from the intestinal wall decreased over time, until no larvae were seen at 7 and 8 wk PI. At 5 wk PI, there was a numerical upregulation of all cytokines (TGF-β, IFN-γ, IL-4, IL-8, IL-10, IL-13) in the infected group, but this change was only statistically significant for IL-13. At this time point, larvae were expected to have developed into adults that would have shed eggs in the feces. However, no adult worms were seen and there was no egg shedding. For the microbiota analysis, there were significant differences in the alpha diversity (Faith's phylogenetic diversity) between challenge and control groups, and the beta diversity analysis showed slight differences between samples, suggesting that the age of the birds was the main reason for the separation of groups. These findings suggest that the upregulation of all cytokines evaluated in Week 5 might be the reason for resolution of the infection. Possible explanations are that a high infection dose and the fact that birds were fed with a more nutritionally dense feed might have contributed to the birds' immune system clearing the infection before the worms were able to reach maturity.
Collapse
Affiliation(s)
| | | | | | - Ruediger Hauck
- Department of Poultry Science, Auburn University, Auburn, AL 36849, .,Department of Pathobiology, Auburn University, Auburn, AL 36849
| |
Collapse
|
5
|
Castañeda S, Paniz-Mondolfi A, Ramírez JD. Detangling the Crosstalk Between Ascaris, Trichuris and Gut Microbiota: What´s Next? Front Cell Infect Microbiol 2022; 12:852900. [PMID: 35694539 PMCID: PMC9174645 DOI: 10.3389/fcimb.2022.852900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Helminth infections remain a global public health issue, particularly in low- and middle-income countries, where roundworms from theTrichuris and Ascaris genera are most prevalent. These geohelminths not only impact human health but most importantly also affect animal well-being, in particular the swine industry. Host-helminth parasite interactions are complex and at the same time essential to understand the biology, dynamics and pathophysiology of these infections. Within these interactions, the immunomodulatory capacity of these helminths in the host has been extensively studied. Moreover, in recent years a growing interest on how helminths interact with the intestinal microbiota of the host has sparked, highlighting how this relationship plays an essential role in the establishment of initial infection, survival and persistence of the parasite, as well as in the development of chronic infections. Identifying the changes generated by these helminths on the composition and structure of the host intestinal microbiota constitutes a field of great scientific interest, since this can provide essential and actionable information for designing effective control and therapeutic strategies. Helminths like Trichuris and Ascaris are a focus of special importance due to their high prevalence, higher reinfection rates, resistance to anthelmintic therapy and unavailability of vaccines. Therefore, characterizing interactions between these helminths and the host intestinal microbiota represents an important approach to better understand the nature of this dynamic interface and explore novel therapeutic alternatives based on management of host microbiota. Given the extraordinary impact this may have from a biological, clinical, and epidemiological public health standpoint, this review aims to provide a comprehensive overview of current knowledge and future perspectives examining the parasite-microbiota interplay and its impact on host immunity.
Collapse
Affiliation(s)
- Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Alberto Paniz-Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Juan David Ramírez, ;
| |
Collapse
|
6
|
Allen JM, Mackos AR, Jaggers RM, Brewster PC, Webb M, Lin CH, Ladaika C, Davies R, White P, Loman BR, Bailey MT. Psychological stress disrupts intestinal epithelial cell function and mucosal integrity through microbe and host-directed processes. Gut Microbes 2022; 14:2035661. [PMID: 35184677 PMCID: PMC8865257 DOI: 10.1080/19490976.2022.2035661] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Psychological stress alters the gut microbiota and predisposes individuals to increased risk for enteric infections and chronic bowel conditions. Intestinal epithelial cells (IECs) are responsible for maintaining homeostatic interactions between the gut microbiota and its host. In this study, we hypothesized that disruption to colonic IECs is a key factor underlying stress-induced disturbances to intestinal homeostasis. Conventionally raised (CONV-R) and germ-free (GF) mice were exposed to a social disruption stressor (Str) to ascertain how stress modifies colonic IECs, the mucosal layer, and the gut microbiota. RNA sequencing of IECs isolated from CONV-R mice revealed a robust pro-inflammatory (Saa1, Il18), pro-oxidative (Duox2, Nos2), and antimicrobial (Reg3b/g) transcriptional profile as a result of Str. This response occurred concomitant to mucus layer thinning and signs of microbial translocation. In contrast to their CONV-R counterparts, IECs from GF mice or mice treated with broad spectrum antibiotics exhibited no detectable transcriptional changes in response to Str. Nevertheless, IECs from Str-exposed GF mice exhibited an altered response to ex vivo bacterial challenge (increased dual Oxidase-2 [Duox2] and nitric oxide synthase-2 (Nos2)), indicating that STR primes host IEC pro-oxidative responses. In CONV-R mice stress-induced increases in colonic Duox2 and Nos2 (ROS generating enzymes) strongly paralleled changes to microbiome composition and function, evidencing Str-mediated ROS production as a primary factor mediating gut-microbiota dysbiosis. In conclusion, a mouse model of social stress disrupts colonic epithelial and mucosal integrity, a response dependent on an intact microbiota and host stress signals. Together these preclinical findings may provide new insight into mechanisms of stress-associated bowel pathologies in humans.
Collapse
Affiliation(s)
- Jacob M. Allen
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois,Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,CONTACT Jacob M. Allen Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, 906 S. Goodwin Ave, Urbana61820, Illinois
| | - Amy R. Mackos
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,College of Nursing, The Ohio State University, Columbus, Ohio
| | - Robert M. Jaggers
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Patricia C. Brewster
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Mikaela Webb
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Chia-Hao Lin
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Chris Ladaika
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Ronald Davies
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Peter White
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio
| | - Brett R. Loman
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Michael T. Bailey
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio,Oral and Gi Microbiology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,Michael T. Bailey Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| |
Collapse
|
7
|
Wu Y, Li E, Knight M, Adeniyi-Ipadeola G, Song LZ, Burns AR, Gazzinelli-Guimaraes AC, Fujiwara R, Bottazzi ME, Weatherhead JE. Transient Ascaris suum larval migration induces intractable chronic pulmonary disease and anemia in mice. PLoS Negl Trop Dis 2021; 15:e0010050. [PMID: 34914687 PMCID: PMC8717995 DOI: 10.1371/journal.pntd.0010050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/30/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Ascariasis is one of the most common infections in the world and associated with significant global morbidity. Ascaris larval migration through the host’s lungs is essential for larval development but leads to an exaggerated type-2 host immune response manifesting clinically as acute allergic airway disease. However, whether Ascaris larval migration can subsequently lead to chronic lung diseases remains unknown. Here, we demonstrate that a single episode of Ascaris larval migration through the host lungs induces a chronic pulmonary syndrome of type-2 inflammatory pathology and emphysema accompanied by pulmonary hemorrhage and chronic anemia in a mouse model. Our results reveal that a single episode of Ascaris larval migration through the host lungs leads to permanent lung damage with systemic effects. Remote episodes of ascariasis may drive non-communicable lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), and chronic anemia in parasite endemic regions. Ascariasis is the most common helminth infection and leads to significant global morbidity. Transient Ascaris larval migration through the host’s lungs is essential for larval development but leads to an exaggerated type-2 host immune response. Our work demonstrates that transient Ascaris spp. larval migration through the lungs has significant long-term consequences including changes in lung structure and function as well as vascular damage causing chronic lung disease and anemia. We propose that Ascaris spp. larval migration through the host lungs is a risk factor for the development of chronic lung disease and anemia in parasite-endemic regions globally.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Pediatrics, Pediatric Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Medicine, Pathology and Immunology, and the Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Evan Li
- Department of Medicine, Pathology and Immunology, and the Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Morgan Knight
- Department of Medicine, Pathology and Immunology, and the Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Grace Adeniyi-Ipadeola
- Department of Pediatrics, Pediatric Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Li-zhen Song
- Department of Medicine, Pathology and Immunology, and the Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alan R. Burns
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | | | - Ricardo Fujiwara
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Elena Bottazzi
- Department of Pediatrics, Pediatric Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jill E. Weatherhead
- Department of Pediatrics, Pediatric Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Medicine, Infectious Diseases, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
8
|
The yin and yang of human soil-transmitted helminth infections. Int J Parasitol 2021; 51:1243-1253. [PMID: 34774540 PMCID: PMC9145206 DOI: 10.1016/j.ijpara.2021.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
The major soil-transmitted helminths that infect humans are the roundworms, whipworms and hookworms. Soil-transmitted helminth infections rank among the most important neglected tropical diseases in terms of morbidity, and almost one billion people are still infected with at least one species. While anthelmintic drugs are available, they do not offer long term protection against reinfection, precipitating the need for vaccines that provide long-term immunologic defense. Vaccine discovery and development is in advanced clinical development for hookworm infection, with a bivalent human hookworm vaccine in clinical trials in Brazil and Africa, but is in its infancy for both roundworm (ascariasis) and whipworm (trichuriasis) infections. One of the greatest hurdles to developing soil-transmitted helminth vaccines is the potent immunoregulatory properties of these helminths, creating a barrier to the induction of meaningful long-term protective immunity. While challenging for vaccinologists, this phenomenon presents unique opportunities to develop an entirely new class of anti-inflammatory drugs that capitalise on these immunomodulatory strategies. Epidemiologic studies and clinical trials employing experimental soil-transmitted helminth challenge models, when coupled with findings from animal models, show that at least some soil-transmitted helminth-derived molecules can protect against the onset of autoimmune, allergic and metabolic disorders, and several natural products with the desired bioactivity have been isolated and tested in pre-clinical settings. The yin and yang of soil-transmitted helminth infections reflect both the urgency for effective vaccines and the potential for new immunoregulatory molecules from parasite products.
Collapse
|
9
|
Haonon O, Liu Z, Dangtakot R, Intuyod K, Pinlaor P, Puapairoj A, Cha'on U, Sengthong C, Pongking T, Onsurathum S, Yingklang M, Phetcharaburanin J, Li JV, Pinlaor S. Opisthorchis viverrini Infection Induces Metabolic and Fecal Microbial Disturbances in Association with Liver and Kidney Pathologies in Hamsters. J Proteome Res 2021; 20:3940-3951. [PMID: 34270897 DOI: 10.1021/acs.jproteome.1c00246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Opisthorchis viverrini (Ov) infection causes hepatobiliary diseases and is a major risk factor for cholangiocarcinoma. While several omics approaches have been employed to understand the pathogenesis of opisthorchiasis, effects of Ov infection on the host systemic metabolism and fecal microbiota have not been fully explored. Here, we used a 1H NMR spectroscopy-based metabolic phenotyping approach to investigate Ov infection-induced metabolic disturbances at both the acute (1 month postinfection, 1 mpi) and chronic (4 mpi) stages in hamsters. A total of 22, 3, and 4 metabolites were found to be significantly different in the liver, serum, and urine, respectively, between Ov+ and Ov- groups. Elevated levels of hepatic amino acids and tricarboxylic acid (TCA)-cycle intermediates (fumarate and malate) were co-observed with liver injury in acute infection, whereas fibrosis-associated metabolites (e.g., glycine and glutamate) increased at the chronic infection stage. Lower levels of lipid signals ((CH2)n and CH2CH2CO) and higher levels of lysine and scyllo-inositol were observed in serum from Ov+ hamsters at 1 mpi compared to Ov- controls. Urinary levels of phenylacetylglycine (a host-bacterial cometabolite) and tauro-β-muricholic acid were higher in the Ov+ group, which coexisted with hepatic and mild kidney fibrosis. Furthermore, Ov+ animals showed higher relative abundances of fecal Methanobrevibacter (Archaea), Akkermansia, and Burkholderia-Paraburkholderia compared to the noninfected controls. In conclusion, along with liver and kidney pathologies, O. viverrini infection resulted in hepatic and mild renal pathologies, disturbed hepatic amino acid metabolism and the TCA cycle, and induced changes in the fecal microbial composition and urinary host-microbial cometabolism. This study provides the initial step toward an understanding of local and systemic metabolic responses of the host to O. viverrini infection.
Collapse
Affiliation(s)
- Ornuma Haonon
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Zhigang Liu
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Rungtiwa Dangtakot
- Faculty of Medical Technology, Nakhonratchasima College, Nakhon Ratchasima 30000, Thailand
| | - Kitti Intuyod
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Porntip Pinlaor
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Centre for Research and Development in Medical Diagnostic Laboratory, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anucha Puapairoj
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ubon Cha'on
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chatchawan Sengthong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thatsanapong Pongking
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand.,Centre for Research and Development in Medical Diagnostic Laboratory, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sudarat Onsurathum
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Manachai Yingklang
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jia V Li
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
10
|
Eloi da Silva T, Barbosa FS, Magalhães LMD, Gazzinelli-Guimarães PH, Dos Santos AC, Nogueira DS, Resende NM, Amorim CC, Gazzinelli-Guimarães AC, Viana AG, Geiger SM, Bartholomeu DC, Fujiwara RT, Bueno LL. Unraveling Ascaris suum experimental infection in humans. Microbes Infect 2021; 23:104836. [PMID: 34020024 DOI: 10.1016/j.micinf.2021.104836] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022]
Abstract
Ascaris lumbricoides and A. suum are two closely related parasites that infect humans and pigs. The zoonotic potential of A. suum has been a matter of debate for decades. Here we sought to investigate the potential human infection by A. suum and its immunological alterations. We orally infected five healthy human subjects with eggs embraced by A. suum. The infection was monitored for symptoms and possible respiratory changes, by an interdisciplinary health team. Parasitological, hematological analyses, serum immunoglobulin, cytokine profiles, and gene expression were evaluated during the infection. Our results show that A. suum is able to infect and complete the cycle in humans causing A. lumbricoides similar symptoms, including, cough, headache, diarrhea, respiratory discomfort and chest x-ray alterations coinciding with larvae migration in the lungs. We also observed activation of the immune system with production of IgM and IgG and a Th2/Th17 response with downregulation of genes related to Th1 and apoptosis. PCA (Principal componts analysis) show that infection with A. suum leads to a change in the immune landscape of the human host. Our data reinforce the zoonotic capacity of A. suum and bring a new perspective on the understanding of the immune response against this parasite.
Collapse
Affiliation(s)
- Thaís Eloi da Silva
- Parasitology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernando S Barbosa
- Parasitology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luisa M D Magalhães
- Parasitology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro H Gazzinelli-Guimarães
- Parasitology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; National Institutes of Health, National Institute of Allergy and Infectious Disease, Bethesda, Maryland, USA
| | - Anderson C Dos Santos
- Parasitology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Denise S Nogueira
- Parasitology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nathalia M Resende
- Parasitology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Chiara C Amorim
- Parasitology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Clara Gazzinelli-Guimarães
- Parasitology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Agostinho G Viana
- Parasitology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Stefan M Geiger
- Parasitology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniella C Bartholomeu
- Parasitology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo T Fujiwara
- Parasitology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lilian L Bueno
- Parasitology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
11
|
Deslyper G, Murphy DM, Sowemimo OA, Holland CV, Doherty DG. Distinct hepatic myeloid and lymphoid cell repertoires are associated with susceptibility and resistance to Ascaris infection. Parasitology 2021; 148:539-549. [PMID: 33431071 PMCID: PMC10090783 DOI: 10.1017/s0031182021000020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/02/2023]
Abstract
The soil-transmitted helminth Ascaris lumbricoides infects ~800 million people worldwide. Some people are heavily infected, harbouring many worms, whereas others are only lightly infected. The mechanisms behind this difference are unknown. We used a mouse model of hepatic resistance to Ascaris, with C57BL/6J mice as a model for heavy infection and CBA/Ca mice as a model for light infection. The mice were infected with the porcine ascarid, Ascaris suum or the human ascarid, A. lumbricoides and immune cells in their livers and spleens were enumerated using flow cytometry. Compared to uninfected C57BL/6J mice, uninfected CBA/Ca mice had higher splenic CD4+ and γδ T cell counts and lower hepatic eosinophil, Kupffer cell and B cell counts. Infection with A. suum led to expansions of eosinophils, Kupffer cells, monocytes and dendritic cells in the livers of both mouse strains and depletions of hepatic natural killer (NK) cells in CBA/Ca mice only. Infection with A. lumbricoides led to expansions of hepatic eosinophils, monocytes and dendritic cells and depletions of CD8+, αβ, NK and NK T cells in CBA/Ca mice, but not in C57BL/6J mice where only monocytes expanded. Thus, susceptibility and resistance to Ascaris infection are governed, in part, by the hepatic immune system.
Collapse
Affiliation(s)
- Gwendoline Deslyper
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Dearbhla M. Murphy
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Celia V. Holland
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Derek G. Doherty
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Park JM, Lee HS, Park JY, Jung DH, Lee JW. White Blood Cell Count as a Predictor of Incident Type 2 Diabetes Mellitus Among Non-Obese Adults: A Longitudinal 10-Year Analysis of the Korean Genome and Epidemiology Study. J Inflamm Res 2021; 14:1235-1242. [PMID: 33833545 PMCID: PMC8021258 DOI: 10.2147/jir.s300026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Limited evidence is available on whether the white blood cell (WBC) count is a predictor of type 2 diabetes mellitus (T2DM) in non-obese individuals. This study aimed to determine whether WBC count could be used as an indicator for the prediction of incident T2DM among non-obese individuals using a large, community-based Korean cohort that was observed over 10 years. Patients and methods A total of 4211 non-obese adults without diabetes aged 40-69 years were selected from the Korean Genome and Epidemiology Study. The participants were divided into four groups according to WBC count quartiles. We prospectively assessed the hazard ratios (HRs) with 95% confidence intervals (CIs) for incident T2DM, based on the American Diabetes Association criteria, using multivariate Cox proportional hazards regression models over 10 years after the baseline survey. Results During the follow-up period, 592 (14.1%) participants had newly developed T2DM. The higher quartile of WBC count groups showed significantly higher cumulative T2DM incidence over 10 years after the baseline survey (log-rank test, P < 0.001). Compared with the HRs for individuals in the referent lowest quartile, the HR (95% CI) for incident T2DM in individuals in the highest quartile was 1.55 (1.10-2.18) after adjusting for confounding variables. Conclusion A higher WBC count predicts future incident T2DM among community-dwelling non-obese Korean adults. This study suggests that WBC count could facilitate the prediction of non-obese individuals susceptible to T2DM.
Collapse
Affiliation(s)
- Jae-Min Park
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul, Republic of Korea.,Department of Medicine, Graduate School of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju-Young Park
- Department of Statistics and Data Science, Yonsei University, Seoul, Republic of Korea
| | - Dong-Hyuk Jung
- Department of Family Medicine, Yonsei University College of Medicine, Yongin Severance Hospital, Gyeonggi-do, Republic of Korea
| | - Ji-Won Lee
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul, Republic of Korea
| |
Collapse
|
13
|
Midha A, Ebner F, Schlosser-Brandenburg J, Rausch S, Hartmann S. Trilateral Relationship: Ascaris, Microbiota, and Host Cells. Trends Parasitol 2020; 37:251-262. [PMID: 33008723 DOI: 10.1016/j.pt.2020.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Ascariasis is a globally spread intestinal nematode infection of humans and a considerable concern in pig husbandry. Ascaris accomplishes a complex body migration from the intestine via the liver and lung before returning to the intestine. Tissue migration and the habitat shared with a complex microbial community pose the question of how the nematode interacts with microbes and host cells from various tissues. This review addresses the current knowledge of the trilateral relationship between Ascaris, its microbial environment, and host cells, and discusses novel approaches targeting these interactions to combat this widespread infection of livestock and man.
Collapse
Affiliation(s)
- Ankur Midha
- Institute of Immunology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, D-14163 Berlin, Germany
| | - Friederike Ebner
- Institute of Immunology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, D-14163 Berlin, Germany
| | | | - Sebastian Rausch
- Institute of Immunology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, D-14163 Berlin, Germany
| | - Susanne Hartmann
- Institute of Immunology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, D-14163 Berlin, Germany.
| |
Collapse
|